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Abstract
Dataset distillation has emerged as a strategy

to overcome the hurdles associated with large

datasets by learning a compact set of synthetic

data that retains essential information from the

original dataset. While distilled data can be used

to train high performing models, little is under-

stood about how the information is stored. In this

study, we posit and answer three questions about

the behavior, representativeness, and point-wise

information content of distilled data. We reveal

distilled data cannot serve as a substitute for real

data during training outside the standard evalua-

tion setting for dataset distillation. Additionally,

the distillation process retains high task perfor-

mance by compressing information related to the

early training dynamics of real models. Finally,

we provide an framework for interpreting distilled

data and reveal that individual distilled data points

contain meaningful semantic information. This

investigation sheds light on the intricate nature of

distilled data, providing a better understanding on

how they can be effectively utilized.

1. Introduction
The past decade in machine learning research has been

marked with incredible breakthroughs in leveraging over-

parameterized models. As a consequence, the landscape

of machine learning research has been increasingly dom-

inated by massive datasets. The growing size of training

datasets presents a new challenge on the infrastructure re-

quired to store and train on such data. Large-scale data not

only strains existing compute infrastructure with increased

training times, but also limits its accessibility to researchers

with sufficient compute infrastructure. Therefore, there is a

crucial need for scaling down large-scale datasets.
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Figure 1. Real vs. distilled data. Real images of airplane, car,

and truck from CIFAR-10 (Krizhevsky et al., 2009) are shown

on left and highly salient distilled images of the same classes are

shown on the right. While distilled images can be used to train

high-accuracy classifier, why this is possible and what do they

represent remains unclear.

The crux of the problem lies in the ability to scale-down

a large dataset without losing any essential information.

Classical data compression algorithms attempt this by se-

lecting the representative images in the training data (Guo

et al., 2022). However, such algorithms are limited by the

finite number of data points that are present in the training

dataset, which can be very restrictive in its representation.

Dataset distillation overcomes this limitation by learning a

small, information-dense dataset that can serve as a substi-

tute for the original dataset (Wang et al., 2018; Sachdeva &

McAuley, 2023).

Learning a synthetic dataset can be a double-edged sword:

on one hand, dataset distillation synthesizes a small, infor-

mation dense dataset that outperforms classical data com-

pression techniques (Sachdeva & McAuley, 2023), but on

the other hand, the distilled data does not look like real data

(Figure 1) and can behave differently than real data (Zhong

& Liu, 2023). Therefore, it is very important to identify

when and why distilled data fails to be an effective drop-in

replacements for real data.

Current literature on dataset distillation analysis is very

sparse. (Vicol et al., 2022) studies the implicit bias between

warm start vs. cold start of the bilevel optimization under

the meta-model matching dataset distillation approaches.

(Schirrmeister et al., 2022) shows that dataset distillation

methods can be regularized towards a simpler dataset using
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a pre-trained generative model. (Maalouf et al., 2023) pro-

vides theoretical support for the existence of small distilled

dataset in the context of kernel ridge regression models.

However, to the best of our knowledge, no work has been

done to understand the information and dynamics of dis-

tilled data post-distillation process.

To gain a deeper understanding into dataset distillation, we

posit and answer three important questions on the nature of

distilled data.1

To what extent can distilled data act as substitute for
real data? Dataset distillation is commonly motivated by

synthesizing information rich data that can serve as effective

drop-in replacements of the original dataset (Sachdeva &

McAuley, 2023). However, this comes with limitations and

trade-offs. Prior works have already identified one such

limitation: data distilled using one model architecture can

not be effectively used to train a different model architec-

ture (Zhong & Liu, 2023). We perform additional analysis

to reveal the extent of distilled data’s ability to substitute

for real data. We demonstrate that models trained on real

data are able to successfully recognize the classes in dis-

tilled data, demonstrating that distilled data does encode

transferable semantics. However, at training time, simply

mixing real data with distilled data results in decrease in the

performance of the final classifier. Therefore, distilled data

should not be treated as real data during training, and we

have to be careful in training with distilled data outside the

typical evaluation setting for dataset distillation (training

only on distilled data and on the same model architecture).

What kind of information is captured in distilled data?
While distilled data results in models that are able to classify

real data, it is unclear what information is actually being

stored. Our analyses suggest that distilled data captures the

same information that would be learned from real data early

in the training process. We demonstrate this from three

perspectives. First, we reveal strong parallels in predictions

between models trained on distilled data and models trained

on real data with early stopping. Next, we uncover that a

model trained on real data learns to recognize distilled data

early in the training. Finally, we study the loss curvature of

a model trained on real data with respect to distilled data,

and show that the curvature induced by distilled data (for

some distillation algorithms) decreases to low values quickly

during training, indicating that distilled data captures little

additional information beyond the early training.

Do distilled data points idividually carry meaningful
information? Given that the whole distilled dataset com-

presses the early training dynamics, are individual examples

still meaningful? To answer this question, we introduce a

1https://github.com/princetonvisualai/
What-is-Dataset-Distillation-Learning

new interpretable framework for distilled data by leverag-

ing a popular interpretability method: influence functions

(Koh & Liang, 2017). In contrast to their intended uses to

better understand a model, we utilize influence functions

to better understand the data. We empirically demonstrate

the power and consistency of the framework and reveal that

notable semantic information is stored in different distilled

data points: for example, one distilled image is associated

with classifying yellow cars whereas another with cars in

parking lots.

2. Preliminary
In this section, we set up the relevant background and train-

ing procedure for our analysis. Dataset distillation methods

can be assorted into four categories (Sachdeva & McAuley,

2023): meta-model matching (Nguyen et al., 2020; 2021;

Deng & Russakovsky, 2022; Zhou et al., 2022), distribution

matching (Wang et al., 2022; Zhao & Bilen, 2023; Zhao

et al., 2023), gradient matching (Zhao & Bilen, 2021; Jiang

et al., 2023), and trajectory matching (Cazenavette et al.,

2022; Cui et al., 2023; Wu et al., 2023). We use a diverse

set of methods by picking one common baseline for each

category: (1) the meta-model learning matching algorithm

Back-Propagation Through Time (BPTT) (Deng & Rus-

sakovsky, 2022), (2) distribution matching (Zhao & Bilen,

2023), (3) gradient matching (Zhao et al., 2021), and (4)

trajectory matching (Cazenavette et al., 2022).

Denoting Xs as the learnable synthetic data, Ys as fixed la-

bels attributed to each distilled data point, Xr,Yr as the real

dataset, and some model with parameters θ as Fθ, BPTT

(1) performs the dataset distillation through bi-level op-

timization formulated as argminXs
L(Fθs(Xr),Yr) such

that θs = argminθ L(Fθ(Xs),Ys).

Distribution matching (2) also distill data at a class level

and uses penultimate features from random convolutional

neural networks as Fp and similarity function D defined as

the maximum mean discrepancy (Gretton et al., 2012) to

arrive at the objective argminXs
D[Fp(Xs),Fp(Xr)].

Gradient matching (3) perform class-level optimiza-

tion (only use synthetic and real images of match-

ing classes) to match the gradients of model pa-

rameters θ given some similarity function D as:

argminXs
D[∇L(Fθ(Xs),Ys),∇L(Fθ(Xr),Yr)].

Finally, trajectory matching (4) directly matches a por-

tion of the training trajectories by minimizing the objec-

tive
‖θ̂t+N−θ∗

t+M‖2
2

‖θ∗
t −θ∗

t+M‖2
2

where θ̂t+N is the model trained with

distilled data for N steps from θ∗t and θ̂t+M is the model

trained with real data for M steps from θ∗t (N , M , and t are

hyperparameters).
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Figure 2. Pre-trained models recognize distilled data. left. Clas-

sification accuracy of four different architectures (bar colors)

trained on the real training dataset and evaluated on 100 images

distilled using four different distillation algorithms (x-axis). These

models successfully recognize distilled data (distribution matching

and gradient matching do less well but they are known to distill

less information than the other two). right. UMAP (McInnes et al.,

2018) visualization of real test images and distilled images using

the penultimate features of a ResNet-18 (He et al., 2016) model

trained on real data. Most of the distilled images lie on the class

clusters (indicated by the color), revealing that classification mod-

els do interpret distilled images similar to real images.

Experimental setup. We leverage the CIFAR-10

(Krizhevsky et al., 2009) dataset for our analysis with

additional analysis on other datasets in Section B of the

appendix. We use the standard three layers deep, 128 filters

wide convolutional neural networks to train on distilled data

and real data with 0.01 learning rate and 0.9 momentum

for 300 iterations using SGD optimizer. We leverage the

distilled data provided by the authors for gradient matching

(3) and trajectory matching (4) while we reproduce the

distilled data for BPTT (1) and distribution matching (2).

In contrast to the original BPTT paper, we distill images

initialized from real images rather than uniform Xavier

initialization (Glorot & Bengio, 2010) since it gives better

behaved distilled data (details provided in section F of the

appendix).

3. Distilled vs. Real Data
Having set up the preliminaries and experiments, we are

ready to tackle the first question: To what extent does dis-
tilled data act like real data? We show that distilled data is

recognizable by models trained on real data, suggesting that

distilled data captures sufficient class semantics to be rec-

ognizable. However, distilled data does not appear to lie on

the real data manifold and further, training on distilled data

is very sensitive. Beyond the well-known result about the

limited cross-architecture generalization of distilled data as

opposed to real data (Zhong & Liu, 2023), we demonstrate

that the distilled data and real data do not combine well dur-

ing training – in fact, adding real data samples to distilled

data may decrease the accuracy of the trained model.

Figure 3. Distilled data is different than real data. left. Kernel

density estimation (KDE) plot of pixel intensity of three sample

images: a real image, an image distilled with trajectory matching,

and an image distilled with distribution matching. Both distilled

images contain pixel values outside [0,1]. right. Accuracy of mod-

els trained on distilled data and real data mixed together. We train

models with 10 distilled images (from four different distillation

algorithms; different color lines) combined with a random subset

of 0-250 real images per class (x-axis). Adding the real data sam-

ples into the training does not substantially benefit – and even in

some cases decreases – the accuracy of the trained model! In stark

contrast is the baseline (dashed line) trained on 10-260 random

real images; it significantly improves with more real data.

Distilled data (like real test data) is recognizable by mod-
els trained on real data. The standard dataset distillation

pipeline involves training on distilled data and evaluating

on real data. Not surprisingly, this performs well as this is

explicitly optimized. However, is the distilled data capturing

meaningful semantics of the real data? To check this, we

setup the inverse pipeline: training on real images and evalu-

ating on distilled images. The accuracy on the distilled data

shown in Figure 2 left reveals high classification accuracy on

distilled data, which suggests that semantics in distilled data

are transferable. Furthermore, to better understand how real-

trained-models see distilled data, we interpret their inner

workings by visualizing their penultimate features. Using

UMAP (McInnes et al., 2018) on penultimate features of a

ResNet-18 (He et al., 2016) trained on real data of distilled

data and real test data shown in Figure 2 right, we observe

that the distilled data appear to lie on the class clusters of

test data. These findings suggest that distilled data learns

analogous patterns that are present in the real data.

Distilled data may not lie on the real data manifold.
This is evident by looking at the distribution of pixel in-

tensity between a real image and a distilled image shown

in Figure 3 left. Real images contain RGB values from 0

to 1. The distilled image shown contains pixel intensity

values outside of this range. Additionally, these values are

not inconsequential. In the case of BPTT, clipping the pixel

intensity outside of the range to between 0 and 1 results in

retrained accuracy decrease from 58% to 44%.
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Distilled data is more sensitive than real data during
training. Quantitative differences between distilled im-

ages and real images are consequential as they lead to sen-

sitivity of training on distilled data. We demonstrate that

when real data is mixed with distilled data during training,

the classification performance may decrease. In Figure 3

right, we train a classifier with both real and distilled data.

Adding 2-50 real images to 10 distilled images per class on

CIFAR-10 actually decreases model accuracy. We show in

Section B of appendix that these findings extend to different

datasets, data scales, and state-of-the-art (SOTA) dataset

distillation algorithms. Thus, training on distilled data is

very sensitive and not analogous to training on real data.

4. Information Captured in Distilled Data
Given the power but also the limitations of distilled data

(described in the section above), the question on the exact

mechanism of distillation naturally emerges: What kind of
information is captured in distilled data?

We can reason about distilled data by analogy to how we

reason about trained models: distilled data stores enough

task-specific information about a training dataset as to be

able to generalize to making predictions on a test dataset –

much like the parameters of a trained model do. However,

having access to distilled data is not sufficient to reach

the same generalization accuracy as having access to the

parameters of a model trained on the full real dataset. Thus,

we can argue that distilled data does not fully capture the

task-specific information about the training data distribution,

and ask why. One possibility is that distilled data functions

similarly to an over-regularized model, e.g., it is storing

information similar to what would be learned by an under-

powered model. Another possibility is that distilled data is

similar to a model trained on only a small subset of training

data, e.g., it is simply retaining information about only a

subset of the data seen during distillation.

Through a series of analyses, we demonstrate that distilled
data appears to capture the same information learned
from real data in the early training process of a model.
We first demonstrate the strong parallels between models

trained by distilled data and models trained with early stop-
ping on real data (which is akin to heavy regularization) by

looking at similarity in the model’s predictions on the real

test data. We provide further evidence of this equivalence by

showing successful class recognition on the distilled data is

learned early on when training a model on real data. Finally,

we deepen this finding by studying the loss curvature with

respect to the distilled data on a model trained on real data.

We illustrate that this loss curvature with respect to the data

distilled by BPTT and trajectory matching quickly becomes

flat (low curvature) withing 1-2 epochs of training. The flat

region suggests that distilled data captures little information

Figure 4. Distribution of prediction agreement on CIFAR-10.
Kernel density estimation plots on the number of examples in

CIFAR-10 where models that are trained on all of the real data but

early stopped or models that are trained on a subset of real data

agrees with the model trained on distilled data. The distribution

reveals that across all four distillation methods tested, models that

are early stopped has a considerable higher number of agreements,

indicating that models trained on distilled data predict similarly

to models that are early stopped rather than trained on subsets of

real data. The similarity with early-stopped models suggests that

training on distilled data is analogous to early stopping on real

data.

beyond what would already be learned by a model early in

the training process.

4.1. Predictions of models trained on distilled data is
similar to models trained with early-stopping

We first start unraveling the underlying information in dis-

tilled data with an analysis on the predictions of models

that are trained on different data sources and techniques.

Specifically, we analyze predictions of models trained by

distilled data (distilled-trained-models) and measure their

agreements with predictions from models trained on ran-

dom subsets of real data (subset-trained-models) and models

trained on real data that is early stopped (early-stopped-

models). To remove the effect of task accuracy, we only

directly compare models with similar test accuracy.

For each of the dataset distillation algorithms, we indi-

vidually compare the distilled-trained-model to the subset-

trained-models. We accomplish this by building a pool of

520 models trained on random subsets sampled between

0.5% to 5% and training the model for 100 epochs. We only

select models with accuracy ±1% compared to the distilled-

trained-model, which corresponds to between 20-30 subset-

trained-models that are compared with each distilled-train-

model. Similarly, we compare the model trained on the
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Figure 5. Recognition performance on real and distilled data
on model trained on real data. We train a model on real data

for 300 iterations and evaluate the model’s evaluation accuracy

at every iteration of the training. The plot shows classification

accuracy on BPTT, distribution matching, gradient matching, and

trajectory matching distilled data stops improving after iteration

150 but the classification accuracy on real test still improve. The

lack of improvement of classification accuracy on distilled data

shows the information that the model learns relevant to correctly

classifying the distilled data exists only in the early iterations of

training on real data. Therefore, this suggests that distilled data

stores information regarding the early training dynamics of real

data.

distilled data with models trained on whole dataset but are

early stopped at an iteration with the closest accuracy (itera-

tion 35 for gradient matching, 40 for distribution matching,

90 for trajectory matching and 130 for BPTT).

The distribution of agreements shown in Figure 4 reveals a

clear separation in the number of agreements: distilled-

trained-models tend to agree more with early-stopped-

models rather than subset-trained-models. We provide fur-

ther support on different dataset, data scale, and SOTA

dataset distillation algorithms in section B of the appendix.

Additionally, in the same section of the appendix, we repeat

the analysis of utilizing models trained on whole dataset but

with weight decay regularization to show that early-stopped

models is still the most similar to distilled-trained-models.

Finally, we provide additional significance test on the sim-

ilarity in predictions in section C of the appendix. All of

these analyses reveal that distilled-trained-models is analo-

gous to early-stopped-models.

4.2. Recognition on the distilled data is learned early in
the training process

So far we were able to claim the predictions of models

trained on distilled data correlate with the predictions of

models trained on real data but with early stopping. How-

ever, this does not necessarily prove that the models are

capturing the same information. To dig deeper, we pose the

following question: when does a model trained on real data

successfully recognize the classes in distilled data? The

answer to this question allows us to connect information in

distilled data to information a model learns from real data

at different stages of training.

To answer the question, we revisit the inverse pipeline: train-

ing on real images and evaluating on distilled images. We

evaluate the accuracy on classifying the data on the real test

data as well as data distilled by BPTT, distribution match-

ing, gradient matching, and trajectory matching. The result

in Figure 5 reveals that performance on distilled data of a

model trained on real data stops improving after iteration

150 even though the performance on the real test data is still

improving. More specifically, we observe that, by iteration

150, BPTT/trajectory matching distilled data reaches 100%

accuracy and distribution/gradient matching distilled data

fluctuate at around 70%-80% accuracy while the accuracy

on the real test images is still increasing. This indicates

that the information learned from the real training data after

iteration 150 is not relevant to the distilled data. Hence, the

stagnant recognition performance on distilled data in later

training suggests information captured by distilled data is

only relevant to the early training process of real data.

4.3. Distilled data stores little information beyond what
would be learned early in training

Recognition accuracy alone is not sufficient to fully uncover

the underlying information as behavior of distilled data can

be different between training and inference as shown in

Section 3. Therefore, we dig deeper by comparing the cur-

vature induced by distilled data vs. real data. To accomplish

this, we inspect the Hessian Matrix, which describes the

local curvature. Analysis with the Hessian Matrix is also ad-

vantageous because it closely related to Fisher Information,

which is used in previous works to study the information

learned by a model during training (Achille et al., 2018).

Figure 6 reveals that the curvature of loss induced by BPTT

and trajectory matching distilled data can be categorized

into three stages: initial training starts on a saddle point,

followed by region of high curvature, and ending at a low

curvature flat region. The initialization on a saddle point is

expected and well aligned with the curvature of the real data.

The region of high curvature suggests that data distilled by

BPTT and trajectory matching are highly informative to

the model during those iterations, i.e. large changes in the

model parameters if trained on such distilled data during

these stages, More importantly, the flat region in the later

iterations indicates little information provided by the dis-

tilled data. In other words, the model that is trained on real

data after certain number of iterations would not change

significantly if it was trained additionally on data distilled

by BPTT and trajectory matching. Therefore, the flat re-
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Figure 6. Curvature of loss landscapes with real-vs-distilled data. We show that a model trained on real data quickly learns the

information contained in distilled images (here in 300 iterations, about 1.5 epochs). For each training iteration we evaluate the loss of the

model with respect to five types of data: its training set of real images and four sets of distilled images (distilled from the same training

set). For each, we compute the loss curvature and report the smoothed trace of the corresponding Hessian matrix using Hutchinson’s

method (Hutchinson, 1989) implemented in PyHessian (Yao et al., 2020). This summarizes the local curvature: high trace values

correspond to regions of high loss curvature (rapidly changing gradient with respect to the data, typically seen during iterations of

learning) and low trace values correspond to either flat regions (typically seen at convergence) or saddle point regions (typically seen

at the beginning of the training, with a high-curvature landscape but in different directions). To differentiate between saddle point and

flat regions, the side plots show the log density of the eigenvalues of the Hessian with respect to the real train data and BPTT distilled

data using the stochastic Lanczos quadrature algorithm (Golub & Welsch, 1969; Ghorbani et al., 2019). From iteration 0-50, the loss

curvature indicates a saddle point (mix of positive and negative eigenvalues). In iteration 50-150, the curvature induced by the distilled

data becomes progressively higher than the curvature induced by the real train data, indicating that the model (while being trained on real

images) is rapidly learning the information captured in the distilled data. Finally, the curvature induced by BPTT/trajectory matching

distilled data reaches a flat region (with low-magnitude eigenvalues, as seen in the side plot for BPTT). This suggests that a model trained

on real data for 300 iterations wouldn’t learn much new information if its training is continued using BPTT distilled data. The peak in

curvature followed by the flat region within 300 iterations suggest that the BPTT and trajectory matching distilled data only capture the

information about the training data that would be learned early in the training process. Unfortunately we can’t draw similar conclusions

for distribution/gradient matching data, as the trace fluctuates greatly between iterations.

gions reveal that BPTT and trajectory matching distilled

data contain only information of the early training dynam-

ics. We provide further support and intuition through loss

landscape visualization and additional curvature analysis on

data distilled with different storage budget in section A of

the appendix. We also empirically verify our intuition on the

connection between flat regions and task performance from

additional training as well as an explanation on the high

curvature induced by distribution matching and gradient

matching distilled data in section E of the appendix.

5. Semantics of Captured Information
Since distilled data is compressing the learning trajectories,

do distilled data points individually carry meaningful in-
formation? Visualizing the distilled image provides little

insight on the information contained in it (see Figure 1).

Thus, to answer this question, we build an interpretable

framework by leveraging ideas from influence function to

isolate information compressed in each individual distilled

data point. We reveal that each distilled data point does

contain meaningful semantic information.

5.1. Influence functions for understanding distilled data

The influence function is an concept proposed to quantify

the impact of individual data points on a model’s predictions

(Koh & Liang, 2017). This measure is often used to better

understand the model’s decision process and can identify po-

tential errors in a model’s prediction (Wang et al., 2023). In

contrast, we leverage influence function to better understand

the nature of images generated using dataset distillation.
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Figure 7. Influence is more than visual similarity. top. An ex-

ample image distilled with trajectory matching, two of its closest

test images using the penultimate features of a trained ResNet-18

model and two test images with highest influence. bottom left.
Using the same distilled image as top, we visualize the feature

distance vs. the influence and see that there is very weak correla-

tion between the two (although very high-influence images do tend

to be more visually similar). bottom right. Pearson correlation

between feature distance vs. influence on each of the 100 distilled

images compared to all the real CIFAR-10 test images, confirming

the observation in bottom left. Hence, visual similarity cannot fully

explain the influence observed by distilled images.

Exact computation. The influence function in machine

learning was originally proposed with first-order approxi-

mations using implicit Hessian-vector products given the

large computation cost associated with retraining models on

large datasets (Koh & Liang, 2017). The accuracy of the

approximation was originally verified through comparison

with leave-one-out retraining, but subsequent works have

shown that such approximation can be fragile in different

settings (Basu et al., 2020). Since dataset distillation oper-

ates in a low-data setting, we circumvent the approximation

entirely and directly calculate influence with leave-one-out

retraining. Formally, we calculate the influence of distilled

image xd on test image xt where θ̂ is the model learned

using all the distilled images and θ̂−xd
is model learned

with all but the xd distilled image with loss function L as

Ixd→xt
= L(xt; θ̂−xd

)− L(xt; θ̂).

Influence is not image similarity. To confirm the neces-

sity of calculating the influence for examination of informa-

tion content, in Figure 7, we verify that influence functions

reveal information that cannot be glimpsed through visual

similarity alone. Although real images xt which are identi-

fied as being highly influential do tend to be somewhat visu-

ally similar to the corresponding distilled image xd (Figure 7

bottom right), overall there is only a very weak correlation

between the two measures. Looking at a visual example of

Figure 8. Influence of distilled images is consistent. left. Ker-

nel density estimation plot of distribution of Pearson correlation

between influences calculated across two different random seed.

The high correlation confirms that the observed influence is due to

distilled image rather than random chance. right. The correlation

between the influence of a distlled image calculated with leave-

one-out retraining when using 100 real images versus when using

the 99 other distilled images. The moderately high correlations

suggest that the influence of a distilled image extends to real data

training, and hence, the information compressed is universal and

not contingent on other distilled images.

a distilled image along with two highly-ranked real images

(by closest distance and highest influence; Figure 7 top), we

begin to notice that highest influence images do appear to

be semantically consistent (e.g., both are images of orange
cars). In Sections 5.2 we leverage this insight to begin to

understand the information content of distilled images.

Influence is consistent across random training runs.
We further perform a simple sanity check to ensure the

observed influence is consistent and does not change across

multiple runs. To check this, we evaluated the influence of

the distilled image trained using a different random seed

and measure the Pearson correlation against the original

run. The result shown in Figure 8 left reveals that the influ-

ence between different runs are highly correlated. Hence,

the highly influenced images observed are caused by the

distilled image rather than by chance.

Influence computed for each distilled image is indepen-
dent of other distilled images. Finally, we check that

the computed influence generalizes and is not dependent on

other distilled images. To test this, for each distilled image,

we utilize 100 additional real images (instead of the 99 other

distilled images) to perform leave-one-out retraining. We re-

calculate influence as the difference in loss with the model

trained on the 100 real data points and the model trained

on the 100 real data points and the distilled data point. The

correlation revealed in Figure 8 right suggests the calculated

influence is quite consistent even in this new setting, and

not (too) dependent on other distilled data points.
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Figure 9. Precision Recall curves on yellow cars. PR curves of

different distilled images xd, evaluating the computed influence

function Ixd→xt at classifying test images of cars xt as belonging

to a yellow car. The distilled image xd that results in the highest

area under the curve is shown on the plot. The curves reveal that

(particularly for BPTT and trajectory matching) some distilled

images do capture the concept of yellow cars. At the bottom of

each plot, we further report the accuracy of a distilled-data-trained

model on classifying real-world images of yellow cars as being a

“car”. This accuracy is somewhat higher for distillation methods

where the “yellow car” concept appears to be captured in individual

distilled examples, providing further support for the findings.

5.2. Distilled data contains semantic information beyond
the class label

For a more comprehensive analysis, we directly calculate

the information stored in the distilled data and find the

influence of specific distilled datapoints is predictive of non-

class related semantics attributes, indicating that semantic

concepts (beyond the class label) are stored in individual

distilled data points.

Semantic extraction. CIFAR-10 is a rather simple dataset

that lacks any additional metadata information of its images

outside of the class labels. To overcome this limitation, we

leverage current breakthroughs in large foundation models

to assign additional semantic information to each of the im-

ages. We use LLaVA (Liu et al., 2023a;b), a state-of-the-art

multimodal model, for the assignment. We first query each

image with the prompt “describe the object” and “describe

the background” to generate a pool of candidate semantic

attributes. We extract the corresponding attributes by manu-

ally inspecting the response from the highly influenced real

images to compile a list of reoccurring attributes.

For each distilled image, its influence score can be used to

Table 1. BPTT distilled image semantics. Examples of the ex-

tracted semantics of nine notable images distilled with BPTT.

Image Class Semantics

Car Yellow

Car Parking Lot, Garage

Plane Parked, Ground, Runway

Plane Jet flying through the sky

Bird Flying through the sky, blue sky

Bird Grassy field, tree, green

Deer Grassy/snowy field

Frog Muddy, rocky, dark background

Boat Forest, lake, parked

rank the real test images, where each real image has been

annotated with semantic attributes as above. The area under

the precision-recall curve for a particular semantic attribute

can then be used to determine if this distilled image strongly

influences real images which contain this attribute.

Quantitative analysis. We utilize the precision-recall

curve to identify distilled images that contain information

related to specific semantics. We illustrate an example of

the precision recall curve on the semantic yellow in images

of cars in Figure 9. The precision recall curve reveals that

for some distilled images, the information compressed is

heavily associated to the semantics of yellow cars. In par-

ticular, we observe two distilled image with notably higher

precision recall curves from BPTT and one distilled image

from trajectory matching. Interestingly, the existence of

these highly predicative distilled image also corresponds

with the classification performance of models trained, where

models trained BPTT have high accuracy on yellow cars

while models trained on distribution matching has low accu-

racy. We extend this analysis across all 100 distilled images

from BPTT and show that semantics can be extracted from

other distilled images in Table 1.
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Figure 10. Distilled images of airplanes and the highly influenced test images. The plot illustrates the nine most influenced images in

CIFAR-10 test by images distilled with trajectory matching and distribution matching. The images influenced are heterogeneous across

the different distilled images while homogeneous within the same distilled image. In consequence, while distilled data themselves are

uninterpretable, the images influenced are, and hence, can be used as a method for interpreting information captured.

Qualitative analysis. Finally, we perform qualitative anal-

ysis and display 10 images distilled using trajectory match-

ing and distribution matching and nine corresponding im-

ages from CIFAR-10 test that are most influenced in Figure

10. First, visualization reveals the influenced images across

different distilled images are very heterogeneous. For exam-

ple, in trajectory matching, the last distilled image appears

to be related to stealth military planes in the sky while the

second to last distilled image appears to be related to planes

landed on the ground. A similar finding can be seen with

distribution matching where the last two distilled images

represent stealth military planes but display a blue sky in

the background and a white background respectively.

Additionally, we observe homogeneity in the images in-

fluenced from some of the distilled images. For example,

the real images influenced by the last distilled image from

both trajectory and distribution matching mostly consist of

military style aircraft. Multiple homogeneous groups can

also be associated with each distilled image. For example,

the sixth distilled image from trajectory matching presents

airliner flying across the ocean but also red biplane. The

heterogeneity in influenced images across different distilled

images with the homogeneity in influenced images from

the same distilled image suggests that different semantic

concepts are in different distilled images.

6. Conclusion
Through our investigation, we have addressed three key

questions. First, we showed that while distilled data behave

like real data at inference time, they are sensitive to the train-

ing procedure and cannot serve as drop in replacements for

real data. Second, we demonstrated that dataset distillation

captures the early learning dynamics of real models. Finally,

we revealed that individual distilled data points encapsulate

meaningful semantic information. Our study offers valuable

insights into underlying mechanism of dataset distillation,

informing better design of future methods.

Impact Statement
Dataset distillation can enable compression of large-scale

data into smaller, more resource efficient, and thus more

democratized datasets. However, there are important con-

cerns regarding whether and how dataset biases get captured,

amplified, and/or propagated within distilled datasets. Al-

though we do not tackle this problem directly, we hope

our work can help meaningfully shed insights into such

questions.
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Loss landscape on 
real images

Loss landscape on 
BPTT distilled images

Loss landscape on distribution 
matching distilled images

Training on real 
data vs. on data 
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vs. on data distilled 
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Figure 11. Visualization of loss landscapes. The loss landscapes evaluated with different data sources (columns) on trajectories of

models trained on real data vs. models trained on data distilled with BPTT or distribution matching (rows). Two intriguing observations

emerges. First, the BPTT landscape is smooth, leading to easy optimization, and flat in many places, shown in BPTT landscape when

compared to test landscape for both BPTT and distribution matching trajectories. Second, landscape of distribution matching contains

area of poor alignment with landscape of the real data shown in training trajectory on distribution matching distilled data.

A. Loss Landscape Analysis
In this section, we aim to provide more intuition on the behavior and information of distilled data through visualization of

the loss landscape induced by distilled data. We also provide additional curvature analysis to better understand the nature of

distilled data.

Visualization. The loss landscape of distilled data and real data can be visualized by generating a surface with two

directional vectors δ and η (Li et al., 2018). Instead of using random vectors, which is good for analyzing convexity of loss

landscape, we utilize the endpoints from training a model on different data sources to compare and contrast the training

trajectories with respect to the loss landscape (Goodfellow et al., 2014). In more detail, we use a randomly initialized

ConvNet with parameters θ0 to train the model with real data for one epoch, arriving at parameters θr, and to train the same

randomly initialized model with distilled data, arriving at parameters θd. Afterwards, we set the two directional vectors

δ = θr − θ0 and η = θd − θ0. For better visualization, we use orthogonal component of η to δ and a slight offset is applied.

Finally, the two directional vectors specifies a hyperplane that allows us to sample the loss landscape. This procedure gives

us the exact loss on the start and endpoint of the training trajectory with the rest defined as linear interpolation between the

start and endpoints, giving us a set of loss values:

L = {θ0 + a ∗ δ + b ∗ η | a, b ∈ [0, 1]}.

We visualize the respective landscape on the training trajectory of models trained on real data and models trained on distilled

data in Figure 11. We reveal two distinct patterns between BPTT and distribution matching. Training on real data, the loss

landscape of BPTT on the model tend to quickly converges to a very flat region. As a consequence, the model quickly

converges and no additional learning occurs, which is akin to early stopping. Additionally, this also explains the high

predictive accuracy across models shown in Figure 2 as the high performing models land in the flat region. In contrast,

landscape of distribution matching contains area of poor alignment with test landscape as shown in Figure 11, leading to

poor performance in model training as well as generalization shown in 2.

Loss increase in distribution matching. Figure 11 presents an interesting observation where optimizing on distribution

matching distilled data ends up increase in the loss on the test dataset. The observation raises question to the nature of this

12



What is Dataset Distillation Learning?

phenomenon: is the model getting worse or is the model getting more confident? A quick investigation suggests the latter.

In Figure 12 left, we perform a simple sanity check to check if the model predictions are changing. We reveal in the figure

that the actual prediction is not changing much after 50 iteration. The loss, however, does increase even when the prediction

does not change. In Figure 12 right, we divide the loss calculation by the examples on whether the final converged models

get it correctly. We perform this calculation on two models: the intermediate model with the lowest test loss and the final

converged model. We reveal in Figure 12 right that the model with the lowest overall test loss has higher loss on the correct

examples but lower loss on the incorrect examples. Since distribution matching result in classification accuracy less than

50%, the overconfidence in incorrect examples leads to a higher overall loss, explaining the increase in test loss.

Figure 12. Explanation for increase in test loss on distribution matching. left. The change in model prediction on test examples and

the average loss on the test set. We observe that while there is little change in prediction after iteration 50, the test loss steadily increases.

right. We breakdown the loss on the intermediate model with the lowest overall test loss and the final converged model by test examples

which the final converged model get correctly. We reveal that increase in loss is nothing more than overconfidence on incorrect examples.

Dynamics of training on distilled data. We extend our curvature analysis from section 4 to the optimization trajectory of

models trained on data distilled with BPTT and distribution matching. Figure 13 and 14 reveal the trace of the Hessian

matrix of the landscape of the distilled data, what it is optimized on, and the landscape of the real data, the actual landscape

of interest, at each training iteration. Additionally, we provide more fine-grained analysis on the log density plot of the

eigenvalues at three points of interest: random initialization at start of training, the iteration with the highest trace on the

distilled data landscape (iteration 25 for BPTT or iteration 40 for distribution matching), and end of training at iteration 300.

In both cases, optimizing over BPTT and distribution matching, the log density plot of the eigenvalues reveals that while

both models converge towards a flat region in the distilled data landscape, the actual landscape is a very sharp region

that is composed of many large eigenvalues. In particular in Figure 14, we note that the optimization trajectory from

learning on distribution matching actually results in a region with large number of large negative eigenvalues, revealing that

optimizing on distribution matching distilled data never leave the saddle-point but rather only arrive at a sharper saddle-point.

The increase of negative eigenvalues coupled with our analysis on the loss landscape in Figure 12 where optimizing on

distribution matching distilled data actually results in higher loss suggests that there is a significant misalignment in loss

landscape between real data and distribution matching distilled data and further optimizing could cause the model to move

up the saddle point.
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Figure 13. Curative of loss landscape when trained on BPTT. The plot shows the (smoothed) trace of the Hessian matrix on BPTT

distilled data (what the model is trained on) and real data (actual loss landscape). Additionally, a more detailed breakdown of eigenvalues

is shown with log density plots of eigenvalues at specific iteration of interest is shown. We observe that the model arrives at a flat region

of the BPTT loss landscape relatively quickly in less than 100 iterations, but the actual loss landscape is converged at a very sharp region

with a couple of very high eigenvalues shown in the log density plot.

Figure 14. Curvature of loss landscape when trained on distribution matching. The plot shows the (smoothed) trace of the Hessian

matrix of distribution matching distilled data(what the model is trained on) and real data (actual loss landscape). Similar to Figure 13, the

log density of eigenvalues are specific iterations is also shown. Similar to BPTT, optimizing on the loss landscape of distribution matching

also arrives at a very sharp region. However, we observe that the real loss landscape at iteration 40 and 300 is composed of very large

number of negative eigenvalues, higher than what is observed initially at iteration 0.
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Effects of distilling learning rates. We first analyze the effect of having a learnable learning rate during distillation

process of trajectory matching shown in Figure 15. The curvature of the distilled data is similar regardless to whether

learning rate is learned. There is a slight increase in the non-flat regions of the loss landscape when the learning rate is

learned, which is consistent to the higher performing classification model when trained on the distilled data with the learned

learning rate.

Effect of storage budget. We also analyze the effect of the budget, different number of images per class (IPC), on the

curvature of the distilled loss landscape with BPTT and trajectory matching. We observe in Figure 16 that that with low

budget (1 IPC), the trace of the Hessian quickly peaks at around iteration 50 while high budget (50 IPC) peaks after iteration

100 with a more gradual decrease. Such findings reveal that our analysis in Figure 6 generalizes to the increase in budget:

more distilled images capture more of the training trajectory, and hence, higher performance.

Figure 15. Effect of distilling learning rate in trajectory matching on loss landscape. left. Visualization of loss landscape of the

distilled data that is analogous to Figure 11 on a model trained on real data vs. trajectory matching data distilled with fixed or learned

learning rates. The visualization reveals that whether or not to distill the learning rate does not change our findings in Figure 11: loss

landscape of distilled data is smooth and easily optimizable. right. Trace of the Hessian of a model trained on real data on the loss

landscape of real data vs. trajectory matching data distilled with fixed or learned learning rates (analogous to Figure 6). The trace more

rigorously support our flatness argument: we observe that regardless whether learning rate is distilled, trajectory matching produces an

easily optimizable path. The non-flat region of the loss landscape when the learning rate is distilled extends slightly further, corresponding

to the higher information content i.e. better classification accuracy when trained on.

Figure 16. Curvature findings in Figure 6 generalizes to different number of images per class (IPC). left. Trace of the Hessian matrix

(smoothed) evaluated on data distilled with BPTT at every iteration of a model trained on real data for 300 iterations. We observe that our

conclusion on distilled data is consistent and captures early dynamics of training that gradually shift towards later parts of the training as

we increase the IPC, which also explains the performance increase with higher IPC. right. The same experimental setup as the left figure

but using data distilled with Trajectory Matching. We observe the same consistent pattern that supports our conclusion that distilled data

captures early training dynamics.
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B. Additional Mixing and Prediction Analysis
In this section, we detail additional analysis on the mixing experiment done in Figure 3 right as well prediction analysis

done in Figure 4 to show our findings generalizes to different datasets, larger scales, and state-of-the-art (SOTA) methods.

CIFAR-100 experiments. We extend our analysis on mixing with real data and the model predictions analysis to the

CIFAR-100 dataset (Krizhevsky et al., 2009). We observe similar trends in Figure 17 left where addition of real data causes

performance increases. Additionally, density plots from Figure 17 right finds the same consistent finding: predictions of

models trained on distilled data tend to agree more with models trained on whole train dataset that is stopped early rather

than models trained on a subset of data. In consequence, this analysis reveal that the patterns observed in Figure 3 and

Figure 4 is not dataset specific and extends beyond CIFAR-10.

TinyImageNet experiments. Similarly, we extend mixture experiments and our model prediction analysis to the TinyIma-

geNet dataset (Le & Yang, 2015), which composes images with higher resolution at 64x64. Mixture accuracy and density

plots shown in Figure 18 reveal a similar trends, demonstrating that the pattern observed in Figure 3 and Figure 4 also scales

with image resolution.

IDC and FreD experiments. We also extend mixture experiments and our model prediction analysis to state-of-the-art

(SOTA) methods Information-intensive Dataset Condensation (IDC) (Kim et al., 2022) and Frequency domain-based dataset

Distillation (FreD) (Shin et al., 2024). Classification models trained on data distilled from IDC utilizes CutMix augmentation

to achieve SOTA performance. Mixture accuracy and density plots shown in Figure 19 reveal a similar trends, demonstrating

that the pattern observed in Figure 3 and Figure 4 also extends beyond our selected baseline methods and to SOTA dataset

distillation methods.

Weight decay experiments. Lastly, we perform the identical prediction analysis done in Figure 4 but using models trained

with weight decay in lieu of random subsets of training data. In a similar manner, the model is trained for 20 epochs to

convergence. We train 300 models with weight decay where the strength is randomly selected 0.05 and 0.13 and selecting

only models with similar test accuracy for comparisons. The density plot shown in Figure 20 reveal that early-stopped

models is still more similar to distilled-trained-models than models trained with weight decay, furthering supporting our

claim that distilled data is analogous to early-stopping.

Figure 17. Main conclusions generalize to CIFAR-100. left. Accuracy of models trained on distilled data mixed with real data analogous

to Figure 3 but on CIFAR-100 dataset. The result is consistent with our findings on the four baselines: mixing real data with distilled data

does not necessarily lead to performance increase and can sometime even cause performance drop. right. Kernel density estimation (KDE)

plots on the number of test data points where predictions of distilled-trained models agree with early-stopped/subset-trained models,

similar to Figure 4 but using the CIFAR-100 dataset. The finding is consistent with our main conclusion where distilled-trained models

have higher agreement on a test data’s prediction with early-stopped models than subset-trained models.
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Figure 18. Main conclusions generalize to the TinyImageNet dataset. left. Accuracy of models trained on distilled data mixed with real

data analogous to Figure 3 but on the higher resolution TinyImageNet dataset. BPTT and Gradient Matching are excluded because the

algorithm fails to converge to a reasonable solution with random chance final classification accuracy. The result is consistent with our

findings on CIFAR-10: mixing real data with distilled data does not necessarily lead to performance increase and can sometime even

cause performance drop. right. KDE plots on the number of test data points where predictions of distilled-trained models agree with

early-stopped/subset-trained models, similar to Figure 4 but on the higher resolution TinyImageNet dataset. The finding is consistent with

our main conclusion where distilled-trained models have higher agreement on a test data’s prediction with early-stopped models than

subset-trained models.

Figure 19. Main conclusions generalize to the state-of-the-art (SOTA) dataset distillation methods. left. Accuracy of models trained

on distilled data mixed with real data analogous to Figure 3 but using SOTA distillation methods. The result is consistent with our findings

on the four baselines: mixing real data with distilled data does not necessarily lead to performance increase and can sometime even

cause performance drop. right. KDE plots on the number of test data points where predictions of distilled-trained models agree with

early-stopped/subset-trained models, similar to Figure 4 but using SOTA distillation methods. The finding is consistent with our main

conclusion where distilled-trained models have higher agreement on a test data’s prediction with early-stopped models than subset-trained

models.

Figure 20. Early-stopping is still more similar to distilled data than weight decay. KDE plots on the number of test data points where

predictions of distilled-trained models agree with early-stopped-models or models trained with decay. The early-stopped-models remains

the most similar, further supporting our main conclusion.
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Figure 21. Normality test on agreement predictions within subset-trained models and early-stopped models. left. Distribution of

p-values of Kolmogorov Smirnov test against a normal distribution’s cumulative density function on prediction agreement for every

subset-trained models against every other subset-trained models. Non-significant p-values for every subset-trained models indicates failure

to reject the null, and thus, suggests that distribution of agreement follows a normal distribution. right. Same experimental setup as the

left plot but with early-stopped models instead. The same conclusion is reached: distribution of agreement of early-stopped models with

other early-stopped models follows a normal distribution.

C. Variability of agreements
We quantitatively verify that the difference observed in Figure 4 cannot be attributed to the variability in agreement within

the early-stopped or subset-trained models themselves. Similar to Figure 4, our analysis was designed to be very fine-grained,

focusing on each individual model rather than considering them in aggregate. To achieve this, we leveraged an interesting

observation: the distribution of agreements between a particular subset-trained model and other subset-trained models

follows a normal distribution. The same observation holds true for early-stopped models. We demonstrate using the

Kolmogorov-Smirnov test (Lilliefors, 1967) against the cumulative density function (CDF) of a normal distribution shown

in Figure 21 where we fail to reject the null hypothesis, and hence, suggesting the distribution of agreements follows a

normal distribution.

With this observation, we performed the following procedure:

1. Start with a subset-trained model

2. Obtain its agreement in predictions with every other subset-trained models

3. Fit a normal distribution on the observed number of agreements

4. Obtain the agreement between the distilled-trained model and the selected subset-trained model from step 1

5. Calculate the probability of observing the agreement between the distilled-trained model and the selected subset-trained

model using the CDF of the normal distribution

6. Repeat step 1-5 with every other subset-trained model

We perform the same procedure with early-stopped models in place of the subset-trained models as well. The resulting

histogram between subset-trained models and early-stopped models in Figure 22 shows a notable pattern: probabilities of

observing the agreement when compared to subset-trained models is very low while probabilities of observing the agreement

are significantly higher for early-stopped models. The finding supports the claim in the paper that distilled-trained models

are more similar to early-stopped models than subset-trained models: i.e. the observed agreement from distilled-trained

models can be explained away by variability of early-stopped models but not by variability of subset-trained models.
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Figure 22. Probability of observing the number of agreements in predictions with distilled-trained models vs. subset-trained
models and early-stopped models. The top row reveals the probability of observing the number of agreements in the distilled-trained

model vs. subset-trained-models given the variability in agreements within subset-trained models. The bottom calculate the same

probability but against early-stopped models and their variability. The results reveal lower probabilities of observing the number of

agreements against distilled-trained-models for subset-trained models, supporting our findings in Figure 4: distilled-trained models are

more similar to early-stopped models.
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Figure 23. Distilled data only contains information about the same class. top. For every image in a dataset, either the 100 distilled

images or 100 random real images, we plot its average influence on all the test images with the same class (in-class) and all the test images

with a different class (out-class). The variance in the influence across the whole test set is indicated by the size of the dot. The plots fail to

reveal any distilled datapoint that has higher influence on out-class test images compared with randomly selected real images. bottom.
Using the same experimental setup but plotting the number of the top 100 most influenced test images that has a different class label also

fails to reveal any indication that distilled images contain more information from other classes compared to real images.

D. Does distilled datapoints contain information outside of the labeled class?
A natural question of whether particular distilled data points provide information beyond its labeled class emerges from

our analysis in Section 5. Our analysis below did not provide any strong evidence that distilled data behave any different

from real data in this regard. In more detail, we performed analysis on the average influence of distilled data on in-class

(same class as distilled data) test data and out-class (different class as distilled data) test data. The resulting Figure 23

top reveals that, while there are distilled data points with positive out-class average influence, the actual quantity of the

influence isn’t too different from what we expect with random real data. Additionally, we looked into the top 10 images with

highest influence shown in Figure 23 bottom and found none of the test images are of different classes. Extending this to top

100 images, there are several test images with different classes but the amount isn’t greater than what we expect with real

images. In fact, there are fewer, with trajectory matching having the fewest, which is surprising. All these findings suggest

the absence of strong signals that would indicate that distilled data is storing information about other classes.

20



What is Dataset Distillation Learning?

Figure 24. Test accuracy changes from training on distilled data using a model pre-trained on real data for 300 iterations. Utilizing

a model that is trained on real data for 300 iterations (test accuracy is shown as white circle on the plot), we train the model on data distilled

by BPTT, distribution matching, gradient matching, and trajectory matching for an additional 300 iterations. We reveal that additional

training in BPTT/trajectory matching distilled data results in less than 2% improvement on accuracy, confirming the flatness region from

our curvature analysis. More importantly, we reveal that additional training on distribution matching and gradient matching distilled data

results in decrease in test accuracy. This explains the high sharpness observed in our curvature analysis: while distribution matching and

gradient matching distilled data do provide significant change to the model after the early iterations, the additional information stored can

actually noise that is not pertinent to the classification task.

E. Connecting Curvature with Information Content
We directly confirm our intuition on the relationship between the local curvature induced by distilled data and the information

within distilled data. We explicit calculate the relevant information contained with distilled data by training a model that

was pre-trained on real data for 300 iterations and calculating the task accuracy after the additional training. Figure 24

confirms our intuition - additional training on BPTT and trajectory matching distilled data results in minimal changes in

the accuracy of the model due to the flat region induced by the distilled data. Interestingly, the task accuracy also explains

the high curvature induced by distribution matching and gradient matching distilled data observed in Figure 6. Additional

training on distribution matching and gradient matching distilled data does change the model, which align with the intuition

of high curvature, but the change hurts the task performance rather than improve. Figure 24 shows that additional training

on distribution matching and gradient matching distilled data cause a 5-7 % decrease in classification accuracy.
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Figure 25. Visualization of BPTT distilled images with different initialization. We observe that BPTT initialized with Xavier

initialization converges to very gray looking images while randomly selecting real images as initialization produces distilled images with

salient visual features similar to trajectory matching.

Xavier Initialization Real Image Initialization

AlexNet (Krizhevsky et al., 2012) 18.13 % 34.66%

VGG (Simonyan & Zisserman, 2015) 25.27 % 37.54%

VGG-19 (Simonyan & Zisserman, 2015) 22.56 % 32.53%

ResNet-34 (He et al., 2016) 18.8% 25.58%

ViT (Dosovitskiy et al., 2020) 20.63 % 25.94%

Table 2. Cross-architecture generalization of BPTT distilled images with different initialization. The best classification accuracy on

five different architectures from 1000 iterations of random hyperparameter search on learning rate, momentum, weight decay, SGD vs.

Adam (Kingma & Ba, 2014; Loshchilov & Hutter, 2018), training iteration, and whether or not to gradient clip to performed to obtain the

best classification accuracy.

F. Initializing BPTT with Real Images
We generate distilled data using BPTT for our analyses with minor but notable change compared to the original paper. The

original proposed algorithm (Deng & Russakovsky, 2022) utilizes Xavier initialization on distilled data since initialization

did not impact final classification performance. While this is true, we found that Xavier initialization does not produce

distilled images that is visually distinguishable and produce good behavior outside standard evaluation protocol (train a new

model only on distilled data). In more detail, Figure 25 visually compares the 100 images distilled by BPTT using Xavier

initialization with images distilled by BPTT using initialization from random real images; Xavier initialization produces

very gray images, which is very unlike images distilled by distribution matching/gradient matching shown in Figure 26 and

trajectory matching in Figure 27. Meanwhile simply initialization with random real images produces distilled data that is

more analogous to the other three studied distilled datasets. Additionally, we inspect the cross architecture generalization

performance between the BPTT distilled data with Xavier initialization vs. random real images. To remove the effects of

hyper-parameters, we perform 1000 iterations of random hyper-parameters search and compare the best accuracy. The result

in Table 2 shows that initialization with random real images consistently outperforms Xavier initialization. Since the choice

of initialization is a very minor design choice and initialization with random real images produces better distilled data, we

decided to study BPTT distilled data that was initialized with random real images.
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Figure 26. Visualization of data distilled by distribution matching and gradient matching.

Figure 27. Visualization of data distilled by trajectory matching.
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