
Published as a conference paper at ICLR 2025

UNLOCKING EFFICIENT, SCALABLE, AND CONTIN-
UAL KNOWLEDGE EDITING WITH BASIS-LEVEL REP-
RESENTATION FINE-TUNING

Tianci Liu
1
, Ruirui Li

2
, Yunzhe Qi

3
, Hui Liu

2
, Xianfeng Tang

2
, Tianqi Zheng

2
, Qingyu Yin

2
,

Monica Cheng
2
, Jun Huan

4
, Haoyu Wang

5
, Jing Gao

1

1Purdue University 2Amazon 3UIUC 4AWS AI Lab 5SUNY Albany
1{liu3351,jinggao}@purdue.edu 2ruirul@amazon.com 5hwang28@albany.edu

ABSTRACT

Large language models (LLMs) have achieved remarkable performance on vari-
ous natural language tasks. However, they are trained on static corpora and their
knowledge can become outdated quickly in the fast-changing world. This moti-
vates the development of knowledge editing methods designed to update certain
knowledge in LLMs without changing unrelated others. To make selective edits,
previous efforts often sought to update a small amount of parameters in some spe-
cific layer(s) of a LLM. Nonetheless, in challenging scenarios, they still fall short
in making successful edits while preserving knowledge irrelevant to the updates
simultaneously, resulting in a notable editing-locality trade-off. In this work, we
question if the trade-offs are caused by the fact that parameter-based updates have
a global effect, i.e., edited parameters affect all inputs indiscriminately. In light of
this, we explore the feasibility of representation fine-tuning, which applied some
linear update to a few representations in a learned subspace, for knowledge edit-
ing. While being effective to enhance an LLM’s general ability as demonstrated in
the previous work, we theoretically show that this linear update imposes a tension
in editing-locality trade-off. Subsequently, BaFT is proposed to break the linear-
ity. BaFT computes a weight for each basis that spans a dimension of the subspace
based on the input representation. This input-dependent weighting mechanism al-
lows BaFT to manage different types of knowledge in an adaptive way, thereby
achieving a better editing-locality trade-off. Experiments on three LLMs with five
editing benchmarks in diverse scenarios show the superiority of our method.

1 INTRODUCTION

Language models (LMs) parameterized by deep neural networks (Vaswani et al., 2017; Lewis et al.,
2019; Radford et al., 2019; Brown et al., 2020) have thrived in producing fluent and meaningful
texts on diverse natural language generation and classification tasks (See et al., 2019; Raffel et al.,
2020; Ji et al., 2023). These successes underscore the versatility of LMs, establishing them as
the foundations for different natural language processing applications (Bommasani et al., 2021;
Zhou et al., 2023). Additionally, with model sizes continually increasing, large language models
(LLMs) have demonstrated unprecedented abilities to follow natural language instructions (Dong
et al., 2022b; Ouyang et al., 2022), empowering zero-shot adaptations to unseen tasks (Kojima et al.,
2022), and paving the way towards artificial general intelligence (Bubeck et al., 2023).

Despite their remarkable performance, the real-world deployment of LLMs remains largely unre-
solved. While LLMs can understand a wide range of contexts, they can only provide feedback based
on the static knowledge from the data on which they were trained. In a fast-changing world, most
knowledge quickly becomes outdated. This could amplify critical issues such as making factual
fallacy (De Cao et al., 2021) or producing harmful generations (Hartvigsen et al., 2022).

As a remedy, knowledge editing, whose goal is to update an LLM with some specific new knowledge
without hurting irrelevant knowledge, has been proposed (Wang et al., 2023; Zhang et al., 2024b).
Early effort of full fine-tuning proved ineffective as it also disrupted irrelevant knowledge (Wang

1

Published as a conference paper at ICLR 2025

et al., 2023), leading to an editing-locality trade-off. Here locality refers to the ability to main-
tain the knowledge that is irrelevant to the updates. To achieve a good locality, the model update
needs to be selective and should rely on a small number of parameters (Wang et al., 2023), and thus
parameter-efficient fine-tuning (PEFT) methods like AdaLoRA (Zhang et al., 2023) have shown
good performance (Wu et al., 2023). On the other hand, Huang et al. (2023); Dong et al. (2022a) re-
stricted updates to specific feed-forward network (FFN) layer that served for knowledge storing (Dai
et al., 2021). Meng et al. (2022a;b) refined the process through a locate-and-edit paradigm which
involves an additional locating stage to identify which layer the target knowledge is stored. Nonethe-
less, these methods still exhibit a certain editing-locality trade-off, regardless of whether locating is
performed. We note that these methods are parameter-based and have a global effect, i.e., the edited
parameters affect all inputs indiscriminately. This observation challenges to what extent an editing
can truly benefit from the targeted effort to identify “better” parameters that “memorize” certain
knowledge (Hase et al., 2024). In other words, it is an open question if such trade-offs are due to the

coarse control of global parameter-based updates.

This paper, following Hernandez et al. (2023) that modifies LLM knowledge by updating representa-
tions, explores selective representation-based knowledge editing, and paves a way for an affirmative
answer to the above question. Our work is built upon ReFT (Wu et al., 2024) that fine-tunes a
few representations in a low-rank linear subspace, and performs on par with PEFT methods such
as LoRA family (Hu et al., 2021; Zhang et al., 2023; Ding et al., 2023) and others (Houlsby et al.,
2019; Chen et al., 2024). Unlike parameter-based updates that apply to all inputs, ReFT only alters
representations at some locations. Consequently, ReFT can achieve a better editing-locality trade-off
than parameter-based updates. Notwithstanding, in spite of this promising result, the subspace-level

linearity still restricts ReFT from providing precise enough updates for knowledge editing.

Specifically, ReFT applies the linear update in the subspace for all selected representations. While
being effective to enhance an LLM’s general ability such as commonsense reasoning (Wu et al.,
2024), this subspace-level control can be too coarse for knowledge editing. As a consequence, when
ReFT achieves high editing performance, certain unrelated knowledge may be modified incorrectly,
provably jeopardizing its locality. This insight is formalized in Sec 2, where a theoretical analysis on
this inherent tension is derived, based on two reasonable assumptions on how representations convey
different knowledge. Notably, our analysis reveals an intrinsic limitation of linear representation

fine-tuning. It not only holds for knowledge editing, but also applies to other tasks that require

selective updates such as continual learning and machine unlearning, and can be of independent

interest to these communities. This theoretical result is one of the main contributions of this paper.

In light of this insight, we derive BaFT, a more precise representation fine-tuning method for knowl-
edge editing. Noting that the subspace is spanned by a group of bases vectors, BaFT instead learns a
basis-level update.This involves computing a weight for each basis for a given representation, then
learning a linear update along this basis. Since each basis spans a rank-1 subspace, BaFT is a gen-
eralization of ReFT, in the sense that if all bases use the same constant weight 1, BaFT reduces to
ReFT. By using different weights combinations on distinct types of knowledge, BaFT can manage
them in a more adaptive way. When auxiliary locality information (e.g., what knowledge should
not be updated) is available, BaFT can freely restrict the impact of unimportant bases only, while
ReFT needs to regulate the whole subspace rigidly. This flexibility makes BaFT highly suitable for
knowledge editing and performs on par with the strongest baseline that relies on external memories
to memorize new knowledge and requires 10-20 times more parameters. In conclusion, BaFT, as a

new representation fine-tuning method, successfully reaches a better editing-locality trade-off while

maintaining the parameter efficiency of ReFT. This is another main contribution of this work.

Our paper is organized as follows. Sec 2 details the proposed BaFT. Extensive experimental results
in Sec 3 demonstrate the superiority of our method for conducting knowledge editing at much better
parameter efficiency than existing methods. In the remaining part of this paper, we review related
works in Sec 4, and conclude the paper in Sec 5.

2 PROPOSED METHOD

Grounded in a theoretical analysis, we show that the linearity nature of existing representation fine-
tuning method induces an inherent limitation on its editing-locality trade-off. We then propose BaFT
towards a fine-grained controlled representation fine-tuning in accordance with knowledge editing.

2

Published as a conference paper at ICLR 2025

2.1 PRELIMINARIES

Given input x = (x1, . . . , xn), where each xi → V is a token from vocabulary V , a language model
(LM) parameterized by ω assigns probability pω(x) using the chain rule (Bengio et al., 2000):

pω(x) =
n∏

i=1

pω(xi | x1, . . . , xi→1) ↭
n∏

i=1

pω(xi | x<i),

where pω(xi | x<i) is the predicted distribution of the next token xi over V given previous x<i. In
specific, for an L-layer LM, let h(l)

i denote the intermediate representation of the i-th token at the
l-th layer. The predicted distribution is given by softmax regression parameterized by W at layer L:

pω(xi | x<i) = softmax(Wh(L)
i).

To generate a sentence x, the LM repeatedly computes pω(xi | x<i) and draws xi from it; then xi

is fed back into the LM as part of the inputs for future steps. The generation process completes if a
special token that marks the end of the sentence is returned, or the maximum length is reached.

Knowledge Editing aims to incorporate new provided knowledge into a pre-trained LM while pre-
serving other existing knowledge that shouldn’t be modified. Formally speaking, any knowledge
can be represented in natural language with a textual pair (x,y), where x entails some subject and
relation, and y refers to the corresponding object. For instance, given x being The current president

of United States is, y can be Joe Biden. Knowledge editing seeks to maximize the chance of an LLM
responding with y given x, while satisfying the following additional criteria at the same time (Zhang
et al., 2024b; Liu et al., 2025a): (1) Generality: there are different ways to express US president,
wherefore the edited model should generalize. (2) Portability: relevant knowledge such as the first

lady of United States should be updated as well. (3) Locality: irrelevant knowledge such as the

prime minister of United Kingdom should not be affected. Notably, such requirements of modifying
only specific internal knowledge in a LM has been proved challenging. As revealed in previous
works (Zhang et al., 2024b), this process should update only a minimal amount of parameters.

Representation Fine-tuning (ReFT), proposed by Wu et al. (2024), is a recent parameter-efficient
fine-tuning (PEFT) method that outperformed other approaches such as LoRA in updating pre-
trained LM on several tasks with much less parameters. Building upon the so-called linear represen-

tation hypothesis (Park et al., 2023) which presumes that concepts are encoded in linear subspace

of representations, ReFT learns low-rank linear updates on representations. In particular, to update
the d-dimensional representation h(l)

i at layer l for the i-th token, ReFT learns

!l(h
(l)
i ;εl) = h(l)

i +R
↑
l (Alh

(l)
i + bl ↑Rlh

(l)
i), (1)

where εl = (Rl,Al, bl) are learnable parameters added to layer l. Here Rl → Rr↓d is a low-rank
matrix (i.e., r ↓ d) containing mutually orthogonal rows that specifies a subspace to make the
update, and (Al, bl) predicts the updated representation in this subspace. Finally, ReFT requires
hyper-parameter I ↔ [n] to specify which locations need updates. Put together, ReFT intervenes the
layer l’s output by

h(l)
i ↗

(
!l(h

(l)
i) if i → I else h(l)

i

)

i↔1,...,n
.

From now on, we omit indices i, l when discussing how a representation h is intervened for brevity.

2.2 EDITING KNOWLEDGE BY FINE-TUNING REPRESENTATIONS

ReFT has demonstrated impressive performance on tasks such as commonsense reasoning that
largely rely on an LLM’s ability to understand and generate text by updating just a few (i.e., those
in I) representations. However, it is unknown whether this lightweight approach can benefit knowl-
edge editing, which requires modifying some selective internal knowledge. Here, we show that the
linearity nature of ReFT limits its editing and locality performance. In specific, for all inputs, ReFT
applies the same linear update without distinction:

!(h) = h+R
↑(Ah+ b↑Rh) = (I+R

↑(A↑R))︸ ︷︷ ︸
weight

h+R
↑b︸︷︷︸

bias

.

The coarse control from the linear ReFT makes it less suitable for knowledge editing for two reasons.

3

Published as a conference paper at ICLR 2025

Figure 1: Averaged (w/ max-min
range) number of redundant dimen-
sions (which have update M times
smaller than maximal values), in a
rank-12 ReFT update.

First, ReFT uses its learned subspace for editing in a prede-
termined manner, regardless of varying levels of learning dif-
ficulty for different types of knowledge. This can lead to sub-
optimal performance. As an evidence, we fit a rank-12 sub-
space for ReFT and checked how many dimensions (bases)
contribute negligible updates, as a measure of dimension re-

dundancy. To this end, we count for each dimension, if its
update magnitude is less than M times of the maximal dimen-
sion. Fig 1 shows these results. We noted that the dimension
redundancy indeed varies on different types of knowledge.

Second, the linearity of ReFT leads to an inherent editing-
locality trade-off: it is challenging to maintain good general-

ity and locality at the same time. Formally, given some knowl-
edge involves subject s, relation r, and object o that can be

updated by ReFT, we make the following assumptions.
Assumption 2.1. Let text x encodes s, r. Since the knowledge can be edited by ReFT, text y
generated by the LM will convey o if its intermediate representation takes some targeted value t.
Assumption 2.2. (Hartvigsen et al., 2024) For any h carrying some knowledge, there exists a pos-
itive ϑ(h)-radius ϖ2 ball B(h, ϑ(h)) around h such that any h↗ → B(h, ϑ(h)) conveys the same
knowledge, we refer to B(h, ϑ(h)) as a stable-ball of h.

We provide a few clarifications on the two assumptions. The first assumes that a piece of knowledge
can be generated (retrieved) from some associated representation. The second, as in Hartvigsen
et al. (2024), assumes that the knowledge is locally stable around its representation, so that a small
perturbation won’t change the carried knowledge. Under these two assumptions, The following
Thm 2.3 reveals a tension between maintaining good generality and locality simultaneously, with its
proof deferred to App B.1.
Theorem 2.3. When fine-tuning an LM, ReFT learns to update the old representation h0 to targeted

t = !(h0). If ReFT maintains good generality such that ↘ h → B(h0, ϑ(h0)),

≃!(h)↑ !(h0)≃ = ≃!(h)↑ t≃ < ϑ(t),

where ≃ · ≃ denote the ϖ2 norm. Then for any irrelevant input hir with a small stable-ball radius

ϑ(hir) <
≃t↑ h0≃ ↑ (ϑ(t) + ϑ(h0))

ϑ(t) + 2ϑ(h0)
ϑ(h0),

and is not too far from h0 such that

≃hir ↑ h0≃ = ϑ(hir) + ϑ(h0),

ReFT will output !(hir) /→ B(hir, ϑ(hir)) and break its locality guarantee.

Intuitively speaking, Thm 2.3 formalizes that ReFT update has to be large enough to make successful
edit; and smooth enough to achieve good generality. Then, due to its linearity, it will inevitably hurt
the locality of some irrelevant knowledge. This limitation does not rely on the specific r (i.e.,
subspace rank) being used. In summary, ReFT is less suitable for knowledge editing because of the
two limitations, which motivates BaFT as presented in the next section.

2.3 BAFT: BASIS-LEVEL REPRESENTATION FINE-TUNING

Given the two limitations from linearity, i.e. using the whole linear subspace to update all repre-
sentation without distinction, and the finding of dimension (basis) redundancy, we propose to take
the importance of each dimension into account. Since in ReFT, the subspace is parameterized by
a set of orthogonal bases vectors, we assign each basis a learnable weight to determine how much
it contributes to the current editing. This input-dependent weighting mechanism makes our method
applies a non-linear update. We dub our method basis-level representation fine-tuning (BaFT).

To be more specific, at a layer where ReFT takes place, we learn an r-dimensional update by

!(h) = h+
r∑

k=1

wk(h)rk(a
↑
k h+ bk ↑ r↑k h), (2)

4

Published as a conference paper at ICLR 2025

where r1, . . . , rr are r d-dimensional orthogonal bases, a1, . . . , rr and b1, . . . , br are r arbitrary
vectors and scalars, respectively. Finally, wk(h) → [0, 1] are r learnable weights. Put together,
wk(h)(a↑

k h + bk ↑ r↑k h) predicts the magnitude of update along direction of basis rk, and BaFT
combines r total updates to form the final intervention. Fig 4 illustrates the overall flow of BaFT.

While appears distinct, Lem 2.4 shows that BaFT generalizes ReFT. See its proof in App B.3.

Lemma 2.4. Let R = [r1; . . . ; rr] → Rr↓d,A = [a1, . . . ,ar] → Rr↓d
, b↑ = (b1, . . . , bk), and

W(h) = diag(w1(h), . . . , wr(h)) be a diagonal matrix. BaFT in Eqn (2) can be expressed as

!(h) = h+R
↑
W(h) (Ah+ b↑Rh) . (3)

When using constant weighting W(h) = I, BaFT reduces to ReFT.

2.4 TRAINING OBJECTIVE OF BAFT

We end this section by detailing the training of BaFT. For consistency we use εl to denote the
collection of learnable parameters at layer l: R,A, b, and newly introduced parameters in W. Given
a set of pre-specified layers Cl that need interventions, we optimize the collection of all learnable
parameters ε = {εl}l↔Cl using the following losses.

Teacher-forcing Loss. Following Wu et al. (2024), we train BaFT with a language modeling objec-
tive, and minimize the cross-entropy loss with teacher-forcing (Lamb et al., 2016) at output positions

L1(ε) ↭ ↑
m∑

i=1

log pω(yi | xy<i;ε),

where the intervention is applied to the last P positions in x, together with all entries in y.

Incremental Load Balancing Loss. When editing multiple pieces of knowledge, different bases
need, on average, balanced weights. Otherwise, using a few fixed bases for all edits is equivalent to
using a fixed subspace spanned by these bases, and BaFT will reduce to a smaller ReFT. To avoid
this reduction, inspired by the sparse mixture of expert (Shazeer et al., 2017; Fedus et al., 2022), we
regularize the squared coefficient of variation of (w1(h), . . . , wr(h)). However, as new knowledge
may emerges one by one, making direct average over multiple samples infeasible, we compute the
metric in an incremental way. Namely, when editing the t-th knowledge, we minimize

Rbal(ε) ↭
r∑

k=1

(w̄k(t)↑ w̄(t))2

(r ↑ 1)w̄(t)
, where w̄(t) =

1

r

r∑

k=1

w̄k(t),

and w̄k(t) averages weights wk over the current and past training samples at selected positions. For
incremental optimization, we only minimize Rbal(ε) with respect to the current weight on the t-th
knowledge, as highlighted by expressing w̄k(t) as a function of current step t.

Locality Regularization. In some scenarios, it is feasible to obtain examples of irrelevant knowl-
edge during training (Wang et al., 2024d; Yu et al., 2024). Such information can benefit the training
of BaFT as well. Following Wang et al. (2024d), we incorporate the margin loss as a regularizer. Let
h and hir denote the representations of editing and irrelevant knowledge, respectively, we minimize

Rloc(ε) = max(0,W(hir)↑ ϱ)︸ ︷︷ ︸
irr.. weight w(hir) ↘ ε

+max(0,ς ↑W(h))︸ ︷︷ ︸
edit. weight w(h)t ≃ ϑ

+max(0, φ ↑ (W(h)max ↑W(hir)max)︸ ︷︷ ︸
edit weight ≃ loc weight

.

At a colloquial level, Rloc(ε) encourages that weights for irrelevant knowledge should be as small
as ϱ, editing knowledge’s weight should be no less as ς, and at the same time, the most important
weights from the two groups should have a gap that is as large as φ.

In execution, we rescale the three terms to the same magnitude and solve the following objective

min
ϖ

L(ε) ↭ min
ϖ

L1(ε) +Rbal(ε) +Rloc(ε). (4)

ReFT, as a special case of BaFT, only minimizes L1(ε).

5

Published as a conference paper at ICLR 2025

3 EXPERIMENT

We test the proposed BaFT for knowledge editing on three 7B-level autoregressive language models
(LMs) over five public benchmarks. Ablation studies are also conducted. Experiment results show
that BaFT can achieve excellent performance at much better parameter efficiency.

3.1 EXPERIMENT SETUP

Base Models. We conduct experiments on three representative LLMs from different model families.
LLaMA 2-7b (and LLaMA 2-7b-Chat) (Touvron et al., 2023) have been widely studied in the
literature (Zhang et al., 2024b; Wang et al., 2024d) and we follow this convention. Trending LLaMA

3-8b-Instruct (Dubey et al., 2024) and Gemma 1.1-7b-Instruct (Team et al., 2024) are also studied.
From now on, we refer to the three LLMs as LLaMA 2(-chat), LLaMA 3, and Gemma for brevity.

Tasks. Following previous works (Wang et al., 2023; Zhang et al., 2024b), we edit different kinds
of knowledge: WikiDatarecent, WikiDatacounterfact (Cohen et al., 2024), WikiBio (Hartvigsen et al.,
2024), ConvSent (Mitchell et al., 2022), and ZsRE (Yao et al., 2023). Due to page limitation, we
refer readers to Zhang et al. (2024b) for more benchmark details. When editing an LLM, three
scenarios are considered. Single Editing updates one piece of knowledge at a time. Continual

Editing and Batched Editing, on the other hand, update multiple pieces of knowledge in a sequen-
tial or batched way. The two latter are more challenging due to potential forgetting and knowledge
conflicting problems, as observed in the literature (Hartvigsen et al., 2024; Wang et al., 2024d).

Baselines. We follow Zhang et al. (2024b); Wang et al. (2024e) and choose AdaLoRA (Zhang
et al., 2023), ROME and FT-L (Meng et al., 2022a), and MEMIT (Meng et al., 2022b) as base-
lines. In continual editing scenarios, we further include representative memory-based methods
GRACE (Hartvigsen et al., 2024), MELO (Yu et al., 2024), and WISE (Wang et al., 2024d). All
these baselines, same as ours, do not require a larges-scale hard-to-access training data, or training

additional models: AdaLoRA learns a low-rank update for model parameters on the new knowl-
edge while keeping less important parameters unchanged, thereby achieving a highly efficient and
precise PEFT. ROME applies a causal-tracing analysis to identify the layer wherein the knowledge
is stored and then solves an analytic rank-one update. FT-L, on the other hand, directly finetunes
the layer identified by ROME with an additional KL divergence loss. MEMIT extends ROME to a
batched editing setting by identifying a series of layers to edit and finding the updates as least squares
solutions. GRACE, MELO, and WISE are specialized for continual editing. They leverage side pa-
rameters to save new knowledge and learn gating mechanism to determine whether pre-trained or
new knowledge should be used during inference. Finally, we include ReFT as a baseline that uses a
subspace of the same rank as BaFT.

Evaluation Criteria. We evaluate the performance from multiple aspects (Zhang et al., 2024b;
Wang et al., 2024d). Given an edited model, reliability (Rel.) evaluates whether it successfully
learns the new knowledge; generality (Gen.) measures to what extent it can generalize to rephrased
knowledge inquiries; locality (Loc.) quantifies how much the model can retain its original output on
irrelevant knowledge inquiries; portability (Por.) checks if the model is able to transfer new knowl-
edge to related content. We report the average of different metrics1 for more complete comparisons.

Implementation Details. Our experiments are conducted with EasyEdit (Wang et al., 2024e). More
implementation details and hyper-parameters can be found in App C.

3.2 SINGLE EDITING PERFORMANCE

We evaluate the effectiveness of the proposed BaFT for conducting Single Editing on WikiDatarecent,
WikiDatacounterfact, WikiBio, and ConvSent (only supports LLaMA family). The four benchmarks do
not contain irrelevant data. Consequently, BaFT training does not involve the locality regularization.

Single Editing results are reported in Tab 1. The proposed BaFT performs highly competitively in
all cases. BaFT and ReFT use a subspace of the same rank to edit representations, so an ideal BaFT
should achieve reliability comparable to ReFT that can edit representations freely. Indeed, BaFT
maintains a better editing-locality trade-off: it consistently achieves better locality and portability

1Not all benchmarks support all metrics.

6

Published as a conference paper at ICLR 2025

than ReFT with no degradation of reliability. In comparison, other baselines suffer from notable
editing-locality trade-off, i.e., achieve high reliability at a price of low locality. These methods also
exhibit significant performance gaps when editing different LLMs. These results demonstrates BaFT
as a new promising editing solution.

Table 1: Single Editing performance on four benchmark datasets. Results marked with “⇐” are
taken from Zhang et al. (2024b). Unsupported experiments are marked with “✁”. Best Avg. results
are in bold and second best are underlined.

Wikirecent Wikicounterfact WikiBio ConvSent
LLaMA 2-7b-chat

Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg. Rel.

AdaLoRA⇐ 1.00 0.65 0.56 0.74 1.00 0.70 0.70 0.80 1.00 0.81 0.91 0.45
FT-L⇐ 0.56 0.41 0.44 0.47 0.45 0.34 0.50 0.51 0.66 0.80 0.73 0.50
ROME⇐ 0.97 0.55 0.55 0.69 0.99 0.56 0.52 0.69 0.96 0.63 0.80 0.46
MEMIT⇐ 0.97 0.56 0.52 0.68 0.98 0.59 0.47 0.68 0.94 0.62 0.78 0.45
ReFT 1.00 0.60 0.71 0.77 1.00 0.72 0.78 0.83 1.00 0.91 0.96 1.00
BaFT (Ours) 1.00 0.61 0.73 0.78 1.00 0.72 0.81 0.84 1.00 0.94 0.97 1.00

LLaMA 3-8b-Instruct
Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg. Rel.

AdaLoRA 1.00 0.61 0.45 0.69 1.00 0.74 0.51 0.75 1.00 0.79 0.90 1.00
FT-L 0.47 0.27 0.22 0.32 0.43 0.32 0.22 0.32 0.56 0.71 0.64 0.52
ROME 0.99 0.58 0.49 0.69 0.99 0.58 0.41 0.66 0.92 0.68 0.80 0.98
MEMIT 0.99 0.54 0.48 0.67 0.99 0.58 0.43 0.67 0.96 0.71 0.84 0.32
ReFT 1.00 0.62 0.62 0.75 1.00 0.72 0.74 0.82 1.00 0.87 0.94 0.98
BaFT (Ours) 1.00 0.62 0.64 0.75 1.00 0.72 0.75 0.82 1.00 0.91 0.96 0.96

Gemma 1.1-7b-Instruct
Rel. Por. Loc. Avg. Rel. Por. Loc. Avg. Rel. Loc. Avg. Rel.

AdaLoRA 1.00 0.58 0.28 0.62 1.00 0.70 0.35 0.68 1.00 0.70 0.85 ✁
FT-L 0.35 0.20 0.03 0.26 0.20 0.18 0.01 0.13 0.24 0.14 0.19 ✁
ROME 0.79 0.38 0.27 0.48 0.82 0.47 0.27 0.52 0.47 0.31 0.39 ✁
ReFT 1.00 0.54 0.55 0.70 1.00 0.63 0.72 0.78 1.00 0.82 0.91 ✁
BaFT (Ours) 1.00 0.54 0.58 0.71 1.00 0.62 0.77 0.80 1.00 0.85 0.93 ✁

3.3 CONTINUAL AND BATCHED EDITING PERFORMANCE.

Next, we study the two challenging scenarios, where massive editings are conducted in a sequential
(continual) or batched way. We follow Wang et al. (2024d) and experiment with LLaMA 2 (non-chat
version), LLaMA 3, and Gemma on ZsRE. We note that the state-of-the-art continual editing method
WISE contains substantially larger parameter size and is much more computationally expensive. For
fair comparison, we include WISElight, a lightweight version of WISE that contains 1/8 learnable
parameters of the original WISE to make its training affordable. We want to highlight that WISElight
does not change editing mechanism2, and still contains more learnable parameters than BaFT and
ReFT (10 and 20 times respectively). Learnable parameters used in different methods, along with
their time consumptions, are reported in Tab 3.

Figure 2: Bases weights used for editing
and irrelevant knowledge (averaged over
different positions).

Continual Editing Performance. Tab 2 presents the
main results of continually editing 1000 pieces of
ZsRE knowledge. BaFT again achieves remarkable
editing performance while maintaining excellent local-
ity on LLMs from different families, reaching the best
two in nearly all scenarios. In comparison, standard
methods AdaLoRA, FT-L, ROME, and MEMIT en-
counter considerable performance gaps over different
LLMs. Meanwhile, they fall short in editing multiple
pieces of knowledge that emerge sequentially. WISE
performs slightly better but its parameter efficiency is
much lower, as we will show soon. GRACE is de-
signed for continual editing but still suffers from fail-
ure on editing Gemma. These methods might benefit
from a more extensive hyper-parameter tuning for each
LLM. Nonetheless, their prolonged running time makes this process expensive, if not unaffordable.

2WISE finds an important FFN layer to conduct knowledge editing. For each new knowledge, it finetunes a
small portion of randomly selected parameters in this layer. WISElight uses a smaller randomly chosen pool.

7

Published as a conference paper at ICLR 2025

When comparing BaFT and ReFT with each other, we note that as in Single Editing, BaFT main-
tains, if not surpasses, the editing ability of ReFT. In addition, when the editing number T increases,
BaFT shows excellent robustness against forgetting, as indicated by its capability of preserving high
locality in all scenarios. We further visualize bases weights in Fig 2, where a one-layer BaFT is used
to edit LLaMA 2 on 100 ZsRE knowledge with T = 10 (achieved reliability, generality, and locality
are 0.75, 0.71, and 0.98 respectively). Rel., Gen., and Loc. refers to new, rephrased, and unrelated

knowledge, respectively. We note that BaFT evenly distributes the editing over all bases, and unre-
lated knowledge receives significantly lower weights. These results confirm that BaFT leverages the
fine-grained basis-level control as designed in Sec 2, thereby excelling at Continual Editing.

Table 2: Continual Editing performance on ZsRE dataset, evaluated after conducting T times of
editing sequentially. Results marked with “⇐” are taken from Wang et al. (2024d). Best Avg. results
are in bold and second best are underlined.

T = 1 T = 10 T = 100 T = 1000

LLaMA 2-7b
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

AdaLoRA 1.00 0.90 0.92 0.94 0.39 0.38 0.50 0.42 0.06 0.06 0.06 0.06 0.00 0.00 0.00 0.00
FT-L 0.57 0.53 0.96 0.69 0.35 0.31 0.12 0.26 0.29 0.26 0.09 0.21 0.24 0.20 0.25 0.23
ROME 0.96 0.91 0.98 0.95 0.80 0.76 0.77 0.78 0.18 0.18 0.07 0.12 0.00 0.01 0.00 0.00
MEMIT 0.95 0.90 0.99 0.95 0.77 0.74 0.90 0.80 0.25 0.24 0.19 0.02 0.04 0.04 0.02 0.03
MELO 1.00 0.40 0.99 0.80 0.95 0.40 0.99 0.78 0.61 0.40 0.99 0.67 0.40 0.40 0.99 0.60
GRACE⇐ 0.98 0.08 1.00 0.69 0.96 0.00 1.00 0.65 0.96 0.00 1.00 0.65 0.97 0.08 1.00 0.68
WISEfull

⇐ 0.98 0.92 1.00 0.97 0.94 0.88 1.00 0.94 0.90 0.81 1.00 0.90 0.77 0.72 1.00 0.83

WISElight 0.95 0.83 1.00 0.93 0.93 0.74 1.00 0.89 0.83 0.73 0.99 0.85 0.49 0.47 1.00 0.65
ReFT 1.00 0.95 0.94 0.96 0.90 0.85 0.88 0.87 0.78 0.74 0.83 0.78 0.58 0.56 0.73 0.62
BaFT (Ours) 1.00 0.94 0.97 0.97 0.89 0.84 0.97 0.90 0.75 0.70 0.98 0.81 0.63 0.60 0.98 0.74

LLaMA 3-8b-Instruct
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

AdaLoRA 1.00 0.99 0.85 0.95 0.27 0.26 0.26 0.26 0.03 0.03 0.01 0.02 0.00 0.00 0.00 0.00
FT-L 0.51 0.52 0.68 0.57 0.25 0.20 0.03 0.16 0.19 0.16 0.02 0.12 0.16 0.14 0.01 0.10
ROME 0.99 0.96 0.96 0.97 0.62 0.63 0.42 0.56 0.07 0.07 0.01 0.05 0.03 0.03 0.00 0.02
MEMIT 0.99 0.96 0.98 0.98 0.68 0.66 0.71 0.68 0.03 0.03 0.02 0.03 0.00 0.00 0.00 0.00
MELO 1.00 0.29 1.00 0.76 0.97 0.30 1.00 0.76 0.55 0.31 0.99 0.62 0.31 0.30 0.99 0.53
GRACE 0.33 0.00 0.54 0.29 0.33 0.02 0.56 0.30 0.33 0.02 0.57 0.31 0.33 0.02 0.55 0.30
WISElight 0.95 0.91 0.99 0.95 0.82 0.76 1.00 0.86 0.63 0.57 1.00 0.73 0.39 0.37 1.00 0.59
ReFT 1.00 0.97 0.93 0.97 0.90 0.84 0.87 0.87 0.68 0.61 0.74 0.68 0.48 0.45 0.64 0.52
BaFT (Ours) 1.00 0.95 0.96 0.97 0.89 0.82 0.95 0.89 0.70 0.64 0.93 0.76 0.50 0.49 0.93 0.64

Gemma 1.1-7b-Instruct
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

AdaLoRA 1.00 0.97 0.67 0.88 0.19 0.20 0.18 0.19 0.03 0.03 0.01 0.02 0.00 0.00 0.00 0.00
FT-L 0.28 0.33 0.09 0.23 0.14 0.06 0.00 0.07 0.07 0.04 0.00 0.04 0.05 0.04 0.00 0.03
ROME 0.75 0.71 0.88 0.78 0.18 0.18 0.05 0.14 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
MELO 1.00 0.20 1.00 0.73 0.96 0.23 1.00 0.73 0.52 0.26 0.95 0.58 0.26 0.25 0.95 0.49
GRACE 0.39 0.00 1.00 0.46 0.39 0.01 1.00 0.47 0.39 0.01 1.00 0.47 0.39 0.01 1.00 0.47
WISElight 0.99 0.96 1.00 0.98 0.90 0.84 0.99 0.91 0.79 0.71 0.95 0.82 0.48 0.42 0.98 0.63

ReFT 1.00 0.86 0.91 0.92 0.92 0.81 0.81 0.85 0.66 0.58 0.69 0.64 0.50 0.46 0.65 0.54
BaFT (Ours) 1.00 0.84 0.94 0.93 0.92 0.80 0.92 0.88 0.70 0.62 0.92 0.75 0.48 0.45 0.92 0.62

Table 3: Parameter size and editing time with an NVIDIA V100 32-GB GPU (averaged over 100
samples). ROME, MEMIT, and GRACE do not contain pre-specified learnable parameters.

LLaMA 2-7b(-chat) LLaMA 3-8b-Instruct Gemma 1.1-7b-Instruct
Params. Time (sec./edit) # Params. Time (sec./edit) # Params. Time (sec./edit)

AdaLoRA 6,292,224 26.24 5,112,576 28.71 4,817,568 44.24
FT-L 45,088,768 9.73 58,720,256 10.84 75,497,472 11.95
ROME / 27.27 / 25.01 / 52.07
MEMIT / 20.01 / 25.35 / /
GRACE / 34.38 / 87.08 / 43.45
WISElight 5,636,096 58.00 7,340,032 65.77 9,437,184 20.20
ReFT 393,264 10.99 393,264 9.33 294,960 7.79
BaFT (Ours) 606,256 13.46 606,256 12.69 454,704 10.13

Batched Editing Performance. We further compare BaFT and ReFT against baselines that admit

batched data for editing, namely, AdaLoRA, FT-L, and MEMIT. LMs were edited on ZsRE dataset,
and batch sizes were set to 10 and 50 respectively.

We visualize the average of reliability, generality, and locality in Fig 3, and defer the complete
results to App D. The proposed BaFT again achieved a great balance between good edit success and
high locality, outperforming all baselines in 5 out of 6 scenarios. Surprisingly, when T = 10, LoRA

8

Published as a conference paper at ICLR 2025

and MEMIT were capable of benefiting from editing multiple samples in a batch than one by one.
We conjecture that learning multiple pieces of knowledge in a batch helps mitigate their overfitting
on any single knowledge, thereby weakened the forgetting problem to some extent. This finding
suggests that caching more knowledge and editing them in a batch can be beneficial in some cases.

Parameter Efficiency. Continual and Batched Editing involve learning more knowledge than in
Single Editing. As a result, achieving good editing performance while maintaining high parameter
efficiency is non-trivial, as using fewer parameters increases the workload of each parameter to
learn more knowledge. We note that while WISElight achieved comparable performance to BaFT,
its parameter efficiency was much lower: on LLaMA 2-7b, the edit success dropped from 0.77 (of
WISE) to 0.49 when editing 1000 pieces of knowledge, around 22% lower than BaFT which uses
10 times less parameters, as per Table 3. Similar trends can be found when making comparison
with LoRA in Batched Editing scenarios. In conclusion, BaFT is capable of achieving much better
parameter efficiency than existing methods.

(a) LLaMA 2-7b (b) LLaMA 3-8b-Instruct (c) Gemma 1.1-7b-Instruct

(d) LLaMA 2-7b (e) LLaMA 3-8b-Instruct (f) Gemma 1.1-7b-Instruct

Figure 3: Batched Editing Performance under sequence length. The first row uses batch size 10 and
the second row uses batch size 50.

3.4 ABLATION STUDY

We end this section with an ablation study on BaFT to showcase how each component contributes
to the final performance. Results from continually editing LLaMA 2-7b with 100 ZsRE knowl-
edge are presented in Tab 4. We note that introducing a coarse-grained subspace-level weighting
(ss-w) which assigns all bases with the same weight along did not benefit ReFT. Moreover, both
locality regularization (lr) and fine-grained basis-level weighting (ba-w) helped improve locality.
Remarkably, the basis-level weighting, as observed in all Single Editing scenarios, did not lead to
edit performance degradation. Locality regularization, while greatly improved the locality, induced
a trade-off with editing performance at the same time. Notably, the degradation is amplified when
the subspace-level weighting was used, echoing well with our theoretical analysis.

In conclusion, the proposed BaFT makes two improvements over ReFT. First, the weighting offers a
fine-grained level learning, leading to better locality without hurting editing performance. Second, a
fine-grained basis-level control allows one to regularize locality by altering only the important parts,
leading to a better empirical editing-locality trade-off.

4 RELATED WORKS

Existing editing methods mainly fall into two classes.

9

Published as a conference paper at ICLR 2025

Table 4: Component effects in BaFT.

Rel. Gen. Loc. Avg.

ReFT 0.76 0.71 0.84 0.77
+ss-w. 0.74 0.68 0.81 0.74
+ba-w 0.77 0.71 0.86 0.78

+ss-w&lr 0.67 0.61 0.99 0.76
BaFT 0.73 0.67 0.98 0.79

Internal Storage updates model parameters for the adapta-
tion. Early efforts involved fine-tuning a LLM directly but
suffered from severe forgetting of original knowledge (Wang
et al., 2023). For more precise editing, Zhu et al. (2020) im-
posed a relaxed ϖ2 norm constraint on the parameter updates,
and Huang et al. (2023); Dong et al. (2022a) limited the up-
dates to some specific feed-forward network (FFN) layers,
based on findings that knowledge is often stored therein (Dai
et al., 2021). For further refinement, the locate-and-edit

paradigm (Meng et al., 2022a;b) first identifies the layer storing a specific knowledge, and then
modifies its parameters in an analytic form or via least squared solution. On the other hand, PEFT
methods such as AdaLoRA (Zhang et al., 2023) also provided performance on par with locating-
based solutions (Wu et al., 2023; Wang et al., 2024b). However, these methods are parameter-based

and offer a similar level of control, in the sense that all inputs are altered in the same way. As a
result, they suffer from an equal level of editing-locality trade-off (Wang et al., 2023; 2024d). These
findings raised a question as to what extent knowledge can be accurately attributed to some specific

parameters (Hase et al., 2024). Inspired by the recent advance of improving a LLM’s general ability
such as commonsense reasoning by fine-tuning its representations (Wu et al., 2024), in this work we
show that updating representations at only a few locations can provide strong editing performance.
By pushing the fine-tuning towards a new basis-level, our BaFT achieved better fine-grained control
and superior editing-locality trade-off.

External Storage resorts to external memories without changing original parameters. Methods
include meta-learning based MEND (Mitchell et al., 2021) and its multi-task version InstructE-
dit (Zhang et al., 2024a), IKE (Zheng et al., 2023) and LTE (Jiang et al., 2024) that bear the simi-
larity to Retrieval-Augmented Generation (Gao et al., 2023; Wang et al., 2024a; Xu et al., 2024; Yu
et al., 2025; Liu et al., 2025b), augmentation based StableKE (Wei et al., 2024), and proxy model
based SERAC (Mitchell et al., 2022). Notwithstanding, these methods need large-scaled hard-to-

access data to retrieve from (e.g., IKE, LTE), or to train extra model on (e.g., MEND, InstructEdit,
SERAC). As a consequence, they have limited practicality and fall short on Continual Editing that
requires frequent updates (Wang et al., 2024d). Recently, methods specialized for Continual Editing
were proposed (Hartvigsen et al., 2024; Yu et al., 2024; Wang et al., 2024d). These approaches
injected lightweight adapters (Hartvigsen et al., 2024) or weight copies (Wang et al., 2024d) to
memorize new knowledge, and learned some gating mechanism to determine whether original or
new knowledge to use. Specifically, GRACE (Hartvigsen et al., 2024) maintained a code-book to
determine which adapter will be used based on representation similarity, and MELO (Yu et al., 2024)
used dynamic LoRA. WISE (Wang et al., 2024d) learned activation threshold to trigger new learned
weights. However, these methods have several limitations. First, they often show unsatisfactory
generalizability, as observed in Wang et al. (2024d) and confirmed in our experiments. Second, they
require prolonged training (and inference) time, due to the need of maintaining non-constant num-
bers of external memories. Finally, existing gating mechanisms cannot be learned when multiple
pieces of knowledge appear, making them incompatible for Batched Editing. In comparison, BaFT
learns a pre-specified set of parameters and lets bases weights play the role of gating. This design
makes BaFT suitable for both Continual and Batched Editing. Moreover, as editing and activation

are conducted in a representation subspace, BaFT is able to achieve good generalizability at better
parameter efficiency.

5 CONCLUSION AND FUTURE WORKS

In this work, we propose a new representation based method towards more efficient knowledge edit-
ing. Grounded in a theoretical analysis, we show that updating all selected representations with one
linear subspace in a predetermined manner imposes a tension in editing-locality trade-off. Subse-
quently, BaFT as a better solution is proposed. Given a representation, BaFT first computes a weight
for each basis that spans the linear subspace, then conducts a linear update along this basis direction.
Because bases weights are determined from the current representation with non-linear functions,
BaFT fine-tunes the representation in a non-linear way. This fine-grained control leads to better per-
formance on editing three representative LLMs in various scenarios, on par with or outperforming
the strongest baselines at much better parameter efficiency. As detailed in App A, there are some
limitations in this work, and we plan to work on in our future work.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

This work is supported in part by the US National Science Foundation under grant NSF IIS-2141037.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Genrich Belitskii et al. Matrix norms and their applications, volume 36. Birkhäuser, 2013.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A neural probabilistic language model.
Advances in neural information processing systems, 13, 2000.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Wei Chen, Zichen Miao, and Qiang Qiu. Inner product-based neural network similarity. Advances

in Neural Information Processing Systems, 36:73995–74020, 2023.

Wei Chen, Zichen Miao, and Qiang Qiu. Parameter-efficient tuning of large convolutional models.
arXiv preprint arXiv:2403.00269, 2024.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models. Transactions of the Association for Computational

Linguistics, 12:283–298, 2024.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models. arXiv

preprint arXiv:2104.08164, 2021.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu, Zhifang Sui, and Lei Li. Calibrating factual
knowledge in pretrained language models. arXiv preprint arXiv:2210.03329, 2022a.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu,
and Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models,
2024.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

11

https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961

Published as a conference paper at ICLR 2025

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen
Wang, and Haofen Wang. Retrieval-augmented generation for large language models: A survey.
arXiv preprint arXiv:2312.10997, 2, 2023.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
tion. arXiv preprint arXiv:2203.09509, 2022.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors. Advances in Neural

Information Processing Systems, 36, 2024.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing?
surprising differences in causality-based localization vs. knowledge editing in language models.
Advances in Neural Information Processing Systems, 36, 2024.

Evan Hernandez, Belinda Z Li, and Jacob Andreas. Inspecting and editing knowledge representa-
tions in language models. arXiv preprint arXiv:2304.00740, 2023.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790–2799, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron. arXiv preprint arXiv:2301.09785, 2023.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM

Computing Surveys, 55(12):1–38, 2023.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong, Xingshan Zeng, Jiahui Gao, Liangyou Li,
Xin Jiang, Lifeng Shang, Ruiming Tang, et al. Learning to edit: Aligning llms with knowledge
editing. arXiv preprint arXiv:2402.11905, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Alex Lamb, Anirudh Goyal, Ying Zhang, Saizheng Zhang, Aaron Courville, and Yoshua Bengio.
Professor forcing: A new algorithm for training recurrent networks, 2016.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. arXiv preprint

arXiv:1910.13461, 2019.

Tianci Liu, Zihan Dong, Linjun Zhang, Haoyu Wang, and Jing Gao. Mitigating heterogeneous token
overfitting in llm knowledge editing. arXiv preprint arXiv:2502.00602, 2025a.

Tianci Liu, Haoxiang Jiang, Tianze Wang, Ran Xu, Yue Yu, Linjun Zhang, Tuo Zhao, and Haoyu
Wang. Roserag: Robust retrieval-augmented generation with small-scale llms via margin-aware
preference optimization. arXiv preprint arXiv:2502.10993, 2025b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual asso-
ciations in gpt. Advances in Neural Information Processing Systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

12

Published as a conference paper at ICLR 2025

Zichen Miao, Ze Wang, Wei Chen, and Qiang Qiu. Continual learning with filter atom swapping. In
International Conference on Learning Representations, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D Manning. Fast model
editing at scale. arXiv preprint arXiv:2110.11309, 2021.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D Manning, and Chelsea Finn. Memory-
based model editing at scale. In International Conference on Machine Learning, pp. 15817–
15831, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. arXiv preprint arXiv:2311.03658, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Abigail See, Aneesh Pappu, Rohun Saxena, Akhila Yerukola, and Christopher D Manning. Do
massively pretrained language models make better storytellers? arXiv preprint arXiv:1909.10705,
2019.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer,
2017.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, et al.
Gemma: Open models based on gemini research and technology, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
!ukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-

tion processing systems, 30, 2017.

Haoyu Wang, Ruirui Li, Haoming Jiang, Jinjin Tian, Zhengyang Wang, Chen Luo, Xianfeng
Tang, Monica Cheng, Tuo Zhao, and Jing Gao. Blendfilter: Advancing retrieval-augmented
large language models via query generation blending and knowledge filtering. arXiv preprint

arXiv:2402.11129, 2024a.

Haoyu Wang, Tianci Liu, Ruirui Li, Monica Cheng, Tuo Zhao, and Jing Gao. Roselora: Row and
column-wise sparse low-rank adaptation of pre-trained language model for knowledge editing and
fine-tuning. arXiv preprint arXiv:2406.10777, 2024b.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2024c.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models. arXiv preprint arXiv:2405.14768, 2024d.

13

Published as a conference paper at ICLR 2025

Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi, Yunzhi Yao, Ziwen Xu, Mengru Wang,
Shengyu Mao, Xiaohan Wang, Siyuan Cheng, Kangwei Liu, Yuansheng Ni, Guozhou Zheng,
and Huajun Chen. Easyedit: An easy-to-use knowledge editing framework for large language
models, 2024e.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, et al. Knowledge editing for
large language models: A survey. arXiv preprint arXiv:2310.16218, 2023.

Zihao Wei, Liang Pang, Hanxing Ding, Jingcheng Deng, Huawei Shen, and Xueqi Cheng. Stable
knowledge editing in large language models. arXiv preprint arXiv:2402.13048, 2024.

Suhang Wu, Minlong Peng, Yue Chen, Jinsong Su, and Mingming Sun. Eva-kellm: A new bench-
mark for evaluating knowledge editing of llms. arXiv preprint arXiv:2308.09954, 2023.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, Atticus Geiger, Dan Jurafsky, Christopher D Man-
ning, and Christopher Potts. Reft: Representation finetuning for language models. arXiv preprint

arXiv:2404.03592, 2024.

Ran Xu, Hui Liu, Sreyashi Nag, Zhenwei Dai, Yaochen Xie, Xianfeng Tang, Chen Luo, Yang Li,
Joyce C Ho, Carl Yang, et al. Simrag: Self-improving retrieval-augmented generation for adapting
large language models to specialized domains. arXiv preprint arXiv:2410.17952, 2024.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities. arXiv

preprint arXiv:2305.13172, 2023.

Lang Yu, Qin Chen, Jie Zhou, and Liang He. Melo: Enhancing model editing with neuron-indexed
dynamic lora. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
19449–19457, 2024.

Yue Yu, Wei Ping, Zihan Liu, Boxin Wang, Jiaxuan You, Chao Zhang, Mohammad Shoeybi, and
Bryan Catanzaro. Rankrag: Unifying context ranking with retrieval-augmented generation in
llms. Advances in Neural Information Processing Systems, 37:121156–121184, 2025.

Ningyu Zhang, Bozhong Tian, Siyuan Cheng, Xiaozhuan Liang, Yi Hu, Kouying Xue, Yanjie Gou,
Xi Chen, and Huajun Chen. Instructedit: Instruction-based knowledge editing for large language
models. arXiv preprint arXiv:2402.16123, 2024a.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, et al. A comprehensive study of knowledge editing
for large language models. arXiv preprint arXiv:2401.01286, 2024b.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In International Con-

ference on Learning Representations, 2023.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning? arXiv preprint arXiv:2305.12740, 2023.

Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan,
Lifang He, et al. A comprehensive survey on pretrained foundation models: A history from bert
to chatgpt. arXiv preprint arXiv:2302.09419, 2023.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh Bhojanapalli, Daliang Li, Felix Yu, and
Sanjiv Kumar. Modifying memories in transformer models. arXiv preprint arXiv:2012.00363,
2020.

14

Published as a conference paper at ICLR 2025

A MORE DISCUSSIONS AND LIMITATIONS ON BAFT

In this section we provide more discussions on the proposed BaFT. Fig 4 demonstrates the workflow
of our method. There are also some limitations in this work, and we plan to explore in the future.

!!

…

!"

"

<BOS> text
LLM (froze) forward

1

$

BaFT Framework

Representations

Bases weights

Edited
representations

W

Subspace

BaFT update

ReFT:
const. weights

…

……

Edit

Figure 4: BaFT learns basis-level weights to edit different representations (highlighted in different
colors). When using constant weights, BaFT reduces to ReFT.

First, The empirical success of BaFT was mainly established on standard benchmarks EasyEdit
(Wang et al., 2024e), which may not be sufficient to reflect the diverse real-world applications.
Second, BaFT as a generalization of ReFT requires hyper-parameter tuning to determine proper
positions and layers to add interventions. Our choice was selected based on recommended values
from ReFT (Wu et al., 2024). We plan to explore automating this process by imposing proper
sparsity constraints on weights in our future work. Third, the promising performance of BaFT
demonstrates its potential for efficient knowledge editing. However, it is still an open question if
representation-based method is capable of fitting any editing (or updates) learnable for parameter-
based methods. In other words, it is unknown if there is some knowledge that can be learned by
parameter-based method but is unlearnable by updating representations. We plan to explore this
direction in our future work.

B OMITTED PROOF

We include omitted proof here.

B.1 PROOF OF THM 2.3

We start with restating the two assumptions and the theorem.
Assumption B.1. Let text x encodes s, r, text y generated by the LM will convey o if its interme-
diate representation takes some targeted value t.
Assumption B.2. For any h carrying some high-level knowledge, there exists a positive ϑ(h)-radius
ϖ2 ball B(h, ϑ(h)) around h such that any h↗ → B(h, ϑ(h)) conveys the same knowledge, we refer
to B(h, ϑ(h)) as a stable-ball of h.
Theorem B.3. When finetuning a LM, ReFT learns to update the old representation h0 to targeted

t = !(h0). If ReFT maintains good generality such that ↘ h → B(h0, ϑ(h0)),

≃!(h)↑ !(h0)≃ = ≃!(h)↑ t≃ < ϑ(t),

where ≃ · ≃ denote the ϖ2 norm. Then for any irrelevant input hir with a small stable-ball radius

ϑ(hir) <
≃t↑ h0≃ ↑ (ϑ(t) + ϑ(h0))

ϑ(t) + 2ϑ(h0)
ϑ(h0),

and is not too far from h0 such that

≃hir ↑ h0≃ = ϑ(hir) + ϑ(h0),

ReFT will output !(hir) /→ B(hir, ϑ(hir)) and break its locality guarantee.

15

Published as a conference paper at ICLR 2025

Proof. First, since old and new knowledge associates with different objects o, by Asmp 2.2, h0 and
t must have non-overlapped stable-ball. Otherwise, we can find

h → B(h0, ϑ(h0)) ⇒B(t, ϑ(t)),

that preserves the knowledge of both h0 and t that are different, which is impossible. This implies

≃t↑ h0≃ ⇑ ϑ(t) + ϑ(h0).

In addition, by definition of ReFT, we have

t↑ h0 = !(h0)↑ h0

= h0 +R
↑(Ah0 + b)↑ h0

= R
↑(A↑R)h0 +R

↑b

(a)
= Hh0 +R

↑b,

where in the last step (a), we defined H ↭ R
↑(A↑R) for simplicity.

Next, according to the generality condition, for any h → B(h0, ϑ(h0)), we have

≃!(h)↑ !(h0)≃
=≃(I+R

↑(A↑R))(h↑ h0)≃
=≃(I+H)(h↑ h0)≃
<ϑ(t).

Since h can take any direction, we know h↑h0 can be an arbitrary vector that has norm no greater
than ϑ(h0). Let h↑ h0 takes the direction of the first right singular vector, then

≃(I+H)(h↑ h0)≃ = ↼max(I+H)≃h↑ h0≃ < ϑ(t).

This implies that the operator norm of I+H, denoted by ↼max, is upper bounded by

↼max(I+H) ⇓ ϑ(t)

ϑ(h0)
.

By triangle inequality of the operator norm (Belitskii et al., 2013), we further know

↼max(H) = ↼max(I+H↑ I) ⇓ ↼max(I+H) + ↼max(I) ⇓
ϑ(t)

ϑ(h0)
+ 1.

Now, for any irrelevant hir, we have

≃!(hir)↑ hir≃
=≃Hhir +R

↑b≃
(a)
=≃Hhir + (t↑ h0)↑Hh0≃
=≃H(hir ↑ h0) + (t↑ h0)≃
(b)
⇑
∣∣≃(t↑ h0)≃ ↑ ≃H(hir ↑ h0)≃

∣∣, (†)

where (a) substitutes

t↑ h0 = Hh0 +R
↑b,

and (b) holds from the reverse triangle inequality.

When the irrelevant hir has a small stable-ball radius,

ϑ(hir) <
≃t↑ h0≃ ↑ (ϑ(t) + ϑ(h0))

2ϑ(h0) + ϑ(t)
ϑ(h0),

16

Published as a conference paper at ICLR 2025

and is close to h0 such that

≃hir ↑ h0≃ = ϑ(hir) + ϑ(h0),

we have

≃H(hir ↑ h0)≃ ⇓ ↼max(H)≃hir ↑ h0≃

⇓
(

ϑ(t)

ϑ(h0)
+ 1

)
(ϑ(hir) + ϑ(h0))

⇓
(
ϑ(t) + ϑ(h0)

ϑ(h0)

)

⇔
(
ϑ(h0)

≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t))

2ϑ(h0) + ϑ(t)
+ ϑ(h0)

)

(a)
<

(
ϑ(t) + ϑ(h0)

ϑ(h0)

)

⇔
(
ϑ(h0)

≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t))

ϑ(h0) + ϑ(t)
+ ϑ(h0)

)

= ≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t))

+ (ϑ(h0) + ϑ(t))

= ≃t↑ h0≃

where (a) holds from the fact that ϑ(h0) > 0, so dropping one ϑ(h0) in the denominator provides a
valid upper bound. Therefore, we can safely remove the absolute value function in Eqn (†) and get

≃!(hir)↑ hir≃ =≃Hhir +R
↑b≃

⇑
∣∣≃t↑ h0≃ ↑ ≃H(hir ↑ h0)≃

∣∣

= ≃t↑ h0≃ ↑ ≃H(hir ↑ h0)≃
⇑≃t↑ h0≃ ↑ ↼max(H)≃hir ↑ h0≃

⇑≃t↑ h0≃ ↑
(

ϑ(t)

ϑ(h0)
+ 1

)
(ϑ(hir) + ϑ(h0))

⇑≃t↑ h0≃ ↑
(
ϑ(t) + ϑ(h0)

ϑ(h0)

)

⇔
(
≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t))

2ϑ(h0) + ϑ(t)
ϑ(h0) + ϑ(h0)

)

=≃t↑ h0≃ ↑
(
ϑ(t) + ϑ(h0)

ϑ(h0)

)

⇔
(
≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t)) + 2ϑ(h0) + ϑ(t)

2ϑ(h0) + ϑ(t)
ϑ(h0)

)

=≃t↑ h0≃ ↑ (ϑ(t) + ϑ(h0))

(
≃t↑ h0≃+ ϑ(h0)

2ϑ(h0) + ϑ(t)

)
.

Finally, it is easy to verify that this term is an upper bound of ϑ(hir), since

17

Published as a conference paper at ICLR 2025

≃!(hir)↑ hir≃ ↑ ϑ(hir) =≃Hhir +R
↑b≃ ↑ ϑ(hir)

(a)
⇑

(
≃t↑ h0≃ ↑ (ϑ(t) + ϑ(h0))

(
≃t↑ h0≃+ ϑ(h0)

2ϑ(h0) + ϑ(t)

))

↑
(
≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t))

2ϑ(h0) + ϑ(t)
ϑ(h0)

)

=
1

2ϑ(h0) + ϑ(t)

(
≃t↑ h0≃ (2ϑ(h0) + ϑ(t))

↑ (≃t↑ h0≃+ ϑ(h0))(ϑ(h0) + ϑ(t))

↑ (≃t↑ h0≃ ↑ (ϑ(h0) + ϑ(t))) ϑ(h0)
)

=
1

2ϑ(h0) + ϑ(t)

(
≃t↑ h0≃ (2ϑ(h0) + ϑ(t)↑ ϑ(h0)↑ ϑ(t))

↑ (ϑ(h0)(ϑ(h0) + ϑ(t))↑ ϑ(h0)(ϑ(h0) + ϑ(t)))
)

= 0,

where (a) applies the lower bound to the first term, and the upper bound to the second term. In
conclusion, we have

≃!(hir)↑ hir≃ ⇑ ϑ(hir),

i.e., !(hir) /→ B(hir, ϑ(hir). This completes our proof.

B.2 MORE DISCUSSIONS ON ASMP 2.1.

Our Thm 2.3 is built upon Asmp 2.1. Informally, It assumes that the knowledge can be gener-
ated if representation takes some specific value. While this assumption may not hold especially in
challenging scenarios (see App A for more discussions), it is reasonable for Thm 2.3.

Particularly, The goal of Thm 2.3 is to reveal how linearity in ReFT can inevitably hurt locality,
even if it appears successful in editing. Therefore, our focus is on cases where ReFT is capable

of conducting the edits. The existence of such cases are confirmed by our experiments, and by its
effectiveness in diverse post-training tasks as demonstrated in Wu et al. (2024). Presuming such
a success, given that ReFT can only update representations, Asmp 2.1 assumes that by updating
representations to some targeted (possibly unknown) value, ReFT steers output y to convey the
desired knowledge.

B.3 PROOF OF LEM 2.4

Lemma B.4. Let R = [r1; . . . ; rr],A = [a1, . . . ,ar], b↑ = (b1, . . . , bk), and W(h) =
diag(w1(h), . . . , wr(h)). Then BaFT

!(h) = h+
r∑

k=1

wk(h)rk(a
↑
k h+ bk ↑ r↑k h),

can be expressed in a matrix form

!(h) = h+R
↑
W(h) (Ah+ b↑R) .

When using constant weighting W(h) = I, BaFT becomes to ReFT. Otherwise, rows of WR are

not orthonormal, making BaFT and ReFT nonequivalent.

18

Published as a conference paper at ICLR 2025

Table 5: Hyper-parameters of different methods. For baselines, we only provided settings that were
different from Wang et al. (2024e).

LLaMA 2-7b(-chat) LLaMA 3-8b-Instruct Gemma 1.1-7b-Instruct
HParams. Value Value Value

FT-L / Following Wang et al. (2024e)’s recommendation for LLaMA 2.
ROME / Following Wang et al. (2024e)’s recommendation for LLaMA 2.
MEMIT / Following Wang et al. (2024e)’s recommendation for LLaMA 2. /
AdaLoRA Maximum Steps 70 for Single and Continual Editing; 200 for Batched Editing

GRACE Maximum Steps 100 250 100
Lay. to Interven 27 27 24

WISElight Param. Updates Restrict the original WISE logic to a randomly selected 1/8 area.

BaFT & ReFT

Subspace Rank 12
Pos. to Intervene Last 3 of Input + Output
Lay. to Intervene 9;18;24;28 9;18;24;28 18;20;22;24

Learning Rate 3e-4 for Single and Continual Editing; 1e-4 for Batched Editing
Maximum Steps 40 for Single and Continual Editing; 70 for Batched Editing

Locality Reg. (BaFT) ϱ = 0.01, ς = 0.05, φ = 0.02 ϱ = 0.01, ς = 0.1, φ = 0.05 ϱ = 0.01, ς = 0.1, φ = 0.05
Maximum Steps 40 for Single and Continual Editing; 70 for Batched Editing

Proof. The derivations essentially come from the fact that matrix product can be expressed by sum-
mation of outer products. In particular, we have

!(h) = h+
r∑

k=1

wk(h)rk(a
↑
k h+ bk ↑ r↑k h)

= h+

(
r∑

k=1

wk(h)rka
↑
k ↑

r∑

k=1

wk(h)rkr
↑
k

)
h+

r∑

k=1

wk(h)rkbk

= h+
(
R

↑
W(h)A↑R

↑
W(h)R

)
h+R

↑
W(h)b

= h+R
↑
W(h) ((A↑R)h+ b)

= h+R
↑
W(h) (Ah+ b↑R) ,

when W(h) = I takes the identity matrix, BaFT reduces to ReFT. This completes the proof.

C IMPLEMENTATION DETAILS

We provide more implementation details about different methods.

Throughout all experiments, BaFT used a logistic regression for wk(h) for all k → [r]. ReFT was
implemented as a special case of BaFT with constant weight W = I. Load balancing loss and
the optional Locality regularization were removed as they were defined for weights. In addition,
BaFT and ReFT used the same optimizer AdamW (Loshchilov & Hutter, 2019) and learning rate.
An early stopping was performed if the training loss is smaller than a pre-specified threshold 0.01.
We also added this early stopping to AdaLoRA after observing a similar improvement. We kept
encountering numeric issues when running MEMIT on Gemma, so we omitted these results.. Other
hyper-parameters are reported in Tab 5.

D MORE EXPERIMENT RESULTS

D.1 COMPLETE BATCHED CONTINUAL EDITING RESULTS

Here we report the complete Batched Editing results in Tab 6 and Tab 7 using batch size 10 and 50
respectively. The averaged result are shown in Fig 3. We noted that such a batched setting makes
knowledge editing resemble more conventional continual learning (Miao et al., 2021; Chen et al.,
2023; Wang et al., 2024c).

19

Published as a conference paper at ICLR 2025

Table 6: Batched Editing performance on ZsRE dataset, evaluated after conducting T times of
editing with batch size 10 sequentially. Best Avg. results are in bold and second best are underlined.

T = 1 T = 10 T = 100

LLaMA 2-7b
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

MEMIT 0.89 0.84 0.97 0.90 0.87 0.82 0.93 0.87 0.04 0.04 0.02 0.03
FT-L 0.43 0.42 0.87 0.57 0.12 0.10 0.17 0.13 0.03 0.03 0.00 0.02
AdaLoRA 1.00 0.85 0.88 0.91 0.95 0.82 0.87 0.88 0.46 0.45 0.77 0.56
ReFT 0.94 0.86 0.86 0.89 0.92 0.83 0.86 0.87 0.64 0.60 0.76 0.67
BaFT (Ours) 0.93 0.84 0.95 0.91 0.92 0.83 0.95 0.90 0.59 0.55 0.98 0.71

LLaMA 3-8b-Instruct
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

MEMIT 0.91 0.85 0.96 0.91 0.84 0.78 0.87 0.83 0.06 0.06 0.03 0.05
FT-L 0.33 0.32 0.53 0.39 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01
AdaLoRA 1.00 0.88 0.76 0.88 0.94 0.83 0.75 0.84 0.34 0.34 0.75 0.48
ReFT 0.92 0.82 0.65 0.80 0.89 0.78 0.64 0.77 0.46 0.43 0.44 0.44
BaFT (Ours) 0.92 0.82 0.83 0.86 0.90 0.78 0.85 0.84 0.43 0.40 0.95 0.59

Gemma 1.1-7b-Instruct
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

FT-L 0.04 0.04 0.02 0.03 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01
AdaLoRA 1.00 0.87 0.83 0.90 0.93 0.81 0.82 0.85 0.34 0.34 0.59 0.42
ReFT 0.90 0.75 0.86 0.84 0.88 0.72 0.84 0.81 0.48 0.44 0.69 0.54
BaFT (Ours) 0.90 0.74 0.91 0.85 0.89 0.73 0.90 0.84 0.45 0.41 0.87 0.58

Table 7: Batched Editing performance on ZsRE dataset, evaluated after conducting T times of
editing with batch size 50 sequentially. Best Avg. results are in bold.

T = 1 T = 10 T = 20

LLaMA 2-7b
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

MEMIT 0.87 0.82 0.91 0.87 0.45 0.43 0.46 0.45 0.03 0.03 0.02 0.03
FT-L 0.39 0.39 0.63 0.47 0.13 0.10 0.07 0.10 0.07 0.05 0.02 0.05
AdaLoRA 1.00 0.86 0.76 0.87 0.78 0.69 0.79 0.75 0.51 0.51 0.76 0.59
ReFT 0.90 0.77 0.85 0.84 0.80 0.69 0.82 0.77 0.60 0.56 0.74 0.63
BaFT (Ours) 0.92 0.78 0.89 0.86 0.80 0.69 0.90 0.80 0.62 0.57 0.92 0.70

LLaMA 3-8b-Instruct
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

MEMIT 0.88 0.83 0.89 0.87 0.45 0.42 0.46 0.44 0.00 0.00 0.04 0.01
FT-L 0.32 0.29 0.42 0.34 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
AdaLoRA 1.00 0.83 0.67 0.83 0.74 0.63 0.63 0.67 0.42 0.40 0.69 0.50
ReFT 0.92 0.74 0.52 0.73 0.75 0.61 0.49 0.62 0.48 0.42 0.43 0.44
BaFT (Ours) 0.92 0.75 0.62 0.76 0.75 0.61 0.72 0.69 0.49 0.43 0.78 0.57

Gemma 1.1-7b-Instruct
Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

FT-L 0.02 0.02 0.01 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
AdaLoRA 0.13 0.08 0.02 0.08 0.08 0.06 0.02 0.05 0.03 0.03 0.00 0.02
ReFT 0.88 0.68 0.79 0.78 0.71 0.57 0.72 0.67 0.48 0.42 0.61 0.50
BaFT (Ours) 0.87 0.68 0.87 0.81 0.72 0.57 0.83 0.71 0.50 0.45 0.81 0.59

20

Published as a conference paper at ICLR 2025

D.2 DOWNSTREAM LOCALITY PERFORMANCE

In this section we study how different editing methods affect the LLM’s performance on unrelated
downstream task, as an additional measure of locality. To this end, we follow Yao et al. (2023)
and evaluate how the LLM’s ability of answering PIQA questions from Bisk et al. (2020) that are
unrelated to the editing. The correctness is measured by whether the LLM chooses the correct
answer according to its perplexity. For more details we refer the readers to Yao et al. (2023).

Table 8: Downstream task (PIQA) performance after being edited with 100 ZsRE knowledge. LLM
uses LLaMA-2.

Base AdaLoRA FT-L ROME MEMIT MELO WISElight ReFT BaFT
PIQA Accu. 0.77 0.48 0.75 0.5 0.52 0.77 0.77 0.77 0.77

D.3 MORE DISCUSSION ON BAFT VS WISE

In our experiment, we note that BaFT achieves better parameter efficiency and speeds, at a cost of
slightly lower performance, resulting in an efficiency-effectiveness trade-off. Notably, this efficiency
of BaFT can be valuable in applications that require frequent knowledge updates.

In order to improve the effectiveness of BaFT, one possible solution is to use more parameters,
given that BaFT parameter efficiency is already much higher than state-of-the-art baseline WISE.
As discussed in Sec 3.3, when WISE’s parameters number is reduced from WISEfull WISElight,
its performance degrades drastically. In comparison, BaFT uses even much less parameters, but
maintains a highly comparable performance. Given this, we expect that using better training hyper-
parameters such as learning rate to make mild performance improvement, and more parameters are
needed.

To validate this, we tried to add intervention to all layers (a common practice in ReFT (Wu et al.,
2024)) and increase the subspace rank to 16. This made BaFT performance on editing LLaMA-2
with 100 ZsRE knowledge increased from 0.80 (Rel: 0.73, Gen: 0.68, Loc: 0.98) to 0.82 (Rel: 0.77,
Gen: 0.73, Loc: 0.95). However, we noted that going higher subspace rank didn’t help.

Therefore, we conjecture that to build larger BaFT (and ReFT), we need to incorporate spar-
sity on basis activation as well. This can help alleviate unintentional parameter updates as in
GRACE (Hartvigsen et al., 2024) and WISE (Wang et al., 2024d). In addition, such a sparsity
opens the door of automating position selections: as when all bases are inactivated, BaFT makes
no updates on the representation, which is equivalent to dropping the position from the fine-tuning
process. We plan to explore this direction in our future work.

21

	Introduction
	Proposed Method
	Preliminaries
	Editing Knowledge by Fine-tuning Representations
	BaFT: Basis-Level Representation Fine-Tuning
	Training Objective of BaFT

	Experiment
	Experiment Setup
	Single Editing Performance
	Continual and Batched Editing Performance.
	Ablation Study

	Related Works
	Conclusion and Future Works
	More Discussions and Limitations on BaFT
	Omitted Proof
	Proof of Thm 2.3
	More discussions on Asmp 2.1.
	Proof of Lem 2.4

	Implementation Details
	More Experiment Results
	Complete Batched Continual Editing Results
	Downstream Locality Performance
	More discussion on BaFT vs WISE

