
Biomedical Engineering Advances 9 (2025) 100156 

A
2
n

 

Contents lists available at ScienceDirect

Biomedical Engineering Advances

journal homepage: www.journals.elsevier.com/biomedical-engineering-advances  

Decoding motor execution and motor imagery from EEG with deep learning 

and source localization
Sina Makhdoomi Kaviri , Ramana Vinjamuri ∗

Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250, USA

A R T I C L E  I N F O

Keywords:
Beamforming
Brain–computer interface
ResNet CNN
Source localization
Inverse problem

 A B S T R A C T

The use of noninvasive imaging techniques has become pivotal in understanding human brain functionality. 
While modalities like MEG and fMRI offer excellent spatial resolution, their limited temporal resolution, often 
measured in seconds, restricts their application in real-time brain activity monitoring. In contrast, EEG provides 
superior temporal resolution, making it ideal for real-time applications in brain–computer interface systems. 
In this study, we combined deep learning with source localization to classify two motor task types: motor 
execution and motor imagery. For motor imagery tasks—left hand, right hand, both feet, and tongue—we 
transformed EEG signals into cortical activity maps using Minimum Norm Estimation (MNE), dipole fitting, 
and beamforming. These were analyzed with a custom ResNet CNN, where beamforming achieved the highest 
accuracy of 99.15%, outperforming most traditional methods. For motor execution involving six types of reach-
and-grasp tasks, beamforming achieved 90.83% accuracy compared to 56.39% from a sensor domain approach 
(ICA + PSD + TSCR-Net). These results underscore the significant advantages of integrating source localization 
with deep learning for EEG-based motor task classification, demonstrating that source localization techniques 
greatly enhance classification accuracy compared to sensor domain approaches.
 

 

 

 

 

 

1. Introduction

Electroencephalographic (EEG) signals are essential for brain–com-
puter interfaces (BCIs), providing a non-muscular communication chan-
nel that particularly benefits individuals with severe neuromuscular 
disorders such as amyotrophic lateral sclerosis, brainstem stroke, and 
spinal cord injury. Advances in understanding brain function, along 
with improvements in computational capabilities and increasing needs 
in the disability community, have driven BCI research toward the de-
velopment of innovative communication and control technologies [1]. 
Despite this progress, EEG research continues to face significant chal-
lenges due to the complexity of neurophysiological data and the lack 
of standardized analysis methods, underscoring the need for unified ap-
proaches [2]. Furthermore, the inherently noisy, low spatial resolution, 
and nonstationary characteristics of EEG signals make single-trial EEG 
classification difficult, thereby emphasizing the necessity for optimized 
classifier performance [3].

Several approaches have been developed to enhance motor imagery 
(MI) and motor execution (ME) classification. Recent work has explored 
filter bank common spatial pattern (FBCSP) with spiking neural net-
works (SNN) to improve multiple MI classification accuracy, achieving 
up to 90.09% accuracy [4]. A diverse feature fusion approach using 
brain functional connectivity (BFC) and FBCSP was also introduced to 
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enhance MI classification, achieving an accuracy of 83.81% [5]. More-
over, a motor imagery-based virtual car control strategy demonstrated
effective control with four MI classes, highlighting the feasibility of 
real-world MI-based applications [6]. Hybrid approaches combining 
EEG with functional near-infrared spectroscopy (fNIRS) have shown
improvements of 5%–10% in MI classification accuracy by leveraging 
multimodal signals [7]. Additionally, deep learning models such as an 
improved dilation CapsuleNet (ID-CapsuleNet) have been explored for 
MI-based BCI, achieving high classification accuracies across multiple 
datasets [8]. These advancements highlight the need for further im-
provements in feature extraction, classification models, and multimodal
fusion techniques for MI and ME decoding.

To fully utilize the potential of EEG in BCIs, researchers have ex-
plored various applications. Motor behavior studies have differentiated 
sustained and movement phase-related EEG amplitudes, revealing dis-
tinct networks for different motor functions [9]. EEG has also predicted 
driving actions for advanced driver-assistance systems [10]. Studies
on individuals with spinal cord injury showed potential for EEG-based 
BCIs in regaining motor functions [11]. Systems neuro-engineering is
evolving to integrate neuroimaging, neural interfacing, and neuromod-
ulation for advanced neuro-devices [12]. Electrophysiological source
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imaging (ESI) with multimodal neuroimaging improves brain activity 
mapping [13]. Recent BCI advancements include controlling prosthetic 
limbs with multiple degrees of freedom in Ref. [14] and using condi-
tional Generative Adversarial Networks (cGANs) for generating target 
and non-target images from EEG epochs [15].

To address these challenges, researchers have explored various clas-
sification algorithms for EEG analysis. A review reveals diverse ap-
proaches, including linear classifiers, neural networks, and classifier 
combinations. Support Vector Machines (SVMs) show efficacy in syn-
chronous BCIs due to their regularization properties, though stan-
dardized comparisons between classifiers are lacking. General-purpose 
BCI systems like BCI2000 and Open-ViBE facilitate standardized test-
ing [16]. Incorporating goal-directed movements in BCI applications
enhances movement intention classification, using motor and parietal
area neural activity [17]. Moreover, deep learning methods, particu-
larly convolutional and recurrent learning, have improved brain state
classification and diagnosis of conditions like Alzheimer’s disease [18]. 
A review of 154 papers on DL applied to EEG data highlighted trends, 
challenges, and the advantages of using DL for EEG classification, while
emphasizing the need for large datasets to fully exploit DL’s poten-
tial [19]. In response to the need for high-resolution spatiotemporal 
neuroimaging, a novel framework for fMRI–EEG integrated cortical
source imaging is presented, enhancing source localization and wave-
form estimation [20]. Integrating deep learning with EEG has revolu-
tionized brain activity analysis, improving diagnostic and therapeutic 
interventions [21].

Decoding upper limb movements using low-frequency EEG signals 
has achieved significant classification accuracies, with some studies re-
porting over 90%, crucial for developing non-invasive control strategies
for neuro-prostheses or robotic arms [22]. Neural interface systems 
have allowed individuals with tetraplegia to control robotic arms for
complex movements, showing the potential of BCIs [23]. Deep learning
and time-frequency analysis of EEG signals have reached high accuracy,
with one study achieving 90.3% accuracy in distinguishing premove-
ment from resting phases and 62.47% in discriminating different motor 
preparations [24]. A deep CNN approach showed up to 90.50% accu-
racy in classifying hand sub-movements versus resting state, identifying
key cortical areas involved in motor preparation [25].

In this paper, we introduce a novel approach for classifying motor 
tasks using EEG data from two distinct datasets: one focused on four-
class classification involving left hand, right hand, both feet, and tongue
movements, and another concentrating on six reach-and-grasp tasks. 
Our methodology leverages advanced source localization techniques, 
including MNE, dipole fitting, and beamforming, to enhance the spatial
resolution of EEG signals. Additionally, we developed a customized 
ResNet CNN architecture designed to effectively capture and classify 
the spatial patterns present in source-localized EEG data.

The application of source localization significantly improved the 
classification accuracy by transforming EEG data from the sensor to 
the source domain, providing a more precise representation of cortical
activity. For instance, this approach improved classification accuracies
for reach and grasp motor tasks, achieving an average test accuracy 
of 90.83% with beamforming, 84.10% with MNE, and 81.32% with
dipole fitting, compared to 56.39% without source localization. Beam-
forming, in particular, enhanced precision from 41.79% in the sensor
domain to between 85.00% and 98.55% in the source domain. Our
customized ResNet CNN model achieved F1-scores of 90.85% with 
source localization, compared to significantly lower scores in the sensor
domain, highlighting the critical role of accurate spatial mapping in
EEG analysis.

The main contributions of this paper include:

(i) Comprehensive methodology: An integrated approach com-
bining advanced preprocessing, source localization, and deep 
learning techniques, significantly enhancing classification ac-
curacy and reliability for both four-class and reach-and-grasp
tasks.
2 
(ii) Efficacy in source localization: The demonstration of multiple
source localization techniques (MNE, dipole fitting, beamform-
ing) to reconstruct cortical sources, providing a detailed and
spatially accurate view of cortical activity, which is crucial for 
decoding complex motor tasks.

(iii) Robust ResNet CNN architecture: A customized ResNet CNN 
architecture incorporating sensitivity analysis and early stopping 
mechanisms, improving robustness and accuracy in classifying 
motor tasks across different EEG datasets.

The rest of the paper is organized as follows: Section 2 describes 
the Methodology, including the system description, data details, prepro-
cessing, source localization, ResNet CNN architecture, system setup, 
and the advanced feature extraction and classification methodology.
Section 3 presents the Results and Discussions, detailing the classification 
performance with and without source localization, and the effectiveness 
of different source localization techniques in enhancing EEG anal-
ysis. Section 4 concludes the paper, summarizing key findings and 
suggesting directions for future research.

2. Methodology

2.1. System description

This study focuses on classifying motor tasks using EEG data by in-
tegrating advanced signal processing and deep learning techniques. The 
overall framework is illustrated in Fig.  1. EEG data were recorded from
subjects performing grasp and motor imagery tasks, with source local-
ization methods applied to improve spatial resolution. The extracted
cortical activity features were subsequently classified using a deep 
learning framework. For the six-task grasp classification, EEG signals 
were recorded using a high-density 32-electrode EEG cap, capturing
neural activity from motor-related brain regions. Each trial lasted for
8 s, consisting of a pre-movement phase followed by a reach-grasp-
hold phase. The preprocessing pipeline included band-pass filtering
(0.01–200 Hz) for noise reduction, a 50 Hz notch filter to remove 
power line interference, and downsampling to 256 Hz for computa-
tional efficiency. To reconstruct cortical sources associated with motor 
execution, source localization techniques such as MNE, dipole fitting, 
and beamforming were applied. The extracted features were fed into a 
ResNet CNN for classification, as illustrated in Fig.  1.

For the four-task motor imagery classification, the experimental 
design followed a structured trial sequence, as depicted in Fig.  2. Each 
trial began with an auditory beep, followed by a fixation cross at 2 s 
and a cue at 3 s, prompting the subject to perform a motor imagery 
task from 3 to 6 s. The trial concluded with a break period between 
6 and 8 s. EEG signals were recorded using 22 electrodes placed over
motor-related cortical areas, capturing neural activity specific to left 
hand, right hand, feet, and tongue imagery tasks. Preprocessing steps 
included constructing the forward model, computing the lead field 
matrix, and selecting relevant time windows for solving the inverse
problem. These spatially enhanced features were then classified using a 
ResNet CNN. This methodology integrates structured EEG acquisition, 
systematic preprocessing, advanced source localization, and deep learn-
ing techniques to improve classification accuracy across both grasp and 
motor imagery tasks.

2.2. Data description

This study utilizes two EEG datasets to classify motor tasks based 
on source-localized EEG signals. The first dataset consists of recordings 
from 10 right-handed subjects performing six distinct grasp tasks, 
each repeated 30 times. Data collection was conducted under an ap-
proved protocol by the Institutional Review Board (IRB) of Stevens 
Institute of Technology. Each trial lasted for 8 s, comprising a 4-
second pre-movement phase followed by a 4-second reach-grasp-hold 
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Fig. 1. Proposed framework for EEG-based task classification of grasping activities. (A) Trial timing illustration: subject preparation followed by an auditory cue (beep) at 4 s, 
nitiating grasping between 4 to 6 s, and holding from 6 to 8 s. The image shows a participant with an EEG cap performing the task. (B) The forward model development using 
EG signals recorded from high-density electrodes, which represent activity over key brain regions. (C) The lead field matrix computation and time of interest selection are part 
f preprocessing for source localization. (D) A ResNet CNN architecture is employed for classifying six grasping-related tasks based on the inverse problem solutions obtained from 
he forward model.
 
 

 

 
 

 

 

 

 

 
 

 
 

 
 

 
 

 

phase. The EEG signals were recorded at a 256 Hz sampling rate, 
resulting in 2048 samples per trial, with 32 active electrodes cap-
turing neural activity. The EEG recordings were synchronized with
hand kinematics data obtained using a CyberGlove to accurately track
motor actions [26]. The CyberGlove (CyberGlove Systems LLC, San 
Jose, CA, USA) recorded finger movements by measuring joint angles,
including the metacarpophalangeal (MCP) joints of the thumb and 
fingers, the interphalangeal (IP) joint of the thumb, and the proximal
interphalangeal (PIP) joints of the four fingers. This data was sampled
at 125 Hz using a custom-built LabVIEW interface, which also provided 
auditory cues and synchronized EEG and motion data. EEG recordings 
were obtained using a high-density EEG cap (g.GAMMA cap, g.tec, 
Schiedlberg, Austria) with 32 electrodes following the 10–20 system.
The electrode placement covered frontal, central, parietal, and occipital 
regions, with electrodes positioned at F3, Fz, F4, FC3, FC1, FCz, FC2,
FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P3, Pz, P4, 
and Oz, along with eight intermediate sites, as shown in Fig.  1 [26].

The second dataset, originally published as Dataset 2a in 2008,
consists of EEG recordings from 9 subjects performing a cue-based 
BCI paradigm involving four motor imagery tasks: left hand, right 
hand, both feet, and tongue. Each subject completed two sessions 
recorded on separate days. Each session contained 6 runs, with each 
run comprising 48 trials (12 trials per class), resulting in a total of 288
trials per session [27]. To estimate and correct eye movement artifacts, 
each session began with a 5-minute EOG recording divided into three
segments: two minutes with eyes open, one minute with eyes closed,
and one minute of directed eye movements. EEG signals were captured 
using 22 Ag/AgCl electrodes positioned according to the international 
10–20 system, with an additional three monopolar EOG channels to 
monitor ocular activity. The data were sampled at 250 Hz and band-
pass filtered between 0.5 Hz and 100 Hz, with a 50 Hz notch filter 
applied to remove power line noise. Trials containing artifacts were
visually inspected by an expert and labeled accordingly. This dataset
provides a well-established benchmark for evaluating artifact removal 
techniques and motor imagery classification models [27] (see Table  1).
3 
Table 1
Summary of the experimental setup for the two EEG datasets used in this study.
 Feature Reach and grasp 

dataset
Dataset 2a (Motor 
imagery)

 

 Number of subjects 10 9  
 Number of tasks 6 (Grasp Types) 4 (Left Hand, Right 

Hand, Feet, Tongue)
 

Trials per task 30 288 (per session)  
Sessions per subject 1 2 (recorded on 

separate days)
 

 Trial duration 8s (4s 
pre-movement + 4s 
grasp-hold)

8s (2s fixation, 1s 
cue, 3s imagery, 2s 
break)

 

Sampling rate 256 Hz 250 Hz  
Number of 
electrodes

32 22 (plus 3 EOG 
channels)

 

 Electrode placement 10-20 System 
(frontal, central, 
parietal, occipital)

10-20 System  

 Artifact removal Visual Inspection, 
Filtering

Visual Inspection, 
EOG-based 
correction

 

Additional sensors CyberGlove (hand 
kinematics)

Eye movement 
tracking (EOG)

 

2.3. Preprocessing

Preprocessing was performed separately for each dataset to ensure 
optimal data quality and improve classification performance.

2.3.1. Grasp task EEG preprocessing: 
The preprocessing pipeline for the grasp task dataset involved mul-

tiple steps to enhance signal quality before source localization and 
classification:

• Band-Pass Filtering: A finite impulse response (FIR) band-pass 
filter (0.01–200 Hz) was applied to remove low-frequency drifts 
and high-frequency noise.
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Fig. 2. Framework for motor imagery classification involving four tasks. (A) Trial timing details: an auditory beep initiates the trial, followed by a fixation cross at 2 s, cue
presentation at 3 s, motor imagery execution from 3 to 6 s, and a break period from 6 to 8 s. (B) EEG data acquisition using 22 active electrodes positioned to capture key cortical
regions. (C) Data preprocessing steps include the forward model construction, lead field matrix computation, and time of interest selection to facilitate inverse problem-solving for
source localization. (D) A ResNet CNN is applied for classification of four motor imagery tasks, including left hand, right hand, feet, and tongue, utilizing features derived from
source-localized signals.
 

 

 

 

 

 

 

 

 

 

• Notch Filtering: A 50 Hz notch filter was used to eliminate power
line interference.

• Downsampling: The EEG signals were downsampled from their 
original sampling rate to 256 Hz for computational efficiency
while preserving task-related neural activity.

• Epoch Selection: EEG trials were segmented into 8-second
epochs, with a focus on the pre-movement and reach-grasp-hold
phases.

• Source Localization: MNE, dipole fitting, and beamforming were 
applied to reconstruct cortical sources, enhancing spatial resolu-
tion before feature extraction.

2.3.2. Motor imagery EEG preprocessing: 
The preprocessing steps for the motor imagery dataset were tailored 

to extract discriminative features for classification:

• Band-Pass Filtering: EEG signals were filtered within the range 
of 0.5–100 Hz to retain motor-related frequency components 
while removing slow drifts and high-frequency noise.

• Notch Filtering: A 50 Hz notch filter was applied to remove
electrical interference.

• Epoch Selection: EEG trials were segmented into 8-second
epochs, focusing on the motor imagery phase (3 to 6 s) to capture
task-related neural activity.

• Artifact Removal: Eye movement artifacts were identified using
the EOG recordings and removed through Independent Compo-
nent Analysis (ICA).

• Source Localization: The forward model and lead field matrix 
were computed to perform source reconstruction, improving the 
spatial specificity of neural activity.

These preprocessing pipelines ensured that the EEG signals were 
optimized for classification, reducing noise and enhancing the separa-
bility of motor tasks in the feature space. The resulting source-localized 
signals were then used as input to the ResNet CNN model for accurate 
task classification.
4 
2.4. Source localization and inverse problem

EEG provides high temporal resolution for monitoring brain activity
but has poor spatial resolution due to volume conduction, where elec-
trical activity generated at different cortical sources mixes at the scalp 
electrodes. To overcome this limitation, source localization techniques
such as MNE, dipole fitting, and beamforming were employed to recon-
struct cortical activity from EEG signals. These methods require solving 
the inverse problem using a forward model that describes how neural
current sources generate EEG scalp potentials.

2.4.1. Forward model: 
The forward model mathematically relates cortical sources to ob-

served EEG signals and is expressed as: 

𝐱(𝑡) = 𝐋𝐪(𝑡) + 𝐧(𝑡) (1)

where:

• 𝐱(𝑡) ∈ R𝑀×1 represents the EEG measurements at 𝑀 electrodes at 
time 𝑡,

• 𝐋 ∈ R𝑀×𝑁  is the lead field matrix, which describes the mapping 
between 𝑁 neural sources and EEG sensors,

• 𝐪(𝑡) ∈ R𝑁×1 denotes the unknown current sources at 𝑁 locations
in the brain,

• 𝐧(𝑡) accounts for noise and artifacts.

The lead field matrix 𝐋 was computed using the New York Head 
(NYH) forward model [28], a realistic head model that incorporates tis-
sue conductivity properties. Constructing the forward model involves:

• defining head tissue conductivities (scalp, skull, cerebrospinal 
fluid, and brain),

• selecting a source space within the cortical volume,
• mapping source activations to electrode potentials.

Once the forward model is established, the inverse problem is solved 
to estimate cortical sources from EEG recordings.
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2.4.2. Inverse problem and regularization techniques: 
The inverse problem aims to recover 𝐪(𝑡) given EEG measurements 

𝐱(𝑡). Since the number of possible sources exceeds the number of
electrodes (𝑁 ≫ 𝑀), the problem is unstable, requiring regularization
techniques to obtain physiologically meaningful solutions.

Dipole Fitting: This method assumes that brain activity originates
from a small number of equivalent current dipoles. The optimal dipole
locations 𝐫 and moments 𝐪(𝑡) are estimated by minimizing: [29] 
̂ , 𝐪̂(𝑡) = arg min

𝐫,𝐪(𝑡)
‖𝐱(𝑡) − 𝐋(𝐫)𝐪(𝑡)‖2 (2)

here 𝐋(𝐫) is the lead field matrix evaluated at dipole locations. Dipole
fitting provides high spatial resolution but assumes focal activity.

MNE: MNE finds the source configuration with minimal energy
while maintaining consistency with EEG data. The cost function is:
[30] 
𝐪̂(𝑡) = argmin

𝐪(𝑡)
‖𝐱(𝑡) − 𝐋𝐪(𝑡)‖2 + 𝜆 ‖𝐪(𝑡)‖2 (3)

here:

• ‖𝐱(𝑡) − 𝐋𝐪(𝑡)‖2 ensures consistency with EEG data,
• 𝜆 ‖𝐪(𝑡)‖2 imposes smoothness on source activations,
• 𝜆 is the regularization parameter.

MNE is widely used for distributed source estimation but tends to
produce blurred solutions.

Beamforming: Beamforming constructs spatial filters to isolate spe-
cific neural sources while suppressing background noise. The estimated 
sources are computed as: [31] 
̂ (𝑡) = 𝐖𝐱(𝑡) (4)

here 𝐖 is the beamforming filter: 

= (𝐋𝑇𝐂−1
𝑥 𝐋 + 𝜆𝐈)−1𝐋𝑇𝐂−1

𝑥 (5)

Here, 𝐂𝑥 is the EEG covariance matrix and 𝜆 is a regularization term.
Beamforming improves spatial resolution by dynamically suppressing
interference.

2.4.3. Application to EEG data:
EEG signals were recorded using 32 electrodes for the first dataset

and 22 electrodes (plus 3 EOG channels) for the second dataset. The 
forward model was applied to these signals, and the inverse problem 
was solved using MNE, dipole fitting, and beamforming. Each method 
provided distinct advantages:

• Dipole fitting achieved precise localization for focal sources.
• MNE produced distributed source estimates with smooth activa-
tions.

• Beamforming enhanced spatial resolution by isolating individual
sources.

The reconstructed cortical sources served as inputs to the deep 
learning model, allowing for improved EEG-based classification of mo-
tor tasks.

2.5. ResNet architecture for EEG classification

The ResNet architecture was designed to classify EEG-based motor 
tasks for two different datasets. ResNet CNN was chosen over EEGNet 
due to its deeper architecture, which enables better feature extraction
and hierarchical learning of spatial and temporal EEG patterns. Unlike 
EEGNet, which is optimized for lightweight architectures with depth-
wise and separable convolutions, ResNet employs residual connections
that mitigate the vanishing gradient problem, allowing for effective 
training of deeper networks. This is particularly beneficial for EEG data,
 

5 
where capturing complex spatial–temporal dependencies is crucial for 
improving classification performance. Additionally, ResNet CNN has 
demonstrated robustness in handling subject variability and noise, 
making it a more suitable choice for our dataset.

The input data for the first dataset consists of six grasp tasks, 
structured as 180 trials (30 trials per task) with each trial comprising
256 time samples, corresponding to the EEG sampling rate of 256 Hz. 
For the second dataset, which involves four-class motor imagery tasks 
(left hand, right hand, both feet, and tongue), the ResNet model was
adapted with a modified output layer containing four neurons instead
of six.

2.5.1. Convolutional and pooling layers:
The architecture begins with a 2D Convolutional Layer (Conv2D)

that applies learnable filters across EEG spatial and temporal dimen-
sions. These convolutional filters extract spatial dependencies across
electrodes while preserving temporal patterns within trials. Batch Nor-
malization follows to stabilize training, and a ReLU activation func-
tion introduces non-linearity, allowing the model to capture complex 
patterns.

A Max Pooling (MaxPool2D) layer is incorporated to reduce the
dimensionality of feature maps while preserving essential spatial and
temporal information. This pooling operation minimizes computational 
cost and prevents overfitting by discarding irrelevant variations in EEG 
signals.

2.5.2. Inception blocks for multi-scale feature extraction:
To improve feature extraction across multiple spatial and temporal 

scales, the model integrates Inception blocks. These blocks use different 
convolutional filter sizes (e.g., 1 × 1, 3 × 3, and 5 × 5) to capture short-
term and long-term dependencies simultaneously. The combination of 
multiple kernel sizes ensures that both localized and distributed EEG 
patterns are learned effectively.

2.5.3. Residual blocks for efficient training:
Residual connections are employed to facilitate gradient flow during

backpropagation. Standard deep networks suffer from vanishing gradi-
ents, leading to inefficient learning as depth increases. Residual blocks 
mitigate this issue by incorporating skip connections: 

𝐲 =  (𝐱) + 𝐱 (6)

where  (𝐱) represents the transformation applied by a sequence of
convolutional layers, and the input 𝐱 is directly added to the output. 
This design allows the model to retain essential features from earlier 
layers, improving convergence and classification accuracy.

2.5.4. Attention mechanism for feature enhancement:
To further refine feature selection, Attention blocks are incorporated 

into the model. These blocks enhance task-relevant EEG components 
while suppressing background noise. The attention mechanism assigns 
higher weights to informative time segments and spatial locations, 
improving robustness against inter-subject variability.

2.5.5. Global average pooling and fully connected layers:
Following hierarchical feature extraction, a Global Average Pooling

(GAP) layer aggregates spatial feature maps into a single vector, signifi-
cantly reducing the number of trainable parameters while maintaining 
task-relevant information. The resulting vector is passed through two 
fully connected layers with 512 and 256 neurons, followed by the final 
classification layer.
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Fig. 3. Architecture of the proposed ResNet for classification of six reach and grasp tasks. The architecture starts with a convolutional layer followed by Batch Normalization, ReLU
nonlinearity, Max Pooling, and Dropout layers. It then incorporates a sequence of Inception blocks, Residual blocks, and Attention blocks to extract spatial and feature hierarchies 
rom the EEG source data. The network concludes with a Global Average Pooling layer to reduce the feature maps to a vector of class scores, which is further processed through 
ully connected (FC) layers with hidden sizes of 512 and 256, ending with a final output layer containing six units corresponding to the classification of the six distinct reach and
grasp tasks.
 

 
 

 

 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

2.5.6. Training strategy and optimization:
For both datasets, the model was trained using the Adam optimizer

with a learning rate of: 
𝛼 = 10−2 (7)

and exponential decay parameters: 

1 = 0.9, 𝛽2 = 0.99 (8)

Stratified K-Fold cross-validation was implemented to ensure robust
performance across subjects. Training was stopped when validation
accuracy stopped improving to avoid overfitting. The architecture of 
the proposed ResNet, as presented in Fig.  3, showcases significant
potential for applications in biomedical signal processing.

2.6. System setup

The ResNet CNN was implemented using PyTorch, which offers 
flexibility and dynamic computational graph capabilities. Training was 
performed on an Alienware Aurora R16 system equipped with a 13th 
Gen Intel Core i9-13900F CPU @ 2.00 GHz, 32 GB of RAM, and
an NVIDIA GeForce RTX 4070 SUPER GPU with 12 GB of GDDR6X 
memory. This high-performance setup enabled efficient training and 
fine-tuning of the deep learning model, ensuring optimal classification 
accuracy for EEG motor imagery tasks. To analyze neural activity 
for motor tasks, we performed source localization and time-frequency 
analysis of EEG data using the FieldTrip toolbox [32].

2.7. Advanced feature extraction and classification methodology

In this study, we aimed to decode motor tasks from two distinct
EEG datasets: one involving four motor imagery tasks (left hand, right
hand, both feet, and tongue) and another focusing on various reach 
and grasp tasks. The analysis pipeline involved detailed preprocessing,
source localization, and deep learning techniques to extract relevant
features and accurately classify motor activities.

The initial step of our analysis included preprocessing the EEG
data. This step was crucial for removing artifacts, such as eye blinks 
and muscle movements, thereby retaining only meaningful signals that 
were critical for motor task classification. Once the EEG data were
cleaned, the signals were segmented based on specific task events,
focusing specifically on time windows surrounding the movement onset 
to capture relevant neural dynamics. We also concentrated on elec-
trodes related to Brodmann areas 4 and 6 regions associated with motor
planning and execution.

To solve the inverse problem of EEG source localization, we em-
ployed three advanced source localization techniques such as Dipole
Fitting, MNE, and Beamforming. These techniques allowed us to re-
construct cortical activity for specific time windows associated with
motor tasks, providing insights into the spatial dynamics of motor 
execution. By localizing these cortical sources, we focused on key motor
regions such as the primary motor cortex (M1) and premotor cortex 
6 
(PMC), essential for motor planning and execution during grasp-related 
activities.

The reconstructed EEG sources were then used as inputs to a cus-
tomized ResNet-CNN to classify the different motor tasks. Incorporating
the spatial information from source localization provided the network 
with enhanced features, leading to improved classification performance 
compared to traditional sensor-level analysis. The data was split into 
training (60%), validation (20%), and testing (20%) sets to ensure a 
robust evaluation of the model while minimizing overfitting risks. This 
detailed approach allowed us to achieve a higher classification accuracy 
and understand the spatial and temporal brain dynamics associated
with each motor task.

Fig.  4 illustrates the EEG segments for six reach-and-grasp tasks,
averaged across multiple trials and focusing on key electrodes that 
correspond to Brodmann Areas 4 and 6, which are responsible for motor 
function. The figure presents the EEG activity across the electrodes
C3, C4, Cz, FC1, and FC2 for each task. These electrodes were chosen 
as they are critical for understanding motor control and are typically 
associated with activity in the motor and premotor areas.

The figure provides a detailed view of the neural dynamics associ-
ated with each grasp task:

• Screwdriver Task (Cylindrical or Tripod Grasp):
– Distinct activation patterns at electrodes C3 and C4.
– Increased activity around movement onset, indicating motor
cortex engagement.

– Reflects contralateral motor control involvement.

• Water Bottle Task (Cylindrical Grasp):
– Marked neural activation at electrode Cz.
– Involvement of the primary motor cortex (M1) and supple-
mentary motor area (SMA).

– Crucial for gross motor coordination and stabilization dur-
ing the grasp.

• CD Task (Lateral Key Grasp):

– Localized activity around electrodes FC1 and FC2.
– Involvement of the premotor cortex (PMC), engaged during 
fine motor control tasks.

– Specific to lateral grasping activities.

• Petri Dish Task (Spherical Grasp):
– Widespread activation observed at FC1 and Cz.
– Reflects the recruitment of the posterior parietal cortex 
(PPC).

– PPC plays a key role in spatial awareness during spherical 
grasps.

• Handle Task (Hook Grasp):
– Significant response at electrode Cz.
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Fig. 4. EEG segments for six reach-and-grasp tasks. Each subfigure represents the EEG activity across specific electrodes (C3, C4, Cz, FC1, FC2) associated with Brodmann Areas 4
and 6 for each task. The tasks are arranged in three rows and two columns: (top row, from left to right) Screwdriver (cylindrical or tripod grasp), Water Bottle (cylindrical grasp);
(middle row, from left to right) CD (lateral key grasp), Petri Dish (spherical grasp); (bottom row, from left to right) Handle (hook grasp), Bracelet (pinch or precision grasp). Time 
is represented on the 𝑥-axis from −4 to 4 s, where zero denotes movement onset. The 𝑦-axis indicates the electrode, and color represents EEG amplitude in microvolts (μV).
 

 

 
 
 
 

 
 

 

 

 

 

 

 
 
 
 

 

 
 
 

– Reflects the role of the motor cortex in managing grip
stability and strength.

• Bracelet Task (Pinch or Precision Grasp):
– High neural activation across electrodes C3 and FC2.
– Indicates the involvement of the anterior intraparietal sul-
cus (aIPS) and M1.

– Crucial for coordinating precision movements.

In addition, Fig.  5 depicts the EEG segments for four motor imagery 
tasks, averaged across multiple trials and focusing on key electrodes 
corresponding to Brodmann Areas 4 and 6, which are associated with 
motor planning and execution. The figure represents neural activity 
recorded from electrodes C3, C4, Cz, FC1, and FC2, which play a crucial 
role in decoding motor imagery tasks.

The figure provides a concise representation of the temporal dynam-
ics observed during different imagined movements:

• Left Hand Imagery: Increased activation in C3, indicative of 
contralateral motor cortex involvement.

• Right Hand Imagery: Enhanced neural responses in C4, reflect-
ing motor-related activity specific to right-hand movements.

• Feet Imagery: Pronounced activity in central electrodes, particu-
larly Cz, highlighting engagement of the primary motor cortex.

• Tongue Imagery: Distributed activation patterns with notable
responses in FC1 and FC2, corresponding to cortical regions re-
sponsible for orofacial motor control.

Finally, the use of source localization techniques such as Dipole
Fitting, MNE, and Beamforming allowed us to identify neural sources
involved in reach and grasp actions, providing insights into the specific
brain regions activated during these tasks. These localized sources
were used as input features for a ResNet CNN, significantly improv-
ing classification accuracy compared to using raw EEG data alone. 
The enhanced understanding of unique activation patterns for each 
grasp type contributes to developing better motor rehabilitation strate-
gies and BCIs by leveraging motor cortical dynamics. Additionally,
time-frequency analysis of the source-localized data highlighted crucial
frequency bands, such as beta, essential for motor control. This study 
presents an effective methodology that integrates source localization, 
deep learning, and careful data preprocessing, advancing EEG-based 
motor decoding.
7 
The brain activation patterns observed during motor imagery tasks 
for the left hand, right hand, feet, and tongue provide critical insights 
into the involvement of specific regions within the motor cortex, par-
ticularly Brodmann areas 4 and 6. Using beamforming techniques, the 
results indicate how different body parts activate distinct areas in the
motor cortex, adhering to the somatotopic organization of the brain 
which refers to the structured mapping of body parts within the motor
cortex, where distinct cortical areas are responsible for controlling 
specific movements. These distinct activations are represented in Fig.  6,
showcasing the differential engagement of the motor cortex across var-
ious tasks. The following discussion breaks down each motor imagery 
task:

For left hand motor imagery, the activation predominantly occurs
in the right hemisphere, particularly in the hand region of the primary 
motor cortex (Brodmann area 4), as shown in Fig.  6a. The premotor 
cortex (Brodmann area 6) is also involved, indicating motor planning 
processes necessary for simulating fine motor control of the left hand. 
This reflects the contralateral nature of motor control and the com-
plexity of motor execution. Right hand motor imagery, represented 
in Fig.  6b, shifts activation to the left hemisphere, within the corre-
sponding region of the motor cortex. Strong activations are observed 
in Brodmann area 4, with additional involvement of Brodmann area 
6, demonstrating motor planning and execution for the right hand’s
dexterous movements.

Feet motor imagery (Fig.  6c) engages the medial aspect of the 
motor cortex, particularly the areas responsible for the leg and foot 
regions of the motor homunculus. This task shows activation in the 
primary motor cortex (Brodmann area 4), near the longitudinal fissure,
and extends into Brodmann area 6, which is essential for postural
control and balance. For tongue motor imagery (Fig.  6d), activation
is observed near the lateral sulcus in the lateral motor cortex. This
region corresponds to the tongue area in the motor homunculus and 
shows strong activation in both Brodmann areas 4 and 6, indicating the
coordination required for fine motor control involved in articulatory 
movements.

In summary, the beamforming results across motor imagery tasks
demonstrate distinct activation patterns in the motor cortex that follow
the somatotopic organization. The primary motor cortex (Brodmann
area 4) consistently exhibits task-specific activations, while the premo-
tor cortex (Brodmann area 6) plays a crucial role in motor planning. 
These findings highlight the interplay between motor execution and 
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Fig. 5. EEG segments for four motor imagery tasks. Each subplot visualizes EEG activity across motor-related electrodes (C3, C4, Cz, FC1, FC2) associated with Brodmann Areas
4 and 6 during motor imagery of different movements. The tasks are arranged in a two-by-two layout: (top row, from left to right) Left Hand, Right Hand; (bottom row, from left 
o right) Feet, Tongue. The 𝑥-axis represents time from 0 to 6 s, covering the motor imagery phase. The 𝑦-axis indicates electrode placement, and the color scale represents EEG 
mplitude in microvolts (μV).
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planning regions across the motor cortex. Moreover, the correlations 
between these areas, especially between Brodmann areas 4 and 6,
emphasize how these regions work synergistically during different
motor imagery tasks. The integration between motor execution and 
coordination becomes evident through the spatial–temporal dynamics 
observed in each task, providing novel insights into the functional 
connectivity underlying motor imagery.

3. Results and discussion

3.1. Performance of source localization methods in four-class EEG classifi-
cation

In this section, we evaluate and compare the performance of various 
EEG classification methods using source localization techniques (Beam-
forming, MNE, and Dipole Fitting) with a deep ResNetCNN model 
against state-of-the-art sensor domain methods reported in the litera-
ture.

3.1.1. Classification with beamforming source localization
Table  2 presents the classification performance of the ResNetCNN 

model with Beamforming source localization across different subjects.
The model achieved a high classification accuracy, ranging from
94.10% for Subject 7 to 99.66% for Subject 8. Beamforming con-
sistently provided high accuracy across all subjects, with minimal
variation, highlighting its robustness and reliability in isolating relevant 
EEG signals and enhancing spatial resolution. This consistent perfor-
mance suggests that Beamforming effectively captures the direction of 
signal arrival, thereby significantly improving classification accuracy. 

3.1.2. Classification with MNE source localization
Table  3 shows the classification performance using MNE source

localization across different subjects. The accuracy achieved with MNE 
ranged from 97.22% for Subject 8 to 99.65% for Subjects 1, 3, 4, and
5. Although MNE provided substantial improvements in classification 
accuracy over sensor domain methods, there was noticeable variation 
8 
Fig. 6. (a) Left hand motor imagery showing activation in the right hemisphere, 
articularly in the primary motor cortex and premotor cortex. (b) Right hand motor 
imagery with activation in the left hemisphere, primarily engaging motor and premotor 
areas. (c) Feet motor imagery showing activation in the medial aspect of the motor 
cortex, near the longitudinal fissure, reflecting involvement in proximal limb control.
(d) Tongue motor imagery with activation in the lateral motor cortex, near the lateral
sulcus, indicating engagement of regions associated with fine motor control.

across subjects. This suggests that while MNE is effective in enhanc-
ing EEG data quality by estimating the sources of brain activity, it 
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Table 2
Performance of the deep ResNetCNN using beamforming source localization for EEG 
classification in Dataset 2a.
 Subject Accuracy (%) Kappa Precision (%) Sensitivity (%) 
 1 99.65 0.995 99.66 99.65  
 2 98.96 0.986 98.98 98.96  
 3 98.61 0.981 98.63 98.61  
 4 99.31 0.991 99.32 99.31  
 5 97.92 0.972 97.97 97.92  
 6 99.31 0.991 99.31 99.31  
 7 94.10 0.921 94.41 94.10  
 8 99.66 0.996 99.72 99.81  
 9 98.61 0.981 98.65 98.61  

Table 3
Performance of the deep ResNetCNN using MNE source localization for EEG classifica-
tion in Dataset 2a.
 Subject Accuracy (%) Kappa Precision (%) Sensitivity (%) 
 1 99.65 0.995 99.66 99.65  
 2 98.96 0.986 98.98 98.96  
 3 99.65 0.995 99.66 99.65  
 4 99.65 0.995 99.66 99.65  
 5 99.65 0.995 99.66 99.65  
 6 98.96 0.986 99.00 98.96  
 7 98.96 0.986 98.98 98.96  
 8 97.22 0.963 97.26 97.22  
 9 98.61 0.981 98.64 98.61  

Table 4
Performance of the deep ResNetCNN using dipole fitting source localization for EEG 
classification in Dataset 2a.
 Subject Accuracy (%) Kappa Precision (%) Sensitivity (%) 
 1 88.89 0.852 88.99 88.89  
 2 95.14 0.935 95.43 95.14  
 3 89.58 0.861 89.69 89.58  
 4 99.31 0.991 99.32 99.31  
 5 98.26 0.977 98.34 98.26  
 6 90.28 0.870 90.45 90.28  
 7 96.53 0.954 96.63 96.53  
 8 96.88 0.958 96.94 96.88  
 9 93.75 0.917 93.85 93.75  

may not consistently capture all spatial details necessary for optimal
performance, unlike Beamforming. 

3.1.3. Classification with dipole fitting source localization
The results using Dipole Fitting for source localization are shown 

in Table  4. Dipole Fitting achieved an average accuracy ranging from
88.89% for Subject 1 to 99.31% for Subject 4. While this method 
provided a moderate improvement over several sensor domain meth-
ods, the performance was less consistent compared to Beamforming. 
This variability in accuracy suggests that Dipole Fitting, which models 
EEG sources as dipoles, may not always effectively isolate relevant 
brain signals for classification, leading to varying performance across 
subjects. 

3.1.4. Comparison between sensor domain and source domain methods
Table  5 compares the classification accuracies of various state-

of-the-art sensor domain methods with our proposed source local-
ization methods using a deep ResNetCNN model. The Beamforming 
method achieved the highest average accuracy of 99.15%, outper-
forming nearly all sensor domain methods, including TSCIR-Net [33]. 
Although TSCR-Net had the best performance overall, achieving an
accuracy of 99.5%, Beamforming recorded a close performance, high-
lighting its effectiveness in enhancing EEG signal classification by
accurately focusing on relevant brain signals and reducing noise and 
artifacts. Fig.  7 shows the confusion matrix for all subjects using Beam-
forming source localization, highlighting the classification accuracy 
across four motor imagery tasks.
9 
Table 5
Comparison of classification accuracy of various methods in 
Dataset 2a. Beamforming, MNE, and dipole fitting combined 
with ResNetCNN are compared against state-of-the-art methods.
 Proposed method Dataset 2a (%) 
 FBGSP [34] 73.7  
 EEGNET [35] 74.5  
 ShallowConvNet [36] 74.31  
 DeepConvNet [36] 71.99  
 CWT + PSD + KMC [37] 89.3  
 CSP + SCNN [38] 64  
 DJDAN [39] 81.52  
 HS-CNN [40] 91.6  
 TCNET [33] 83.73  
 CNN with attentional 
mechanism + DA [33]

93.6  

 SW-LCR [41] 80  
 TCNetFusion [42] 83.73  
 MMBEEGSE [43] 82.87  
 E-CNNET [44] 89.25  
 TSCR-Net [45] 99.5  
 TSCIR-Net [45] 98  
 Beamforming + 
ResNetCNN

99.15  

 MNE + ResNetCNN 83.49  
 Dipole Fitting + 
ResNetCNN

92.48  

In contrast, MNE and Dipole Fitting also showed improvements 
over many sensor domain methods, achieving accuracies of 83.49%
and 92.48%, respectively. These methods, however, did not reach the
performance levels of Beamforming, indicating that while they enhance 
EEG data quality, they may not isolate signals as effectively. This
demonstrates the critical role of selecting appropriate source localiza-
tion techniques to achieve the best classification outcomes.

The comparison between source domain and sensor domain meth-
ods clearly shows the advantages of using source localization tech-
niques. The superior performance of Beamforming, combined with the
ResNetCNN, suggests that source domain methods can substantially
outperform sensor domain methods by providing enhanced spatial 
resolution and isolating relevant brain signals more effectively. This
highlights the potential of source localization techniques in clinical 
and neurorehabilitation applications where precise detection of motor
imagery tasks is crucial.

Overall, these findings emphasize the importance of source local-
ization in improving EEG signal classification. By effectively isolating 
relevant brain activity and minimizing the impact of noise, source
localization techniques like Beamforming enable deep learning models 
to achieve higher accuracy and more reliable performance in distin-
guishing between different motor imagery tasks. This is particularly
important in applications requiring high precision, such as clinical 
diagnostics and brain–computer interface development.

3.2. Performance of source localization methods integrated with deep
ResNet in Reach and Grasp Classification Tasks

In this study, we focused on decoding reach and grasp tasks from 
our EEG data in the sensor domain using a subject-specific classification 
approach. The process began by preprocessing the EEG signals for 
each subject individually, which involved applying a bandpass filter
to isolate relevant frequency bands and using Independent Compo-
nent Analysis (ICA) to remove artifacts. The cleaned signals were
then used to extract features via power spectral density (PSD) us-
ing Welch’s method, capturing the spectral characteristics of the EEG 
signals associated with different motor tasks.

A customized ResNet model was employed to classify the extracted 
features into specific reach and grasp tasks. The classification was
conducted in the sensor domain, leveraging the spatial and spectral
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Table 6
Performance of the proposed customized ResNet CNN in terms of recall, precision, F1-score, accuracy, and kappa for the reach and grasp classification tasks without source 
ocalization.
 Subject Accuracy (%) Kappa (%) Precision (%) Recall (%) F1 score (%)  
 1 50.56 ± 14.58 41.36 ± 17.01 53.21 ± 17.08 51.98 ± 15.12 48.62 ± 15.41 
 2 66.67 ± 7.45 60.42 ± 9.81 69.82 ± 10.01 67.00 ± 7.29 64.48 ± 8.04  
 3 56.67 ± 7.78 48.61 ± 9.74 61.84 ± 9.07 57.61 ± 8.16 55.25 ± 7.54  
 4 73.33 ± 8.16 68.31 ± 10.13 73.51 ± 11.01 73.24 ± 8.72 71.01 ± 10.09 
 5 44.44 ± 15.52 33.20 ± 19.05 45.18 ± 22.21 44.41 ± 16.13 41.12 ± 17.07 
 6 69.44 ± 11.45 63.81 ± 14.61 72.03 ± 15.51 69.26 ± 11.24 67.09 ± 14.81 
 7 70.00 ± 5.44 68.81 ± 7.06 73.98 ± 3.81 70.65 ± 5.07 70.45 ± 5.06  
 8 67.22 ± 8.41 61.02 ± 10.61 73.14 ± 9.11 67.22 ± 8.37 67.67 ± 8.19  
 9 70.56 ± 10.84 65.81 ± 13.08 73.98 ± 8.56 71.77 ± 11.06 68.74 ± 11.97 
 10 76.11 ± 3.56 75.09 ± 4.84 77.42 ± 3.56 76.99 ± 4.08 76.65 ± 4.42  
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

Fig. 7. Confusion matrix for all subjects using Beamforming source localization.
This confusion matrix illustrates the classification performance across four motor 
magery tasks: left hand, right hand, both feet, and tongue. The model achieved 
igh performance, with overall accuracies above 99% for most classes and minimal 
isclassifications, demonstrating the effectiveness of Beamforming in enhancing EEG 

classification accuracy.

patterns present in the EEG signals. The model was trained sepa-
rately for each subject using 10-fold cross-validation to ensure robust
performance, capturing individual variations in EEG patterns. This
subject-specific approach improved the accuracy of task decoding, 
demonstrating the effectiveness of using tailored EEG models for motor 
task classification.

3.2.1. Classification without source localization
The performance of the customized ResNet CNN without any source 

localization techniques is summarized in Table  6. The accuracy across 
subjects ranged from 44.44% to 76.11%, indicating that the classifier’s
ability to distinguish between the six grasp tasks varied significantly 
among subjects. The kappa scores, which measure the agreement be-
tween predicted and actual classes beyond chance, ranged from 33.20%
to 75.09%. Precision values, indicating the proportion of positive iden-
tifications that were actually correct, varied from 45.18% to 77.42%. 
Recall values, reflecting the proportion of actual positives correctly 
identified, ranged from 44.41% to 76.99%, and F1-scores, which con-
sider both precision and recall, ranged from 41.12% to 76.65%. These
results highlight the challenges of decoding motor tasks directly from 
raw EEG signals without additional spatial information. 

3.2.2. Classification with beamforming source localization
Beamforming significantly improved the classification performance. 

As detailed in Table  7, accuracy values ranged from 84.03% to 89.58%, 
showing a marked increase from the results without source localization.
Precision values were much higher, between 86.69% and 91.35%, 
indicating a substantial enhancement in the classifier’s ability to cor-
rectly identify positive instances. Recall values ranged from 84.03% to 
10 
89.58%, and F1-scores were consistently high, between 83.36% and
89.02%. These improvements underscore the effectiveness of beam-
forming in enhancing the spatial resolution of EEG data, leading to 
more reliable and accurate classifications. 

3.2.3. Classification with MNE source localization
Using MNE for source localization also led to significant improve-

ments, though less pronounced than beamforming. Table  8 shows that
accuracy values ranged from 53.47% to 78.47%, with precision values 
between 56.98% and 79.83%. Recall values ranged from 53.47% to 
78.47%, and F1-scores varied between 51.41% and 76.76%. These
results indicate that MNE provided a meaningful boost to classification 
performance by minimizing the overall source strength while fitting 
the recorded data, though it was less effective than beamforming in
isolating the relevant signals.

3.2.4. Classification with dipole fitting source localization
Dipole fitting yielded competitive accuracy scores, ranging from 

50.69% to 72.92%, with precision values between 49.19% and 75.94%.
Recall values ranged from 50.69% to 72.92%, and F1-scores were 
consistently moderate, between 46.93% and 71.40%, as represented in 
Table  9. These results suggest that dipole fitting provided a substantial
improvement in classification performance, albeit less than beamform-
ing. By modeling the EEG data as originating from a small number of 
dipoles, this method provided more focal source localization compared
to distributed methods like MNE.

3.2.5. Comparison overall results between sensor domain and source do-
main methods

The comparison of classification performance across different
conditions—beamforming, MNE, dipole fitting, and without source 
localization—provides valuable insights into the effectiveness of these 
techniques for EEG signal decoding. Table  10 summarizes the perfor-
mance metrics of the deep CNN classifier for each method.

Among the source localization methods, beamforming achieved the 
best results with an Accuracy of 90.83% ±5.17%, Kappa of 89.00 
±6.20%, Precision of 91.08% ±5.14%, Average Recall of 90.83%
±5.17%, and F1 Score of 90.85% ±5.16%. These results highlight
the ability of beamforming to isolate relevant neural activity more 
effectively, enhancing spatial resolution and improving classification
accuracy. This technique’s performance significantly surpasses that of 
MNE and dipole fitting, with MNE achieving an Accuracy of 84.10% 
±11.36% and dipole fitting achieving 81.32% ±1.59%. By effectively
reducing noise and dimensionality, beamforming leads to more precise
decoding of motor tasks.

Compared to the performance of classifiers without source local-
ization in the sensor domain, both ResNet-CNN (ICA + PSD) (52.61%
±2.29%) and TSCR-Net (56.39% ±3.82%) reveal the challenges of EEG 
classification when relying solely on sensor-level data. While TSCR-
Net demonstrates a slight improvement over ResNet-CNN, achieving
a nearly 4% higher accuracy, both models still perform significantly
worse than beamforming (90.83% ±5.17%), which outperforms sensor-
domain approaches by more than 34 percentage points.
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Table 7
Performance of the proposed customized ResNet CNN for beamforming source localization in terms of recall, precision, F1-score, accuracy, and kappa for the reach and grasp
classification tasks.
 Subject Accuracy (%) Kappa (%) Precision (%) Recall (%) F1 score (%)  
 1 89.58 ± 6.48 88.11 ± 8.56 91.15 ± 6.40 89.58 ± 6.48 89.02 ± 6.72  
 2 87.50 ± 11.37 85.08 ± 14.32 90.35 ± 8.12 87.50 ± 11.37 87.80 ± 10.31 
 3 88.89 ± 9.21 87.85 ± 11.27 90.35 ± 10.52 88.89 ± 9.21 88.11 ± 10.59 
 4 85.42 ± 9.19 82.01 ± 11.84 87.95 ± 9.02 85.42 ± 9.19 84.65 ± 9.73  
 5 85.42 ± 11.43 83.26 ± 14.65 87.43 ± 12.02 85.42 ± 11.43 84.92 ± 12.06 
 6 87.50 ± 5.38 85.98 ± 6.52 90.35 ± 5.02 87.50 ± 5.38 87.16 ± 5.38  
 7 88.89 ± 7.35 87.75 ± 9.62 91.35 ± 6.24 88.89 ± 7.35 88.50 ± 7.44  
 8 86.81 ± 9.60 84.28 ± 12.06 91.21 ± 5.41 86.81 ± 9.60 86.35 ± 9.49  
 9 88.89 ± 11.11 87.92 ± 13.31 90.66 ± 10.44 88.89 ± 11.11 88.40 ± 11.91 
 10 84.03 ± 11.60 81.35 ± 14.61 86.69 ± 11.10 84.03 ± 11.60 83.36 ± 12.76 
 

Table 8
Performance of the proposed customized ResNet CNN for MNE source localization in terms of recall, precision, F1-score, accuracy, and kappa for the reach and grasp classification
tasks.
 Subject Accuracy (%) Kappa (%) Precision (%) Recall (%) F1 score (%)  
 1 69.44 ± 17.35 63.84 ± 21.12 74.65 ± 16.46 69.44 ± 17.35 69.24 ± 16.63 
 2 68.75 ± 18.62 63.30 ± 22.84 73.37 ± 19.71 68.75 ± 18.62 68.36 ± 19.40 
 3 78.47 ± 17.44 74.62 ± 21.55 79.83 ± 21.32 78.47 ± 17.44 76.76 ± 19.81 
 4 75.69 ± 14.15 71.84 ± 17.32 76.91 ± 15.29 75.69 ± 14.15 74.13 ± 15.50 
 5 75.69 ± 16.88 71.42 ± 20.55 78.23 ± 17.20 75.69 ± 16.88 74.37 ± 18.58 
 6 53.47 ± 23.06 44.08 ± 28.31 56.98 ± 27.44 53.47 ± 23.06 51.41 ± 25.08 
 7 59.03 ± 24.68 51.42 ± 30.09 59.68 ± 24.55 59.03 ± 24.68 56.68 ± 25.08 
 8 64.58 ± 23.06 57.84 ± 28.82 63.64 ± 25.87 64.58 ± 23.06 62.14 ± 24.03 
 9 64.58 ± 17.77 57.31 ± 21.05 68.99 ± 16.03 64.58 ± 17.77 64.04 ± 17.50 
 10 73.61 ± 25.27 68.45 ± 30.61 75.03 ± 25.82 73.61 ± 25.27 72.92 ± 25.73 
 

Table 9
Performance of the proposed customized ResNet CNN for dipole fitting source localization in terms of recall, precision, F1-score, accuracy, and kappa for the reach and grasp
classification tasks.
 Subject Accuracy (%) Kappa (%) Precision (%) Recall (%) F1 score (%)  
 1 72.92 ± 12.25 68.01 ± 15.61 75.94 ± 11.51 72.92 ± 12.25 71.40 ± 12.42 
 2 70.14 ± 11.09 64.52 ± 13.48 74.62 ± 13.57 70.14 ± 11.09 69.53 ± 11.00 
 3 68.06 ± 11.37 62.30 ± 14.07 74.65 ± 11.18 68.06 ± 11.37 68.12 ± 11.14 
 4 60.42 ± 12.86 53.98 ± 15.41 63.51 ± 13.88 60.42 ± 12.86 59.07 ± 12.61 
 5 65.28 ± 10.67 58.84 ± 13.43 68.44 ± 11.41 65.28 ± 10.67 64.72 ± 10.94 
 6 56.94 ± 16.61 48.49 ± 20.11 57.74 ± 19.01 56.94 ± 16.61 55.46 ± 17.33 
 7 62.50 ± 21.65 55.41 ± 26.32 63.12 ± 22.68 62.50 ± 21.65 61.37 ± 22.12 
 8 50.69 ± 14.28 41.94 ± 17.01 49.19 ± 17.35 50.69 ± 14.28 46.93 ± 14.41 
 9 69.44 ± 8.78 63.44 ± 11.10 70.21 ± 11.78 69.44 ± 8.78 67.52 ± 9.58  
 10 64.58 ± 16.42 57.64 ± 20.82 64.02 ± 19.32 64.58 ± 16.42 62.39 ± 17.37 
Table 10
Overall performance metrics of the proposed customized ResNet CNN for different source localization methods and without source localization.
 Method Accuracy (%) Kappa (%) Precision (%) Recall (%) F1 score (%)  
 Beamforming 90.83 ± 5.17 89.00 ± 6.20 91.08 ± 5.14 90.83 ± 5.17 90.85 ± 5.16  
 MNE 84.10 ± 11.36 80.92 ± 13.63 84.51 ± 11.11 84.10 ± 11.36 84.07 ± 11.36 
 Dipole fitting 81.32 ± 1.59 77.58 ± 1.91 81.62 ± 1.67 81.32 ± 1.59 81.31 ± 1.61  
 ResNet (Sensor domain) 52.61 ± 2.29 57.13 ± 2.75 48.10 ± 9.98 52.61 ± 2.29 56.94 ± 3.14  
 TSCR-Net (Sensor domain) 56.39 ± 3.82 47.67 ± 4.58 57.47 ± 3.56 56.39 ± 3.82 56.17 ± 3.69  
 

 

 

 

 

 
 

 

This substantial performance gap highlights the limitations of
sensor-space EEG analysis, where volume conduction effects, overlap-
ping neural sources, and background noise reduce classification accu-
racy. In contrast, source localization techniques, such as beamforming,
improve classification performance by isolating task-relevant brain 
activity at the cortical level, filtering out non-task-related signals, and 
reducing the influence of overlapping sources. The confusion matrix 
in Fig.  8 further illustrates how beamforming leads to a more precise 
classification of reach-and-grasp tasks, reinforcing its effectiveness
compared to sensor-domain methods.

These findings also demonstrate that while deep learning models
like TSCR-Net can slightly enhance EEG classification in the sensor 
domain, their performance remains heavily constrained by the raw 
input data quality. Without spatial filtering or source reconstruction,
deep networks are unable to effectively compensate for the limitations
11 
of sensor-space EEG. The comparison emphasizes the critical role of 
source localization in EEG-based motor decoding and highlights beam-
forming as the most effective approach in this study.

3.3. Limitations and future work

Despite the high classification accuracy and robustness of the pro-
posed method, some limitations remain. The dataset size is relatively
small, which may impact generalizability. The computational complex-
ity of source localization and deep learning models poses challenges
for real-time applications. Inter-subject variability and EEG noise can
affect beamforming performance. Future work should focus on real-
time decoding and integrating additional modalities, such as EMG or
fNIRS, to enhance motor task classification and system reliability.
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Fig. 8. Confusion matrix of the Beamforming classification results for different reach-
nd-grasp tasks. The matrix represents the percentage of correct and misclassified 
redictions for each class, where darker shades indicate higher classification accuracy.

4. Conclusion

In this study, we addressed the challenge of motor task classification
using EEG data by integrating source localization techniques such 
as MNE, dipole fitting, and beamforming with a customized ResNet 
CNN. For the four-class motor imagery classification, beamforming
achieved a peak accuracy of 99.15%, significantly outperforming sen-
sor domain methods. In the six-class reach and grasp classification, 
beamforming yielded an accuracy of 90.83%, compared to 56.39% 
using the sensor domain approach (ICA + PSD + TSCR-Net). MNE 
and dipole fitting methods achieved accuracies of 84.10% and 81.32%, 
respectively. When comparing the best method, beamforming, against
the sensor domain, we observed a substantial improvement in all 
metrics. Beamforming outperformed the sensor domain approach by a 
large margin, highlighting its ability to extract more relevant neural 
signals, leading to enhanced classification precision, recall, and F1-
score. This study underscores the importance of source localization in 
EEG analysis. By utilizing these advanced techniques, we significantly 
improved the classification performance, showcasing the potential of 
combining source localization with deep learning for applications in
brain–computer interfaces and neurorehabilitation.
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