
Published as a conference paper at ICLR 2025

CONNECTING FEDERATED ADMM TO BAYES

Siddharth Swaroop
Harvard University, US
siddharth@seas.harvard.edu

Mohammad Emtiyaz Khan
RIKEN Center for AI Project, Japan

Finale Doshi-Velez
Harvard University, US

ABSTRACT

We provide new connections between two distinct federated learning approaches
based on (i) ADMM and (ii) Variational Bayes (VB), and propose new variants
by combining their complementary strengths. Specifically, we show that the dual
variables in ADMM naturally emerge through the “site” parameters used in VB
with isotropic Gaussian covariances. Using this, we derive two versions of ADMM
from VB that use flexible covariances and functional regularisation, respectively.
Through numerical experiments, we validate the improvements obtained in per-
formance. The work shows connection between two fields that are believed to be
fundamentally different and combines them to improve federated learning.

1 INTRODUCTION

The goal of federated learning is to train a global model in the central server by using the data
distributed over many local clients (McMahan et al., 2016). Such distributed learning improves
privacy, security, and robustness, but is challenging due to frequent communication needed to
synchronise training among nodes. This is especially true when the data quality differs drastically
from client to client and needs to be appropriately weighted. Designing new methods to deal with
such challenges is an active area of research in federated learning.

We focus on two distinct federated-learning approaches based on the Alternating Direction Method of
Multipliers (ADMM) and Variational Bayes (VB), respectively. The ADMM approach synchronises
the global and local models by using constrained optimisation and updates both primal and dual
variables simultaneously. This includes methods like FedPD (Zhang et al., 2021), FedADMM
(Gong et al., 2022; Wang et al., 2022; Zhou and Li, 2023) and FedDyn (Acar et al., 2021). The VB
approach, on the other hand, uses local posterior distributions as messages and multiplies them to
compute an accurate estimate of the global posterior (Ashman et al., 2022). This follows the more
general Bayesian framework which has a long history in distributed and decentralised computations
(Mutambara, 1998; Tresp, 2000; Durrant-Whyte, 2001). Despite decades of work, the two fields
remain disconnected and are thought to be fundamentally different: there is no notion of duality in
VB, and posterior distributions are entirely absent in ADMM. Little has been done to connect the two
at a fundamental level and our goal here is to address this gap.

In this paper, we provide new connections between ADMM and VB-based approaches for federated
learning. Our main result shows that the dual-variables used in ADMM naturally emerge through
the “site” parameters in VB. We show this for a specific case where isotropic-covariance Gaussian
approximations are used. For this case, we get a close line-by-line correspondence between the
ADMM and VB updates. The expectations of the local likelihood approximations, also known as the
sites, yield the dual terms used in the local updates of ADMM.

We use this connection to derive new federated learning algorithms. First, we extend the isotropic
case to learn full-covariances through the federated VB approach; see Sec. 3.3. This leads to an
ADMM-like approach with an additional dual variable to learn covariances, which are then used as
preconditioners for the global update. Second, building upon functional regularisation approaches
from Bayesian literature, we propose to use similar extensions to handle unlabelled data, providing a
relationship to federated distillation methods (Seo et al., 2020; Li and Fedmd, 2019; Lin et al., 2020a;

1

a
rX

iv
:2

5
0
1
.1

7
3
2
5
v
2

[c

s.
L

G
]

 2
8
 F

e
b
 2

0
2
5

Published as a conference paper at ICLR 2025

Seo et al., 2020; Wu et al., 2021), as well as work in function-space continual learning (Buzzega
et al., 2020; Kirkpatrick et al., 2017; Pan et al., 2020; Titsias et al., 2020); see Sec. 3.4. Our empirical
results in Sec. 4 show that the new algorithms lead to improved performance (improved convergence)
across a range of different models, datasets, numbers of clients, and dataset heterogeneity levels.

2 FEDERATED LEARNING WITH ADMM AND BAYES

We start by introducing federated ADMM and Bayesian federated learning approaches, and then, in
Secs. 3 and 4, we will provide new connections along with new algorithms and empirical results. The
goal of federated learning is to train a global model (parameters denoted by wg) by using the data
distributed across K clients. Ideally, we want to recover the solution that minimises the loss over all
the aggregated data, for instance, we may aim for

w
∗
g = argmin

w

K∑

k=1

ℓk(w) + δR(w), (1)

where ℓk is the loss defined at the k’th client using its own local data Dk andR is a regulariser with
δ ≥ 0 as a scalar (set to 0 when no explicit regularisation is used). However, because the data is
distributed, the server needs to query the clients to get access to the losses ℓk. Then the goal is to
estimate w

∗
g while also minimising the communication cost. Typically, instead of communicating

ℓk or its gradients, local clients train their own models (denoted by wk for the k’th client) and
communicate them (or changes to them) to the server. The server then updates wg and sends it back
to the clients. This process is iterated with the aim of eventually recovering w

∗
g .

The Alternating Direction Method of Multipliers (ADMM) is a popular framework for distributed
and federated learning, where the local and global optimisation are performed with constraints that
they must converge to the same model. That is, we use constraints wk = wg enforced through the
dual variables, denoted by vk. The triple (wk,vk,wg) are updated as follows,

Client updates: wk ← argmin
w

ℓ̄k(w) + v
⊤
k w + 1

2α∥w −wg∥
2,

vk ← vk + α(wk −wg), for all k,

Server update: wg ←
1

K

K∑

k=1

[

wk +
1

α
vk

]

.

(2)

Here, α > 0 is a scalar and we denote ℓ̄k = ℓk/Nk where Nk is the size of the data at the k’th client.
Upon convergence, we get w∗

g = w
∗
k and v

∗
k = −∇ℓ̄k(w

∗
g) for all k.

Such updates are instances of primal-dual algorithms and many variants have been proposed for
federated learning (Zhang et al., 2021; Gong et al., 2022; Wang et al., 2022; Zhou and Li, 2023).
For example, FedDyn (Acar et al., 2021) is perhaps the best-performing variant which uses a client-
specific αk ∝ α/Nk. It also adds an additional hyperparameter through a local weight-decay
regulariser added to each local client’s loss. There are also simpler versions (not based on ADMM),
for instance, FedProx (Li et al., 2020) where vk is not used (or equivalently fixed to 0 in Eq. 2), and
even simpler Federated Averaging or FedAvg (McMahan et al., 2016), where the proximal constraint
w −wg is also removed. Such methods do not ensure that w∗

k = w
∗
g at convergence. The use of

dual-variables is a unique feature of ADMM to synchronise the server and clients.

The Bayesian framework for federated learning takes a very different approach to ADMM. Instead of
a point estimate w∗

g , the goal for Bayes is to target a global posterior pg(w) = p(w|D1,D2, . . . ,DK).
Instead of loss functions for each Dk, we use likelihoods denoted by p(Dk|w). The solution w

∗
g

in Eq. 1 can be seen as the mode of the posterior pg whenever there exists likelihood such that
log p(Dk|w) = −ℓk(w) and a prior log p0(w) = −δR(w), where both equations need to be true
only up to a constant. Therefore, targeting the posterior pg(w) also recovers w∗

g . Often, we compute

local posteriors pk(w) = p(w|Dk) at clients and combine them at the servers, for instance, Bayesian
committee machines (Tresp, 2000) use the following update,

pg ∝ p0

K∏

k=1

tk. (3)

2

Published as a conference paper at ICLR 2025

where tk(w) = pk(w)/p0(w) is essentially equivalent to the likelihood p(Dk|w) over the data Dk

at the client k. However, the data is never communicated and only the local posterior pk is passed.
Unlike ADMM, the update is not iterative because the posteriors pk are assumed to be exact, giving
rise to a one-step closed-form solution for pg. Earlier work on distributed and decentralised Bayes
focused on such cases (Mutambara, 1998; Durrant-Whyte, 2001; Scott et al., 2022). This is perhaps
the main reason why Bayesian updates can seem disconnected from the ADMM-style updates.

We will derive a connection by using approximate Bayesian approaches, which are required to scale
Bayes to large complex models. Specifically, we will use Variational Bayes (VB), although there
also exist work on Monte Carlo methods (Al-Shedivat et al., 2021; Deng et al., 2024; Liang et al.,
2024). VB finds an approximate posterior, denoted by qg(w), by minimising the Kullback-Leibler
(KL) divergence DKL[qg ∥ pg]. For exponential-family distributions, the global qg(w) has a similar

form to Eq. 3 but tk(w) are replaced by likelihood approximations t̂k(w), also known as “sites”. For
instance, when the prior p0(w) has the same exponential-form as qg(w), the optimal q∗g(w) is

q∗g ∝ p0

K∏

k=1

t̂∗k. (4)

The sites t̂∗k(w) in VB are parameterised through natural gradients as reported by Khan and Lin (2017,
Eq. 11); see an exact expression in Khan and Nielsen (2018, Eq. 18) or Khan and Rue (2023, Sec.
5.4). In this paper, we will show that a distributed estimation of t̂∗k(w) leads to a natural emergence of
dual variables and an ADMM-like algorithm. Specifically, we will rely on the Partitioned Variational
Inference (PVI) procedure of Ashman et al. (2022) and show that, for a Gaussian qg(w), we get a
line-by-line correspondence to ADMM. We note that the other prominent approach called Expectation
Propagation (EP) (Minka, 2001; Guo et al., 2023) also obtains site parameters by optimising the
forward KL, DKL[pg ∥ qg], but there is no known connection to the dual variables.

3 CONNECTING VARIATIONAL BAYES TO ADMM

We precisely connect Variational Bayes, specifically Partitioned Variational Inference (PVI) (Ashman
et al., 2022), to ADMM-style methods for federated learning. We start with PVI, noting it has similar
components to ADMM. We then make approximations to derive a method (FedLap) that has close
line-by-line correspondence to ADMM. We use this connection to derive new variants of ADMM to
improve it, by (i) using full covariance information, and (ii) including function-space information.

3.1 CONNECTING PARTITIONED VARIATIONAL INFERENCE (PVI) TO ADMM

Partitioned Variational Inference (PVI) (Ashman et al., 2022; Bui et al., 2018) aims to find the best
approximation qg ∈ Q where Q is a set of candidate distributions (for example, a set of Gaussian
distributions). The goal is to get the VB solution in Eq. 4 but by using an iterative message passing
algorithm where local approximations qk(w) send the sites t̂k(w) as messages to improve qg(w).

The method updates the following triple (qk, t̂k, qg) as shown below,

Client updates: qk ← argmax
q∈Q

Eq

[

log
p(Dk|w)

t̂k(w)

]

− DKL[q ∥ qg],

t̂k ← t̂k

(
qk
qg

)

,

Server update: qg ∝ p0

K∏

k=1

t̂k.

(5)

The update of qg(w) is exactly the same as Eq. 3 but uses t̂k(w) which in turn is obtained by using

the ratio qk(w)/qg(w) in the second line. The t̂k(w) essentially uses the discrepancy between the
global and local distributions. This is then used in the first line to modify the local qk(w). Similarly to
ADMM, at convergence we have q∗g(w) = q∗k(w). The site parameters are related to natural gradients
(Khan and Lin, 2017; Khan and Nielsen, 2018), therefore we may expect them to be related to dual
variables v∗

k in ADMM which estimate gradients. In what follows, we will derive this precisely.

3

Published as a conference paper at ICLR 2025

The PVI update has a line-by-line correspondence to ADMM. We replace log p(Dk|w) by −ℓk(w)
and turn the max in the first line into a min, and write the second and third lines in log-space,

Client updates: qk ← argmin
q∈Q

Eq[ℓk(w)] + Eq[log t̂k] + DKL[q ∥ qg]

log t̂k ← log t̂k + ρ (log qk − log qg)

Server update: log qg ← log p0 +

K∑

k=1

log t̂k + const,

(6)

where we have added a damping factor 0 < ρ ≤ 1 as it can slow down the rate of change of t̂k(w),
which can be important especially in heterogenous settings (Ashman et al., 2022), although the theory
suggests that ρ = 1 should be ideal. The three updates have a similar form to the ADMM updates in
Eq. 2. The first line uses an additional expectation over q(w) with the Euclidean distance replaced by

the KL divergence. The role of t̂k(w) appears to be similar to that of the dual term v
⊤
k w in ADMM.

The update of t̂k(w) in the second line is also very similar, while the update of qg(w) has some
major differences. Next, we will choose the distributions in PVI accordingly to get even closer to the
ADMM update.

3.2 FEDLAP: A LAPLACE VERSION OF PVI

We now choose a specific form of the distributions in PVI to make it even closer to the ADMM
update, deriving a new method which we call FedLap. In Secs. 3.3 and 3.4 we will use this connection
to derive new, improved, variants of ADMM. Here, we set the family Q to be the set of isotropic
Gaussian distributions N (w;m, I/δ) where the mean m needs to be estimated while the covariance
is fixed to I/δ where δ > 0 is a scalar. We also set the prior p0(w) to a zero mean Gaussian with the
same precision as q(w). These choices are shown below,

qg(w) ∝ N (w;wg, I/δ), qk(w) ∝ N (w;wk, I/δ), p0(w) ∝ N (w; 0, I/δ). (7)

These choices imply that t̂k(w) takes a Gaussian form where only the linear term needs to be
estimated, that is, we need to find vk such that,

t̂k(w) ∝ eδv
⊤

k w. (8)

This form is ensured due to the form of the optimal solution in Eq. 4 (and can be shown more formally
by using natural gradients). Roughly speaking, this is because both qg(w) and p0(w) have the exact

same Gaussian form, therefore δ also appears in the expression of t̂k(w) as well.

Plugging these in Eq. 6 and making a delta approximation (Khan and Rue, 2023, App. C.1), we get
FedLap, a Laplace variant of the PVI (we first provide the update, and then its derivation),

Client updates: wk ← argmin
w

ℓk(w) + δv⊤
k w + 1

2δ∥w −wg∥
2

vk ← vk + ρ(wk −wg)

Server update: wg ←
K∑

k=1

vk.

(9)

The first line is obtained by making the delta approximation, that is, Eq∼N (w;m,I/δ)[g(w)] ≈ g(m),

Eq[ℓk(w)] + Eq[log t̂k(w)] + Eq

[

log
q(w)

qg(w)

]

≈ ℓk(m) + δv⊤
k m+ 1

2δ∥m−wg∥
2 + const.

Then, rewriting m as w, we get the first line. The second line follows due to the Gaussian form,

δv⊤
k w ← δv⊤

k w + ρ
(
δw⊤

k w − δw⊤
g w

)
=⇒ vk ← vk + ρ (wk −wg) .

The last line follows in the same fashion where we update the mean wg of qg(w).

The derivation shows clearly that the t̂k(w) terms used in the KL minimisation of PVI gives rise
to the term v

⊤
k w in the ADMM update in Eq. 2. Similarly to ADMM and PVI, at convergence we

have w
∗
g = w

∗
k. We can make the FedLap update look even more similar to the ADMM update by a

change of variable, absorbing δ into vk (see Eq. 18 in App. A). We also note three subtle differences.

4

Published as a conference paper at ICLR 2025

1. First, instead of using α to update both wk and vk, here we use two separate parameters.
The Bayesian update suggests using the prior parameter δ in the local client update, or the
overall weight-decay. For ρ, we follow Ashman et al. (2022) and set it to 1/K.

2. Second, by dividing the first line by Nk we can recover ℓ̄k used in ADMM (see the first line
in Eq. 2). This suggests that FedLap scales the ∥w −wg∥

2 term by δ/Nk, matching with a
practical choice in FedDyn’s codebase which seems to work well empirically.

3. Third, the update of wg in PVI does not have wk in it or a division by K. This is due to

updates that follow the form in Eq. 3, where we expect different t̂k to already be automatically
weighted: the Bayesian update does not suggest any additional weighting. Despite this
difference, FedLap performs as well as the best-performing ADMM method (FedDyn) in
our experiments.

FedDyn and FedLap have the same computation and communication cost. The communication cost
is P from clients to server (and server to clients), where P is the number of parameters in the model.
Each client k’s computation cost is dominated by O(NkPE), where E is the number of epochs
during optimisation. Computation cost at the global server is negligible, requiring simply adding
together vectors of length P .

3.3 FEDLAP-COV: A NEW ADMM VARIANT WITH FLEXIBLE COVARIANCES

Our connection gives a direct way to design new ADMM variants to improve it: use a different
candidate set Q, that is, choose different posterior forms for the candidates q(w). Here, we demon-
strate this for multivariate Gaussian q(w) = N (w;m,Σ) where, unlike the previous section, we
aim to also estimate the covariance matrix Σ. This extension leads to two dual variables, where the
second dual variable acts as a preconditioner similar to the Newton update. We will often write the
precision matrix S = Σ

−1 because it is directly connected to the Hessian (denoted by H) which is
more natural for a Newton-like update. In practice, we use a diagonal matrix because it scales better
to large models, but our derivation is more general.

We make the following choices to derive the new variant which we will call FedLap-Cov,

qg(w) ∝ N (w;wg,S
−1
g), qk(w) ∝ N (w;wk,S

−1
k), p0(w) ∝ N (w; 0, I/δ). (10)

Similar to the isotropic Gaussian case, these choices imply that t̂k(w) also takes a Gaussian form
where we need to find a pair of dual variables, a vector vk and a symmetric square matrix Vk,

t̂k(w) ∝ ev
⊤

k w−
1
2w

⊤
Vkw (11)

Again, the existence of (v∗
k,V

∗
k) is ensured due to Eq. 4 but we skip the details here.

Now, we can simply plug-in the forms of (qk, t̂k, qg) into Eq. 6 to get the update. The main
differences are, first, the inclusion of Vk in the client’s dual term (highlighted with red) and, second,
the preconditioning with Sg used in the server updates,

Client updates: (wk,Sk)← argmin
q∈Q

Eq[ℓk(w)] + Eq

[
v
⊤
k w−

1
2w

⊤
Vkw

]
+ DKL[q ∥ qg],

vk ← vk + ρ (Skwk − Sgwg) and Vk ← Vk + ρ (Sk − Sg) ,

Server updates: wg ← S
−1
g

K∑

k=1

vk, where Sg = δI+

K∑

k=1

Vk. (12)

Similarly to before, the updates can be simplified by using a delta approximation to derive a Laplace
variant. Because we want local Sk to also be updated, we can use a second-order delta approximation
for any q(w) = N (w;m,S−1),

Eq[ℓk(w)] ≈ Eq

[
ℓk(m) + (w −m)∇ℓk(m) + 1

2 (w −m)⊤Hk(m)(w −m)
]

= ℓk(m) + 1
2Tr

[
Hk(m)S−1

]
,

(13)

where Hk(m) denotes the hessian of ℓk at w = m. The approximation decouples the optimisation
over mk and Sk at a client (we assume that H(m) does not depend on m to avoid requiring

5

Published as a conference paper at ICLR 2025

higher-order derivatives), allowing us to write them as two separate updates,

FedLap-Cov client update: wk ← argmin
w

ℓk(w) + v
⊤
k w−

1
2w

⊤
Vkw + 1

2∥w −wg∥
2
Sg

Sk ← Hk(wk)− Vk + Sg

(14)

A full derivation is in App. B. Here, ∥w∥2
S
= w

⊤
Sw denotes the Mahalanobis distance. The two

updates are performed concurrently and we have used Hk(wk) at the most recent parameters wk.
These two steps along with the update for vk,Vk,wg,Sg in Eq. 12 constitute our new Laplace
variant, which we call FedLap-Cov. In our experiments we use diagonal matrices (Vk,Hk,S), which
already shows improved performance.

FedLap-Cov improves several aspects of ADMM and FedLap. First, the update of vk uses the
parameters Skwk and Sgwg , weighted by their respective precisions. As a result, the uncertainty is
naturally incorporated when summing vk in the global updates to get wg . Second, the global updates
use preconditioning through Sg which also incorporates uncertainty in the global variables. Third, Sg

is an accumulation of all Vk which captures the difference between Sk and Sg . Finally, the Euclidean
distance is changed to a Mahalanobis distance. We expect these aspects to be useful when dealing
with heterogeneity across clients. The covariances should help in automatic weighing of information,
which can potentially improve both performance and convergence.

For a valid algorithm, we need to ensure that Sk and Sg remain positive-definite throughout. This
can be ensured by rewriting the Vk update by substituting Sk from Eq. 14,

Vk ← Vk + ρ(Sk − Sg) = Vk + ρ(Hk(wk)− Vk) = (1− ρ)Vk + ρHk(wk).

Therefore, if the Hessian is positive semi-definite all Vk will be too, which will also imply both
Sg and Sk remain positive definite. We can enforce this by using a Generalised Gauss-Newton
approximation (Schraudolph, 2002; Martens, 2020) or by using recent variational algorithms that
ensure positive definite covariances (Lin et al., 2020b; Shen et al., 2024). We provide the final
implemented FedLap-Cov update in Eq. 21. Similarly to ADMM, PVI and FedLap, at convergence
we have w

∗
g = w

∗
k and S

∗
g = S

∗
k .

FedLap-Cov has communication cost 2P from clients to server (and server to clients), as we send
both vk and Vk (this is for a diagonal matrix, as in all our experiments; for a full-covariance structure
the theoretical cost is 3P/2 + P 2/2). Client k’s computation cost is O(NkP (E + 1)) as we need
an additional backward pass through the dataset to calculate Vk in our implementation, which is a
small additional cost. We could alternatively use more efficient implementations, such as online
implementations, to reduce this cost (Daxberger et al., 2021; Shen et al., 2024). Overall, FedLap-Cov
adds new improvements to FedLap by using a more flexible posterior distribution, and we see this
empirically in Sec. 4.

3.4 FEDLAP-FUNC: IMPROVING BY INCLUDING FUNCTION-SPACE INFORMATION

In the previous section, we derived FedLap-Cov, which improves FedLap by including full covariance
information. In this section, we derive FedLap-Func, which improves FedLap by including function-
space information over unlabelled inputs. Specifically, we assume some inputs are available to both
a local client and the global server, and send soft labels (predictions) over those inputs, along with
the weights we send in FedLap. This additional information can be seen as improving the gradient
reconstruction of each client’s data compared to just a Gaussian weight-space approximation, thereby
improving the quality of information transmitted between local clients and the global server (Khan
and Swaroop, 2021; Daxberger et al., 2023).

We start by writing FedLap’s update at the global server as an optimisation problem,

wg = argmin
w

1
2δ∥w∥

2 −
K∑

k=1

log t̂k
︸ ︷︷ ︸

client k’s contribution

, (15)

where we note that the solution to this problem (followed by calculating the Laplace covariance at
wg) gives us FedLap-Cov’s server update from Eq. 12, and it therefore looks very similar to Eq. 6.

Following ideas from continual learning and knowledge adaptation (Khan and Swaroop, 2021), we
improve the contribution from client k by also sending information in function-space, instead of only

6

Published as a conference paper at ICLR 2025

sending in weight-space. We do this over a set of inputsMk (whereMk can be different for each
client, or shared). We derive a similar equation to Daxberger et al. (2023), but through a more general
form which avoids a Taylor series expansion, and allows us to adapt the theory to federated learning.
Each client contribution to the global server in Eq. 15 becomes (derivation in App. C.1),

∑

i∈Mk

ℓ(ŷi,w)

︸ ︷︷ ︸

function-space information

− 1
2 (w −wk)

⊤[HMk](w −wk)
︸ ︷︷ ︸

new weight-space term

+ log t̂k(w)
︸ ︷︷ ︸

unchanged from before

, (16)

where ℓ(yi,w) is the loss at parameters w with label yi, ŷi is the soft label (prediction) over an
input i ∈ Mk using local client weights wk, and H

Mk is the (approximate) Hessian of the loss
over points inMk at weights wk. We see that the new weight-space term is subtracted from the
additional function-space information: this avoids double-counting the contribution from points
i ∈ Mk. Although using this in the optimisation at the global server in Eq. 15 seems to require
sending additional weight-space information (wk and H

Mk), the equations simplify, allowing us to
still send only Vk and vk, except that compared to earlier, these now remove the contribution from
points i ∈ Mk. We additionally send ŷi for i ∈ Mk, which is a very small cost when the same
inputsMk are available to the clients and the server.

We can simplify the equations further by again approximating all the covariances to be equal to I/δ,
like in FedLap. In App. C.2 we show that this gives,

Client updates: wk ← argmin
w

ℓk(w) + δv⊤
k w + 1

2δ∥w −wg∥
2

︸ ︷︷ ︸

Same as FedLap

−
∑

i∈Mk

τℓ(ŷi,w) +

K∑

k′=1

∑

i∈Mk′

τℓ(ŷi,g,w)

︸ ︷︷ ︸

Additional function-space terms

,

vk ← vk + ρ(wk −wg),

Server update: wg ← argmin
w

K∑

k=1

[
∑

i∈Mk

τℓ(ŷi,w)− δv⊤
k w

]

+ 1
2δ∥w∥

2,

(17)

where ŷi is the prediction over an input i ∈Mk using the previous round’s client model weights wk,
ŷi,g is the prediction using the global server weights wg , and we have introduced a hyperparameter τ
that upweights the function-space contribution (we might want τ > 1 when we have few points in
Mk). FedLap-Func keeps the properties of FedLap at a stationary point: w∗

g = w
∗
k (at a stationary

point, all the function-space terms contribute zero gradient). We also see a nice property of the
algorithm: FedLap-Func recovers FedLap whenMk = ∅. FedLap-Func can therefore be seen as
improving FedLap by introducing some points in function-space.

We note that our points inMk do not have to be points from client’s data Dk, and can be publicly
available (unlabelled) data, like in Federated Distillation (Li and Fedmd, 2019; Lin et al., 2020a; Seo
et al., 2020; Wu et al., 2021). Our algorithm is related to these knowledge distillation approaches in
Federated Distillation, except we also send weights, thereby connecting to non-distillation approaches.
We hope future work can explore these connections further.

The communication cost of FedLap-Func per round is almost the same as FedLap: FedLap-Func
has communication cost P + C2, where C is the number of classes (C ≪ P), because we send
predictions over C points (one point per class in our experiments) and each prediction vector is of
length C. On clients, the computation cost is now O((Nk +M)PE), where M is the number of
points in memory (M ≪ Nk, so the additional cost is small). On the server, the computation cost
increases compared to FedLap: the server has to optimise an objective function instead of simply
adding vectors. It is now O(MPEg), where M is the number of points in memory and Eg is the
number of optimisation steps. This is less than the computation cost at clients (because M ≪ Nk)
and will typically not be a problem (typically the global server is large and has more compute than
clients).

7

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

We run experiments on a variety of benchmarks, (i) on tabular data and image data, (ii) using logistic
regression models, multi-layer perceptrons, and convolutional neural networks, (iii) at different client
data heterogeneity levels, and (iv) with different numbers of clients. We focus on showing that (i)
our VB-derived algorithm FedLap performs comparably to the best-performing ADMM algorithm
FedDyn (despite having one fewer hyperparameter to tune: no local weight-decay), (ii) including full
covariances in FedLap-Cov improves performance, and (iii) including function-space information in
FedLap-Func improves performance. Hyperparameters and further details are in App. E.

Models and datasets. We learn a logistic regression model on two (binary classification) datasets:
UCI Credit (Quinlan, 1987) and FLamby-Heart (Janosi et al., 1988; du Terrail et al., 2022). Details
on the datasets are in App. E. We use the same heterogeneous split on UCI Credit as in previous work
(Ashman et al., 2022), splitting the data into 10 clients (results with a homogeneous split of UCI
Credit are in Table 4 in App. F). FLamby-Heart is a naturally-heterogeneous split consisting of data
from 4 hospitals (du Terrail et al., 2022). We also train a 2-hidden layer perceptron (as in previous
work (Acar et al., 2021; McMahan et al., 2016)) on MNIST (LeCun et al., 1998) and Fashion MNIST
(FMNIST) (Xiao et al., 2017) with K = 10 clients. We use a random 10% of the data in FMNIST to
simulate having less data, and use the full MNIST dataset. We consider both a homogeneous split
and a heterogeneous split. To test having more clients, we also use a heterogeneous split of (full)
Fashion MNIST across 100 clients. Lastly, we train a convolutional neural network on CIFAR10
(Krizhevsky and Hinton, 2009), using the same CNN from previous work (Pan et al., 2020; Zenke
et al., 2017). We split the data heterogeneously into K = 10 clients. For all heterogeneous splits, we
sample Dirichlet distributions that decide how many points per class go into each client (details in
App. E.1). Our sampling procedure usually gives 2 clients 50% of all the data, and 6 clients have
90% of the data. Within the clients, 60-95% of client data is within 4 classes out of 10.

Methods and hyperparameters. We compare FedLap, FedLap-Cov and FedLap-Func with three
baselines: FedAvg (McMahan et al., 2016), FedProx (Li et al., 2020) and FedDyn (Acar et al., 2021),
which is the best-performing federated ADMM-style method (FedDyn performs much better than
FedADMM). We fix the local batch size and local learning rate (using Adam (Kingma and Ba, 2015))
to be equal for every algorithm, and sweep over number of local epochs, the δ and α hyperparameters,
for FedDyn the additional local weight-decay hyperparameter, and for FedLap-Func the additional
τ hyperparameter. For FedLap-Func, we assume one randomly-selected point per class per client
is available to the global server (two points for CIFAR10). This breaks the strictest requirement of
not sharing any client data with the global server, however, this is very few points, and it might be
reasonable to share a few random points having obtained prior permission. We do not report results
of FedLap-Func on FLamby-Heart because of the sensitive nature of medical data.

We summarise results in Table 1, showing the average accuracy (across 3 random seeds for all
datasets) after a certain number of communication rounds. We provide further results in more tables
in App. F, where we also report the average number of communication rounds to specific accuracies.
They all show similar conclusions.

FedLap performs at least as well as FedDyn across datasets and splits, and both are better
than FedAvg and FedProx. We first compare FedLap with the other baselines. We see that FedLap
performs at least as well as FedDyn on all datasets and heterogeneity levels, showing that FedLap
is similarly strong to FedDyn, despite having one fewer hyperparameter to tune (see also results
on a homogeneous split of UCI Credit in Table 4 in App. F, where FedLap performs better than
FedDyn). We note that FedDyn’s performance is very sensitive to the value of this additional weight-
decay hyperparameter (we provide an example of this hyperparameter’s importance in App. D.1).
Additionally, we find that FedLap performs well with the optimal global weight-decay δ (we show an
example of FedLap’s improved performance over FedDyn due to this property in App. D.2).

FedLap-Cov significantly improves upon FedLap. We see that FedLap-Cov consistently improves
upon FedLap (and other baseline methods including FedDyn). At the highest number of communica-
tion rounds in Table 1, FedLap-Cov’s accuracy is higher than FedDyn’s by 1.7%-5.9% on four of our
dataset settings, and is only marginally worse on one (0.2% worse on CIFAR-10, which is within
standard deviation; FedLap-Cov is also significantly better earlier in training). This empirically shows
the benefit of including covariance information to improve upon ADMM-style methods.

8

Published as a conference paper at ICLR 2025

Dataset Comm FedAvg FedProx FedDyn FedLap FedLap FedLap
Round -Cov -Func

FLambyH 10 72.6(1.1) 77.5(1.5) 76.9(0.5) 77.5(1.1) 79.2(1.8) (↑2.3) –
(heterog) 20 77.6(0.6) 77.7(0.5) 78.1(0.6) 77.7(0.5) 80.0(0.5) (↑1.9) –

UCI Credit 10 77.0(1.3) 73.6(2.2) 73.5(1.0) 77.1(2.3) 80.4(0.4) (↑7.1) 77.1(1.1)
(heterog) 25 76.3(3.5) 75.0(4.1) 79.9(2.6) 80.7(1.4) 84.2(2.0) (↑4.3) 83.6(2.7)

50 78.6(3.3) 79.3(0.9) 83.5(2.2) 83.5(1.8) 85.2(1.6) (↑1.7) 85.8(2.0)

MNIST 10 97.9(0.0) 97.9(0.1) 98.0(0.1) 98.0(0.0) 98.0(0.1) (0.0) 97.9(0.1)
(homog) 20 98.1(0.1) 98.2(0.1) 98.1(0.1) 98.2(0.0) 98.2(0.1) (↑0.1) 98.2(0.0)
MNIST 10 97.5(0.1) 97.5(0.1) 97.0(0.2) 97.4(0.1) 97.6(0.1) (↑0.6) 97.5(0.1)

(heterog) 25 97.9(0.2) 97.9(0.1) 97.8(0.0) 98.0(0.1) 98.0(0.2) (↑0.2) 98.0(0.1)
50 98.0(0.1) 98.0(0.1) 98.0(0.1) 98.2(0.1) 98.2(0.1) (↑0.2) 98.0(0.1)

FMNIST 10 72.3(0.4) 72.2(0.3) 75.3(0.8) 72.1(0.2) 75.0(0.6) (↓0.3) 73.7(0.7)
(homog) 25 77.7(0.3) 77.4(0.1) 77.5(0.8) 77.1(0.1) 79.8(0.4) (↑2.3) 77.9(0.3)

50 80.0(0.2) 80.3(0.1) 78.2(0.5) 80.2(0.1) 81.8(0.1) (↑2.6) 80.0(0.2)
FMNIST 10 70.4(0.9) 69.9(0.4) 73.0(0.6) 71.3(0.9) 74.6(0.7) (↑1.6) 72.2(0.9)
(heterog) 25 74.3(0.5) 74.7(0.6) 74.6(0.4) 74.3(0.4) 78.3(1.0) (↑3.7) 75.4(0.8)

50 76.0(0.7) 76.9(0.9) 74.6(0.5) 77.6(0.7) 80.5(0.6) (↑5.9) 78.1(0.7)

FMNIST 10 73.9(0.3) 73.3(0.7) 75.7(0.4) 73.9(0.3) 76.9(0.7) (↑1.2) 76.9(0.8)
(heterog) 25 78.7(0.3) 78.4(0.1) 81.4(0.2) 79.4(0.2) 81.3(0.2) (↓0.1) 79.7(0.4)

100 clients 50 81.8(0.3) 81.6(0.1) 82.2(0.3) 82.4(0.3) 83.0(0.1) (↑0.8) 81.8(0.3)
CIFAR10 10 73.8(0.5) 73.8(1.5) 72.7(0.9) 74.8(1.3) 75.1(1.1) (↑2.4) 76.0(1.1)
(heterog) 25 75.0(0.5) 75.0(0.9) 77.4(0.6) 78.0(1.2) 77.6(0.7) (↑0.2) 78.5(1.0)

50 75.1(0.3) 75.4(0.8) 79.4(0.4) 79.5(1.4) 79.2(0.9) (↓0.2) 79.5(1.4)

Table 1: The average accuracy (standard deviation in parentheses) over three runs reported after fixed
numbers of communication rounds. We see that FedLap performs at least as well as FedDyn in all
settings, while FedLap-Cov significantly improves over FedLap and FedDyn (except for homogeneous
MNIST where all methods perform equally well): FedLap-Cov’s improvement over FedDyn is
reported next to FedLap-Cov’s accuracy. FedLap-Func also improves performance (especially seen
on CIFAR10 and heterogeneous FMNIST). For each run, we use the average accuracy over the
previous 3 rounds to account for instabilities (maximum accuracy over previous 3 rounds in Table 2),
and bold the top two performing algorithms (even if their standard deviations overlap with others).

FedLap-Func improves upon FedLap. We also see that FedLap-Func improves upon FedLap,
especially in the heterogeneous splits of Fashion MNIST (10 clients) and CIFAR10. FedLap-Func
often reaches better accuracies at earlier rounds, as it uses function-space information while the
model is still far from optimal. We note that, in our experiments, we send function-space information
over very few inputs (one randomly-chosen point per class per client, or two points with CIFAR10).
Future work can look at using public unlabelled datasets to send function-space information over
many more inputs, like in Federated Distillation. In App. E.5 we show that performance improves
when we send function-space information over more datapoints (on FMNIST), as expected.

We see the same conclusions with 100 clients instead of 10 clients. We also run a heterogenous
setting with 100 clients (instead of 10) to simulate having many more clients (results in Table 1).
We do this on FashionMNIST (full dataset), using the same method to heterogenously split data
across clients as with 10 clients. We see the same conclusions as with 10 clients: FedLap performs
as well as FedDyn (and better than FedAvg and FedProx) despite having one fewer hyperparameter
to tune, FedLap-Cov significantly improves performance, and FedLap-Func improves performance
particularly earlier in training.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we provide new connections between two distinct and previously unrelated federated
learning approaches based on ADMM and Variational Bayes (VB), respectively. Our key result shows
that the dual variables in ADMM naturally emerge through the site parameters used in VB. We first
show this for the isotropic Gaussian case and then extend it to multivariate Gaussians. The latter
is used to derive a new variant of ADMM where learned covariances incorporate uncertainty and

9

Published as a conference paper at ICLR 2025

are used as preconditioners. We also derive a new functional regularisation extension. Numerical
experiments show that these improve performance.

This work is the first to show such connections of this kind. No prior work has shown the emergence
of dual variables while estimating posterior distributions. The result is important because it enables
new ways to combine the complementary strengths of ADMM and Bayes. We believe this to be
especially useful for non-convex problems, such as those arising in deep learning.

There are many avenues for future work. We believe this connection holds beyond the federated
learning setting, and we hope to explore this in the future. This could give rise to a new set of
algorithms that combine duality and uncertainty to solve challenging problems in machine learning,
optimisation, and other fields. There are also several extensions for the federated case. Our current
experiments update all clients in every round of communication, and future experiments could relax
this. We expect that our methods will still work well, just like algorithmically-related algorithms such
as FedDyn. Future work can also analyse convergence rates of FedLap, following similar theoretical
assumptions to those for FedDyn and FedADMM. We could also explore differentially-private
versions of the algorithm, following differentially-private versions of PVI (Heikkilä et al., 2023).
We also expect that our method will perform well in continual federated learning, using Bayesian
continual learning techniques (Kirkpatrick et al., 2017; Pan et al., 2020; Titsias et al., 2020). Lastly,
future work can explore connections between Federated Distillation and FedLap-Func.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Grant No.
IIS-2107391. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
MEK is supported by the Bayes-Duality project, JST CREST Grant Number JPMJCR2112.

AUTHOR CONTRIBUTIONS STATEMENT

List of authors: Siddharth Swaroop (SS), Mohammad Emtiyaz Khan (MEK), Finale Doshi-Velez
(FDV).

SS led the project and conceived the original ideas with regular feedback from FDV and MEK. The
emergence of dual variables through site parameter was hypothesised by MEK, and confirmed by SS.
SS coded and ran all experiments. SS wrote a first draft of the paper with feedback from FDV, which
was substantially revised by MEK with feedback from SS and FDV.

10

Published as a conference paper at ICLR 2025

REFERENCES

Durmus Alp Emre Acar, Yue Zhao, Ramon Matas, Matthew Mattina, Paul Whatmough, and
Venkatesh Saligrama. Federated learning based on dynamic regularization. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?

id=B7v4QMR6Z9w.

Maruan Al-Shedivat, Jennifer Gillenwater, Eric Xing, and Afshin Rostamizadeh. Federated learning
via posterior averaging: A new perspective and practical algorithms. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=

GFsU8a0sGB.

Matthew Ashman, Thang D Bui, Cuong V Nguyen, Stratis Markou, Adrian Weller, Siddharth
Swaroop, and Richard E Turner. Partitioned variational inference: A framework for probabilistic
federated learning. arXiv preprint arXiv:2202.12275, 2022.

Thang D. Bui, Cuong V. Nguyen, Siddharth Swaroop, and Richard E. Turner. Partitioned variational
inference: A unified framework encompassing federated and continual learning. arXiv preprint
arXiv:1811.11206, 2018.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. In Advances in Neural
Information Processing Systems, volume 33, pages 15920–15930, 2020.

Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
Philipp Hennig. Laplace redux–effortless Bayesian deep learning. In Advances in Neural Informa-
tion Processing Systems, 2021.

Erik Daxberger, Siddharth Swaroop, Kazuki Osawa, Rio Yokota, Richard E Turner, José Miguel
Hernández-Lobato, and Mohammad Emtiyaz Khan. Improving continual learning by accurate
gradient reconstructions of the past. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?id=b1fpfCjja1.

Wei Deng, Qian Zhang, Yian Ma, Zhao Song, and Guang Lin. On convergence of federated averaging
langevin dynamics. In The 40th Conference on Uncertainty in Artificial Intelligence, 2024. URL
https://openreview.net/forum?id=EmQGdBsOPx.

Jean Ogier du Terrail, Samy-Safwan Ayed, Edwige Cyffers, Felix Grimberg, Chaoyang He, Regis
Loeb, Paul Mangold, Tanguy Marchand, Othmane Marfoq, Erum Mushtaq, Boris Muzellec,
Constantin Philippenko, Santiago Silva, Maria Teleńczuk, Shadi Albarqouni, Salman Avestimehr,
Aurélien Bellet, Aymeric Dieuleveut, Martin Jaggi, Sai Praneeth Karimireddy, Marco Lorenzi,
Giovanni Neglia, Marc Tommasi, and Mathieu Andreux. FLamby: Datasets and benchmarks
for cross-silo federated learning in realistic healthcare settings. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:

//openreview.net/forum?id=GgM5DiAb6A2.

Hugh Durrant-Whyte. Data fusion in decentralised sensing networks. In Fourth International
Conference on Information Fusion, 2001, 2001.

Yonghai Gong, Yichuan Li, and Nikolaos M. Freris. Fedadmm: A robust federated deep learning
framework with adaptivity to system heterogeneity. In 2022 IEEE 38th International Conference
on Data Engineering (ICDE), pages 2575–2587, 2022. doi: 10.1109/ICDE53745.2022.00238.

Han Guo, Philip Greengard, Hongyi Wang, Andrew Gelman, Yoon Kim, and Eric Xing. Federated
learning as variational inference: A scalable expectation propagation approach. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.

net/forum?id=dZrQR7OR11.

Mikko A. Heikkilä, Matthew Ashman, Siddharth Swaroop, Richard E Turner, and Antti Honkela. Dif-
ferentially private partitioned variational inference. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=55BcghgicI.

Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Robert Detrano. Heart Disease. UCI
Machine Learning Repository, 1988. DOI: https://doi.org/10.24432/C52P4X.

11

Published as a conference paper at ICLR 2025

Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational inference: converting
variational inference in non-conjugate models to inferences in conjugate models. In International
Conference on Artificial Intelligence and Statistics, pages 878–887, 2017.

Mohammad Emtiyaz Khan and Didrik Nielsen. Fast yet simple natural-gradient descent for variational
inference in complex models. In 2018 International Symposium on Information Theory and Its
Applications (ISITA), pages 31–35. IEEE, 2018.

Mohammad Emtiyaz Khan and Håvard Rue. The Bayesian learning rule. Journal of Machine
Learning Research, 24(281):1–46, 2023.

Mohammad Emtiyaz Khan and Siddharth Swaroop. Knowledge-adaptation priors. In Advances in
Neural Information Processing Systems, volume 34. Curran Associates, Inc., 2021.

Mohammad Emtiyaz Khan, Alexander Immer, Ehsan Abedi, and Maciej Korzepa. Approximate
inference turns deep networks into Gaussian processes. Advances in neural information processing
systems, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences, 114
(13):3521–3526, 2017.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

Yann LeCun, Corinna Cortes, and Christopher JC. Burges. The MNIST database of handwritten
digits. 1998. URL http://yann.lecun.com/exdb/mnist/.

Daliang Li and Wang J Fedmd. Heterogenous federated learning via model distillation, 2019.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia
Smith. Federated optimization in heterogeneous networks. In I. Dhillon, D. Papailiopoulos,
and V. Sze, editors, Proceedings of Machine Learning and Systems, volume 2, pages 429–
450, 2020. URL https://proceedings.mlsys.org/paper_files/paper/2020/

file/1f5fe83998a09396ebe6477d9475ba0c-Paper.pdf.

Jiajun Liang, Qian Zhang, Wei Deng, Qifan Song, and Guang Lin. Bayesian federated learning
with Hamiltonian Monte Carlo: Algorithm and theory. Journal of Computational and Graphical
Statistics, pages 1–19, 07 2024. doi: 10.1080/10618600.2024.2380051.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 2351–2363. Curran
Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper_files/

paper/2020/file/18df51b97ccd68128e994804f3eccc87-Paper.pdf.

Wu Lin, Mark Schmidt, and Mohammad Emtiyaz Khan. Handling the positive-definite constraint
in the Bayesian learning rule. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 6116–6126. PMLR,
13–18 Jul 2020b. URL https://proceedings.mlr.press/v119/lin20d.html.

James Martens. New insights and perspectives on the natural gradient method. Journal of Machine
Learning Research, 21(146):1–76, 2020.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Inter-
national Conference on Artificial Intelligence and Statistics, 2016. URL https://api.

semanticscholar.org/CorpusID:14955348.

12

Published as a conference paper at ICLR 2025

T. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, 2001.

Arthur G. O. Mutambara. Decentralized estimation and control for multisensor systems. Routledge,
1998.

Pingbo Pan, Siddharth Swaroop, Alexander Immer, Runa Eschenhagen, Richard Turner, and Mo-
hammad Emtiyaz Khan. Continual deep learning by functional regularisation of memorable past.
In Advances in Neural Information Processing Systems, volume 33, pages 4453–4464. Curran
Associates, Inc., 2020.

J. R. Quinlan. Credit Approval. UCI Machine Learning Repository, 1987. DOI:
https://doi.org/10.24432/C5FS30.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I George,
and Robert E McCulloch. Bayes and big data: The consensus Monte Carlo algorithm. In Big Data
and Information Theory, pages 8–18. Routledge, 2022.

Hyowoon Seo, Jihong Park, Seungeun Oh, Mehdi Bennis, and Seong-Lyun Kim. Federated knowledge
distillation, 2020.

Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Clement Bazan, Rio
Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan, and Thomas Möllenhoff.
Variational learning is effective for large deep networks. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=cXBv07GKvk.

Michalis K. Titsias, Jonathan Schwarz, Alexander G. de G. Matthews, Razvan Pascanu, and Yee Whye
Teh. Functional regularisation for continual learning with gaussian processes. In International
Conference on Machine Learning, 2020.

Volker Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741, 2000.

Han Wang, Siddartha Marella, and James Anderson. Fedadmm: A federated primal-dual algorithm
allowing partial participation. 2022 IEEE 61st Conference on Decision and Control (CDC), pages
287–294, 2022. URL https://api.semanticscholar.org/CorpusID:247778987.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-
efficient federated learning via knowledge distillation. Nature Communications, 13, 2021. URL
https://api.semanticscholar.org/CorpusID:237353469.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms, 2017. URL http://arxiv.org/

abs/1708.07747. cite arxiv:1708.07747Comment: Dataset is freely available at
https://github.com/zalandoresearch/fashion-mnist Benchmark is available at http://fashion-mnist.s3-
website.eu-central-1.amazonaws.com/.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pages 3987–3995. PMLR, 2017.

Xinwei Zhang, Mingyi Hong, Sairaj Dhople, Wotao Yin, and Yang Liu. Fedpd: A federated learning
framework with adaptivity to non-iid data. IEEE Transactions on Signal Processing, 69:6055–6070,
2021. doi: 10.1109/TSP.2021.3115952.

Shenglong Zhou and Geoffrey Ye Li. Federated learning via inexact ADMM. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(8):9699–9708, 2023. doi: 10.1109/TPAMI.2023.
3243080.

13

Published as a conference paper at ICLR 2025

A MAKING FEDLAP MORE SIMILAR TO THE ADMM UPDATE

In this section, we re-write the FedLap update (Eq. 9) to look more similar to the ADMM update
(Eq. 2). Specifically, we divide by Nk, and make the substitution ṽk = δvk/Nk, giving,

Client updates: wk ← argmin
w

ℓ̄k(w) + ṽ
⊤
k w + 1

2 (δ/Nk)∥w −wg∥
2

ṽk ← ṽk + ρ(δ/Nk)(wk −wg)

Server update: wg ←
K∑

k=1

1

(δ/Nk)
ṽk.

(18)

B DERIVATION OF FEDLAP-COV UPDATES

Here, we give full derivation of the update given in Eq. 14. We use the definition of the KL divergence
for two multivariate Gaussians q = N (w;m,S) and qg = N (w;wg,Sg):

DKL[q ∥ qg] =
1
2∥m−wg∥

2
Sg

+ 1
2Tr

(
SgS

−1
)
− 1

2 log |SgS
−1|+ const.

We plug this and Eq. 13 in the first update given in Eq. 12 to get the following,

(wk,Sk)← argmin
m,S

ℓk(m) + 1
2Tr

[
Hk(mold)S

−1
]
+ v

⊤
k m−

1
2Tr

[
Vk

(
mm

⊤ + S
−1

)]

+ 1
2∥m−wg∥

2
Sg

+ 1
2Tr

(
SgS

−1
)
− 1

2 log |SgS
−1|.

(19)

The Vk dual term above (the fourth term) is derived using the following identity,

Eq[w
⊤
Vkw] = Eq[Tr

(
Vkww

⊤
)
] = Tr

[
VkEq

(
ww

⊤
)]

= Tr
[
Vk

(
mm

⊤ +Σ
)]

.

With this, the updates over wk and Sk decouple into two different updates:

wk ← argmin
m

ℓk(m) + v
⊤
k m−

1
2m

⊤
Vkm+ 1

2∥m−wg∥
2
Sg

,

Sk ← argmin
S

1
2Tr

[
Hk(mold)S

−1
]
− 1

2Tr
[
VkS

−1
]
+ 1

2Tr
(
SgS

−1
)
− 1

2 log |SgS
−1|.

(20)

By replacing m with w, we recover the update for wk in Eq. 14. The update of Sk has a closed form
solution, as shown below by taking the derivative with respect to S

−1 and setting it to 0,

Hk(mold)− Vk + Sg − Sk = 0 =⇒ Sk = Hk(mold)− Vk + Sg.

In the main update, we set mold to be the most recent value of mk before updating it. This ensures
that the Hessian is estimated at the most recent parameters and so is the best estimate possible.

Using this derivation and the additional details in Sec. 3.3, we can write final FedLap-Cov update as,

Client updates: wk ← argmin
w

ℓk(w) + v
⊤
k w−

1
2w

⊤
Vkw + 1

2∥w −wg∥
2
Sg

,

Sk ← Hk(wk)− Vk + Sg,

vk ← vk + ρ (Skwk − Sgwg) and Vk ← (1− ρ)Vk + ρHk(wk),

Server updates: wg ← S
−1
g

K∑

k=1

vk, where Sg = δI+

K∑

k=1

Vk. (21)

C DERIVATION OF FEDLAP-FUNC EQUATIONS

In this section we derive the FedLap-Func equations from Sec. 3.4.

14

Published as a conference paper at ICLR 2025

C.1 DERIVATION OF EQ. 16

At the global server, we add in the true loss over inputs inMk (temporarily pretending as if we had
true labels available), and then subtract the Gaussian approximate contribution over these points from
Khan et al. (2019),

∑

i∈Mk

ℓ(yi,w)− 1
2Λi,k(ỹi − J

⊤
i w)2, (22)

where the second expression comes from Khan et al. (2019). They take a Laplace approximation of
the posterior at wk, and show that this Laplace approximation is equal to the posterior distribution

of the linear model ỹn = w
⊤
Jn + ϵn after observing data D̃ = {Ji, ỹi}i∈Dk

, where ỹi = w
⊤
k Ji −

Λ−1
i,k (hi,k− yi), ϵn ∼ N (0,Λ−1

n,k), Λi,k is the Hessian of the loss for point i at parameters wk, and Ji

is the Jacobian at input i and weights wk (this is equal to the input features in a Generalised Linear
Model).

Substituting in the values of ỹi, and noting that the Generalised Gauss Newton approximation to the
Hessian is HMk ≈

∑

i∈Mk
Λi,kJiJ

⊤
i , gives us that,

∑

i∈Mk

ℓ(yi,w)− 1
2Λi,k(ỹi − J

⊤
i w)2 =

∑

i∈Mk

ℓ(ŷi,w)

︸ ︷︷ ︸

function-space information

− 1
2 (w −wk)

⊤[HMk](w −wk)
︸ ︷︷ ︸

new weight-space term

,

(23)

where ŷi are soft labels (predictions) over inputs i ∈Mk using local client weights wk, and H
Mk

is the (approximate) Hessian of the loss over points inMk at weights wk. Adding this to Eq. 15
completes the derivation of Eq. 16.

C.2 DERIVING THE FEDLAP-FUNC ALGORITHM

We derive the FedLap-Func equations (Eq. 17) from Eqs. 15 and 16. We note that we can derive
a combined version of FedLap-Cov and FedLap-Func, but for simplicity we will focus on the
non-covariance case.

We start with our approximation that all covariances are set to δI, just like in FedLap: Sg = Sk = δI.
We note that normally, S = H + δI, where H is the Hessian over points (eg the Generalised
Gauss-Newton approximation). By making this approximation, we are ignoring this second-order
information, setting all H = 0. This means the contribution from client k to the server (Eq. 16)
becomes,

∑

i∈Mk

ℓ(ŷi,w)

︸ ︷︷ ︸

function-space information

+ δv⊤
k w, (24)

where the new weight-space term has been removed as H
Mk = 0. We have simply added the

function-space information, where ŷi is the prediction over inputs i ∈Mk at model parameters wk.

We include this function-space term in both the client update for wk and the global server update for
wg . We illustrate this with the global server update. Using App. C.1 gives us,

K∑

k=1

∑

i∈Mk

ℓ(ŷi,g,w)

︸ ︷︷ ︸

function-space information

− 1
2 (w −wg)

⊤[HMk
g](w −wg)

︸ ︷︷ ︸

new weight-space term

+ 1
2 (w −wg)

⊤
Sg(w −wg)− δI

︸ ︷︷ ︸

unchanged from before

, (25)

where ŷi,g is the prediction over inputs i ∈Mk using model parameters wg from the global server,

and H
Mk
g is the Hessian over points inMk at parameter wg. In practice, we can approximate this

Hessian with a Gauss-Newton approximation, and can either recalculate it at the global server before
sending back to local clients, or approximate it as the Hessian sent from the client (calculated at wk),
H

Mk
g ≈ H

Mk .

15

Published as a conference paper at ICLR 2025

Eq. 25 is simpler than Eq. 16, as the two weight-space terms have the same (w − wg) quadratic
form. Therefore we can straightforwardly consider this as changing the global server precision Sg

to remove the contribution from i ∈Mk, ∀k. When we take the approximation that all S = δI, we
again set the Hessians to all be 0, and this simplifies the equation further. Plugging this into the first
client update in Eq. 9, and multiplying all function-space terms by a hyperparameter τ , gives us our
final FedLap-Func algorithm.

D BENEFITS OF FEDLAP OVER FEDDYN AND FEDADMM

In this section, we show two simple experiments showcasing why FedLap has better properties
than FedDyn and FedADMM. First, in App. D.1 we show on a homogoneous MNIST split that
FedDyn requires an additional weight-decay term in the local loss during training in order for it to
perform well, unlike FedLap. Second, in App. D.2 we show how FedLap targets a better global
loss (with weight-decay incorporated already), and gets closer as the number of communication
rounds increases, unlike FedDyn and FedADMM, which target a worse global optimum (with no
weight-decay in the global loss).

D.1 IMPORTANCE OF LOCAL WEIGHT-DECAY IN FEDDYN

In this section, we show the importance of the additional weight-decay parameter to FedDyn’s
performance on a simple example (homogeneous MNIST), a hyperparameter that FedLap removes.
Fig. 1 shows the results. We first see that FedDyn (with optimal weight-decay setting) and FedLap
perform similarly. However, FedDyn’s performance is highly dependent on the setting of its weight-
decay hyperparameter: changing it by an order of magnitude in either direction significantly degrades
performance. Removing it entirely results in catastrophic performance after the first 7 communication
rounds. In contrast, changing the δ hyperparameter in FedLap (or FedDyn) by an order of magnitude
does not reduce performance significantly in this setting.

0 10 20 30 40 50
Communication rounds

96

97

98

Ac
cu

ra
cy

 (%
)

FedLap
FedDyn (optimal weight-decay)
FedDyn (large weight-decay)
FedDyn (small weight-decay)
FedDyn (no weight-decay)

Figure 1: FedDyn’s performance is sensitive to the additional weight-decay hyperparameter that it
has compared to FedLap. When set an order of magnitude too small or too large, performance drops
significantly. When there is no weight-decay, performance gets worse over rounds. Results are mean
and standard deviation over three seeds on homogeneous MNIST (10 clients).

D.2 FEDLAP TARGETS A BETTER GLOBAL LOSS THAN FEDDYN/FEDADMM

In this section, we present a simple setting showcasing the potential benefits of FedLap over FedDyn
(and FedADMM). We take the UCI Credit dataset (a binary classification task), split the data equally
(and homogeneously) into just two clients, and train a logistic regression classifier, ensuring we train
until convergence both locally (full-batch, Adam learning rate 0.001, 1000 local epochs/iterations)
and for a large number of communication rounds (1000 communication rounds). FedADMM is
always slower and worse-performing than FedDyn, so we only consider FedDyn. Note that in this

16

Published as a conference paper at ICLR 2025

section, we do not include weight-decay in the local optimisation of FedDyn, because FedDyn’s
theory does not include this, and this setting is very simple.

First, we note that ideal global performance (of w∗
g) is better with δ = 1 (giving a test nll of 0.337)

than δ = 0 (test nll 0.420). Therefore the w∗
g that FedLap targets is already a better target than that of

FedDyn (and FedADMM), which targets a global optimum with δ = 0.

Secondly, FedLap is quicker to target its ideal global parameter than FedDyn. FedLap reaches within
1% of its ideal w∗ train loss within just 2 communication rounds, and continues getting closer as
we train for longer (up to the 1000 rounds). This happens even when setting different values of δ
(meaning that FedLap might be targeting unideal values of w∗

g).

On the other hand, how close FedDyn gets to its own (worse) ideal train nll depends on the value
of its hyperparameter α: the best value takes 78 rounds to get to within 1% of its optimal train nll.
Larger values of the hyperparameter do not reach within 1% within 1000 rounds: they lead to quick
improvement earlier in training, but then performance (and train nll) gets worse over time.

E ADDITIONAL EXPERIMENTAL DETAILS

In this section we provide further details on experimental setup, including hyperparameter values.

For FedLap-Func, we set a datapoint-specific value of τ , making it depend on the number of datapoints

from that class in the client: for datapoint i belonging to class c, we have τi = τf
Nk,c

Mk,c
, where Nk,c is

the number of datapoints in the class c in client k, and Mk,c is the number of datapoints in class c in
memoryMk (usually 1). We then perform a hyperparameter sweep over τf . In this way, we multiply
the contribution of each datapoint by how many datapoints it is representing from class c in client k.

E.1 HETEROGENEOUS SAMPLING PROCEDURE FOR MNIST, FASHION MNIST AND CIFAR10

Similar to previous work, we use two Dirichlet distributions to sample heterogeneous data splits. We
first sample from Dir(α1), where α1 is of length number of clients K, to sample client sizes. We then
sample a separate Dir(α2) within each client, where α2 is of length number of classes, to sample
class distribution within a client. We then multiply the sampled class distribution within each client
by the sampled client size. When assigning datapoints from a specific class to clients, we normalise
these values across clients, so that all datapoints are assigned between the clients.

We use α1 = 1 and α2 = 0.5 in our heterogeneous splits on MNIST, Fashion MNIST and CIFAR10.
Our sampling procedure usually gives 2 clients 50% of all the data, and 6 clients have 90% of the
data. Within the clients, 60-95% of client data is within 4 classes. We use the same α values for the
100-client case.

E.2 UCI CREDIT

In UCI Credit, the binary classification task is to predict whether individuals default on payments,
and there are a total of 520 training points (with 45% positive labels), with an accuracy of 90% (when
global weight-decay is not zero). We use the heterogeneous split from Ashman et al. (2022) in the
main text: data is split into K = 10 clients, 5 of which have 36 datapoints each (positive label rate of
6%), and the other 5 have 67 datapoints each (positive label rate of 66%). We provide results for a
homogeneous split over K = 10 clients in Table 4, where we see similar conclusions (there is an
even bigger improvement of FedLap and FedLap-related methods).

We set local Adam learning rate at 10−3, and minibatch size to 4 (ensuring there is gradient noise
always). All methods have a hyperparameter sweep over number of local epochs = [5, 10, 20]. We
perform a sweep over the α or δ hyperparameter for FedProx, FedLap, FedLap-Cov and FedLap-Func
over [10, 1, 10−1]. For FedDyn the sweep is over α = [10−3, 10−4, 10−5], and local weight-decay
sweep is over [10−4, 10−5, 10−6]. For FedLap and FedLap-Func, we set damping factor ρ = Nk/N ,
and for FedLap-Cov, ρ = 1/K. For FedLap-Func, we set τ = 1, and run global server optimisation
for 5000 iterations with a learning rate of 0.001. Each run took up to 4 minutes on a standard laptop
CPU.

17

Published as a conference paper at ICLR 2025

E.3 FLAMBY-HEART

FLamby-Heart is a naturally-heterogeneous split, proposed by du Terrail et al. (2022) as a federated
learning benchmark, and consisting of data from 4 hospitals to predict whether a patient has heart
disease (binary classification). There are 486 training examples.

We set batch size to 4 (like in du Terrail et al. (2022)), but use the Adam optimiser locally. We
perform hyperparameter sweeps over number of local epochs = [1, 5, 10], and (Adam) local learning
rate = [10−3, 10−2]. For FedProx, FedLap, and FedLap-Cov, we perform a sweep over δ (or α) =
[100, 10, 1, 10−1, 10−2]. For FedDyn, this is over α = [10, 1, 10−1, 10−2, 10−3], and FedDyn’s local
weight-decay sweep is over [0, 10−2, 10−3, 10−4]. For FedLap, we set damping factor ρ = Nk/N ,
and for FedLap-Cov, ρ = 1/K. Each run took less than 1 minute on a standard laptop CPU.

Note that we do not report results of FedLap-Func as FLamby-Heart has sensitive data (medical data),
where it is not likely to be reasonable to share this data with a global server.

E.4 MNIST

We use the full MNIST dataset. Batch size is set to 32. We train a two-hidden layer multi-layer
perceptron, with 200 hidden units in the first layer, and 100 units in the second layer (the model gets
98.3% accuracy on all data).

For all methods, we perform hyperparameter sweeps over number of local epochs = [1, 5, 10], and
(Adam) local learning rate = [10−3, 10−2]. For FedProx, FedLap, FedLap-Cov and FedLap-Func, we
perform a sweep over δ (or α) = [1, 10−1, 10−2]. For FedDyn, this is over α = [10−4, 10−5, 10−6],
and FedDyn’s local weight-decay sweep is over [10−4, 10−5, 10−6]. For FedLap and FedLap-Func,
we set damping factor ρ = Nk/N , and for FedLap-Cov, ρ = 1/K. For FedLap-Func, we sweep over
τf = [1, 10−1, 10−2], and run global server optimisation for 3000 iterations with a learning rate of
0.0005. Each run took up to 2 hours on a standard laptop CPU.

E.5 FASHION MNIST

We use a random 10% of Fashion MNIST every random seed, and average across (the same) three
random seeds. Batch size is set to 32. We train a two-hidden layer multi-layer perceptron, with 200
hidden units in the first layer, and 100 units in the second layer (the model gets 85% accuracy). Local
Adam learning rate is set to 10−3.

For all methods, we perform hyperparameter sweeps over number of local epochs = [1, 5, 10].
For FedProx, FedLap, FedLap-Cov and FedLap-Func, we perform a sweep over δ (or α) =
[1, 10−1, 10−2, 10−3, 10−4]. For FedDyn, this is over α = [10−2, 10−3, 10−4, 10−5, 10−6], and
FedDyn’s local weight-decay sweep is over [10−4, 10−5, 10−6]. For FedLap and FedLap-Func, we
set damping factor ρ = Nk/N , and for FedLap-Cov, ρ = 1/K. For FedLap-Func, we sweep over
τf = [1, 10−1, 10−2, 10−3, 10−4], and run global server optimisation for 5000 iterations with a
learning rate of 0.001. Each run took up to 1 hour 20 minutes on a standard laptop CPU.

FedLap-Func: sending information over more datapoints. If sending information over 2 points
per class per client (instead of 1), FedLap-Func improves performance. In the homogeneous setting,
mean accuracies (compare with Table 1) are 74.0(0.7) at round 10, 77.8(0.4) at round 25, 80.1(0.4) at
round 50. Max accuracies (compare with Table 2) are 74.4(0.6) at round 10, 78.2(0.2) at round 25,
80.3(0.4) at round 50. 75% accuracy is reached in 12(2) communication rounds, and 78% in 25(2)
rounds (compare with Table 3). In the heterogeneous setting, mean accuracies (compare with Table 1)
are 73.2(0.1) at round 10, 76.1(0.6) at round 25, 78.4(0.2) at round 50. Max accuracies (compare
with Table 2) are 73.7(0.3) at round 10, 76.7(0.7) at round 25, 78.8(0.2) at round 50. 75% accuracy is
reached in 16(2) communication rounds, and 78% in 37(5) rounds (compare with Table 3).

E.6 CIFAR-10

Batch size is set to 64. We set Adam learning rate = 10−3 (note that 10−2 fails to learn anything).

For all methods, we perform hyperparameter sweeps over number of local epochs = [5, 10, 20].
For FedProx, we perform a sweep over α = [1, 10−1, 10−2, 10−3]. For FedLap, FedLap-Cov

18

Published as a conference paper at ICLR 2025

and FedLap-Func, we perform a sweep over δ = [1, 10−1, 10−2]. For FedDyn, this is over α =
[10−3, 10−4, 10−5], and FedDyn’s local weight-decay sweep is over [10−4, 10−5, 10−6].

For FedLap and FedLap-Func, damping ρ was Nk/N for first 10 rounds of training, then 1/K
after that, and gradient clipping was used to stabilise training. For FedLap-Func, we sweep over
τf = [10−2, 10−4, 10−6], and run global server optimisation for 500 iterations with learning rate
0.0005. We assume that each client has 2 randomly-selected points per class shared with the global
server (all other dataset/benchmark settings have 1 point per class per client). Each run took up to 10
hours on an A100 GPU.

F ADDITIONAL EXPERIMENTAL RESULTS

In this section we provide some more results from our experiments. We see the same conclusions /
results as from Table 1 in the main text.

Table 2 reports the maximum accuracy over the previous three communication rounds (instead of
the mean accuracy), and averages this across 3 runs. We see the same results and conclusions as
from Table 1: FedLap performs similarly to FedDyn across all dataset and heterogeneity settings,
and FedLap-Cov and FedLap-Func improve upon this. Table 3 shows the number of communication
rounds to a desired accuracy. Again, we see the same takeaways / conclusions.

We provide additional results on a homogeneous UCI Credit split over K = 10 clients in Table 4.
Here, FedLap performs even better than FedDyn consistently, because it is targeting a better global
loss (with non-zero weight-decay).

In Table 5 we report average test negative log-likelihood results (instead of accuracy) at the end of
training. We see that on average, FedLap performs at least as well as FedDyn (sometimes significantly
outperforming FedDyn, such as on FMNIST (homog), FMNIST (heterog) and CIFAR10). FedLap-
Cov and FedLap-Func improve even further, as might be expected due to the Bayesian interpretation.

Dataset Comm FedAvg FedProx FedDyn FedLap FedLap FedLap
Round -Cov -Func

MNIST homog 10 98.0(0.0) 98.0(0.1) 98.1(0.1) 98.0(0.0) 98.1(0.1) 98.0(0.1)
20 98.2(0.0) 98.3(0.1) 98.2(0.0) 98.2(0.0) 98.3(0.0) 98.2(0.0)

heterog 10 97.6(0.1) 97.6(0.1) 97.1(0.2) 97.5(0.1) 97.7(0.2) 97.7(0.1)
25 97.9(0.1) 97.9(0.1) 98.0(0.1) 98.0(0.1) 98.0(0.2) 98.1(0.1)
50 98.0(0.1) 98.1(0.1) 98.1(0.0) 98.2(0.1) 98.2(0.1) 98.1(0.1)

FMNIST homog 10 73.6(1.0) 73.4(0.3) 75.8(0.4) 73.1(0.2) 76.0(0.2) 74.5(0.5)
25 78.2(0.3) 77.9(0.1) 78.0(0.8) 77.5(0.2) 80.2(0.3) 78.6(0.5)
50 80.3(0.1) 80.5(0.1) 78.5(0.3) 80.4(0.1) 82.0(0.2) 80.4(0.1)

heterog 10 71.3(0.7) 71.2(0.7) 74.0(0.3) 72.2(0.6) 75.4(0.9) 72.7(0.9)
25 74.7(0.5) 75.1(0.3) 75.1(0.8) 74.9(0.8) 78.6(1.0) 75.7(0.8)
50 76.4(0.5) 77.4(0.8) 75.0(0.6) 78.1(0.6) 80.9(0.5) 78.5(0.7)

CIFAR10 heterog 10 74.0(0.5) 74.2(1.4) 73.2(0.8) 75.3(1.1) 75.4(1.1) 76.6(1.5)
25 75.1(0.5) 75.1(0.8) 77.6(0.7) 78.2(1.1) 77.8(0.8) 78.6(1.0)
50 75.3(0.3) 75.6(0.7) 79.6(0.4) 79.7(1.3) 79.3(0.8) 79.6(1.3)

Table 2: Mean accuracy (standard deviation in parentheses) over three runs (except CIFAR-10), after
a fixed number of communication rounds. For each run, we use the maximum accuracy over the
previous 3 rounds (mean accuracy over previous 3 rounds in Table 1). We bold the top two performing
algorithms (even if their standard deviations overlap with others). We see that FedLap performs at
least as good as FedDyn in all settings (with a bigger difference when the global model performs
better with a non-zero weight decay, like in UCI Credit). FedLap-Cov significantly improves upon
FedLap in most settings (except for homogeneous MNIST, where all methods perform equally well),
and FedLap-Func also improves performance (especially seen on CIFAR10).

19

Published as a conference paper at ICLR 2025

Dataset Acc FedAvg FedProx FedDyn FedLap FedLap FedLap
(%) -Cov -Func

MNIST homog 97.5 6(1) 6(1) 4(1) 5(1) 4(1) 6(1)
heterog 97.5 10(2) 10(2) 18(3) 11(1) 9(1) 9(1)

FMNIST homog 75 15(1) 15(2) 9(1) 15(1) 9(1) 12(2)
78 25(1) 26(3) 17(3) 28(1) 15(1) 24(1)

heterog 75 26(4) 22(5) 24(7) 24(4) 11(3) 20(2)
78 – – – – 22(6) –

CIFAR10 heterog 72 6(1) 6(3) 8(1) 7(1) 6(1) 5(1)
75 – – 14(2) 10(3) 10(3) 8(2)
78 – – 30(5) 32(11) 32(11) 22(10)

Table 3: Mean number of communication rounds (standard deviation in parentheses) over three runs,
to reach desired accuracy. If every run does not reach desired accuracy within 50 communication
rounds, no number is reported. We bold the top two performing algorithms (even if their standard
deviations overlap with others). We see that FedLap performs similarly to FedDyn in all settings.
FedLap-Cov significantly improves upon FedLap in most settings, and FedLap-Func also improves
performance (especially seen on CIFAR10).

Dataset Comm FedAvg FedProx FedDyn FedLap FedLap
Round -Cov

UCI Credit 10 81.4(0.6) 82.1(0.5) 81.8(1.4) 83.6(0.4) 84.4(0.5)
(homog) 25 84.6(1.1) 84.2(0.4) 86.3(1.5) 87.0(0.4) 86.5(1.0)

50 86.8(0.6) 87.4(0.1) 86.9(0.5) 88.0(0.6) 87.7(0.7)
100 88.7(0.2) 88.5(0.6) 87.9(0.3) 88.2(0.2) 89.1(0.7)

Table 4: Mean accuracy (standard deviation in parentheses) over three runs, after a fixed number of
communication rounds, on a homogoneous split of UCI Credit into K = 10 clients. For each run, we
use the average accuracy over the previous 3 rounds to account for instabilities, and bold the top two
performing algorithms (even if their standard deviations overlap with others). We see that FedLap
and FedLap-Cov perform the best.

Dataset Comm FedAvg FedProx FedDyn FedLap FedLap FedLap
Round -Cov -Func

MNIST
(homog) 20 0.11(0.01) 0.07(0.04) 0.06(0.00) 0.09(0.00) 0.09(0.01)(↑0.03) 0.07(0.00)

MNIST
(heterog)

50 0.13(0.01) 0.12(0.01) 0.07(0.01) 0.06(0.00) 0.07(0.00)(0.00) 0.06(0.00)

FMNIST
(homog)

50 0.56(0.01) 0.56(0.01) 0.63(0.01) 0.57(0.01) 0.56(0.00)(↓0.07) 0.57(0.00)

FMNIST
(heterog)

50 0.67(0.04) 0.66(0.03) 0.77(0.05) 0.65(0.05) 0.60(0.04)(↓0.17) 0.62(0.02)

FMNIST
(heterog)

100 clients 50 0.53(0.01) 0.53(0.01) 0.51(0.01) 0.53(0.01) 0.49(0.01)(↓0.02) 0.52(0.01)

CIFAR10
(heterog)

50 1.5(0.1) 1.5(0.1) 0.7(0.0) 0.6(0.0) 0.6(0.0)(↓0.1) 0.6(0.0)

Table 5: The average validation negative log-likelihood (standard deviation in parentheses) over three
runs reported after a few fixed number of communication rounds. Lower is better. We see that on
average, FedLap performs at least as well as FedDyn (sometimes significantly outperforming FedDyn,
such as on FMNIST (homog), FMNIST (heterog) and CIFAR10). FedLap-Cov and FedLap-Func
improve even further, as might be expected due to the Bayesian interpretation.

20

	Introduction
	Federated Learning with ADMM and Bayes
	Connecting Variational Bayes to ADMM
	Connecting Partitioned Variational Inference (PVI) to ADMM
	FedLap: A Laplace Version of PVI
	FedLap-Cov: A New ADMM Variant with Flexible Covariances
	FedLap-Func: Improving by including function-space information

	Experiments
	Conclusions and Future Work
	Making FedLap More Similar to the ADMM update
	Derivation of FedLap-Cov Updates
	Derivation of FedLap-Func equations
	Derivation of eq:FedLapFuncglobalinterm
	Deriving the FedLap-Func algorithm

	Benefits of FedLap over FedDyn and FedADMM
	Importance of local weight-decay in FedDyn
	FedLap targets a better global loss than FedDyn/FedADMM

	Additional experimental details
	Heterogeneous sampling procedure for MNIST, Fashion MNIST and CIFAR10
	UCI Credit
	FLamby-Heart
	MNIST
	Fashion MNIST
	CIFAR-10

	Additional experimental results

