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Stability of nonlinear systems with slow and fast time variation and
switching: the common equilibrium case
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Abstract—1In this paper we consider a class of nonlinear
systems with two kinds of inputs: one is slowly-varying, the
other is fast-varying and periodic, and both are only piece-
wise continuous. Under the assumption that the origin is a
common equilibrium for all values of the input signals, we
provide sufficient conditions under which this equilibrium is
semi-globally exponentially stable. Our approach is based on
considering the (partial) average system which averages out the
fast variation but retains the slow variation, and which can be
used to approximate the original system in a certain sense. The
stability conditions involve the existence of a suitable Lyapunov
function for this average system, along with a bound on the total
variation of the slowly-varying input.

Index Terms— Switched systems, Averaging, Lyapunov sta-
bility

I. INTRODUCTION

In this paper we consider systems with both slow and fast
time-varying signals which, moreover, need not be continu-
ous everywhere. A dynamical model for such a system can
take the form

#(t) = f(2(t), us(t), us(t/e)) (1)

where € > 0 is a small parameter, us represents a slowly-
varying signal, us represents a fast-varying signal, and both
us and uy are piecewise continuous functions of time.

The most basic question about the system (1) is that of
stability. For systems with time-varying parameters, there are
well-known sufficient conditions for stability that ask the
system to be stable for each frozen value of the parameters
and the variation to be sufficiently slow (typically by placing
some type of upper bound on the time derivative of the
parameters). Such results are by now standard, especially
for linear time-varying systems, and appear in textbooks;
see, e.g., [6, Section 3.4], [7, Section 9.6] and the references
therein.

For switched systems, which are characterized by instanta-
neous switching instead of continuous variation, there exist
stability criteria which parallel the ones mentioned above
for time-varying systems and which are also well known.
They are formulated in terms of stability of each individual
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mode of the switched system and a slow-switching condition,
typically in terms of sufficiently large (average) dwell time;
see, e.g., [9] for an introduction to this class of systems and
representative basic results.

The recent work [3], [2] made apparently the first attempt
to unify these two sets of results. For systems combining
continuous variation and switching, these papers utilized the
concept of fotal variation. This is the quantity obtained,
loosely speaking, by integrating the norm of the derivative
of the time-varying parameter vector (or matrix) and adding,
at each switching instant, the norm of the jump. For linear
systems, it was shown in [3] that exponential stability is
preserved if the total variation is suitably small. It was also
demonstrated that this approach allows one to recover known
results for systems with only continuous variation or only
switching, with the results in the latter category actually
going beyond the basic ones given in [9]. An extension to
nonlinear systems was presented in [2].

For systems with fast time variation, a well-known analy-
sis method is based on averaging. In its classical formulation
(see, e.g., [5, Chapter V], [7, Chapter 10]), it deals with
periodic or nearly periodic fast-varying signals by defining
an average system and proving, via perturbation arguments,
that the behavior of the original system is close to that of the
average system. The averaging method has also been applied
to other system classes, including switched systems [15].
The above sources assume that the average system is time-
invariant. This restriction is relaxed in the works [11], [1]
which consider time-varying average systems. In fact, our
approach bears quite a close resemblance to the “partial aver-
aging” method of [11], which averages out fast variation but
retains slow variation in the average dynamics. Nevertheless,
these existing results cannot handle time-varying average
systems with discontinuities. The paper [14] did consider
averaging for hybrid systems, but of restricted kind in that
it was only applied to continuous dynamics and did not
alter discrete events. Among other works that address slow
and fast—and possibly discontinuous—time variation, it is
relevant to mention [13] and [4, Section 7.4]; however, the
tools employed in these references and the spirit of the results
are quite different from ours.

The overall goal of our current work, therefore, is to
develop stability conditions that can handle the presence
of both slow and fast time-varying signals or parameters,
by suitably combining key features of the averaging theory
with those of stability analysis of slowly varying systems,
and moreover, to incorporate techniques employed in the
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study of switched systems (in particular, the concept of
total variation) to allow the presence of discontinuities in
these signals/parameters. We have recently obtained some
encouraging preliminary results, confined to the case where
the system’s dynamics are linear in the state x. The simplest
class of systems, which we considered in [10], is given by
the dynamics

i = (A(t) + B(t/e))= )

where © € R™, A(-) and B(-) are piecewise continuous
functions from [0,00) to R™*™, B(-) is periodic with a
known period 7" > 0, and ¢ > 0. For small ¢, we think
of A(t) as describing slow time-variation and switching in
the system, and of B(t/e) as describing fast variation and
switching.

Our stability analysis of the linear system (2) as described
in [10] proceeded in the following steps, which we briefly
outline here since our approach to tackling the nonlinear sys-
tem (1) will follow a conceptually similar path. First, the av-
erage system is defined by integrating the fast dynamics over
one period. Assuming for convenience (and without loss of
generality) that B(-) has zero average, i.e., + fOT B(s)ds =
0, the average system corresponding to (2) is simply given
by @ = A(t)x. Our main technical assumption is that the
total variation of A(-), as defined in [3], is upper-bounded
by a quantity of the form u(ts — t1) + «, with p in turn
being upper-bounded by suitable system parameters. Second,
stability of the average system is established, under the above
assumption of sufficiently small total variation of A(-), by
invoking the results from [3]. To achieve this, we build
a quadratic time-dependent Lyapunov function V(t,x) =
2T P(t)z with P(t) tailored to A(t) for each fixed t. We
then show that the time derivative of this Lyapunov function
can be upper-bounded in terms of the total variation of A(-),
and is negative when the total variation is small enough,
yielding exponential stability of the average system. Finally,
the original system (2) is represented and analyzed as a
perturbation of the average system. To approximate the
system (2) by the average system, we consider for (2) the
change of variables

t/e
mzy—&—s/ B(s)ds - y. (3)
0

We can then show that in the y-coordinates, the dynamics
are y = A(t)y + €C(t,e)y, where the second term on
the right-hand side is a perturbation term (a ‘“vanishing
perturbation” in the sense of [7, Section 9.1], i.e., it is O at
0). To finish the stability proof, we need to analyze the effect
of the perturbation term on the derivative of the Lyapunov
function (the same one used to establish stability of the time-
varying average system). We can show that the Lyapunov
function still decreases exponentially along solutions if ¢ is
sufficiently small, i.e., if the fast variation is sufficiently fast.

In the more recent follow-up paper [12] we studied a larger
class of systems—still linear in the state, but with dynamics
taking the form

i = (A(t) + By(t) By (t/2))x. 4

This class is more general compared to (2), and in [12] we
studied in detail an example of a mechanical system (inverted
pendulum on a cart with a moving ball subject to external
forces) which conforms to (4) but not to (2). A complication
that arises, however, is that the new state variable y, given by
a suitable extension of the coordinate transformation (3), now
experiences jumps at the discontinuities of By with respect
to t. Consequently, in the y-coordinates the dynamics are
impulsive (a combination of continuous flow and jumps). We
overcame this challenge in [12] by carrying out a Lyapunov
stability analysis of this impulsive system.

The preliminary results outlined above represent just very
first steps towards understanding the problem of interest. An
obvious next task is to tackle nonlinear dynamics in the
form (1), with the objective of deriving general sufficient
conditions for their stability. This is the subject of the present
paper, in which we will be working under the simplifying
assumption that

f(0,-,-) =0. (5)

This assumption—which means that z = 0 is a common
equilibrium for all values of the time-varying signals—helps
us mimic, to some extent, the developments in the linear
case. Indeed, as we will see, it guarantees that the perturba-
tion term characterizing the difference between the original
system and the average system (in appropriate coordinates)
can still be represented as a “vanishing perturbation”. And
similarly to the case of (4), the coordinate change gives rise
to an impulsive system. Of course, the nonlinear dynamics
also present new technical challenges, overcoming which is
the goal of this paper.

The remainder of the paper is organized as follows. In
Section II we state our assumptions and the main result.
Section III is devoted to proving this result. Section IV
concludes the paper.

II. PRELIMINARIES AND STATEMENT OF MAIN RESULT

We now give a more precise description of the system (1)
and the technical assumptions that we impose on it.

Assumption 1 (fast-varying signal) The function 1wy
[0,00) — R is piecewise continuous and periodic with a
period T' > 0.

Assumption 2 (slowly-varying signal) The function wg
[0,00) — I' C R™ has finitely many discontinuities on any
bounded interval, is cédlélgl, is C! between discontinuities,
and us(-) and |us(-)| are Riemann integrable between dis-
continuities. Moreover, the set I is compact and convex.

Assumption 3 (system’s right-hand side) The function [ :
R” x I' x R — R™ satisfies (5), is C', and its partial
derivatives with respect to  and u, are C' in z.

IContinuous from the right, has limits from the left; this assumption is
made for notational convenience.
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The average of f, for each fixed x and wus, is defined as

/’fx%mf»

#(t) = fa (x(t), us (1)) (6)

as the average system associated with (1), and it follows from
(5) that

fav &€, ue =5

We refer to

fav(ov') =0. (7)

Assumption 4 (Lyapunov function for average system)
There exists a C! function V' : R® x ' — [0,00) and
positive constants ¢y, ca, c3, €4, c5 such that for all z € R™
and ug € I' we have

alz)? < V(z,us) < elzf?, (8)
ov
O (xvu8)fav(xaus) < _03|1'|27 9
oV )
—_— <
|- ()| < cale?, (10)

ov
and 7 is locally Lipschitz and satisfies
x

(z,us)| < es|zl. (11)

0
‘ oz
Lemma 9.8 from [7] guarantees that a Lyapunov function
V' satisfying the conditions (8)—(11) exists if the average
system (6) is exponentially stable for fixed values of the
input us (under suitable regularity conditions on f,,). We
note that only the conditions (8)—(10) are needed for proving
stability of the average system (following [2]), while the
last condition (11), along with the Lipschitzness of 9V /0,
was not imposed in [2] but is used here for conducting
perturbation analysis of the original system.

Suppose that we are given an interval [¢q,¢3], and that
di,...,dy, are the discontinuities of us on this interval with
t1 < di and d,, < to. Following [2], we define the rotal
variation of us on [t1,t5] to be?

/t || dus || 72/ s (¢ |dt+Z|us (d) — us(d;)|

=1
(12)
where we set dy :=t1 and d,41 := to.

Assumption 5 (total variation bound) The total variation of
us on any time interval [t1,to] satisfies

ta
[l < ttz = 0) + (13)
ty
for some real constants x4 and « such that
acs (14)
CoCyq

2The superscripts ‘+” and ‘-’ denote the right and left limits, respectively.
By right-continuity of us the former one is actually superfluous, but we
occasionally write it for extra clarity.

where ¢y, co, c3,cq4 come from Assumption 4.

Our main result states that the system (1) is semi-globally
exponentially stable for sufficiently small e.

Theorem 1 Let Assumptions 1-5 hold. For every R > 0
there exist €*,c,A > 0 such that all solutions of the
system (1) with € € (0,e*] and |z(0)] < R satisfy |z(t)] <
ce=|x(0)| for all t > 0.

III. PROOF OF THE MAIN RESULT

The proof of Theorem 1 proceeds by, first, invoking the
results from [2] to establish exponential convergence of the
Lyapunov function along solutions of the average system (6);
next, expressing the original system (1) in suitable coordi-
nates as a perturbation of the average system; and, finally,
using perturbation analysis to verify semi-global exponential
stability of the original system.

A. Exponential convergence of V along solutions of average
system

Under the standing assumptions, Theorem 1 in [2] asserts
that the average system (6) is globally exponentially stable.
This is established by analyzing the evolution of V(t) :=
V(x(t),us(t)) along solutions. While we do not explicitly
need this stability result here, we briefly sketch the derivation
because our subsequent analysis will directly build on that.
First, if an interval [t, ¢2) contains no discontinuities of ug,
we have in view of (8)—(10) that

oV oV
V - %fav(xaus) + Tus

¢ cq, .
< (- 2+ Zal)v
C2 C1
hence, by the standard comparison principle,

1 g ()]

s < —cslal? + cala]?[i]

Vit;) < Vit)e ez -t T3 (15)

Second, at a discontinuity ¢ of ug, the Mean Value Theorem
and (10) imply that

V(1) = V(t7) < cala(t)Pfus(t) — us(t7)].
V(e V(e

(16)

Applying the inequality z < e*~! to z =
using (16) and (8) yields

) and

V() V(i) -Vt _
V(tt) < egv(t—)—l _ e% ~ o g () —us(t7)]
V(tm) —
or

V() < V(E)eor s () — us (E7)] a7

Iteratively combining the two estimates (15) and (17) and
recalling the definition of total variation (12), we have on
any interval [t1,t5] (possibly containing discontinuities of
ug) that

V(tQ) SV(tl) (t2_t1 +C4ft HduSH
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which in view of the assumed bound (13) implies
V(tz) < V(h)e_(‘%2 —amlta =)+ G

From (14) we see that V() decays exponentially fast (im-
plying global exponential stability of the average system).

B. Coordinate transformation and approximation by average
system

We want to approximate the system (1) by its average
system (6). To this end, define

h(m,us,uf) = f(xausauf)_fav(xaus)~ (18)
Then h(0,-,-) = 0 by (5 and (7). We have that
h(z,us,uyr(-)), as a function of time for z,u, fixed, is T-
periodic (see Assumption 1) and has average 0. Next, define

¢
w(x, us, t) ::/ h(z, us, uyr(s))ds. (19)
0

We have

The function w is also T-periodic in ¢ (its third argument),
and so are its partial derivatives (which exist by Assump-
tion 3).

Now, consider the (time-varying) change of variables

y=x —ew(x,us(t), t/e) = Oy (x). (21)
This coordinate change is origin-preserving, i.e.,
®,.(0)=0 Vi, e (22)

and reduces to identity when ¢ = 0, i.e., <I>t,0(33) = z for
all x and t. The validity of this coordinate transformation is
justified by the following statement. (Its proof is omitted due
to page constraints, but we note that it relies on Theorem 1
of [8].)

Lemma 2 For every compact set 2 C R™ there exist an
£ > 0 and numbers 0 < A < 1 < A (which depend on the
choice of &) such that for every t > 0 and every ¢ € |0, &]
the following properties hold:

o The image ®,.(Q?) is compact and the map P, . :
Q — 0,.(Q) is a diffeomorphism. The set U :=
Us>0,c€(0,8) Pr.c () is also compact.

o Each x € Q and the corresponding y = O, .(x) satisfy
Aly| < |x| < Aly|. Moreover, we can take A, A — 1 as
g—=0.

The above change of variables (21) is a variation on the
one considered in [1] and, modulo time rescaling, in [7,
Section 10.4]; a similar coordinate transformation was also
used in [15]. The properties stated in Lemma 2 may not hold
globally (without additional assumptions), which is one (but
not the only) reason why Theorem 1 is only a semi-global
result.

Away from discontinuities of us(-), we can use (21)
to rewrite the dynamics of (1) in the new, y-coordinates

(suppressing the t-arguments in ug, as well as in x and y,
for convenience):

§=f(@,us,up(t/e)) — ews(z, us, t/e) f (@, us, up(t/¢))
— Wy, (T, us, t/€)ls — wi(x, us, t/e).
By (18) and (19) the last term equals
wi (@, us, t/e) = [, us, up(t/e)) — fa (2, us)
which gives
U= fu(z,us) — ewg (@, us, t/2) f (2, us, us(t/e))
— Wy, (T, us, /)0
= fa(y,us) + (fov(@,us) — fur(y, us))
— e (s, /) F@7 W), ws, g (1/2))
o w, (D2 (), w2 )

where the existence of <I>; 51,
by Lemma 2.

For 6 € [0, 1], define
5(0) = fav(ex + (1 - G)yaus)'
Then we have (using differentiability of fy):

on compact sets, is guaranteed

Fuos 1) — fur(y,us) = £(1) — £(0) = / £ (0)do
1
- / O (4 (1), )0 () == F ., ,10) ().

Using (21), we can rewrite this as

fav(mvus) - fav(yvus) =
eF(®; 1 (y), y, us)w(®, 2 (1), us, /).

Hence, we see that in the y-coordinates and away from
discontinuities of u4(-) the system (1) can be written in the
form

y(t) = fav(y(t), us(t)) +eg(y(t), t, ) (23)

where the function g is given in detail by the formula
! afav 1
g t.e) = ([ FE (0D ) + (1 - 0)y,un() db
0

x w(® 2 (y),us(t), t/e)
= wa (e (y), us(t),1/€) (D72 (), us(t), ug (t/¢))
—wa, (72 (y), us(t), t/e)is(t).

(24)

The function g is a vanishing perturbation in the sense that
g(0,t,e) = 0 for all ¢ and . A more precise and useful
bound on the magnitude of this perturbation is provided by
Lemma 3 below.

Now suppose that u, has a jump at time ¢. This means that
1y, given by (21), also has a jump at ¢ (while = is continuous
at t). We have

y(t") = a(t) —ew(@(t), us(t7),t/) = Ty o ((t)),
y(t™) = a(t) — ew(@(t),us(t™),t/e) = @4 (2(t))
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hence
Y(t) = By 0@ (y(t7))

where the existence of the inverse, on compact sets, is
guaranteed by Lemma 2.

(26)

Denoting by di,ds, ... the discontinuities of us, as we
did in (12), we can write the overall dynamics of y as the
impulsive system

y(t) = fav(y(t), us(t)) +eg(y(t), t, ),

y(t) = Prc 0@, (y(t7)),

where we recall our convention that us(d;") = u,(d;) and
so y(d;) = y(d;) for each 1.

t#d;

= d, (27)

C. Stability of original system by perturbation analysis

With the impulsive system (27) in place, we need to
analyze the evolution of V(t) := V(y(t),us(t)) along
continuous dynamics and along the jumps separately. In
between the jumps, we have

% ov ov

V=—fu y Us o Us ——eg(t,y,¢).

oy T us) + 5ot + 5 oeg(ty,€)

To proceed, we need to characterize the perturbation g given

by (24) in more detail. (Proofs of this and the next lemma
are omitted due to page constraints.)

(28)

Lemma 3 Let a compact set 2 C R™ be arbitrary, and let
& > 0 be as in Lemma 2. There exist 1,02 > 0 such that
for every t > 0 at which 14(t) exists, every € € (0,£], and
every y € @, .(Q), we have

lg(y,t,e)| < o1lyl + O2lyl - [s(2)]. (29)

Combining (28) and (29) with (8)—(11) yields the follow-
ing bound valid on compact sets (in the same sense as in
Lemma 3):

V < —eslyl® + calyl®|as| + csly[*edy + cs|y|*eda]i|
c cs c Cs .
< (- 24 Zeg 4+ (24 Zegy)a )V
Co C1 C1 C1
hence, for any interval [tq,t3) not containing any disconti-
nuities of ug, we have
V(ty) <
. 5 - ta .
6( — % + %1’651)@2 — tl) + (% + 2*1562) t12 ‘us(t)ldt

x V(t1). (30)

Next, we analyze the behavior of V(¢) during the jumps
in (27), for which we need the following preliminary result.

Lemma 4 Let a compact set 2 C R™ be arbitrary, and let
g > 0 be as in Lemma 2. There exists a ¢ > 0 such that
whenever x(t) € Q and y jumps at time t according to (26)
with € € (0,&], we have

ly(t) —y(t7)] < edlus(t) —us(t)] - ly(t7)].

Let us now inspect the difference in the values of V()
before and after a jump, which we can write as

V() = V(") = V(y(t),us() = V(y(t™),us(t))
= (V(y(t), us(t)) = V(y(t™), us(t)))
+ (V) us(t) = V{y(t), us(t7))).
Assume that we are in a situation described by Lemma 4.

To analyze the first difference in (31), we can first apply the
Mean Value Theorem to V' and then use Lemma 4 to obtain

V(). us(t) — V(). us(t))
- Z—Z@,us@))(y(t) ()

(3D

(where 3 = py(t) + (1 — p)y(t~) for some p € [0, 1])
(G 0oe(6) = (0l )) 00) = (6))
+ G 0) (00 - ()

< Lvlg =y )] |y(8) =y )]+ esly(t)]-[y(t) —y(t7))
(where Ly is a Lipschitz constant for 0V/0y over

Q' x I, which exists by Assumption 4)

< (Lvly() =y ) +esly(t)]) - ly(t) — y(t7)]
(because [y —y(t7)] < [y(t) —y(t™)])

< (Lvedlus(t) — us(t7)] + cs) ly(t) — y(t7)] - [y(t7)]
(using Lemma 4)

< (Lvegdiam(T) + c5)[y(t) — y(t )| - [y(t7)]
(where diam(T") is the diameter of the compact set I")

< (Lvegdiam(T) + cs)edus (1) — us(t7)] - ly(t7)[?
(using Lemma 4 again)

. & _ _ _
< (Lveodiam(T)+e5) () us () |V (y(t )(0)).
As for the second difference in (31), we have

V(y(t_)v Us (t)) - V(y(t_)v Us (t_))

= S ) D)~ usle7)
< caly( ) s (6) = (1)

where @ = pus(t) + (1 — p)us(t™) for some p € [0,1].
Combining these two bounds, we can write

V(1) = V(™) < (e)]us(t) —us(t7)[V(E7)

where /(¢) takes the form fye2 + {16 + £y with £y = <4,

C1
b = 2¢, and {y = %ﬁam(r). Proceeding similarly to
how we derived (17), we have

V(t
Vi) ev(§)> 1

V() ~
< HE)|us(t) — us(7)]

V)-v(iT)
Vi)

=€
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hence
V() < fENus(t) = us () y 4y,

(32)

Iteratively combining the bounds (30) and (32) and recall-
ing (12) and (13), we arrive at

V(t2) < exp [( — 8 2eh)(ty — 1)
(& + 02 + Semax{y, 6}) J)2 ldus|]] V(1)

<exp [( — &4 By (ty — )
(2 + fo2? + Semax{da, 8)) (ults — 1) + a)} V(t1)

for an arbitrary interval [¢y, ¢5], and exponential convergence
follows if

(—6—3—1—0—5551)+p(c—4+£252+c—55max{52,qb}) < 0. (33)
C2 C1 C1 C1

For € = 0 this reduces to (14) which we assumed to be true;
therefore, (33) also holds for € > 0 small enough.

To finish the proof of the theorem, take arbitrary numbers
R > 0 as in the theorem statement and 0 < A < 1 < A as
in Lemma 2. Define the set {2 to be the closed ball centered
at the origin with radius ¢RA /A, where ¢ satisfies

Llea

c>e? Cla\/(:g/cl.

Relative to this €2, use Lemmas 2—4 to compute the quantities
g,01,02, ¢, as well as the Lipschitz constant Ly from the
proof of Lemma 4, ensuring (by decreasing ¢ if needed) that
the second statement of Lemma 2 holds with the selected
A,A. Find a positive ¢ < £ that satisfies (33) and call it
e*. In view of the bounds c;|y(t)]? < V(¢) and V(0) <
c2|y(0)]?, which follow from (8), we see that every solution
with |2(0)] < R (hence |y(0)] < R/A) satisfies, in the y-
coordinates, the bound

|y(t)| < e%(% + 6252 + E—fsmax{§2,¢})a /ClR/A.
C1

Therefore, by further decreasing €* if necessary, we can en-
sure that x(¢) remains in the interior of  for all ¢ > 0 when
€ < ¢*. Thus the above analysis is applicable and establishes
exponential convergence of |y(t)| to 0, and consequently
exponential convergence of |z(t)| to 0, as claimed in the
theorem—with ¢ := ¢A/A and —\ being the left-hand side
of (33) with ¢ = &*. 1

(34)

IV. CONCLUSIONS

We considered nonlinear systems with two kinds of input
signals: a slowly-varying one and a fast-varying periodic one,
with both being allowed to have discontinuities. Under the
assumption that the origin is a common equilibrium for all
values of these input signals, our main result (Theorem 1)

provided sufficient conditions for this equilibrium to be
semi-globally exponentially stable. Our approach relied on
constructing a (partial) average system which retains the
slow variation but not the fast one. The stability conditions
were formulated in terms of a suitable Lyapunov function
for this average system (for frozen values of the slowly-
varying input), along with a bound on the total variation of
this input which guarantees stability of the average system.
The proof involved expressing the original system in suitable
coordinates as a perturbation of the average system, and
conducting perturbation analysis to establish stability of
the former. Future work will focus on lifting the common
equilibrium assumption and on addressing more general
classes of nonlinear systems.
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