
Found in Translation: A Generative Language Modeling Approach to Memory
Access Pattern Attacks

Grace Jia
Yale University

Alex Wong
Yale University

Anurag Khandelwal
Yale University

Abstract
Confidential computing environments (CCEs) provide a se-

cure way for privacy-sensitive applications to ensure the con-
fidentiality and integrity of data and computations offloaded
to the cloud, relying on a hardware root of trust. However, the
cloud provider-controlled Operating System (OS) stack still
manages key memory management system services such as
paging. Several recent works have demonstrated that these
services can leverage side channels, specifically page access
patterns, to reconstruct private application data. However, re-
lated attacks have primarily targeted applications with simple
one-to-one mappings between application-level objects and
OS-level pages, which is seldom true for most real-world
cloud applications. Moreover, these attacks tend to overlook
correlations in access patterns — a common occurrence in
most real-world applications — leaving untapped critical side-
channel information for improving attack accuracy.

We propose a novel attack approach that leverages access
correlations across pages in cloud applications using genera-
tive language models. Our key insight is that there are strong
parallels between application page access patterns and gram-
matical structures in natural languages, making language mod-
eling an excellent fit for reconstructing sensitive application
data with high accuracy. Our attack, named FIT1, utilizes a
recurrent encoder-decoder architecture to predict application-
level object accesses from a sequence of page-level accesses.
Our evaluations on popular AI/ML model inference services
and semantic search applications show that FIT can predict
object-level access sequences with an average accuracy rang-
ing from 71.7% to 99.9%, significantly outperforming prior
state-of-the-art approaches.

1 Introduction

Operating systems (OS) are large, complex, and prone to vul-
nerabilities; yet, they are granted full privilege and complete
access to data on the application software stack. When such

1Found in Translation

privileged software is compromised, all user applications that
run on top of it are compromised, posing risks to their con-
fidentiality and integrity. Similarly, modern hypervisors in
cloud environments have unrestricted access to application
data within virtual machines or containers deployed on them.

In the past decade, Confidential Computing Environments
(CCEs) — also referred to as Trusted Execution Environ-
ments (TEEs) — have emerged to address this issue by build-
ing secure enclaves from a hardware root of trust. In such
environments, a trusted computing base (TCB) ensures data
confidentiality and control-flow integrity of application soft-
ware running within this environment, and its integrity can
be remotely attested. At the same time, trusted hardware-
mediated accesses to protected memory regions and memory
encryption provide data confidentiality. Hardware vendors
have already supplied two generations of diverse CCE solu-
tions, from Intel SGX [44] and ARM TrustZone [3] to Intel
TDX [32], AMD SEV [1], and ARM CCA [4].

Even with trusted hardware and protected memory, applica-
tions inside a CCE still rely on the untrusted OS or hypervisor
for system services, which can be leveraged in side-channel
attacks to learn privacy-sensitive application data, breaking
confidentiality guarantees. This work focuses on memory ac-
cess pattern attacks, where the applications rely on the OS’s
paging subsystem for more efficient data caching. In partic-
ular, whenever an application accesses a page, the memory
management unit (MMU) logs metadata about the access,
e.g., to track the page “hotness” (via an ‘accessed’ bit) or to
track whether the page was written to and must be flushed in
case it is backed by a disk block (via a ‘dirty’ bit). This infor-
mation is accessible to an untrusted OS for system services,
such as moving pages to optimize memory access latency and
flushing data to ensure data consistency [54]. This allows the
untrusted OS to learn a histogram of accesses across pages
and use it to identify sensitive data items being accessed by a
user, given some prior knowledge about the application (e.g.,
by tying page hotness to well-known distributions of medical
diagnoses in a clinical diagnostic tool).

Indeed, such approaches have been explored in recent



works to extract complete text documents and outlines of
JPEG images from widely deployed application libraries [76],
as well as private keys from cryptographic libraries [10, 59].
Unfortunately, we find that such attacks — while quite ef-
fective for the above use cases — suffer from critical short-
comings that limit their effectiveness in learning sensitive
information across a range of use cases (§2). Specifically, in
real-world applications, each page typically contains many
objects, making it challenging to identify which object was
accessed based solely on page-level access patterns. Prior
attacks address this by “fingerprinting” one object or control
flow using a unique sequence of accessed pages; however,
they ignore the broader network of correlations across page
accesses (e.g., page j is accessed after page i since j con-
tains data pointed to by data in i), limiting the number of
identifiable objects, and the accuracy with which they can be
identified.

While we are unaware of any page access pattern attacks
that leverage access correlations, recent work [36, 53] on at-
tacking Symmetric Searchable Encryption (SSE) schemes do
leverage pairwise access correlations to achieve significantly
improved attack accuracy over those that do not. However,
these attacks are poorly suited to the case of page accesses (§5)
since they assume a one-to-one mapping between pages and
application objects (i.e., encrypted and plaintext keywords,
respectively, in the SSE context), which is seldom true in
real-world applications.

In this work, we propose a novel attack that leverages
arbitrary-length access correlations across pages using gener-
ative language models (§4). Our driving insight is the strong
parallel between page access patterns in real-world applica-
tions and grammatical structures in natural languages. For
instance, given the first three words in a sentence, “I wrote
a”, a language model would more likely predict “book” as
the next word instead of “the” or “sandwich”, adhering to
the embedded grammatical cues in the language. In the same
vein, we posit that page access patterns have a language of
their own, and this language is specific to the victim appli-
cation. For instance, in a database application, if pages i, j,
and k, each containing distinct nodes of a data structure that
are linked together, are accessed in that sequence, the next
accessed page will likely be the one that contains the next
node in that linked list. Moreover, disambiguating between
objects located on the same page has parallels to language
models that commonly disambiguate homographs: just as the
English word “right” can be translated into multiple words
in French depending on the context “right hand” (“droite”)
or “that is right” (“vrai”), different nodes corresponding to
different linked lists located in a page can be disambiguated
based on the context of the access sequence so far.

We leverage this insight in our generative modeling at-
tack, FIT, which uses a recurrent encoder-decoder architec-
ture [16, 64]. The adversary trains its encoder-decoder model
to predict a sequence of application object-level accesses

y1, ...,yn given a sequence of page-level accesses x1, ...,xm,
where m and n are page and object access sequence lengths
for the victim application, respectively. The model learns both
the mapping from page-level access sequences to object-level
access sequences and the distribution (including conditional
access probabilities to account for correlated accesses) from
which the object accesses were generated.

We evaluate FIT on three privacy-sensitive applications
with real-world workloads and datasets: a popular deep
learning-based recommendation model (DLRM), a large lan-
guage model for medical diagnosis, and a state-of-the-art se-
mantic search service over a vector database. FIT can ac-
curately predict object-level access sequences with an aver-
age accuracy of 71.7% to 99.9%, significantly outperforming
prior state-of-the-art access pattern attacks.

FIT aims to paint a realistic picture of vulnerabilities due to
page-level access pattern leakage in real-world cloud deploy-
ments and applications. We believe this is key to developing
countermeasures that achieve a practical balance between per-
formance and security (§7) — an increasingly crucial goal
where existing countermeasures are either performant but vul-
nerable to our attack [25, 71] or provide stronger guarantees
than required at the expense of performance [12, 14, 21, 63].

2 Background and Motivation

We begin with a brief overview of confidential computing
environments (§2.1) and prior memory access pattern attacks
on them, along with their shortcomings (§2.2). We end with
an outline of our page access pattern attack approach (§2.4).

2.1 Confidential Computing Environments
Confidential computing environments (CCEs) — also known
as Trusted Execution Environments (TEEs) — shield sensitive
applications from untrusted system software, such as OSes
and hypervisors. CCEs typically build upon a hardware root of
trust, such as Intel SGX [44], ARM TrustZone [3], and AMD
SEV [1], to provide strong guarantees on the confidentiality
and integrity of application execution.

CCE attestation and memory protection. To ensure the
integrity of code and data loaded into a CCE, the application
owner can use hardware-provided attestation mechanisms to
cryptographically verify that the CCE and the software within
are correctly instantiated. Once initialized, CCEs allow ap-
plications to create protected memory regions within their
address space and use trusted hardware to enforce their se-
curity guarantees. All memory accesses (reads and writes)
to the protected regions go through the processor, which re-
jects those not originating from trusted application code. Data
in the protected region is also automatically encrypted and
remains accessible in plaintext only within the processor reg-
isters and caches.



Protecting privacy-sensitive applications. In this work, we
focus on three representative privacy-sensitive cloud appli-
cations that benefit from CCE protection. We will use these
applications as running examples in the rest of the paper.

Our first two applications are examples of ML/AI model
inference services deployed on a public cloud, which are a crit-
ical component of many web services [70, 74, 78]. We specifi-
cally focus on deep learning-based recommendation models
(DLRMs) [49] and large language models (LLMs) [52, 73],
which are often offloaded to the cloud due to their compute-
and memory-intensive execution but require detailed data
from users to be stored in the cloud, potentially visible to
an untrusted cloud provider. Such private user information
can include buying habits or movie preferences for personal-
ized recommendations, or privacy-sensitive prompts for LLM-
based chatbots. Some schemes for oblivious model inference
protect this sensitive data through homomorphic encryption,
MPC, and other oblivious techniques, but at significant cost to
performance [38, 45, 56]. More practical approaches leverage
CCEs, where the entire model or specific layers are run inside
a CCE [41, 48, 51, 66]. DLRM and LLM inference can be
served privately using a similar approach [40]; encrypting
inference requests to and resulting responses from the model
would ensure that the cloud’s system software (and, therefore,
the cloud provider) never sees user data in plaintext.

Note that while these models are often deployed on GPUs
with CCEs, we focus on CPU-based CCEs for two reasons.
First, CPUs are frequently used in lieu of GPUs in cases where
the cost of deploying GPUs is exorbitantly high, and the mod-
els are small enough — a common case for DLRM [34] and
smaller LLM models with fewer parameters. Second, while
our findings also apply to GPU CCEs, CPUs offer a more
convenient way of analyzing CCE vulnerabilities since the
associated software libraries have more permissive licenses
(e.g., open-sourced Linux vs. proprietary NVIDIA libraries).

The third application we consider is semantic search,
widely used in modern search engines and data analy-
sis [15]. Unlike traditional search, this application stores
high-dimensional vector representations of data, e.g., images
or text, in a vector database. Given a query (also in vector
form), the semantic search returns the nearest neighbors of
that query vector in the database. Semantic search is often
performed on sensitive data, such as face representations for
facial recognition [20] and biometric information [5]. With
recent lines of work on securing search using both oblivious
techniques [15,19,84] and trusted hardware [2,46], CCEs are
an attractive option for privacy-sensitive semantic search.

2.2 Page Access Pattern Attacks on CCEs
Even though CCEs prevent unauthorized access to applica-
tion memory, they still rely on system software for shared
system services, such as memory management, networking,
and file I/O. These interactions with the system software leak

information about the application’s execution, which can be
used to mount side-channel attacks. In this work, we restrict
our focus to memory side channels, where an attacker can
exploit the application’s access patterns across memory pages
to learn its secrets, as explained next.

Since the OS manages the page table and handles page
faults for any application, it can observe information leaked
about the application’s memory access patterns at a page-level
granularity. Earlier works that exploited this channel inferred
page access patterns from sequences of page faults [76]: the
untrusted OS restricts access to particular memory pages (e.g.,
by editing the page table), causing any access to those pages
to trigger a page fault that the OS will record. Given exact
knowledge of the application binaries and which memory ac-
cesses are input-dependent, the attacker can infer the sensitive
data processed by the application. This attack is capable of
extracting complete text documents and outlines of images
from a single run of the targeted applications within a CCE;
this approach has also been shown to be able to extract secret
keys from widely-used cryptographic libraries [59].

While restricting access to certain memory regions pro-
vides complete visibility over access patterns in those regions
to the OS, such an attack is quite overt — the application
can easily detect the performance slowdowns incurred due
to excessive page faults. More recent work has demonstrated
that the OS can infer page accesses from an application with-
out page faults [10]. This covert attack simply observes page
table metadata that the OS maintains to inform its page re-
placement policy; specifically, each page table entry (PTE)
contains an accessed (A) bit and dirty (D) bit, which the pro-
cessor automatically sets whenever the corresponding page
is read or written to, respectively. Like the page fault attack,
this attack first analyzes the application binary to identify
input-dependent memory accesses and select a trigger page
to monitor. During the application’s execution, the attacker
continuously checks the trigger page’s PTE and interrupts the
application as soon as it is accessed. By recording the set of
pages accessed between each successive access to the trig-
ger page, the attacker can uniquely identify the application’s
control flow and extract its input data with high success.

2.3 Exploiting Correlations in Page Accesses
We now describe how the applications discussed in §2.1 leak
access patterns, particularly through correlated accesses. We
show that these application classes are less susceptible to
traditional page access pattern attacks (discussed above) due
to their inability to exploit access correlations.

Access pattern leakage in ML/AI model inference. We
find that deep learning models such as DLRMs and LLMs
exhibit memory access patterns that can be exploited to reveal
private inputs, regardless of CCE execution. This is due to
input-dependent accesses to a standard component of such



Inference Request

Age

Embedding Tables

21-25

Gender

Item Brand

Interaction Buy

Apple

M
Rest of
model

(Not focus
of attack)

...

Figure 1: Input-dependent access patterns across embedding
tables in DLRM. Each private categorical feature in an inference
request results in an access to a single embedding table entry, which
the adversary can directly trace back to its value.

models — embedding tables, which store mappings from cat-
egorical data to their numerical representations in the model’s
high-dimensional vector space. In any deep neural network
with categorical input data, inference begins with the embed-
ding lookup stage, which converts each of the input sample’s
categorical features, e.g., a user’s age group or gender, into a
vector embedding that the rest of the model can use. For each
categorical feature, the index of the embedding table entry
accessed during lookup directly corresponds to the plaintext
value of that feature in the input data sample, as shown in
the example in Figure 1. This also applies to LLMs, which
have a single large embedding table containing an entry for
each unique token (word or subword) in its vocabulary. Since
embedding tables reside in memory, an attacker can directly
extract the private attributes of an encrypted inference request
or the plaintext tokens of an encrypted prompt as long as it
can infer accesses at the level of embedding table entries from
coarser-grained page accesses.

Access pattern leakage in semantic search. Nearest-
neighbors search over a vector database also exhibits input-
dependent access patterns that can be exploited. For a specific
search algorithm, we focus on Hierarchical Navigable Small
World (HNSW) [42], a state-of-the-art semantic search index.
Briefly, HNSW utilizes a multilayer graph index, where the
bottom layer comprises a full proximity graph of the vector
database, and the upper layers contain progressively fewer
nodes and edges. The search algorithm begins at the top layer
(with the fewest nodes), greedily identifying the nearest neigh-
bor to the query vector, and then proceeds to the layer below
until it reaches the bottom. Since the search ends in the query
vector’s neighborhood, an adversary can observe the vectors
accessed during the search to infer information about the near-
est neighbors found or possible values of the private query
vector. Our work focuses on uncovering the vector-level ac-
cesses from page-level accesses, and we leave the additional

inference of private attributes from these vector accesses as
future work.

Shortcomings of prior attacks. Although prior page access
pattern attacks have demonstrated success in specialized use
cases, applying them as is to embedding lookups and semantic
search poses interesting challenges. The shortcomings that
we identify are twofold. First, a sequence of page accesses
alone cannot reveal the specific objects (i.e., embedding table
entries or HNSW graph nodes) accessed, as there is a many-
to-one mapping from pages to objects — multiple objects can
reside on one page. Second, in focusing on mapping exact
subsequences or sets of pages to specific control flows, prior
approaches do not leverage correlations in access patterns to
increase the effectiveness or versatility of their attacks. We
identify two specific page access pattern attack approaches as
representatives of this class of work to better highlight their
shortcomings.

Naive Bayes is a simple probabilistic approach to model-
ing the distribution of accesses across objects conditioned
by observed page accesses. This serves as a representative
of prior page access pattern attacks that rely solely on the
histogram of accesses across pages. A Naive Bayes classi-
fier can be defined for each monitored data structure, e.g.,
for DLRM, one for each embedding table that is looked up
during inference. Given observations of page accesses with
corresponding ground-truth embedding table accesses, the
classifier can learn for each page the distribution (i.e., a his-
togram) of entries accessed on that page. Then, given only
an observed page access, the classifier for a particular em-
bedding table outputs the accessed entry as a predicted class
by sampling from that page’s histogram of embedding table
entries. Naive Bayes classification is inherently limited by
its simplicity, especially its “naive” assumption that the input
features — the page accesses — are independent. This results
in poor predictions for accessed objects in our considered
applications, as we will demonstrate empirically in §5.

IHOP [53] is a statistical-based attack that, while designed
for Searchable Symmetric Encryption (SSE) schemes, is one
of the only two access pattern attacks [36, 53] to our knowl-
edge that leverage dependencies across accesses. For this
reason, we consider its adaptation to our page access pattern
setting. IHOP’s goal is to find a mapping between the set of
observed encrypted objects (i.e., pages) and the set of underly-
ing plaintext objects. To compute this mapping, IHOP solves
a quadratic optimization problem that maximizes the likeli-
hood of the observed access distribution over pages, given
the adversary’s auxiliary knowledge of the access distribution
over the objects.

Specifically, IHOP exploits correlated accesses by taking as
input two Markov matrices F and F̃: for pages p j and p j0 , the
j, j0th entry of F is the number of times that an access to page
p j0 is followed by an access to p j, normalized by the total



number of times p j0 is accessed. Similarly for objects oi and
oi0 , the i, i0th entry of F̃ is the probability that oi0 is accessed
followed by oi. These matrices explicitly encode pairwise
correlations among pages and objects, allowing IHOP to, in
theory, map pages to objects even when page accesses appear
uniformly distributed.

However, in practice, IHOP’s key limitation is the assump-
tion of a one-to-one correspondence between pages and ob-
jects (inherited from its intended use case of SSE), rendering
it unable to consider more than one object that can be accessed
via a certain page. Moreover, our evaluations (§5) show that
IHOP is ineffective in capturing correlations between more
than two consecutive accesses in a sequence.

The other attack on dependent accesses is MAPLE [36],
which applies a hidden Markov model (HMM)-based frame-
work in a similar setting. Instead of framing the problem as
one of optimization, this approach models the user’s object-
level access distribution as a hidden Markov chain and then
leverages HMM inference techniques (e.g., the Viterbi algo-
rithm) to find the sequence of object accesses that best ex-
plains the observed sequence of page accesses. Unfortunately,
it shares IHOP’s limitation of applying a Markov assumption
to the access distribution, i.e., each object access in a sequence
depends only on the previous object access, which limits the
attack’s capability of leveraging sequences of more than two
dependent accesses.

2.4 Overview of Our Approach
In this work, we present FIT, a memory access pattern at-
tack that addresses the two shortcomings of prior approaches:
it can capture a one-to-many mapping from coarse-grained
memory locations to finer-grained ones, in part by leveraging
dependencies within longer sequences of accesses. Focusing
on cloud-based ML/AI model inference services and seman-
tic search applications, we define our threat model and the
knowledge available to the adversary in §3. Our key insight
is that a generative language model can efficiently capture
dependencies within access sequences and propose our gener-
ative approach to translating observed page accesses to private
object-level accesses in §4. We then evaluate the feasibility
and efficacy of this attack on DLRM, LLM, and semantic
search applications with real data in §5.

3 Security Model

We now detail our system and threat model (§3.1) along with a
formal description of the adversary’s goal and the knowledge
it can use to carry out our proposed attack (§3.2).

3.1 System & Threat Model
Our system model is that of a cloud-hosted application with
multiple trusted clients and an untrusted server (Figure 2).

Client Privacy-sensitive application

Confidential Computing Environment (CCE)

OS / Hypervisor

Hardware (MMU, TLB, SGX / TrustZone / etc.)

Request

Response

Cloud server

Figure 2: System & Threat Model. The adversary resides in the
system software of the cloud server, on which sensitive applications
run within CCEs based on a hardware root of trust. The application
trusts components colored in blue.

A client interacts with the service by sending a request with
encrypted input data over the network. The server provides a
CCE in which the application processes the decrypted client
data, e.g., running inference for an AI/ML service or exe-
cuting a search query for a vector database. The output is
encrypted and returned to the client. We assume that appli-
cation execution occurs on the CPU, as can be the case for
recommendation models [26, 34] and LLMs [58].

On the server, we assume a standard CCE threat model [59,
68,76], in which the OS is an honest but curious adversary that
aims to extract sensitive client data without compromising ser-
vice to the client. This is typical in cloud deployments, where
the cloud provider or a malicious actor with administrator
credentials [43] controls the OS (more precisely, the hyper-
visor). Similar scenarios are found in Symmetric Searchable
Encryption (SSE) [25, 53] and oblivious analytics [50, 61, 83]
settings, where the adversary controls the untrusted server
and observes clients’ operations over encrypted data.

The adversary cannot deviate from the server protocol, e.g.,
by modifying client requests and responses; it is also mo-
tivated not to mount availability attacks to avoid losing the
cloud service’s customer base due to degraded quality of ser-
vice. We assume that any hardware relied on by encryption
or CCE is correctly implemented, so the adversary cannot
extract secrets directly from within the processor. However,
the adversary can observe side-channel leakage from the CCE
execution and make systems-level decisions to reduce noise
in those channels. It can also control all OS scheduling and
memory allocation decisions, freely access unprotected mem-
ory, and interrupt user processes. It is, however, incentivized
to minimize interactions that affect application performance
to avoid detection. We also assume that this privileged adver-
sary has white-box access to the hosted application — e.g.,
due to it being open source — similar to assumptions in prior
attacks where exact application binaries are known [10, 76].



Notation.
Y Set of objects accessed by the application.
r Distribution of accesses over objects Y .
X Set of pages accessed by the application.
f Distribution of accesses over pages X .

mem Mapping of objects to pages.

Auxiliary information.
r; Dataset of (x,y): page and object access sequences

Observed information.
Dataset of x: page access sequences

Table 1: Summary of notation and adversarial knowledge.

3.2 Adversarial Goal & Knowledge

Next, we formally define the adversary’s goal, using notations
summarized in Table 1. We consider a CCE-protected appli-
cation that makes sequences of dependent accesses over a
set Y of objects in memory drawn from an underlying joint
access distribution r. Each object is stored on a page of mem-
ory x in the set of pages X ; we define the layout of these
objects in memory as a mapping mem from Y to X , which
gives for each object y the page address x on which it resides.
Although the adversary knows mem (as described in §3.1),
it can only observe the application’s access sequence at the
granularity of pages, i.e., a sequence of page-level accesses
x = x1, ...,xm corresponding to the underlying sequence of
object-level accesses made by the application y = y1, ...,ym,
where mem(yi) = xi. Then, the adversary’s goal is to use auxil-
iary information about the application’s access distribution to
identify the actual objects accessed by the application given
an observed sequence of page-level accesses.

Auxiliary information. We assume that the adversary has
auxiliary knowledge of the distribution of user requests to the
application — e.g., for DLRM, the joint distribution of the
user base’s categorical features — based on this, the adversary
can directly derive the access distribution r. This assumption
is common in leakage-abuse works and aligns with real-world
use cases where distributional information about the user
population is well-known or accessible [11, 33, 50, 53].

The adversary can utilize this distributional knowledge to
collect ground-truth data on page accesses and their corre-
sponding object accesses. It samples a set of requests from
the distribution and either runs an instance of the application
or simulates the page accesses using mem and its white-box
access to the application. The result is an auxiliary dataset of
(x,y) pairs, where y is the sampled sequence of object-level
accesses and x is the observed sequence of pages accessed by
the application on y.

Observed information. When launching the attack, the ad-
versary observes only x, the page access sequence, for each
request to the actual application. It knows the layout mem of
the application’s accessed objects in memory, e.g., the vir-

tual pages assigned to each embedding table of the DLRM.
The system-level adversary can identify the start and end of
each request by monitoring the network I/O syscalls that mark
each request and the corresponding response from the applica-
tion. While, realistically, the adversary observes one accessed
page per accessed object throughout a request, we discuss in
§5.5 the impact on the adversary’s ability to exploit leaked
information when it cannot observe all page accesses for a
request.

3.3 End-to-End Attack Example
We now describe an end-to-end execution of the FIT attack
with our adversary on embedding table accesses in DLRM to
illustrate our threat model. We defer further relevant details
of FIT in this scenario, along with our other considered use
cases LLM and HNSW, to §5.1.

The DLRM application runs within a trusted CCE on the
adversary-controlled cloud server. During initialization, the
application instantiates the 26 embedding tables of its rec-
ommendation model, one for each categorical feature in the
data that will be used in the private inference requests it re-
ceives. Each of these tables is implemented as a PyTorch
EmbeddingBag module, and its entries are stored contigu-
ously in the weight tensor of the EmbeddingBag. The cre-
ation of these tensors results in a sequence of syscalls that
request memory allocations of distinct sizes, allowing the ad-
versary to control the data pages and virtual address ranges
allocated to each embedding table.

When the application receives an encrypted inference re-
quest from a client, the adversary is notified through a network
I/O system call and clears the accessed bits of the PTEs for
all embedding tables. Assuming that the request contains a
single sample of data, the DLRM converts the sample’s cat-
egorical features into vector embeddings by performing a
lookup in each EmbeddingBag, resulting in access to some
page of its weight tensor. Once the model outputs a result
that the application encrypts and returns over the network,
the adversary traverses the embedding table PTEs and logs
pages marked as accessed by the processor. This yields the
adversary’s observed page access sequence for the request.

The adversary then uses its auxiliary knowledge to infer
the most likely embedding table accesses that resulted in
the observed page-level accesses. As a concrete example,
consider that the categorical features represent an e-shop user
and an ad they interacted with (the semantics of the dataset
used in our evaluation are not publicly known). Assume that
for the user’s location, the embedding table entries of US
cities Miami and Denver are on the same page P1. In contrast,
the embedding table for the ad’s product category has an entry
for swimwear on page P2 and an entry for ski gear on page
P3. While the adversary cannot determine from access to P1
alone whether the user is in Miami or Denver, if the observed
page access sequence contains P2 rather than P3, the adversary



Objects
Pages

Access dependencies

Pages accessed Objects accessed

Pages accessed Objects accessed

Figure 3: In this example, the adversary can use its knowledge of
dependent accesses between objects to infer object-level accesses
from observed page-level accesses.

can infer that the city is likely Miami, as swimwear is more
likely to be purchased in a tropical destination. This process
of leveraging correlations between accesses is the focus of the
following section (§4). Since the index of each embedding
table entry uniquely corresponds to the plaintext value of
the categorical feature, accessing the embedding table entries
directly leaks the data in the inference request, allowing the
adversary to recover the client’s private information.

4 FIT: A Novel Generative Language Model-
ing Attack

The core contribution of our work is a generative modeling
approach to memory access pattern attacks. We begin with
an explanation of the intuition behind our approach and back-
ground on language modeling (§4.1). We then outline the de-
sign of FIT, which uses a deep generative model to learn the
underlying distribution of memory access sequences (§4.2).
Our attack can infer private attributes with significantly higher
accuracy than existing statistical methods (§5).

4.1 A Language Model of Access Correlations
While most access pattern attacks assume that accesses are
independent [8,11,25,33], this is typically not the case in real-
world applications. Accesses to objects (e.g., nodes, items,
etc.) within a shared data structure tend to be correlated, i.e.,
accessing a particular address affects the probability distri-
bution of which address is accessed next. An attacker can
exploit these correlations to obtain fine-grained information
about a victim’s accesses. For a simple example, consider
four objects A, B, C, and D residing on two pages i and j
as pictured in Figure 3. Suppose that the victim application
always accesses A followed by B and C followed by D. As
such, the order in which pages i and j are accessed reveals
whether the accesses are to A and B as opposed to C and D.
Thus, cross-page correlated accesses enable the adversary to
overcome the one-to-many problem of mapping page-level
accesses to object-level accesses. While this example only
considers dependent access sequences of length 2, our insight
can be generalized to an arbitrary number of dependent ac-
cesses, e.g., traversing a linked list. Settings with correlated

accesses of this nature remain largely unexplored in the secu-
rity community (§6).

Parallels to language modeling. To capture the relationships
between accesses, we express the joint probability distribution
r of a sequence of n accesses y1, ...,yn to objects in memory
as a product of conditional probabilities — specifically, the
probability of each access yi, conditioned on the preceding
accesses in the sequence y1, ...,yi�1:

r(y1, ...,yn) = r(y1) ·Pn
i=1r(yi | y1, ...,yi�1) (1)

We borrow this formulation from natural language process-
ing (NLP), where the distribution of each token in a sentence
is conditioned on the preceding tokens. This joint probability
distribution over tokens, classically defined as a language
model, captures structural rules and semantic relationships
between tokens in the vocabulary of a natural language. For
example, given that the first three tokens in a sentence are “I
wrote a”, a language model should assign a very low probabil-
ity to “the” as the next token since it is grammatically inconsis-
tent; the existing context given the previously observed tokens
should also make “book” a more likely next token than “sand-
wich”, i.e., p(book | I, wrote, a) > p(sandwich | I, wrote, a).
Access sequences follow similar implicit rules — for exam-
ple, in the DLRM application, access yi must be to an address
in the i-th embedding table of the model, and specific pairs
of addresses may co-occur in a sequence due to the data
distributions underlying user requests, e.g., an e-commerce
recommender system might observe that electronics are most
popular with male users in their 20s.

If a language model can model the distribution of memory
accesses, then inferring object-level accesses from page-level
accesses is analogous to translation, where an input sentence
x in the source language, modeled by the joint distribution
f, is used to generate a sentence y in the target language,
modeled by r. In our setting, x is the adversary’s observed
sequence of accesses to coarse-grained memory pages, and
y is the user’s sequence of accesses to finer-grained objects
within those pages. This lets us formulate the adversary’s goal
as a sequence-to-sequence translation task, i.e., learning the
distribution of r conditioned on x:

r(y1, ...,yn|x) = Pn
i=1r(yi | y1, ...,yi�1,x) (2)

We also draw parallels from the narrowing down of pages
to objects to the disambiguation of homographs, i.e., words
that are spelled the same but have different meanings. For
example, the English word “right” can be translated into mul-
tiple words in French, and we decide which one depending on
the phrase that it appears in: “right hand” (“droite”) or “that
is right” (“vrai”). In the language of page accesses, the most
probable object access corresponding to a specific page can
similarly be inferred based on the context provided by the



right hand

main

English

French droite

rightthat

c' vrai

is

est

Page accesses

Object accesses

Figure 4: Like how homographs are disambiguated based on other words in the sentence, page-level accesses (underlined) can be disambiguated
based on other pages in the access sequence and previously predicted object accesses. hsi denotes the start-of-sequence token.

Clients

Application (e.g., DLRM, vector database)

Confidential Computing Environment (CCE)

Hypervisor PTE Accessed Bits

Hardware

Page
Accessed

Requests

Time

Time

REQ5REQ1 REQ2 REQ3 REQ4

Correlate page
access pattern to

request input

Figure 5: Overview of FIT. For each client request, the adversary monitors PTE accessed bits to learn the pages accessed by the application,
then uses correlations between page accesses to infer the encrypted input of the request.

entire page access sequence in addition to the object access
sequence predicted so far, as seen in Figure 4. The power of
language models is in developing and applying this contextual
awareness, which FIT’s approach uses to infer fine-grained
accesses with greater accuracy.

4.2 Attack Design
FIT targets privacy-sensitive applications introduced in §2.1,
i.e., cloud-hosted inference serving and semantic search with
HNSW. For inference serving, users send inference requests
to the cloud server with sensitive information, e.g., the user’s
age group, location, or purchase history. The adversary aims
to infer these private attributes by predicting the exact embed-
ding table entries accessed by the model based on its observed
page accesses. For semantic search, users send requests con-
taining an encrypted query vector to the cloud server, and the
adversary aims to infer the nodes accessed during the nearest
neighbor search on the HNSW graph index. The general at-
tack is summarized in Figure 5 and comprises the following
stages.

4.2.1 Recording page accesses

In FIT, the application’s accessed pages are recorded using
the same approach as prior work [10] — monitoring accessed
bits in PTEs. As described in §3.2, an adversary can identify
the start of a user request, at which point, it clears the accessed
bits for all memory pages allocated to the data structure it
monitors. At the end of the request, the adversary checks and
records the pages that have been marked as accessed.

...

Encoder Decoder

vector
representation

...

Figure 6: The encoder-decoder network architecture used by FIT
translates a sequence of page accesses x1, ...,xm into a vector repre-
sentation, which is then used to generate a sequence of finer-grained
object accesses y1, ...,yn. Each access yi is generated based on the
preceding accesses y1, ...,yi�1.

4.2.2 Inferring private attributes

This attack component involves offline analysis of the victim
application and its memory access patterns. The adversary
uses a deep generative language model, described below, to
infer mappings from the recorded page accesses to the under-
lying object accesses and, subsequently, the private attributes
of each user request.

Deep generative modeling approaches use neural networks
to achieve notable success in machine translation and other
complex modeling tasks [9,77]. We base our method on recur-
rent encoder-decoder architecture [16, 64], which consists of
an encoder that processes the input sequence and extracts its
salient information into a vector representation and a decoder
that uses this representation to generate the output sequence,
one element at a time; recent implementations use transform-
ers as encoders and decoders to learn global dependencies
between elements of the input and output sequences [69].

An overview of the model architecture FIT uses is shown in



Figure 6. The encoder network takes as input one-hot encoded
elements of the page access sequence x; the size of its input
layer is equal to the total number of pages assigned to the
monitored data structures (e.g., embedding tables in DLRM,
HNSW adjacency lists in semantic search, etc.), such that each
unique page activates a unique neuron in the layer. As the
encoder sequentially processes each element of x, it updates
its hidden state, a multi-dimensional vector representation of
the input seen so far; these recurrent updates incorporate the
context of each element. The final hidden state at the output
layer of the encoder, representing the context of the entire
input sequence, is then passed to the decoder and used to gen-
erate a prediction of the object-level access sequence y. Since
each element of y is a one-hot encoded index of the accessed
object, the decoder’s output layer size equals the total number
of objects accessed by the application. With each element
the decoder generates, it also recurrently updates its hidden
state to maintain the context of the input and output sequences
generated so far. The decoder’s final hidden state is thus a
probability distribution over all objects conditioned on this
preceding context, which is how it leverages the dependen-
cies between elements to predict the most likely next access,
as described in §4.1. Between the encoder and decoder, the
space of vector representations captures the distribution of
access sequences (of both pages and objects) along with the
correlations within them.

Training. In the training phase of FIT, the adversary prepares
a dataset of page access sequences and the private attributes,
e.g., the corresponding embedding table entries accessed in
DLRM, and the sequence of nodes accessed in HNSW. As
described in §3.2, the adversary can collect these page ac-
cesses and the corresponding ground truth from a simulation
of the victim application or an execution of the application
in its own controlled enclave, e.g., with debug mode enabled
to expose the virtual addresses accessed. Using this dataset,
the adversary trains its encoder-decoder model to predict a
sequence of object accesses y = y1, ...,yn given a sequence
of page accesses x = x1, ...,xm. As the encoder processes the
page access sequences, it learns the distribution f(x) of page-
level accesses. Meanwhile, the decoder learns the distribution
r(y|x) of object-level accesses, conditioned on the page-level
access sequence that the adversary observes.

Inference. The inference phase occurs during the attack,
when the real application executes within a CCE. Only the
attested CCE instance can decrypt private user requests to
the real application, and it hides in-memory objects and the
processor state from the adversary’s view. With only visibility
to the victim application’s page tables, the adversary records
a trace of the pages accessed by the application during its ex-
ecution. The adversary inputs these recorded page access se-
quences to the trained encoder-decoder model, which outputs
the most likely sequence of object-level accesses underlying

Application Dataset source # Train sequences # Test sequences
DLRM Kaggle [39] 1M 100K
LLM DDXPlus [65] 500K 50K

HNSW SIFT10K [35] 22.5K 2.6K

Table 2: Summary of datasets used.

each observed page access sequence, sampled from its esti-
mate of conditional distribution r(y|x) developed during train-
ing. The accuracy of the model’s predicted sequences hinges
on its ability to learn and exploit the correlations between
object-level accesses, allowing it to identify specific combi-
nations of objects (e.g., embedding table entries in DLRM or
nodes in HNSW) accessed based on the observed combina-
tions of pages accessed.

5 Evaluation

We evaluate FIT on a cloud setup for real-world applications,
workloads, and datasets, with the goal of understanding:

• FIT’s accuracy in predicting object-level access sequences
from observed page access sequences (§5.4) compared to
prior state-of-the-art approaches (§5.2).

• FIT’s practicality (§5.5), including its sensitivity to mea-
surement error in page observations and the latency over-
heads of mounting it.

5.1 Applications, Workloads and Datasets
We evaluate the efficacy of FIT for the applications introduced
in §2.1. These applications exhibit four properties that make
them worthwhile targets: (i) they are widely used [49, 72, 84],
(ii) involve privacy-sensitive data — e.g., user browsing and
shopping behaviors for recommendations, medical informa-
tion in prompts to a medical LLM, and image representations,
such as faces, in a vector database — and (iii) access ob-
jects in memory with smaller-than-page granularity and (iv)
long-term dependencies between accesses.

Deep learning-based recommendations. For this use case,
we target the Deep Learning Recommendation Model
(DLRM) [49] released by Meta Research, a state-of-the-art
recommender system that has been the subject of prior studies
on privacy leakage [27, 55]. As in earlier work, the model
is trained on the Kaggle Display Ads dataset [39], contain-
ing the click-through rates of ads collected by Criteo Labs.
Each row of the dataset corresponds to a display ad served
by Criteo, consisting of 13 continuous features and 26 cat-
egorical features. As described in the example of §3.3, the
model contains one embedding table per categorical feature
— the semantics of these features have not been released, but
each possible value of each categorical feature has a unique
embedding table entry. The training split of the dataset, used



to train the DLRM, contains ad data collected over a 7-day
period, along with an additional feature indicating whether the
ad was clicked; the test split contains similar ad data collected
the day after. We generate user inference requests from the
test split of the dataset and collect page accesses over the em-
bedding tables (as described in §4.2.1) for a single-threaded
sequential execution of the DLRM model on these requests.
The resulting dataset used to evaluate our attack contains
for each inference request a pair of fixed-length sequences
x = x1, ...,x26 of virtual page numbers and y = y1, ...,y26 em-
bedding table entries, where yi is the entry that was accessed
on page xi.

Medical LLM inference. We use a quantized version of
BLOOM-560M [73] as the target LLM application. Inference
requests to this application are generated by extracting patient
symptoms from the DDXPlus [65] medical dataset and format-
ting them in a prompt template similar to ChatCAD [72, 82]
for LLM-assisted diagnosis. The attack scenario is much like
DLRM, except the LLM has one embedding table containing
entries for all the language tokens in its vocabulary. When the
application receives an encrypted request containing a medi-
cal diagnostic prompt, the adversary enters a loop of clearing
and reading the accessed bits of the embedding table’s PTEs,
thereby capturing repeated accesses to the same page (caused
by repeated tokens in the prompt). We record the pages ac-
cessed in this manner to create a dataset of page sequences
x and their underlying embedding table entries y = y1, ...,yn
for each prompt; in this case, n is the number of tokens in
the prompt and varies for each sequence. Given auxiliary
knowledge of the LLM’s vocabulary, inferring the accessed
embedding table entries allows the adversary to reconstruct
the private prompt, token by token.

Semantic search. We evaluate FIT on a vector database pop-
ulated and queried using the SIFT10K [35] dataset. SIFT10K
consists of 10,000 base vectors stored in the database and
25,100 query vectors for which the database performs a
nearest-neighbor search. The dataset is a smaller version of
SIFT1M, a standard benchmark in the field of approximate
nearest-neighbor search. We use the smaller database, as other-
wise the base vectors would be accessed too sparsely to yield
meaningful information about the joint distribution of access
sequences. We use the Faiss [18] library’s implementation
of HNSW index construction and nearest-neighbors search,
which stores the neighbors of each base vector in an adja-
cency list neighbors. Each time a base vector vi is visited
during the search, Faiss makes an access to neighbors[i].
Then, for each vector search request, the adversary, like in the
LLM scenario, repeatedly checks the PTE accessed bits of
this adjacency list to obtain the page access sequence x. Fol-
lowing this attack setup, we create the dataset of (x,y), where
y = y1, ...,yn is the sequence of base vectors accessed during
the nearest-neighbors search for the query vector. Recover-

ing this sequence of base vectors leaks information about the
neighborhood of the private query vector; we leave the infer-
ence of further details, e.g., the identity of the query vector or
its nearest neighbor, to future work.

5.2 Compared Attack Baselines

As discussed in §2.2, we compare FIT to two other page
access pattern attack approaches described below.

Naive Bayes classifier. The Naive Bayes classifier baseline
serves as a representative of attacks that can handle a many-
to-one mapping of objects to pages but cannot leverage depen-
dencies between accesses. The Naive Bayes classifier models
the application’s access distribution over the monitored data
structure, assuming that accesses are independent. In the case
of DLRM, where multiple embedding tables are accessed per
inference request, we initialize a separate classifier for each
table; given an input sequence of page accesses, the access
corresponding to the ith embedding table is input into the
ith classifier, and the classifier outputs are concatenated to
produce the predicted sequence of object-level accesses. For
the LLM and HNSW applications, only one Naive Bayes
classifier is used to predict each object-level access over the
embedding table and adjacency list, respectively.

IHOP. Complementing the Naive Bayes approach, IHOP is
representative of attacks that can learn pairwise dependencies
between accesses but cannot handle many-to-one object-to-
page mappings. We are not yet aware of an attack that lever-
ages dependencies across access sequences longer than two.
We run IHOP with its recommended parameters [53] and for-
mat the inputs into our adaptation as follows. The adversary’s
auxiliary information F̃ is computed from a transcript of con-
catenated object-level access sequences y from FIT’s training
dataset. To take the multiple embedding tables of DLRM into
account, we encode the index of the entry with the index of
the embedding table, as entry i of different embedding tables
are likely to reside on different pages — this encoding is
implicit in FIT, for which the kth access in the sequence is
to the kth embedding table. Similarly, we build the matrix of
observed pages F using concatenated page access sequences
x from the testing dataset.

We also note that IHOP’s feasibility is determined by the
size of its quadratic optimization problem, which scales poorly
with the number of objects and pages to assign to one an-
other. With the limited vocabulary of the medical prompts
in the LLM use case, only 754 unique embedding table en-
tries are accessed over all inference requests, which is within
IHOP’s capabilities to solve. Similarly, for the HNSW work-
load, the optimization problem involving 10,000 base vectors
is still computable, given significantly more time. However,
DLRM’s embedding tables can have up to ten million entries,
so it is prohibitive for IHOP to predict the entire sequence of



accesses. Thus, our evaluations of IHOP on DLRM exclude
from each access sequence the 12 largest embedding tables
out of 26, resulting in 8,124 unique embedding table entries
in the evaluation data to map to observed pages.

5.3 Attack Implementation
We collect page accesses for our evaluated applications (§5.1)
in two CCEs: a Nitro Enclave on AWS and an SGX enclave,
using Intel Ice Lake CPUs, on Microsoft Azure. We used
NVIDIA A40 GPU servers to train our generative attack
model and a 24-core AMD server to run IHOP.

Recording page accesses. Our page trace collection process
follows the same broad strokes for both Nitro and SGX En-
clave execution environments, based on the PTE monitoring
approach introduced in prior work [10]: We spawn a spy
thread that runs alongside the enclaved victim application,
affinitized to a separate physical CPU core to minimize mea-
surement noise. The spy thread runs our attack code (e.g.,
for page table manipulation) in kernel space by calling a cus-
tom kernel module. For each request to the application, the
spy thread obtains a trace of page accesses by periodically
preempting the enclave CPU, reading the application’s PTE
accessed bits, then clearing the bits and flushing the TLB.
Like in prior attacks, the PTEs to check — i.e., the virtual
address range of the embedding table entries — is known, as
an OS-level adversary can inspect the application binary and
manipulate memory allocations to ensure that data objects are
located at specific addresses. Commonly used frameworks,
such as PyTorch, also store the raw tensor data of the embed-
ding table contiguously, allowing the adversary to determine
the layout of the table entries across multiple pages. Between
the execution environments of Nitro and SGX Enclaves, we
find that the collected page traces are comparable, with only
minor measurement errors (§5.5). We provide implementation
details specific to each environment below.

Nitro Enclaves: On AWS, since we did not have control over
the hypervisor and the extended page tables it manages, the
spy thread in our implementation collects page access traces
from within the Nitro VM. In a real-world attack deployment,
the hypervisor would similarly collect these traces, as it can
access the guest page tables that map guest virtual addresses
(GVAs) to guest physical addresses (GPAs). Specifically, to
check if a given GVA has been accessed within the guest
VM, the hypervisor locates the guest page tables via the guest
CR3 register and then walks the guest page tables to reach
the desired page table entry (PTE).

SGX Enclaves: In the Azure VM, we mount our attack on
Gramine [24], a library OS that allows unmodified appli-
cations to execute with their supporting libraries inside an
SGX enclave. Gramine runtime software consists of a trusted
part running inside the enclave that must interact with an un-

trusted part outside the enclave, which in turn interacts with
the VM’s OS to perform system calls. Using the SGX-Step
framework [68], we patch Gramine’s untrusted runtime to
facilitate page trace collection. In particular, the enclave start
function is modified to spawn the spy thread before enter-
ing the enclave’s main function. The framework also sets up
memory mappings for the registers of the local APIC timer
device, allowing the spy thread to send inter-processor inter-
rupts (IPIs) to the victim’s CPU by writing to the configured
memory-mapped address.

Language model for inferring private attributes. FIT uses
miniature variants of the BERT transformer model [17] as the
encoder and decoder in the model; the reduced transformer
size decreases its memory usage while retaining performance
in language tasks. Specifically, our implementation utilizes
BERT-Tiny with L=2 transformer layers and a hidden em-
bedding size of H=128 [6, 67]. We also initialize BERT with
weights from natural language pre-training — we observed
that our model with pre-trained weights converged faster than
one with randomly initialized weights when training to pre-
dict access sequences. This is because sequence prediction
is a classification-based task, and the pre-trained weights are
already discriminative enough to predict (language) tokens
in a sequence. As such, repurposing pre-trained weights for
predicting accesses in the training phase improves the model’s
convergence compared to starting from scratch with randomly
initialized weights and an initially flat output distribution, and
training until the weights are sufficiently discriminative.

5.4 Attack Efficacy
We measure the accuracy of each compared attack by the
Hamming distance between the attack’s predicted object-level
access sequence and the ground-truth object-level access se-
quence. Hamming distance counts the number of positions at
which two sequences of equal length differ, i.e., the number of
object-level accesses the attack predicts incorrectly, meaning
that lower hamming distances are better. Figure 7 compares,
for each application, the cumulative frequency of normalized
hamming distances between the attacks’ predicted sequences
and the ground-truth sequences — for some normalized ham-
ming distance d, the plot shows the number of sequences
predicted by the attack that are within normalized hamming
distance d from the ground-truth sequence. The hamming
distances are normalized as sequences in LLM and HNSW
vary in length; this does not affect the DLRM use case, where
all sequences have a fixed length of 26.

First, we note the slight difference in attack efficacy be-
tween the two execution environments, visible for the DLRM
case. This results from differing measurement errors during
the page trace collection stage (i.e., incorrectly identified page
accesses) in Nitro compared to SGX, which we discuss fur-
ther in §5.5. The slight difference in observed error rate is



0.0 0.2 0.4 0.6 0.8 1.0
Normalized hamming distance

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
eq

ue
nc

y

DLRM

0.0 0.2 0.4 0.6 0.8 1.0
Normalized hamming distance

0.0

0.2

0.4

0.6

0.8

1.0
LLM

FIT (Nitro)
FIT (SGX)
Naive Bayes
IHOP

0.0 0.2 0.4 0.6 0.8 1.0
Normalized hamming distance

0.0

0.2

0.4

0.6

0.8

1.0
HNSW

Figure 7: Cumulative distribution of the normalized hamming distance between ground-truth and predicted sequences. For all evaluated
use cases, DLRM, LLM, and HNSW, FIT achieves lower (better) hamming distance on significantly more samples than other baselines.

attributed to platform-specific nuances: the Nitro Enclave runs
a Linux OS image, while the SGX enclave inside a Linux VM
additionally runs Gramine’s library OS. We next discuss our
key observations on how FIT compares to prior state-of-the-
art attacks.

Leveraging both access dependencies and an understand-
ing of many-to-one relationships between objects and
pages greatly improves attack efficacy. FIT achieves lower
hamming distances for all applications than the compared
baselines by a significant margin. Its best performance is in
the LLM use case, with a median hamming distance of 0
and 91% accuracy in predicting the entire sequence of tokens
used. This is because the object-level accesses correspond
to tokens from a limited medical vocabulary (754 tokens),
resulting in such sparse accesses across the embedding table
that 95.9% of observed page accesses in the training dataset
correspond to only one embedding entry access. The size of
an embedding table entry in the quantized BLOOM-560M
model is also 1088 bytes, which limits the number of possi-
ble embedding entries in the rest of the pages to only 3. FIT
is much more likely to predict the correct embedding entry
given a page than in the DLRM use case, where an entry of
any embedding table is 64 bytes. With DLRM, FIT achieves
a median normalized hamming distance of 0.27, around 19
correct predictions out of 26. FIT’s efficacy on HNSW falls
in the middle, with a median normalized hamming distance
of 0.05.

In contrast, the Naive Bayes baseline predictions are based
solely on the frequency distribution of accessed objects, con-
ditioned on the observed page. Since it considers each access
in isolation, the simple Naive Bayes approach cannot leverage
relationships between accesses in a sequence, achieving me-
dian normalized hamming distances of 0.77 for DLRM and
0.76 for HNSW use cases. However, this baseline achieves a
low Hamming distance of 0.07 on LLM, due to the high per-
centage of one-to-one object-to-page mappings. In fact, the
total percentage of embedding table entry accesses it predicts
correctly overall is 93%, which closely matches the percent-
age of page accesses corresponding to a single embedding
table entry. We attribute the remaining gap in performance

0.0 0.2 0.4 0.6 0.8
Normalized hamming distance

0.0

0.2

0.4

0.6

0.8

1.0

C
um

ul
at

iv
e

fr
eq

ue
nc

y

FIT
Naive Bayes
IHOP

Figure 8: Normalized hamming distance distribution given 1-to-
1 page to embedding table entry mappings for DLRM. IHOP
accuracy improves significantly compared to the realistic 1-to-many
case, but its inability to scale to large embedding tables prevents it
from outperforming FIT and the Naive Bayes baseline.

between Naive Bayes and FIT to our approach’s ability to
leverage the natural language dependencies between tokens
in each sequence.

As discussed earlier, IHOP suffers from having to glean
fine-grained mappings from coarse-grained accesses. How-
ever, it can still map some pages to objects, achieving median
normalized hamming distances of 0.85 for DLRM, 0.94 for
LLM, and 0.92 for HNSW. Surprisingly, the unique object-
to-page mappings in the LLM case do not improve IHOP’s
performance, possibly due to the setup or heuristics used
to solve its optimization problem. We also note that IHOP
has weaker assumptions on adversarial information, as it re-
quires only statistical training information about page access
patterns rather than ground-truth information about the un-
derlying embedding table entries accessed for each sequence
of page accesses. This ground-truth knowledge can feasibly
be collected in the current use case; we intend to adapt our
approach to weaker assumptions in future research (§7).

Without many-to-one object-to-page mappings, attack ef-
ficacy improves. To confirm that many-to-one mappings are
the primary limiter on IHOP’s efficacy, we evaluate the attacks
on an idealized setup of DLRM such that each embedding
table entry resides on a unique page. We note that such a
scenario is unlikely in practice, as an OS adversary does not



Figure 9: Normalized hamming distance distribution for various error rates in observed page traces. For all evaluated use cases, FIT’s
accuracy decreases with increasing error rate in page observations, but not significantly.

Figure 10: Cumulative distribution of request duration. The mean latency overhead added to each request by page tracking ranges from
1.01⇥ for LLM to 2.53⇥ for HNSW.

control how an application places its data across allocated
memory, only which memory region(s) the application is al-
located for a particular data structure. As shown in Figure 8,
IHOP correctly predicts all entries in an access sequence
for a significant portion of the testing set, barring the ex-
cluded embedding tables — the hamming distances being
lower-bounded by 12. However, FIT also improves over the
one-to-one object-to-page mapping, with the added advantage
of handling larger tables. Naive Bayes performs the best be-
cause it stores the one-to-one object-to-page mapping seen in
training and consults it during testing; if this scenario were
possible, the adversary could indeed rely on this mapping
without needing more sophisticated methods.

Without access dependencies, attack efficacy is upper-
bounded. To understand the importance of access dependency
information to our attack, we consider a scenario where ac-
cesses are independent. FIT and IHOP would reduce to the
level of Naive Bayes, as the only available information would
be from the frequency of page- and object-level accesses.
They would perform no better than existing frequency analy-
sis attacks that assume independent accesses [8, 11, 33].

5.5 Practical Considerations for the Attack
We now discuss the practical aspects of FIT, specifically the
stages of recording page accesses and training the generative
model. We focus on the Nitro Enclave executions of our
evaluated use cases, but observe similar trends for SGX.

Sensitivity to measurement error. Our page trace collection
process observes measurement errors for up to 1% of page
accesses for DLRM in a Nitro Enclave and 1.4% in an SGX
Enclave, and < 1% for LLM and HNSW on both platforms.
When analyzing the trace of page observations, the adversary
can encounter two classes of errors. The first class includes
false positives: accesses to monitored pages that are not to the
monitored data structure and stem from accesses to other ap-
plication data within the same page range, e.g., the embedding
table’s underlying tensor metadata and methods, which may
be stored on a different page from the embedding table entry
being accessed. The second class includes false negatives,
e.g., embedding table pages that are expected to be accessed
but have their accessed bit unset, are more sporadic and may
be due to background processes clearing the accessed bit [23].
When it is unclear which singular page was accessed for some
object-level access, the adversary heuristically replaces the
access with the first page of the monitored data structure. As
we see next, the attacker model can tolerate higher error rates.

Figure 9 shows how the normalized hamming distances
achieved by FIT are impacted by the error rate in the page
tracking phase, which we increase by replacing a random sam-
ple of pages in the access sequences of the testing set. FIT’s
performance degrades gracefully as the error rate increases to
10%, at worst resulting in a median hamming distance of 0.5
for DLRM (half of the access sequence is correctly predicted).
Meanwhile, LLM is minimally affected by injected errors,
likely because the attacker can leverage the repetition of iden-
tical token sequences across all prompts due to their use of a



medical diagnostic template. We acknowledge that there are
more sophisticated approaches to page tracking that provide
information in a higher amount or fidelity, as introduced in
prior work (§2.2). Our more straightforward approach cap-
tures a lower bound on the adversary’s performance, as FIT is
adaptable to noise and can only do better with higher-quality
observations.

Latency overheads. We first consider the online latency over-
head that the adversary’s tracking and recording of page ac-
cesses adds to the duration of handling one client request on
the cloud server. The adversary is motivated to minimize this
latency overhead, making it less likely for clients to suspect
an attack. As shown in Figure 10, the latency added by our
page tracking implementation varies between use cases as a
function of the number of PTEs that need to be monitored.
In DLRM, 11 ms on average are added to the total inference
time for each request, resulting in an overhead of 2.06⇥. In
LLM, the embedding table spans a much wider address range,
requiring on average 140 ms to access all its PTEs; however,
this added latency is negligible compared to the overall infer-
ence time of ⇠ 20 seconds per request, which is due to the
LLM’s slower execution on CPU. In contrast, HNSW has a
mean request duration of 0.8 ms. While page tracking adds
only 0.5 ms to the request duration, this translates to a latency
overhead of 2.53⇥. Moreover, we note that all of our mea-
surements exclude network latencies for processing a request,
which would further reduce the relative impact of tracking
page accesses.

Attack overheads also include the offline time needed to
train the attack model and run inference on the recorded ac-
cesses. FIT’s model for DLRM was trained on 1M sequences
for 5 epochs, requiring about 43 GPU hours, and the IHOP
attack takes approximately 25 hours given truncated access
sequences. For LLM, FIT requires 6 GPU hours to train on
500K sequences for 30 epochs, while IHOP only takes 5
minutes to complete due to the small number of embedding
table entries accessed over all inference requests. Finally, for
HNSW, FIT takes less than one GPU hour to train for 40
epochs on 22.5K sequences, while IHOP takes 6 hours.

6 Related Work

We discussed prior page access pattern attacks in §2; we now
discuss related works in other directions.

ML-assisted inference attacks. Machine learning (ML) is a
powerful and increasingly popular tool for inferring secrets
from information leakage, especially from noisy side channels.
Prior side-channel attack papers have successfully leveraged
ML at various levels of the cloud stack, including the operat-
ing system [81], network [7, 29, 57, 60], and low-level hard-
ware [30, 37]. The closest to our work are attribute inference
attacks that leverage ML models to infer private information

about individuals from publicly available data [22, 62].

Exploiting correlations in data. Privacy analyses of data
with statistical dependencies are emerging in the community.
As discussed in §5.2, IHOP [53] introduces a statistical at-
tack that leverages correlated queries to identify plaintext
accesses to encrypted storage; MAPLE [36] uses a similar
approach. Other works have found that attackers can exploit
non-i.i.d. training data to enhance the accuracy of member-
ship inference attacks [31] and steal secret model parameters
in federated learning [75].

Embedding table attacks and defenses. Prior works have
identified embedding table access patterns as an attack vector
for learning private user information. A study on DLRM
demonstrated that given the exact embedding table indices
accessed during an inference request, an attacker could extract
the identity of the user behind the request and their sensitive
attributes, e.g., age and gender [27]. More recent works have
proposed leakage mitigation techniques based on ORAM and
private information retrieval protocols [40, 55].

Learning access patterns for prefetching. A language
modeling approach has previously been applied to learn-
ing memory access patterns for cache and DRAM prefetch-
ing [13, 28, 79]. Prior works have trained LSTMs, a type of
recurrent neural network, to learn sequences of accesses as
a sentence and predict future accesses as the next “word”
in the sentence. Recent approaches use more sophisticated
encoder-decoder models to predict future sequences of mem-
ory accesses [47, 80].

Our task differs from the prefetching use case in that, rather
than predicting the subsequent memory accesses, we need to
translate a sequence of fine-grained accesses in the plaintext
world from coarse-grained accesses in the encrypted world.
Unlike a hardware-based component that must make online
decisions about what to prefetch, our assumed adversary re-
sides in software and can perform offline analysis to predict
private attributes based on observed access patterns.

7 Discussion & Future Work

Our attack represents the first step toward understanding the
privacy risks associated with correlated page access patterns
over sensitive data. In this section, we discuss possible direc-
tions for future research.

Countermeasures. As state-of-the-art oblivious data ac-
cess mechanisms [25] have been shown to be vulnerable to
correlation-based access pattern attacks [53], it is crucial to de-
velop performant defenses. This is further exacerbated as the
other extreme — ORAM-based solutions — hide access corre-
lations and are secure against FIT but incur poly-logarithmic
bandwidth and latency overheads — much too high for most
practical use cases [25]. We believe it is possible to develop



a practical countermeasure that hides application-specific ac-
cess correlations, providing practical security without incur-
ring ORAM-level overheads; exploring this solution space is
a promising avenue for future work.

Adaptations of attack to other settings. While our study
focuses on cloud-based CCE deployments with a privileged
adversary, many similar real-world deployment settings are
also vulnerable to correlation-based attacks, such as Search-
able Symmetric Encryption (SSE). However, FIT’s reliance
on detailed ground-truth knowledge — e.g., knowledge of
the internals of application-level object placement across OS-
allocated memory — limits its application to such use cases.
Adapting our approach to settings with weaker adversarial
assumptions and limited auxiliary information will offer more
insight into the implications of leaking correlational access
patterns in such settings.

8 Conclusion

In this work, we have explored the design of a new page ac-
cess pattern attack against cloud applications deployed within
server-side CCEs. Our attack, FIT, draws insights from lan-
guage modeling to leverage access correlations across pages
and reconstruct sensitive objects in cloud applications, even
when many objects may reside on the same page. Our evalua-
tions show that FIT, on average, can accurately reconstruct
71.7�99.9% of the object-level access sequences, given only
coarse-grained page-level accesses. Our attack presents a re-
alistic portrayal of vulnerabilities resulting from page access
pattern leakages, motivating the design of new countermea-
sures that strike a practical balance between security and
performance.

Acknowledgements

We thank the anonymous reviewers and the shepherd for their
informative and valuable feedback. This work used the Delta
system at the National Center for Supercomputing Applica-
tions through allocation CIS240310 from the Advanced Cy-
berinfrastructure Coordination Ecosystem: Services & Sup-
port (ACCESS) program, which is supported by NSF awards
#2138259, #2138286, #2138307, #2137603, and #2138296.
This work was also supported in part by the NSF’s awards
#2047220, #2054957, #2112562, #2147946, and a NetApp
Faculty Fellowship.

Ethics Considerations

Our ethical analysis considers the principles of “Beneficence”
and “Respect for Persons”. From a consequentialist perspec-
tive, making our novel attack approach known allows the se-
curity community to develop countermeasures and ultimately

improve the privacy guarantees of cloud systems. Accord-
ingly, our next step is to explore realistic threat scenarios for
the proposed attack and practical mitigations. Although public
disclosure of this attack may enable an adversary to carry it
out, we argue that users and researchers will also be enabled
to defend against it or opt for secure platforms where this
attack cannot be mounted; thus, the benefits of this decision
outweigh the potential harms.

We identify all users of cloud services as stakeholders.
From a deontological perspective, we must respect their right
to know the privacy risks associated with the services they use,
making it the morally correct decision to share our knowledge
of the attack. We have taken measures to respect people’s pri-
vacy by deriving all experimental data from publicly available
and anonymized datasets. The data collection portion of our
attack was carried out on open-source applications and con-
fined to AWS and Azure virtual machines under our control,
causing no harm to other users of AWS and Azure.

Open Science

Adhering to the open science policy of USENIX Security,
we have made our research artifacts available on Zenodo
(https : / / doi . org / 10 . 5281 / zenodo . 15602651)
and GitHub (https : / / github . com / yale-nova /
found-in-translation). We provide (i) source code
for our access pattern attack, (ii) relevant datasets used in
our evaluations, and (iii) documentation on setting up and
running our experimental pipeline.

References

[1] AMD. AMD secure encrypted virtualization (SEV).
https://www.amd.com/en/developer/sev.html,
2023.

[2] Ghous Amjad, Seny Kamara, and Tarik Moataz. For-
ward and backward private searchable encryption with
sgx. In Proceedings of the 12th European Workshop
on Systems Security, EuroSec ’19, New York, NY, USA,
2019. ACM.

[3] ARM. Security technology building a secure system
using TrustZone technology. ARM Limited White Paper,
2009.

[4] ARM. Introducing Arm confidential com-
pute architecture. https : / / developer .
arm . com / documentation / den0125 / 0100 /
Arm-CCA-Software-Architecture, 2021.

[5] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario
Di Raimondo, Ruggero Donida Labati, Pierluigi Failla,
Dario Fiore, Riccardo Lazzeretti, Vincenzo Piuri, Fabio

https://doi.org/10.5281/zenodo.15602651
https://github.com/yale-nova/found-in-translation
https://github.com/yale-nova/found-in-translation
https://www.amd.com/en/developer/sev.html
https://developer.arm.com/documentation/den0125/0100/Arm-CCA-Software-Architecture
https://developer.arm.com/documentation/den0125/0100/Arm-CCA-Software-Architecture
https://developer.arm.com/documentation/den0125/0100/Arm-CCA-Software-Architecture


Scotti, and Alessandro Piva. Privacy-preserving finger-
code authentication. In ACM Workshop on Multimedia
and Security, MM&Sec ’10, page 231–240, New York,
NY, USA, 2010. ACM.

[6] Prajjwal Bhargava, Aleksandr Drozd, and Anna Rogers.
Generalization in NLI: Ways (not) to go beyond simple
heuristics, 2021.

[7] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas De-
vadas. Var-CNN: A data-efficient website fingerprinting
attack based on deep learning. Proceedings on Privacy
Enhancing Technologies, 2019(4):292–310, July 2019.

[8] Laura Blackstone, Seny Kamara, and Tarik Moataz.
Revisiting leakage abuse attacks. In 27th Annual
Network and Distributed System Security Symposium,
NDSS 2020, San Diego, California, USA, February 23-
26, 2020. The Internet Society, 2020.

[9] Samuel R. Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M. Dai, Rafal Jozefowicz, and Samy Bengio. Gen-
erating sentences from a continuous space, 2016.

[10] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page Table-Based attacks on
enclaved execution. In USENIX Security 17, pages 1041–
1056, Vancouver, BC, August 2017.

[11] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security,
pages 668–679, 2015.

[12] Anrin Chakraborti and Radu Sion. Concuroram: High-
throughput stateless parallel multi-client ORAM. In
26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA,
February 24-27, 2019. The Internet Society, 2019.

[13] Chandranil Chakraborttii and Heiner Litz. Learning i/o
access patterns to improve prefetching in ssds. In Ma-
chine Learning and Knowledge Discovery in Databases:
Applied Data Science Track: European Conference,
ECML PKDD 2020, Ghent, Belgium, September 14–18,
2020, Proceedings, Part IV, page 427–443, Berlin, Hei-
delberg, 2020. Springer-Verlag.

[14] T-H Hubert Chan and Elaine Shi. Circuit opram: Unify-
ing statistically and computationally secure orams and
oprams. In Theory of Cryptography Conference, pages
72–107. Springer, 2017.

[15] Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburin-
naya, Ilya Razenshteyn, and M. Sadegh Riazi. SANNS:
Scaling up secure approximate k-Nearest neighbors

search. In USENIX Security 20, pages 2111–2128, Au-
gust 2020.

[16] Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder-decoder for statistical
machine translation, 2014.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.

[18] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The
faiss library, 2024.

[19] Joshua J. Engelsma, Anil K. Jain, and Vishnu Naresh
Boddeti. Hers: Homomorphically encrypted representa-
tion search. IEEE Transactions on Biometrics, Behavior,
and Identity Science, 4(3):349–360, 2022.

[20] Zekeriya Erkin, Martin Franz, Jorge Guajardo, Ste-
fan Katzenbeisser, Inald Lagendijk, and Tomas Toft.
Privacy-preserving face recognition. In Ian Goldberg
and Mikhail J. Atallah, editors, Privacy Enhancing
Technologies, pages 235–253, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[21] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. Journal of the
ACM (JACM), 43(3):431–473, 1996.

[22] Neil Zhenqiang Gong and Bin Liu. You are who you
know and how you behave: Attribute inference attacks
via users’ social friends and behaviors. In USENIX
Security 16, pages 979–995, Austin, TX, August 2016.

[23] Mel Gorman. Understanding the Linux Virtual Memory
Manager. Prentice Hall PTR, 2004.

[24] Gramine library OS with Intel SGX support. https:
//github.com/gramineproject/gramine.

[25] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lachar-
ité, Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas
Ristenpart. Pancake: Frequency smoothing for en-
crypted data stores. In USENIX Security 20, pages
2451–2468, 2020.

[26] Udit Gupta, Samuel Hsia, Vikram Saraph, Xiaodong
Wang, Brandon Reagen, Gu-Yeon Wei, Hsien-Hsin S.
Lee, David Brooks, and Carole-Jean Wu. Deeprecsys:
A system for optimizing end-to-end at-scale neural rec-
ommendation inference. In 2020 ACM/IEEE 47th An-
nual International Symposium on Computer Architec-
ture (ISCA), pages 982–995, 2020.

https://github.com/gramineproject/gramine
https://github.com/gramineproject/gramine


[27] Hanieh Hashemi, Wenjie Xiong, Liu Ke, Kiwan Maeng,
Murali Annavaram, G. Edward Suh, and Hsien-Hsin S.
Lee. Data leakage via access patterns of sparse features
in deep learning-based recommendation systems, 2022.

[28] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ay-
ers, Heiner Litz, Jichuan Chang, Christos Kozyrakis, and
Parthasarathy Ranganathan. Learning memory access
patterns. In Jennifer Dy and Andreas Krause, editors,
Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1919–1928. PMLR, 10–15
Jul 2018.

[29] Jamie Hayes and George Danezis. k-fingerprinting: A
robust scalable website fingerprinting technique. In
USENIX Security 16, pages 1187–1203, Austin, TX, Au-
gust 2016.

[30] Annelie Heuser and Michael Zohner. Intelligent ma-
chine homicide - breaking cryptographic devices us-
ing support vector machines. In Werner Schindler and
Sorin A. Huss, editors, Constructive Side-Channel Anal-
ysis and Secure Design - Third International Workshop,
COSADE 2012, Darmstadt, Germany, May 3-4, 2012.
Proceedings, volume 7275 of Lecture Notes in Com-
puter Science, pages 249–264. Springer, 2012.

[31] Thomas Humphries, Simon Oya, Lindsey Tulloch,
Matthew Rafuse, Ian Goldberg, Urs Hengartner, and
Florian Kerschbaum. Investigating membership infer-
ence attacks under data dependencies. In 2023 IEEE
36th Computer Security Foundations Symposium (CSF),
pages 473–488, 2023.

[32] Intel. Intel trust domain extensions (Intel
TDX). https : / / www . intel . com / content /
www / us / en / developer / articles / technical /
intel-trust-domain-extensions.html, 2023.

[33] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In Ndss,
volume 20, page 12, 2012.

[34] Rishabh Jain, Scott Cheng, Vishwas Kalagi, Vrushabh
Sanghavi, Samvit Kaul, Meena Arunachalam, Kiwan
Maeng, Adwait Jog, Anand Sivasubramaniam, Mah-
mut Taylan Kandemir, and Chita R. Das. Optimizing
cpu performance for recommendation systems at-scale.
In Proceedings of the 50th Annual International Sympo-
sium on Computer Architecture, ISCA ’23, New York,
NY, USA, 2023. ACM.

[35] Herve Jégou, Matthijs Douze, and Cordelia Schmid.
Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 33(1):117–128, 2011.

[36] Seny Kamara, Abdelkarim Kati, Tarik Moataz, Jamie
DeMaria, Andrew Park, and Amos Treiber. MAPLE:
MArkov process leakage attacks on encrypted search.
Cryptology ePrint Archive, Paper 2023/810, 2023.

[37] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam
Bhasin, and Alan Hanjalic. Make some noise. unleash-
ing the power of convolutional neural networks for pro-
filed side-channel analysis. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, pages 148–
179, 2019.

[38] Nishant Kumar, Mayank Rathee, Nishanth Chandran,
Divya Gupta, Aseem Rastogi, and Rahul Sharma. Crypt-
flow: Secure tensorflow inference. In 2020 IEEE Sym-
posium on Security and Privacy, pages 336–353, 2020.

[39] Criteo AI Lab. Kaggle display advertising dataset, 2018.

[40] Maximilian Lam, Jeff Johnson, Wenjie Xiong, Kiwan
Maeng, Udit Gupta, Yang Li, Liangzhen Lai, Ilias Leon-
tiadis, Minsoo Rhu, Hsien-Hsin S. Lee, Vijay Janapa
Reddi, Gu-Yeon Wei, David Brooks, and Edward Suh.
Gpu-based private information retrieval for on-device
machine learning inference. In Proceedings of the 29th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 1, ASPLOS ’24, page 197–214, New York, NY,
USA, 2024. ACM.

[41] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li,
Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren Xu,
Lintao Zhang, and Junehwa Song. Occlumency: Privacy-
preserving remote deep-learning inference using sgx. In
The 25th Annual International Conference on Mobile
Computing and Networking, pages 1–17, 2019.

[42] Yu A. Malkov and D. A. Yashunin. Efficient and robust
approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 42(4):824–
836, 2020.

[43] Alexander Marvi, Brad Slaybaugh, Ron Craft, and Ru-
fus Brown. VMware ESXi zero-day used by Chi-
nese espionage actor to perform privileged guest oper-
ations on compromised hypervisors. https://cloud.
google.com/blog/topics/threat-intelligence/
vmware-esxi-zero-day-bypass, 2023.

[44] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Car-
los V. Rozas, Hisham Shafi, Vedvyas Shanbhogue, and
Uday R. Savagaonkar. Innovative instructions and soft-
ware model for isolated execution. In HASP ’13, 2013.

[45] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srini-
vasan, Wenting Zheng, and Raluca Ada Popa. Delphi: A

https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-trust-domain-extensions.html
https://cloud.google.com/blog/topics/threat-intelligence/vmware-esxi-zero-day-bypass
https://cloud.google.com/blog/topics/threat-intelligence/vmware-esxi-zero-day-bypass
https://cloud.google.com/blog/topics/threat-intelligence/vmware-esxi-zero-day-bypass


cryptographic inference service for neural networks. In
USENIX Security 20, pages 2505–2522, August 2020.

[46] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessan-
dro Chiesa, and Raluca Ada Popa. Oblix: An efficient
oblivious search index. In 2018 IEEE Symposium on
Security and Privacy, pages 279–296, May 2018.

[47] Arvind Narayanan, Saurabh Verma, Eman Ramadan,
Pariya Babaie, and Zhi-Li Zhang. Deepcache: A deep
learning based framework for content caching. In Pro-
ceedings of the 2018 Workshop on Network Meets AI &
ML, NetAI’18, page 48–53, New York, NY, USA, 2018.
ACM.

[48] Krishna Giri Narra, Zhifeng Lin, Yongqin Wang, Keshav
Balasubramanian, and Murali Annavaram. Origami in-
ference: Private inference using hardware enclaves. In
2021 IEEE 14th International Conference on Cloud
Computing (CLOUD), pages 78–84, 2021.

[49] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael
Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo
Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu,
Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey
Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman
Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko,
Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay
Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy.
Deep learning recommendation model for personaliza-
tion and recommendation systems, 2019.

[50] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Chris-
tos Gkantsidis, Markulf Kohlweiss, and Divya Sharma.
Observing and preventing leakage in mapreduce. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 1570–
1581, 2015.

[51] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious {Multi-Party} machine learning on
trusted processors. In USENIX Security 16, pages 619–
636, 2016.

[52] OpenAI. GPT-4 technical report, 2024.

[53] Simon Oya and Florian Kerschbaum. IHOP: Improved
statistical query recovery against searchable symmetric
encryption through quadratic optimization. In USENIX
Security 22, pages 2407–2424, Boston, MA, August
2022.

[54] Learn Linux Project. Linux paging and swap-
ping. https://www.learnlinux.org.za/courses/
build/internals/ch05s03.

[55] Rachit Rajat, Yongqin Wang, and Murali Annavaram.
Laoram: A look ahead oram architecture for training
large embedding tables. In Proceedings of the 50th
Annual International Symposium on Computer Architec-
ture, ISCA ’23, New York, NY, USA, 2023. ACM.

[56] Brandon Reagen, Woo-Seok Choi, Yeongil Ko, Vin-
cent T. Lee, Hsien-Hsin S. Lee, Gu-Yeon Wei, and David
Brooks. Cheetah: Optimizing and accelerating homo-
morphic encryption for private inference. In 2021 IEEE
International Symposium on High-Performance Com-
puter Architecture (HPCA), pages 26–39, 2021.

[57] Roei Schuster, Vitaly Shmatikov, and Eran Tromer.
Beauty and the burst: Remote identification of encrypted
video streams. In USENIX Security 17, pages 1357–
1374, Vancouver, BC, August 2017.

[58] Haihao Shen, Hanwen Chang, Bo Dong, Yu Luo, and
Hengyu Meng. Efficient llm inference on cpus, 2023.

[59] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan,
and Prateek Saxena. Preventing page faults from telling
your secrets. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security,
ASIA CCS ’16, page 317–328, New York, NY, USA,
2016. ACM.

[60] Payap Sirinam, Mohsen Imani, Marc Juarez, and
Matthew Wright. Deep fingerprinting: Undermining
website fingerprinting defenses with deep learning. In
Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’18, page
1928–1943, New York, NY, USA, 2018. ACM.

[61] Mahdi Soleimani, Grace Jia, and Anurag Khandelwal.
Weave: Efficient and expressive oblivious analytics at
scale. In USENIX OSDI, 2025.

[62] Robin Staab, Mark Vero, Mislav Balunović, and Martin
Vechev. Beyond memorization: Violating privacy via
inference with large language models. arXiv preprint
arXiv:2310.07298, 2023.

[63] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas.
Path oram: An extremely simple oblivious ram protocol.
In Proceedings of the 2013 ACM SIGSAC Conference
on Computer &#38; Communications Security, CCS
’13, pages 299–310, New York, NY, USA, 2013. ACM.

[64] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence
to sequence learning with neural networks, 2014.

[65] Arsene Fansi Tchango, Rishab Goel, Zhi Wen, Julien
Martel, and Joumana Ghosn. Ddxplus: A new dataset
for automatic medical diagnosis, 2022.

https://www.learnlinux.org.za/courses/build/internals/ch05s03
https://www.learnlinux.org.za/courses/build/internals/ch05s03


[66] Florian Tramer and Dan Boneh. Slalom: Fast, verifi-
able and private execution of neural networks in trusted
hardware. In International Conference on Learning
Representations, 2019.

[67] Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Well-read students learn better: On the im-
portance of pre-training compact models, 2019.

[68] Jo Van Bulck, Frank Piessens, and Raoul Strackx. SGX-
Step: A practical attack framework for precise enclave
execution control. In 2nd Workshop on System Software
for Trusted Execution (SysTEX), pages 4:1–4:6. ACM,
October 2017.

[69] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, page
6000–6010, Red Hook, NY, USA, 2017. Curran Asso-
ciates Inc.

[70] Leonid Velikovich, Ian Williams, Justin Scheiner, Petar
Aleksic, Pedro Moreno, and Michael Riley. Semantic
lattice processing in contextual automatic speech recog-
nition for google assistant. In Interspeech 2018, pages
2222–2226, 2018.

[71] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal,
and Rachit Agarwal. SHORTSTACK: Distributed, fault-
tolerant, oblivious data access. In USENIX OSDI, pages
719–734, Carlsbad, CA, July 2022.

[72] Sheng Wang, Zihao Zhao, Xi Ouyang, Qian Wang, and
Dinggang Shen. Chatcad: Interactive computer-aided di-
agnosis on medical image using large language models.
arXiv preprint arXiv:2302.07257, 2023.

[73] BigScience Workshop. Bloom: A 176b-parameter open-
access multilingual language model, 2023.

[74] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,
Eldad Isaac, Yangqing Jia, Bill Jia, Tommer Leyvand,
Hao Lu, Yang Lu, Lin Qiao, Brandon Reagen, Joe
Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xiaodong
Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran
Xian, Sungjoo Yoo, and Peizhao Zhang. Machine learn-
ing at facebook: Understanding inference at the edge.
In 2019 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 331–344,
2019.

[75] Zuobin Xiong, Zhipeng Cai, Daniel Takabi, and Wei Li.
Privacy threat and defense for federated learning with
non-i.i.d. data in aiot. IEEE Transactions on Industrial
Informatics, 18(2):1310–1321, 2022.

[76] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In 2015 IEEE Sympo-
sium on Security and Privacy, pages 640–656, 2015.

[77] Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. Variational neural machine translation. In
Jian Su, Kevin Duh, and Xavier Carreras, editors, Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 521–530,
Austin, Texas, November 2016. Association for Compu-
tational Linguistics.

[78] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik,
Matthai Philipose, Paramvir Bahl, and Michael J. Freed-
man. Live video analytics at scale with approximation
and Delay-Tolerance. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 377–392, Boston, MA, March 2017. USENIX
Association.

[79] Pengmiao Zhang, Ajitesh Srivastava, Benjamin Brooks,
Rajgopal Kannan, and Viktor K. Prasanna. Raop: Re-
current neural network augmented offset prefetcher. In
Proceedings of the International Symposium on Memory
Systems, MEMSYS ’20, page 352–362, New York, NY,
USA, 2021. ACM.

[80] Pengmiao Zhang, Ajitesh Srivastava, Anant V. Nori, Ra-
jgopal Kannan, and Viktor K. Prasanna. Transformap:
Transformer for memory access prediction, 2022.

[81] Xiaokuan Zhang, Xueqiang Wang, Xiaolong Bai, Yin-
qian Zhang, and XiaoFeng Wang. OS-level side chan-
nels without procfs: Exploring cross-app information
leakage on iOS. In 25th Annual Network and Distributed
System Security Symposium, NDSS 2018, San Diego,
California, USA, February 18-21, 2018. The Internet
Society, 2018.

[82] Zihao Zhao, Sheng Wang, Jinchen Gu, Yitao Zhu,
Lanzhuju Mei, Zixu Zhuang, Zhiming Cui, Qian Wang,
and Dinggang Shen. Chatcad+: Towards a universal and
reliable interactive cad using llms. IEEE Transactions
on Medical Imaging, 2024.

[83] Wenting Zheng, Ankur Dave, Jethro G. Beekman,
Raluca Ada Popa, Joseph E. Gonzalez, and Ion Sto-
ica. Opaque: An oblivious and encrypted distributed
analytics platform. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
17), pages 283–298, Boston, MA, March 2017. USENIX
Association.

[84] Jinhao Zhu, Liana Patel, Matei Zaharia, and Raluca Ada
Popa. Compass: Encrypted semantic search with high
accuracy. Cryptology ePrint Archive, Paper 2024/1255,
2024.


	Introduction
	Background and Motivation
	Confidential Computing Environments
	Page Access Pattern Attacks on CCEs
	Exploiting Correlations in Page Accesses
	Overview of Our Approach

	Security Model
	System & Threat Model
	Adversarial Goal & Knowledge
	End-to-End Attack Example

	FiT: A Novel Generative Language Modeling Attack
	A Language Model of Access Correlations
	Attack Design
	Recording page accesses
	Inferring private attributes


	Evaluation
	Applications, Workloads and Datasets
	Compared Attack Baselines
	Attack Implementation
	Attack Efficacy
	Practical Considerations for the Attack

	Related Work
	Discussion & Future Work
	Conclusion

