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Abstract

One of the major challenges in estimating con-
ditional potential outcomes and conditional av-
erage treatment effects (CATE) is the presence
of hidden confounders. Since testing for hidden
confounders cannot be accomplished only with
observational data, conditional unconfoundedness
is commonly assumed in the literature of CATE
estimation. Nevertheless, under this assumption,
CATE estimation can be significantly biased due
to the effects of unobserved confounders. In this
work, we consider the case where in addition to
a potentially large observational dataset, a small
dataset from a randomized controlled trial (RCT)
is available. Notably, we make no assumptions
on the existence of any covariate information for
the RCT dataset, we only require the outcomes
to be observed. We propose a CATE estimation
method based on a pseudo-confounder generator
and a CATE model that aligns the learned potential
outcomes from the observational data with those
observed from the RCT. Our method is applicable
to many practical scenarios of interest, particularly
those where privacy is a concern (e.g., medical ap-
plications). Extensive numerical experiments are
provided demonstrating the effectiveness of our ap-
proach for both synthetic and real-world datasets.

1 INTRODUCTION

Estimating treatment effects is of significant interest to vari-
ous scientific communities, such as in medicine [Glass et al.,
2013, Feuerriegel et al., 2024] and social sciences [Imbens
and Rubin, 2015, Imbens, 2024] for assessing the efficacy
of a policy. Recently, various methods have been devel-
oped using machine learning to estimate individual-level
treatment effects, also known as the conditional average

treatment effects (CATE) [Shalit et al., 2017, Alaa and Van
Der Schaar, 2017, Wager and Athey, 2018, Shi et al., 2019,
Guo et al., 2023, Schweisthal et al., 2024, Fang and Liang,
2024]. While these methods have proven successful, their
effectiveness in estimating treatment effects can be signif-
icantly compromised in real-world applications due to the
confounding problem[Kallus et al., 2019, Chor et al., 2024].
Confounders are variables that influence both the treatment
and the outcome. If not properly controlled for, they can
severely bias the potential outcome and treatment effect
estimations [Rosenbaum and Rubin, 1983]. While it is well-
established that treatment effects are identifiable under the
assumption of conditional unconfoundedness (that is, no hid-
den confounders), estimating conditional treatment effects
becomes much more challenging under unobserved con-
founders [Imbens and Rubin, 2015, Kallus and Zhou, 2018].
In some ideal scenarios like Randomized Controlled Trials
(RCTs), conditional unconfoundedness might be achieved
by design. However, these experiments often require an
expensive data collection process. Furthermore, the condi-
tional unconfoundedness assumption is inherently not fal-
sifiable from observational data alone [Popper, 2005]. For
instance, passively collected healthcare databases often lack
essential clinical details that can influence treatment deci-
sions made by both doctors and patients, such as subjective
evaluations of the severity of a condition or personal lifestyle
factors. Consequently, when applying causal inference mod-
els to observational data, it is common to assume conditional
unconfoundedness, which may fail to hold in practice and
cannot be tested. This can cause significant bias in potential
outcome estimation.

Problem Setting. In this work, we propose a novel approach
to mitigate the bias in estimating CATE under hidden con-
founders. Our analysis begins by considering a scenario in
which both observational data and RCT data are present —
a common situation in many fields, such as in healthcare,
where large observational datasets with rich features (e.g.,
electronic health records) are readily available, but RCTs
are expensive and often too small to support complex mod-



els for learning CATE. In particular, we consider scenarios
where only the outcomes from a small batch of RCTs are
available alongside observational datasets, circumventing
the requirements for individual covariates from RCTs. Such
scenarios are plausible in real-world applications where:

e Privacy restrictions: Full access to detailed features
may be unavailable due to privacy concerns. For ex-
ample, covariates cannot be shared between institu-
tions. Consider a European hospital and a U.S. hospital
collaborating on cancer treatment outcomes. Due to
GDPR in Europe and HIPAA in the U.S., raw patient
features (e.g., genetic profiles, detailed medical history)
cannot be shared. However, aggregated outcomes (e.g.,
survival rate, remission status) can be exchanged. In
this case, the goal is to use the available outcomes from
the partner site to balance and deconfound a model
trained on local (observational) patient features, with-
out ever accessing the full covariates from the RCT
data.

* Mismatched covariates between RCT and observa-
tional data: For example, an RCT studying the effect
of a new diabetes intervention may have collected de-
tailed clinical measurements (e.g., insulin sensitivity
markers), while the current hospital EHR system in-
cludes only demographic and basic lab results (e.g.,
A1C, fasting glucose). In this case, we can’t directly
use the RCT model because the features don’t align,
but we can still use the outcomes from the RCT to help
deconfound the observational data, e.g., by regularizing
predictions or mitigating confounding.

* Old RCT outcomes with no collected features: For in-
stance, an old clinical trial for a hypertension drug
conducted in the 1990s might have preserved only treat-
ment assignments and blood pressure outcomes, while
detailed patient covariates (e.g., age, BMI, comorbidi-
ties) were not digitized or are no longer accessible.
Meanwhile, modern electronic health records (EHRs)
include rich observational features but lack experimen-
tal data. In this case, we can use the outcome distribu-
tion from the old RCT to improve robustness or reduce
confounding in models trained on the newer EHR data.

Method. Our proposed method consists of two regulariza-
tion modules, based on the given outcomes from RCT data,
to regularize the search space of hypothesis to prevent bias
due to hidden confounders. We note that the proposed regu-
larization modules are CATE model-agnostic, that is, they
can be added to any Neural Net-based CATE estimation
model.

Marginals Balancing (MB): The first regularization builds
on the key fact that the RCT outcomes can be considered
as samples from the true potential outcomes. Motivated
by this, we use a pseudo-confounder generator to emulate
the hidden confounders, based on which the CATE models’
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Figure 1: Comparison of CATE estimates using the factual
learner, the MB and PB models, and MB+PB.

predicted potential outcomes should equal in distribution to
the observed outcomes from RCT data.

Projections Balancing (PB): The second approach is based
on the observation that the projection of the learned potential
outcomes onto any transformation of the features should
correspond to that of the true potential outcomes on the
same transformation.

Our final model (MB+PB) combines both approaches, as
we numerically observe that doing so restricts the search
space for the factual optimization problem and achieves the
best performance. We illustrate the performance of these
different models on a simple Gaussian linear model in Fig-
ure 1. See Section 3.1 for a full description of this example.
Figure 2 provides a high-level illustration of the proposed
approach.

Related Works Several recent works address the chal-
lenge of estimating treatment effects under unobserved con-
founding by combining randomized controlled trials (RCTs)
with observational data. Some approaches leverage the inter-
nal validity of RCTs and how representative observational
data is using techniques such as weighting and doubly ro-
bust estimators [Colnet et al., 2024]. Other methods pro-
pose a linear correction term to adjust for confounding bias
[Kallus et al., 2018]. Methods have also been developed
for estimating heterogeneous treatment effects, requiring
covariate-level data for improved accuracy and balancing
the representation of different observed features [Hatt et al.,
2022a]. Kallus et al. [2019] introduce interval estimation
for CATE under unobserved confounders and the marginal
sensitivity model [Rosenbaum, 2002]. It is important to note
that all of these methods assume that both individual co-
variates and outcomes from the RCTs are accessible, which
differs from the assumptions of our approach, as we assume
that only the outcomes of the RCT are observed. Other
methods have explored specific scenarios for estimating
CATE from multiple datasets, such as in recommendation
systems [Li et al., 2024] or sequential observational data
[Hatt and Feuerriegel, 2024]. Moreover, recent works have
addressed the confounding introduced by applying represen-
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Figure 2: Schematic of the proposed training and inference procedures. (i): (a) generates pseudo confounders that are used
within the CATE estimator using the observational data. Potential outcomes are then matched to the unconfounded RCT
dataset in (c). (ii): inference is performed by (a) sampling from the pseudo-confounder generator and (b) using the CATE

model with the individual’s features.

tation learning approaches to CATE estimation [Melnychuk
et al., 2024]. Additionally, our work is closely related to sen-
sitivity analysis under hidden confounders. While previous
works [Oprescu et al., 2023, Veitch and Zaveri, 2020] study
the error in estimating CATE under hidden confounding,
we investigate potential improvements in CATE estimation
when RCT outcomes are available.

2 PROBLEM SETUP

Let (Q,F,P) be a probability space. Consider random
variables (X, U, T,Y1,Yp) defined on (Q, 7,P), where T
is a binary random variable denoting treatment assign-
ment, X € X C R? represents the observed features and
U € U C R™ represents unobserved confounders. The po-
tential outcomes Y7, Yy € R correspond to the outcomes un-
der treatment and control, respectively. Let Y represent the
observed outcome defined as [Herndn and Robins, 2020]':

Y =TY, + (1 - T)Y,.

Figure 3 illustrates the causal graph of these variables.

Observational Data. In real scenarios we do not have
access to U, Y7, or Yy — which gives rise to one of the
most fundamental challenges in causal inference. Instead,
we only have access to samples of the random triplet

!'Some references take an alternative approach by first defining
the factual outcome and then using the consistency assumption to
define the potential outcomes.

Figure 3: Causal graph with unobserved confounders (U).

(X,T,Y). Thus, we assume an observational dataset D, =
{(zi, ti,y:)} i, , consisting of n, independent observations.

CATE Estimation. The objective is to estimate the con-
ditional potential outcomes E[Y; | X] for ¢t € {0,1} and
CATE 7(X), defined as:

T(X) =E[Y; [ X] -E[Yo | X].

To this end, we make the standard assumption of positivity,
thatis, P(T'=1 | X)) > 0 almost surely. We also assume
that X I U, which is verified by the causal graph in Fig-
ure 3. Moreover, to identify CATE, it is common to assume
conditional unconfoundedness, thatis, Y; I T | X. While
it is well established in the causal inference literature that
CATE is identifiable under the assumption of conditional
unconfoundedness, this assumption does not hold in the
presence of hidden confounders. Without conditional un-
confoundedness, CATE is generally not identifiable [Rosen-
baum and Rubin, 1983, Imbens and Rubin, 2015]. Hidden
confounders, which are common in practice, always lead
to a violation of the conditional unconfoundedness assump-
tion. Therefore, we focus on scenarios where the conditional



unconfoundedness assumption is violated. Specifically, for
t € {0,1}, weassume Y; L T | X, i.e., the treatment as-
signment is not independent of the potential outcomes given
the observed features due to the presence of unobserved
confounders U.

Performance Metric. Let 7(z) = h(z,1) — h(z,0)
denote an estimator for CATE where h is a hypothesis
h: X x{0,1} — Y that estimates the conditional potential
outcomes E [V;| X = x].

Definition 2.1 (PEHE). The Expected Precision in Estimat-
ing Heterogeneous Treatment Effect (PEHE) [Hill, 2011]
is defined as:

) = [ (7la) = r@)Ppla)ds )
x
where p(x) is the marginal density of the covariates X.

The epgy; 1s widely used as the performance metric for CATE
estimation, especially in scenarios where heterogeneous
effects are present across different individuals.

RCT Data. Given that the bias of hidden confounders
cannot even be tested with observational data, we assume
access to a small batch of RCT data. In particular, we as-
sume access to only the outcomes of RCT data, instead
of the stronger requirement of observing covariates. Let
the outcome-only RCT data be denoted as (7., Y,.) and let
u = IP(T,. = 1). The data generating process of the RCT
data is equivalent to the following process: Consider two
random variables Y/ and Y{ which are equal in distribu-
tion to the true potential outcomes Y; and Yj, respectively.
Then with probability u, we have one sample of Y7'; with
probability 1 — u, we have one sample of Y.

We denote the RCT datasetas D, = {D?, D}} where D! =

{y! };il for t € {0, 1}. In particular, D? and D} contain
nl and n? samples from Y7 and Y{.

The central question we explore in this work is how
to apply knowledge about the marginal distributions
of the true potential outcomes to help reduce the es-
timation error of the conditional potential outcomes
and CATE under hidden confounders.

\. J

We note that, to simplify the mathematical analysis, we
assume that the potential outcomes in the RCT and observa-
tional data are sampled from the same distribution. However,
we relax this assumption in our empirical evaluation. Addi-
tionally, standard transfer learning and domain adaptation
bounds can be derived for scenarios with distribution shifts.

!This assumption simplifies the theoretical analysis, while our
empirical results cover cases with distribution shifts.

Confounding Degree. Additionally, we explore how the
confounding degree—that is the influence of the unobserved
confounder on the treatment assignment—affects the esti-
mation performance. To quantify the degree of unobserved
confounding, we employ the commonly used Marginal Sen-
sitivity Model(MSM) [Rosenbaum, 2002]. MSM represents
a general class of functions that satisfy the I'-selection bias
condition defined as follows.

Definition 2.2 (I"-selection bias condition). A probability
measure P satisfies the I'-selection bias condition with 1 <
I' < oo if, for P-almost all u,u € U and x € X, the

following holds: let 7(x,u) = W and m(x,u) =
P(T=1lz.U=d)
B(T=0lz,U—=a)" ["en
1 w(x,u)
— < <T. 2
I = w(z,a) — &

The confounding degree is defined as the minimum value of
I" that satisfies the I'-selection bias condition. Specifically,
the I"-selection condition is satisfied when the odds ratio of
receiving the treatment can change by up to a factor of I'
as the unobserved confounder U varies, while the observed
features remain fixed. Note that when I' = 1, this corre-
sponds to the case where U has no effect on the likelihood
of treatment assignment given the observed features.

3 PROPOSED APPROACH

In this section, we present two models designed to address
the challenge of estimating conditional potential outcomes
and the CATE in the presence of hidden confounders. To
help understand the challenge of hidden confounders, we
first discuss in Section 3.1 with a case study about the
issue that arises on the baseline factual learner which re-
lies solely on the observational data in the presence of hid-
den confounders. Next, we introduce our two approaches:
Marginals Balancing (MB) in Section 3.2 and Projections
Balancing (PB) in Section 3.3. Both approaches are de-
signed to mitigate bias, though they are based on distinct
principles. Finally, in Section 3.4, we describe our com-
bined model, MB+PB, which integrates both approaches to
improve CATE estimation under hidden confounding.

3.1 FACTUAL LEARNER

In the context of conditional potential outcome estimation
with observational data, it is standard to solve the following
optimization problem based on the observed outcome:
min E [(ZT _ Y)ﬂ , 3)
Z1,Zo o(X)-measurable
where o(X) denotes the o-algebra generated by X,
Z1, 2y € U(X), T e {0, 1}, and Zp = Z1lp—1+Zoglp—y.



It is well-established ([Theorem 4.1.15] [Durrett, 2019]) that
the unique optimal solution (up to a measure zero set) is

vte {0,1},Z, = Z AE[Y|X,T =1],

which we will refer to as the factual learner. On the other
hand, the goal in causal inference is to learn the conditional
potential outcomes E [Y;|X] for ¢ € {0,1}, from which
CATE can be computed. Note that under conditional uncon-
foundedness, we have Z[" = E [V;| X].

However, when conditional unconfoundedness is violated,
the solution Z[" to the standard optimization problem in
Equation 3 does not necessarily equal to E [Y;| X]. In other
words, the equality E [Y;|X] = E[Y|X,T = t] does not
necessarily hold. In such cases, the observed data does not
provide an accurate estimate of the true treatment effect due
to the influence of hidden confounders.

Case Study. To empirically illustrate the bias induced by
the factual learner, consider the following example. Let the
covariate X and the hidden confounder U follow normal
distributions where

X ~ N(1.0,0.04) and U ~ N(0,1).

The treatment assignment 7" is determined by a logistic
model that depends on both X and the unobserved con-
founder U:

1
P(T =1|X,U) =
( X0 =13 exp(—0.5X — 20’

The potential outcomes are modeled as linear functions of
X and U:

Y1 =-35X +3U, Yy,=45X—-0.6U.

The observed outcome Y, givenby Y = TY; + (1 — 7)Yy,
depends on the treatment assignment 7.

We sample 1000 samples from (X, 7,Y), which is more
than sufficient for such a simple problem in a low-
dimensional setting, and fit two linear regression models sep-
arately on the treatment (7" = 1) and control (7' = 0) groups,
allowing us to estimate the factual learners E[Y| X, T = 0]
and E[Y|X,T = 1]. In Figure 4, we compare the factual
learner with the true potential outcomes E[Y;|X]. This com-
parison reveals the bias inherent in the factual learner due to
the unobserved confounder U. In the following sections, we
propose two different approaches to alleviate the confound-
ing effect when access to the outcomes of an RCT dataset is
available.

3.2 MARGINALS BALANCING

Motivation. To motivate our first model, we begin by
observing that the true conditional potential outcomes,
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Figure 4: Comparison between the baseline factual learner
and the true conditional potential outcomes for a linear
Gaussian model.

E[Y7|X] and E[Y|X], should ideally correspond to the pro-
jection of a random variable sharing the same distribution
as the true potential outcomes Y; and Yj. Specifically, since
the true potential outcome Y; depends on both the covariates
X and the hidden confounders U, we propose models of the
form: ~ ~
Yi= 1 t(X ’ U)7

where f; : R x R — R, and U € R is a random vari-
able representing the pseudo-confounder. As motivated in
Section 2, given the knowledge of the marginal distribution
of Y} (from the RCT outcomes), it is natural to impose the
following constraint:

Y, L, (4)

where 2 denotes equality in distribution. Thus, the model
Y} should interpolate the observational data under the con-
straint in Equation (4).

Method. Our first approach, which we refer to as the
Marginals Balancing (MB), follows this observation and can
be formalized through the following optimization problem:

Definition 3.1 (Optimization Problem of MB). Let B(R)
denote the set of real-valued continuous and bounded func-
tions. MB solves the following optimization problem:

min E [(ZT _ Y)Q} , (5)
Z1,Zo o(X)-measurable

where, for t € {0,1}, Z, = E {ft(X, [7)|X} for some

function f; : R? x R — R and a random variable UeR
that conform to the following constraint:

Vi€ {0,1},¥5 € BR), E[3(A(X,0)] =E[g(v)].
(6)

Note that the constraint in Equation (6) implies the
constraint in Equation (4) due to the Portmanteau
Lemma [Billingsley, 1995]. It is important to also note that
E [g(Y})] can be estimated with the outcomes in the RCT
data because they can be considered as samples of a random
variable Y} that equal in distribution to Y;.
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Figure 5: Comparison of the factual learner and MB model
with the true conditional potential outcomes.

Implementation. To solve the optimization problem of
MB, we generate the pseudo-confounder U using a neural
network ¢, and fit a CATE estimation model (X, U ), with
the observed covariates along with the generated pseudo-
confounder as inputs, to predict the observed outcomes in
the observational dataset D,. Moreover, we enforce that
the predicted potential outcomes match the true potential
outcomes in distribution. We achieve this by adversarial
training, where we instantiate B(R) with a neural net, and
update its parameter to maximize the L, distance between
the right-hand side and the left-hand side of the equality in
Equation (6), estimated through the RCT data D,..

Empirical Illustration. Figure 5 illustrates the perfor-
mance of MB model on the case study in Section 3.1. We
can observe that the gap between the true conditional poten-
tial outcomes and the predicted potential outcomes is indeed
reduced compared to the factual learner.

Limitation. One notable limitation of the marginal balanc-
ing method is that the optimal solution to the MB optimiza-
tion problem is not unique. Moreover, for certain classes
of functions, it is possible to construct an optimal solution
under the imposed constraint that does not recover the true
conditional potential outcomes, as demonstrated by the ex-
ample provided in Appendix A.

3.3 PROJECTIONS BALANCING

We now introduce our second approach, called Projections
Balancing (PB).

To illustrate the benefits of this method, we begin by con-
sidering an idealized scenario with direct access to the true
potential outcomes Y7 and Yj, rather than relying on the
RCT data containing samples of Y and Y which are ran-
dom variables equal in distribution to Y; and Yj. In practice,
this is unattainable since the treatment assignment biases
the distribution of the observed outcomes in observational
data. We will later relax this learner under the assumption
that only a small subset of RCT outcomes is available.

We begin with the following result, which presents a con-

strained optimization problem whose unique optimal solu-
tion is precisely the conditional potential outcome E[Y;| X],
the quantity we aim to identify in causal inference.

Proposition 3.2 (Ideal PB). Let ¢ = {g : R —
[—1, 1], such that g is piece-wise continuous} and consider
the following optimization problem:

min E [(ZT - Y)Q}
Z1,Zo o(X)-measurable

subject to the constraint

Vge g, vte{0,1}, E[Zg(X)]=E[Yig(X)].

The unique solution for this problem is:

vt e {0,1}, Z, =E[Y;|X].

Proof of Proposition 3.2. See in Appendix A. O

Method. We underscore that the most notable advantage of
the ideal PB learner is that it provides a unique solution cor-
responding to the true potential outcomes. Without access
to the true potential outcomes in practice, we now introduce
a practical PB learner by relaxing the proposed ideal PB
learner to scenarios where RCT outcomes are available.

Definition 3.3 (Optimization Problem of PB). LetC € RT
be a positive constant and G = {g : R — [—1,1]}. PB has
the following optimizing problem:

min E [(ZT - Y)ﬂ :
Z1,Zo o(X)-measurable

s.t. max sup |E[Ztg(X)] —E[Y/g(X)] ‘ <,
te{0,1} geg

(7

where Y] is a random variable equal in distribution to the
true potential outcome Y.

In this formulation, the true potential outcomes Y; are re-
placed by the RCT potential outcomes Y;. However, since
this problem is challenging to optimize, in practice, we em-
ploy the optimization duality and optimize the following
optimization problem with a penalty term:

min (E [(ZT - Y)Q}
Z1,Zo o(X)-measurable

1 3
+a Z su;g) |E [Z:9(X)] — E[Y{g(X)] |>
t=0 9€

where o € RT is a regularization parameter. We now pro-
vide a theoretical guarantee for the PB learner in Equa-
tion (7), which characterizes the deviation of the predicted
conditional potential outcomes from the true conditional
potential outcomes.
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Figure 6: Comparison of the factual learner and PB model
with the true conditional potential outcomes.

Proposition 3.4 (Practical Projections Balancing (PB)). Let
t € {0, 1} and define

Ly(Z:) = sup B [Zig(X)] - E[Y/g(X)]|

with Y{ LY, and Y/ L Y;. We have that,

E[|Z: - E[Y;|X]]] < Lp(Z¢) + v/ Var(Yy),  (9)
where \/Var(Y:) represents the standard deviation of the
potential outcomes.

Proof of Proposition 3.4. See in Appendix A. O

Remark 3.5. In particular, Equation( 9) provides an upper
bound on the error of potential outcome estimation of any
estimator Z;. It implies that an estimator with low value of
L,(Z,) is a good estimator of the true conditional potential
outcomes. To this end, note that L,,(Z,) measures how well
the estimator Z; conforms the PB constraint in Equation (7).
Thus, a solution to the PB optimization has guaranteed per-
formance. Given that CATE under hidden confounders is
not identifiable under general conditions, we conjecture that
the standard deviation term in the error bound may not be
further reduced due to the inherent stochasticity of Y; and
the confounding effects of hidden confounders.

Empirical Illustration. Figure 6 illustrates the perfor-
mance of this model on the synthetic linear example in
Section 3.1. We can observe that the gap between the true
conditional potential outcomes and the predicted potential
outcomes is reduced compared to the factual learner.

3.4 ALGORITHM: MARGINALS + PROJECTIONS
BALANCING

In this section, we present our proposed approach to com-
bine both the Marginals Balancing and Projections Balanc-
ing, entitled MB+PB. The rationale behind the effectiveness
of our approach is to restrict the search space for the factual
optimization objective and to push the solution to get as
close as possible to the true conditional potential outcomes.
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Figure 7: Comparison of the factual learner and MB+PB
model with the true conditional potential outcomes.

Optimization Objective. The objective function for

MB+PB is the following:

in (E [(ZT _y)?

Z1,Zo o(X)-measurable

T
)
MH
D
-
~

where

Li(fe) = sup HE [ft (X, 17) g(X)} —E[Y/g(X)] H

+sup [ [3(£(X,0)] ~ EY) |
geB (10)
and Z; = E {ft (X, ﬁ) |X} for some function f; and a

random variable U.

Empirical Illustration. Figure 7 illustrates the perfor-
mance of this model on the case study in Section 3.1. We
observe that the gap between the true conditional potential
outcomes and the predicted potential outcomes is almost
entirely reduced. Comparing with the performance of ap-
plying MB and PB individually in Figure 5 and 6, MB+PB
demonstrates significantly superior performance. Motivated
by this, we opt for MB+PB as our final approach.

Training. We now present below the general procedure to
train the model MB+PB for a general class of functions. For
all pseudo-code details, check Algorithm 1.

1. Pseudo-Confounder Generation. We generate Gaussian
noise € R! ~ NV (0,T), where [ is the dimension of
the generated noise. The noise is passed through a
neural network generator ¢, and we set U = v (n)).

2. Potential Outcomes Estimation. Both the features X
and the generated pseudo-confounder U are fed into a
neural network-based conditional potential outcomes
learner f; to have the predicted potential outcome
f t (X ’ U) .

3. Balancing. Meanwhile, the predicted potential out-
comes f1(X,U) and fo(X,U) are balanced with the
RCT outcomes Y7 and Y, respectively, through the
regularization defined in Equation (10).



4 EMPIRICAL RESULTS
4.1 SYNTHETIC EXPERIMENTS

Following Kallus et al. [2019], we begin our empirical eval-
uation with a synthetic example, which allows us to control
the confounding degree based on a parameter I' of MSM
(defined in Section 2.2) and explore the effect of varying
levels of hidden confounding on the estimation of CATE.

Data Generating Process. We consider an one-
dimensional example to illustrate the influence of
unobserved confounding on estimating CATE. In this
example, we generate an unobserved binary confounder
U ~ Bern(1/2), which is independent of other variables,
and a covariate X ~ Unif[—2, 2]. The nominal propensity
score is defined as e(z) = ¢(0.75x + 0.5), where o () is
the logistic sigmoid function. To investigate the impact of
confounding, we consider a sensitivity parameter I and
define the complete propensity score as:

e(z,u) =u-ap(z;T) + (1 —w) - Be(x; 1), (11)

with aq(z;T) = (%(I)) +1 - %, and, Gi(z;T) =

(%)H—F.

Moreover, the treatment assignment 7" is sampled as T ~
Bern(e(X,U)). This structure ensures that the complete
propensity scores attain the extremal marginal sensitivity
model (MSM) bounds corresponding to I' (see [Kallus et al.,
2019] for more details). The outcome model is chosen to ex-
hibit a nonlinear CATE, incorporating both linear confound-
ing terms and a noise component e ~ N(0, 1). Specifically,
the potential outcome Y; is defined as:

Y, = (2t — 1)X 4 2(2t — 1) — 2sin(2(2t — 1) X)
— 202U — 1)(1 + 0.5X) +e.

Results. The results are illustrated in Figure 9. In particu-
lar, with increasing confounding level measured by log(T"),
methods such as MB, PB, and the baseline show a marked in-
crease in estimation error. However, MB+PB demonstrates
strong robustness and maintains lower errors even at high
confounding levels. This suggests that our approach is bet-
ter equipped to handle the adverse effects of hidden con-
founders, which is crucial when the confounding degree
is unknown. Notably, domain knowledge can only provide
very coarse estimations of the confounding degree.

Influence of RCT Data Size : In Figure 8, we observe that
after using only 50 RCT data points in addition to more than
1000 observational data points, the performance of MB+PB
stabilizes. This shows that our model requires only a small
number of RCT points to achieve enhanced performance,

without requiring the covariates information of RCT data.
Even with as few as 25 data points (the sum of both control
and treatment units), we can see improved performance over
the biased factual learner. It is important to note that this
improvement is not observed when RCT points are simply
added to the observational data, even when their features
are included in training.

4.2 REAL DATA APPLICATION

Following the setting of Hatt et al. [2022a], we apply
MB+PB to three real-world datasets. We briefly describe
them below, with more details deferred to Appendix B.1.

STAR: A randomized study from 1985 investigating the
effect of class size (treatment) on students’ standardized
test scores (outcome). Following [Kallus et al., 2018], we
obtain a dataset with 8 covariates for 4, 139 students: 1, 774
in small classes and 2, 365 in regular classes.

ACTG: A clinical trial on the effects of different treatments
for HIV-1 patients with CD4 counts of 200-500 cells/mm3.
The outcome is the change in CD4 counts after 20+ 5 weeks.

NSW: An RCT studying the effect of job training on income
([LaLonde, 1986]. Following Smith and Todd [2005], we
combine 465 randomized subjects (297 treated, 425 control)
with 2,490 observational controls, including 8 covariates.

Following the setting in Hatt et al. [2022a], the original
dataset is used to estimate pseudo-true potential outcomes,
which we treat as the ground truth. Confounding bias is
introduced by dropping instances based on outcome thresh-
olds. Further details are in Appendix B.2. The RCT data
points are sampled from a distributionally different popula-
tion from the observational population, increasing selection
bias. Despite this, our method remains robust.

Table 1: Comparison of /ey across three real-world
datasets. Results are presented for 10 runs.

/e (Mean £ Std)

Estimator STAR ACTG NSW

2-step ridge | 3.01 =0.01 | 1.51 £0.01 | 2.82 £0.02
2-step RF 3.14+£0.03 | 1.58 £0.07 | 3.10 £0.12
2-step NN 3.03+0.02 | 1.60 £0.02 | 2.82 £0.02
Baseline 2.66 +£0.01 | 1.08 £0.04 | 0.85 £0.04
CorNet 0.59 £0.01 | 0.42 £0.06 | 0.14 £+ 0.07
CorNett 0.38 £0.07 | 0.27 £0.03 | 0.21 4+ 0.08
MB+PB 0.36 £0.04 | 0.52 +£0.05 | 0.08 + 0.02

Results. To assess the effectiveness of our approach in uti-
lizing RCT data, we compare it with the factual learner
(Baseline) which trains only on observational data, and with
methods that use covariate information from RCT data, in-
cluding 2-step ridge, 2-step RF, and 2-step NN from Kallus
et al. [2018], and CorNet models (CorNet and CorNet+),
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Figure 8: Comparison of ,/cppyg across different RCT and observational data sample sizes. Baseline: Factual Learner,
MB+PB: Combined Marginals and Projections Balancing, and RCT-Oracle. The size of the baseline and RCT-Oracle is
equal to the sum of the RCT samples and the observational data size.
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Figure 9: | /epgng for different confounding degrees. Base-
line: Factual Learner, MB: Marginals Balancing, PB: Pro-
jections Balancing, MB+PB: Combined Marginals and Pro-
jections Balancing, RCT-Oracle: Using a large RCT dataset
with covariates, and Obs-Oracle: Using the observational
dataset without hidden confounders.

developed by Hatt et al. [2022a]. Table 1 shows that models
such as 2-step ridge, 2-step RF, and 2-step NN underperform
due to the high variance introduced by inverse propensity
score re-weighting, as noted in Hatt et al. [2022a]. The Cor-
Net models perform significantly better and are comparable
to our approach MB+PB. We emphasize that our MB+PB
model relies solely on RCT data outcomes yet still achieves
competitive results, outperforming CorNet in two of the
three total tasks.

S CONCLUSION

In this work, we introduced two approaches, Marginals
Balancing (MB) and Projections Balancing (PB), to ad-
dress the challenge of CATE estimation under hidden con-
founders. By leveraging outcome-only RCT data, we demon-
strated how these models mitigate bias from unobserved
confounders, outperforming benchmark methods. The com-
bination of MB and PB (MB+PB) leads to further enhanced
performance across synthetic and real-world datasets. While
our methods show promising empirical results, we aim to
pursue a deeper theoretical understanding of the proposed

methods in future works.
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A  PROOFS OF THEORETICAL RESULTS

We begin by presenting an example demonstrating that the optimal solution for the Marginals Balancing objective is not
necessarily the true conditional potential outcomes. We then proceed to provide propositions that support the use of the
Projections Balancing method.

Example Consider the random variables 7', X, Y{, Y7, where T is a binary treatment indicator, X € X, and Y{, Y are the
potential outcomes. We aim to minimize the following MB objective:

E {(1 ~ 1) (Bl | X] —Y0)2 +7 (B[ | X] _Ylﬂ ,

. . ~ d = d
subject to the constraint that Yy = Y and Y; = V7.

Suppose X ~ Ber(1/2) and T' ~ Ber(1/2), with 7" and X being independent. Define the potential outcomes as:

Yo=Yi=(1-T)X+T(1-X).

Now, consider the random variables Y, = X and Y; = 1 — X. We observe that both Y; and Y; satisfy the equality in
distribution constraint: Yy 4 Y, and Y 4 Yi.

Furthermore, we have: )
E[Yy | X](1 - T) = X(1-T) = Yo(1 ~ T),

and B
EV: | X|]T=01-X)T =¥T.

Therefore, the MB objective is minimized, and the objective value is zero. While we have that for the true conditional
potential outcomes E [Y7|X] and E [Yy| X], we have that:

EMX]=E[Q1-T)X | X]+E[T(1-X) ]
=E[l-TIE[X | X]+E[T]E[(1 - X) | X]
1

1
=X +5(1-X)

Therefore,

E (Vi X] E[¥olX] = 5

=3
Which does not achieve a zero loss for the objective.



Proposition 3.2 (Ideal Potential outcomes learner 2). Let (€2, 7, P) be a probability space. Consider the real random variables
(X,U,T,Yy,Y1), where T is a binary random variable, and Y7,Yy L T|(X,U), Y isdefinedas Y = TY; + (1 — T)Y%.
We also assume that X I U. We aim to solve the following optimization problem:

min E [(ZT - Y)ﬂ
Z1,Zo o(X)-measurable

subject to the constraint
VgiR— [-1,1], V€ {0,1}, E[Zg(X)] =E[Yig(X)].

The unique solution for this problem is
vt e {0,1}, Z;=E[Y;|X].

Proof of Proposition 3.2.
We begin with the following identities for the observed and predicted outcomes:

Y=TVh+Q-T)Yy, Zr=TZi+(1-T)%Z.
Thus, the objective function can be expanded as:
E[(Zr - Y)'] =E[(T(Z1 - Y1) + (1 - T)(% - Yo))°]

=E[T(Z —1)*+ (1 -T)(Zo — Y0)?]
+2E[T(1 - T)(Z1 — Y1)(Zo — Yo)] .

Since T' € {0, 1}, we have T'(1 — T') = 0, so the cross term vanishes:
E[T(1-T)(Z1 - Y1)(Zo — Yo)] = 0.
Thus, the objective simplifies to:
E[(Zr - Y)’] =B [T(Z - 1)) + E[(1 = T)(Z0 — ¥o)*]..
Next, we can analyze the optimization for Z; and Z; separately. Without loss of generality, we first focus on Z.

We expand the term for Z;:

E[T(Z - Y1)*] = E[[(Z, — E[Y1 | X] + E[Y | X] - Y1)?]
= E[T(Z1-EM | X))’)] + E[T(EM |X]-Y1)’]

Minimized at zero when Z1=E[Y7|X] Independent of the optimization objective
+2E[T(Z, —EY: | X])(E[Y; | X] —11)]

‘We prove this term is zero below

Since Y7 L T'| (X, U), we have:
E[T(Z, —EW | X]))(E[Y: | X] -11)] =E[(Z1 - EY1 | X)) (X, U)¥(U)],

where 7(X,U) = E[T | X,U] € (0,1) and ¥(U) = —-E[Y; | U].Let A = {w | Z; — E[Y31 | X] > 0} and
B={w|¥U) >0}

We decompose the expectation as follows:

Er(X,U)¥(U)(Z: —E[}: | X])] =

We now handle each of these four terms separately:



Case 1 (AN B):
This term is positive, as both Z; — E[Y; | X] > 0 and ¥(U) > 0, and since X L U, we have that:

(E[Z114] - E[E[Y114 | X]])
(E[Z114] = E[Y114])

However, since 14 is o(X)-measurable, we can write it as a function of X, more precisely we can choose g to be,
ga(X) = 1(X € A), therefore,

0 [m(X,U)¥(U)1anp(Z1 — EY1 | X))

<E
<E[¥(U)1p] (E[Z194(X)] — E[Y194(X)]) =0
Case 2 (AC N B):
In this case, Z; — E[Y7 | X] < 0and ¥(U) > 0, making this term non-positive:

0> E[r(X, U)¥(U)Lacrp(Z — E[Yi | X])] = E[W(U)Lscnp(Z —EY: | X])].
Again, by the same reasoning as in Case 1, we have:

E[E[(Zilae —Yilgc) | X]] =0,

so this term is also zero.
Case 3 (AN BY):
Here, Z, — E[Y1 | X] > 0but U(U) < 0, so this term is non-positive:

0> E[r(X,U)¥(U)Lanpe (21 —EN | X])] 2 E[W(U)Lanpe (21 — EY1 | X))
As in the previous cases, we factor out E[Z114 — Y114 | X| = 0, so this term is zero.
Case 4 (A N BY) :
Finally, in this case, both Z; — E[Y; | X] < 0 and ¥(U) < 0, so the term is positive:

0<E[r(X,U)¥(U)Lacnpe(Z1 —E[Y1 | X])] SE[V(U)Lscnpe(Z1 — EY1 | X])].

Once again, we apply the same reasoning, and the term equals zero:

E[E[(Z114c — Yile) | X]] = 0.

Thus, each of the four terms is equal to zero. Therefore, the entire expression simplifies to zero:
2B [T(Z, — E[Y: | X))(E[Y; | X] - Y1)] =0.
A symmetric argument holds for Z. By expanding E [(1 -1 (Zy — Yg)ﬂ , we can use the same reasoning to show that
Zy = E[Y} | X] minimizes the objective function.
We now observe that E [(1 — T')(Z — Yp)?|, and Zy = E[Y; | X] verify the constraint as we have for every g € G:
EE[: | X]g(X)] = E[E[Yig(X) | X]]
=E[Yg(X)]

Combining these results, we conclude the minimizer of the objective function must satisfy:

Zy=E[Y; | X] and Z, =E[Y, | X].



Proposition 3.4 (Relaxed potential outcomes learner (PB)). Let G = {g: R — [—1,1]} and let,

Ly(Zy) = sup IE[Z:g(X)] - E[Y/g(X)]]

with Y/ £ Y; and Y/ L Y;. Then,

E[|Z, —E[Y; | X]] < Ly(Z0) + v/Var(Y)).

Proof of Proposition 3.4.
First define

Li(Z) = sup E[Zig(X)] = E[Yig(X)]] .

We will first prove that
ElZ: - E[Y: | X][] < Li(Z).

Since Z, —E[Y; | X]is o(X)-measurable,let A ={w e Q| Z,—E[Y; | X] >0}and B ={w e Q| Z, —E[Y; | X] < 0}.
We can then define a function g € G such that g = 14 — 1 5. We have:

I+E[E[Z -Y, | X]1p]] (AUB=Q)

Since we have

IE[Z:9(X)] - E[Vig(X)]| < zlelrg) |E[Z:g(X)] = E[Yrg(X)]],

it follows that
E[|Z: —E[Y; | X]|] < L1(Zy).

Next, we observe:

Li(Z) = sup B [Zig(X)] — E[Y{g(X)] + E [Y/g(X)] - E [Yig(X)]]
< sup B [Zig(X)] — E [Y{g(X)]| + sup B [Y/g(X)] - E[Yig(X)]]
< Lp(Ze) + sup B [Y{]E [g(X)] - E [Yeg(X)]]

=L,(Z) + sup [E[V]E[g(X)] — E[Y;g(X)]]
= L,(Z) + sup |Cov(Yy, g(X))|

< Ly(Z;) + /Var(Y;) sup y/Var(g(X)) (Cauchy-Schwarz)
g€g

< L,(Z) + +/Var(Y;) (Popoviciu’s inequality)

Thus, we conclude:

E[Z —E[Y: | X]|] < Lp(Z) + v Var(Y1).



B DATASETS DESCRIPTION
B.1 THE ORIGINAL DATASETS

Tennessee Student/Teacher Achievement Ratio (STAR) Experiment This experiment, initiated in 1985, was designed
as a randomized trial to investigate the impact of class size (i.e., the treatment) on students’ standardized test performance
(i.e., the outcome). At the beginning of the study, students and teachers were randomly allocated to different class sizes, with
efforts to maintain these class sizes throughout the experiment. This dataset has been used previously by Kallus et al. [2018]
to address bias from unmeasured confounding in observational studies.

In line with Kallus et al. [2018], we focus on two treatment conditions: small classes (13-17 students) and regular-sized
classes (22-25 students). The treatment variable is the class size to which students were assigned in the first grade,
comprising a total of 4, 509 students. The outcome variable Y is measured as the aggregate score from listening, reading,
and mathematics standardized tests administered at the end of the first grade. In addition to class size and test scores, the
dataset includes several covariates for each student: gender, race, birth month, birth date, birth year, eligibility for free lunch,
rural/urban status, and teacher identification number. After excluding students with incomplete data, the resulting sample
consists of 4, 139 students, with 1,774 assigned to the treatment group (small classes, 7" = 1) and 2, 365 to the control
group (regular classes, 7' = 0). We sample

AIDS Clinical Trial Group (ACTG) Study 175 The AIDS Clinical Trial Group (ACTG) Study 175 was a randomized
clinical trial conducted to compare four treatment regimens on 2, 139 HIV-1-infected patients with CD4 counts between
200 and 500 cells/mm? [Hammer et al., 1996]. The trial compared the effectiveness of zidovudine (ZDV) monotherapy,
didanosine (ddI) monotherapy, ZDV combined with ddI, and ZDV combined with zalcitabine (ZAL). This dataset was
also used in Hatt et al. [2022b] to study the problem of learning policies that generalize to target populations, making it
a challenging candidate for evaluating our method due to underrepresentation of certain subgroups, such as HIV-positive
females, in clinical trials [Gandhi et al., 2005, Greenblatt, 2011].

The outcome Y in this dataset is defined as the change in CD4 count from the start of the study to 20 £ 5 weeks later. The
estimated average treatment effects for male and female subgroups are —8.97 and —1.39, respectively [Hatt et al., 2022b],
indicating a notable difference in treatment response between genders. We focus on two treatment arms: the combined ZDV
and ZAL treatment (7" = 1) and ZDV monotherapy (7' = 0). The dataset comprises 1,056 patients with 12 covariates,
including five continuous variables: age (years), weight (kg, denoted as wtkg), baseline CD4 count (cells/mm?), Karnofsky
score (0 — 100 scale, denoted as karnof), and baseline CDS8 count (cells/mm?). All continuous variables are centered and
scaled prior to analysis. The dataset also includes seven binary covariates: gender (1 = male, 0 = female), homosexual
activity (homo, 1 = yes, 0 = no), race (1 = nonwhite, 0 = white), intravenous drug use history (drug, 1 = yes, 0 = no),
symptomatic status (symptom, 1 = symptomatic, 0 = asymptomatic), antiretroviral experience (str2, 1 = experienced, 0 =
naive), and hemophilia (hemo, 1 = yes, 0 = no).

National Supported Work (NSW) Demonstration The National Supported Work (NSW) Demonstration was a subsidized
work program that ran for four years across 15 locations in the United States, providing participants with transitional work
experience and assistance in securing regular employment. From April 1975 to August 1977, the NSW program operated as
a randomized experiment in 10 locations, with some applicants randomly assigned to a control group that did not participate
in the program. Data for 6, 616 treatment and control observations were collected through retrospective baseline interviews
and four follow-up interviews, covering a two-year period before randomization and up to 36 months afterward.

For our analysis, we use a randomized dataset from LalLonde [1986], following the setup of Smith and Todd [2005].
We combine randomized samples from 465 subjects (297 treated and 425 controls) with 2,490 control samples from the
Panel Study of Income Dynamics (PSID) to create an observational dataset. The resulting dataset consists of 297 treated
observations (I' = 1) and 2,915 control observations (7" = 0). This study includes 8 covariates: age, education level,
ethnicity (represented as two variables), marital status, and educational attainment.

B.2 GENERATING SMALL RANDOMIZED OUTCOMES AND LARGE OBSERVATIONAL DATASETS

In line with the method used by Kallus et al. [2018], Hatt et al. [2022a] we generate a large observational dataset with
confounding and a smaller unconfounded randomized dataset consisting solely of the outcomes, both derived from the
real-world data described in Section B.1. Importantly, the randomized dataset is drawn from a different population than the



observational one, reflecting the limitations of randomized controlled trials (RCTs) in generalizing to the broader population
of interest.

To do this, we follow the same procedure for the STAR, ACTG, and NSW datasets. First, we generate a small, unconfounded
randomized dataset by sampling a small fraction of the RCT data points 128, 50, 50. instances from the original dataset. We
introduce a distributional discrepancy between the randomized and observational datasets by selecting individuals for the
randomized dataset based on a covariate (“birthday” for STAR, “gender” for ACTG, and “age” for NSW), see [Hatt et al.,
2022a] for further details. Second, we create the observational dataset by introducing unobserved confounding, ensuring
that the treatment and control groups differ systematically in their potential outcomes. Following Kallus et al. [2018], we
select subjects from those who were not included in the randomized dataset: controls (17" = 0) with especially low outcomes
(e, y; <E[Y | T=0]—c- oy|T=0, Where oy |7— is the standard deviation of the outcomes in the control group) and
treated subjects (1" = 1) with notably high outcomes (i.e., y; > E[Y | T = 1] + ¢ - 0y |p—1, Where oy|p—, is the standard
deviation of the outcomes in the treatment group).

The constant c is adjusted according to the size of the original dataset (with ¢ = 1 for STAR, ¢ = 0 for ACTG, and
¢ = 0.25 for NSW) to control the number of subjects in the observational dataset, ensuring that it remains large. This
process introduces confounding by selectively including control subjects with lower outcomes and treated subjects with
higher outcomes into the observational treatment and control groups. As a result, a naive estimator relying solely on the
observational data will be biased. Moreover, because this selection is based on the outcome variable, it becomes impossible
to control for this confounding.

C IMPLEMENTATION DETAILS

In this section, we provide the implementation details of our proposed algorithm MB+PB. Specifically, we describe the
neural network architectures used for the different modules in our algorithm. Additionally, we present a detailed pseudo-code
for the training procedure.

The Neural Networks Architectures. ~As detailed in Section 3.4, MB+PB consists of three components: a generator (n),
a CATE learner p (X, U), a marginals balancing module g, and a projections balancing module g.

* Pseudo-Confounder Generator: The generator ¢)(n) is a neural network designed to generate pseudo-confounders
from the input variables, which consist of standard Gaussian noise. The network architecture consists of two fully
connected layers with 16 hidden units and ELU activation functions.

* CATE Learner: The CATE learner is modeled as an S-Learner ji; (X, U) and is implemented using a neural network
with three fully connected layers. The first two layers have 32 hidden units, each followed by an ELU activation
function. The final layer outputs a scalar, representing the estimated potential outcome.

* MB Module: The marginals balancing module g is modeled as a neural network with two hidden layers, each containing
8 hidden units. ReLU activation functions are applied to the hidden layers, and the output is constrained between —1
and 1 or 0 and 1, using either a tanh or a sigmoid activation function, respectively.

* PB Module: The projections balancing module g is also modeled as a neural network with two hidden layers, each
containing 8 hidden units. ReLU activation functions are applied to the hidden layers, and the output is constrained
between —1 and 1 or 0 and 1, using either a tanh or a sigmoid activation function, respectively.

We use the same neural network architectures for all of our results presented in the Experiments Section 4.

The Algorithm. We present the full pseudo-code for MB+PB in Algorithm 1. The code consists of the training loop of the
proposed model and the loss functions computation.

Hyperparameters. For the regularization parameter « is set dynamically, following the heuristic described below. We
initially start with a small value for «, and as the observed factual loss optimization stabilizes, we gradually increase the
importance of the regularization term. In all of our experiments, we train for 2000 epochs. Specifically, we set & = 0.01 for
the first 1230 epochs, then linearly increase o from 0.01 to 100 between epochs 1230 and 1430. From epoch 1430 to 2000,
we train the model with the high regularization term o = 100. Additionally, as described in Algorithm 1, there are multiple
balancing steps involved in training the MB+PB constraint. To increase the efficiency of our training process, we begin
with a small number of balancing iterations (5) when « is small, and increase this number to 50 as o becomes large. Note



Algorithm 1 Training Algorithm for Marginals and Projections Balancing (MB+PB)

1: Input: D, = {(xi,t;,y:)}12y, D = {DY, D)} where D}, = {y}]~, fort € {0, 1}, initial and final weights (e, ct.),
number of epochs Vo, balancing iterations N, neural networks for: potential outcomes (u), marginals balancing (g),
and projections balancing (g).

2: Output: Trained models x and .
3: Initialize noise n ~ A (0;,1;) and generate n,, samples {n; }.2;.
4: for epoch = 1to N7 do
5:  Increase a from o to av.
6:  Generate noise u; = 1(1);) and estimate outcomes §; = pu, (z;,4;) forall 1 <i < n,,.
7:  Compute factual loss:
ne
Ly= ni Z (ti (yi — 9"+ (1 —t) (yi — %)2)
© =1

8:  Generate potential outcomes ¢} = j(z;,%;) and §9 = o (i, @;)-
9:  Compute marginals balancing loss:

Lo | e AR | e ’
L= =D 9w)——> 0@ | + |5 00)——> @)
nk 4 Ng nY 4 Ng “
i=1 i=1 i=1 i=1
10:  Compute projections balancing loss:
e e o e ’
Ly= | 5D gyl —— Y g@)ii | + | =5 D 9@yl — — > g(x:)gf

i Mo 327 i Mo 327

where A(7) selects a random number between 1 and n,.
11:  Compute total loss £ = L + (L, + L))
12:  Backpropagate to update 1 and v using Adam.
13: for each balancing iteration 7 = 1 to Npaiancing d0O

14: Calculate the negative regularization loss: £, = —(L,, + L)
15: Backpropagate to update g and g using Adam.

16:  end for

17: end for

18: Return trained models {s1; }}_,, and 1.

that we use the same training strategy across all the datasets to avoid fine-tuning the hyperparameter and to have a better
assessment of the presented algorithm. For the learning rates of the different neural networks they are all set at 0.001 and we
use Adam as an optimizer. Finally, for the batch sizes, we use a batch size of 256, 200, and 200 for STAR, ACTG, and NSW
respectively.

Computational Resources The experiments in this paper are not computationally expensive to conduct and were
performed on the following GPU: NVIDIA GeForce RTX 3090.

D ADDITIONAL RESULTS

Here we include additional empirical results.

D.1 SYNTHETIC EXAMPLE

We begin by presenting additional results for the synthetic experiment discussed in the main text, following the approach of
Kallus et al. [2019]. In Figure 10, we report the /e, as a function of training epochs. Additionally, the results for the
factual loss across varying degrees of confounding are provided in Figure 11.
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Figure 11: Factual loss comparison across different degrees of confounding.

D.2 FACTUAL LOSS COMPARISON ACROSS REAL-WORLD DATASETS

Table 2: Comparison of the factual loss €, (Mean £ Std) across three real-world datasets. Results are presented for 10 runs.

€ (Mean =+ Std)
Estimator STAR ACTG NSW
Baseline 1.3£0.02 | 1.26 £0.05 | 0.38+ 0.02
MB+PB (Ours) | 1.08 +0.13 | 0.72 £ 0.03 | 0.17 £+ 0.01

Table 2 presents a comparison of the factual loss, ¢, measured as the mean and standard deviation over 10 runs for three
real-world datasets: STAR, ACTG, and NSW. We note that while the baseline model is designed to estimate the factual
outcome, it may suffer from distributional shift as the domain of the features of the test data is different from that of the train
data. Hence, learning a better causal model in that case yields better factual estimates. We conjecture that this enhanced
performance is explained by the fact that our model learns a better model which makes it more robust to distributional shifts,
as was formalized by [Richens and Everitt, 2024].

The baseline estimator is compared against our method, MB+PB. The results demonstrate the superiority of MB+PB in
terms of lower factual loss, particularly for the STAR and NSW datasets. This reduction in factual loss indicates that our
method is more effective at aligning the model predictions with the observed outcomes, thereby mitigating the effects of
confounding and improving the estimation of potential outcomes.

For the STAR dataset, our method achieves a mean factual loss of 1.08 &+ 0.13, outperforming the baseline, which has
a loss of 1.3 £ 0.02. Similarly, the NSW dataset shows a significant improvement with MB+PB, resulting in a mean
loss of 0.17 4 0.01 compared to the baseline loss of 0.38 4= 0.02. However, for the ACTG dataset, both methods exhibit
relatively close performance, with MB+PB slightly outperforming the baseline by reducing the mean loss from 1.26 & 0.05
to 0.72 £ 0.03.



These results confirm that the MB+PB method is more robust across different datasets compared to the naive factual learner,
even in terms of factual loss when there is a distributional shift, which is prevalent in real-world scenarios.



