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ABSTRACT

People’s decision-making abilities often fail to improve or may
even erode when they rely on AI for decision-support, even when
the AI provides informative explanations. We argue this is partly
because people intuitively seek contrastive explanations, which
clarify the di�erence between the AI’s decision and their own rea-
soning, while most AI systems o�er “unilateral” explanations that
justify the AI’s decision but do not account for users’ knowledge
and thinking. To address potential human knowledge gaps, we in-
troduce a framework for generating human-centered contrastive
explanations which explain the di�erence between AI’s choice and
a predicted, likely human choice about the same task. Results from a
large-scale experiment (N = 628) demonstrate that contrastive expla-
nations signi�cantly enhance users’ independent decision-making
skills compared to unilateral explanations, without sacri�cing deci-
sion accuracy. As concerns about deskilling in AI-supported tasks
grow, our research demonstrates that integrating human reasoning
into AI design can promote human skill development.
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1 INTRODUCTION

Imagine if AI decision-support tools not only improved the quality
of our decisions but also enhanced our decision-making skills in the
process. Competence, mastery, and skill growth are fundamental
drivers of motivation in the workplace and beyond [27, 28]. Individ-
uals are inherently driven to re�ne their abilities in the tasks with
which they engage, whether it’s making more informed treatment
decisions for patients, sharpening writing skills, or mastering a new
programming language. The ongoing process of self-improvement
not only leads to better outcomes — decisions, papers, or code —
it also provides intrinsic satisfaction by ful�lling people’s funda-
mental need for competence [27]. As AI systems become more
integrated into our decision-making tasks, a critical question arises:
How will this assistance a�ect our skill growth and competence
in decision-making? Speci�cally, as AI systems increasingly o�er
ready-made “solutions”, do individuals develop and improve the
underlying skills needed to evaluate and generate high-quality de-
cisions independently, or do they risk becoming overly reliant on
AI recommendations?

Fueling broader concerns about deskilling [60, 100], emerging
empirical evidence [7, 33, 80] suggests that automation and the de-
sign of many current AI decision-support systems might not only
fail to nurture our skills but could actively degrade them. For in-
stance, Rinta-Kahila et al. [80] found that people’s accounting skill
degradation became apparent once a system for �xed assets manage-
ment was discontinued after years of use. And Gajos andMamykina
[33] demonstrated that providing AI-generated recommendations
and explanations did not improve people’s decision-making abil-
ities, even when those explanations contained facts from which
individuals could learn and improve their decision-making abilities.

Some have argued that when people are provided with AI rec-
ommendations they may overrely on the recommendation and only
super�cially process the explanation [10, 11], thus failing to im-
prove their learning and skills on the task. [33]. Building on this, we
posit that even when people attend to the explanation, the reason AI
systems fail to improve people’s skills, can be partially attributed to
the nature of the explanations provided, which often fail to address
the speci�c knowledge gaps that users seek to �ll. Typically, these
systems o�er, what we call, unilateral explanations — justi�cations
that focus on why a particular AI recommendation was made, often
by detailing the relevant features [79], highlighting regions [87],
or presenting the general reasoning in support of the decision. For
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Figure 1: A simpli�ed illustration of (a) unilateral explanations, which list all the features contributing to the AI’s decision,

and (b) contrastive explanations, which highlight the di�erences between the AI’s choice and a likely human response for an

exercise recommendation task.

example, an AI system might recommend treatment P as the best
option for a patient because it addresses symptoms X, Y, and Z,
without contrasting it to alternative treatments that may address
some of those symptoms as well. Yet, research in social science
and cognitive psychology has put forth that people naturally seek
explanations that are contrastive rather than unilateral [43, 62, 70].
When people ask why a certain event occurred, or a certain choice
was made — “Why P?”— they are often implicitly asking “Why P
(referred to as fact) rather than Q (referred to as foil)?” — where foil
is a plausible alternative that was considered but not chosen. Jacobs
et al. [46] found that clinicians would prefer contrastive explana-
tions from AI decision support systems as well, which, for example
compare and contrast the AI suggestions with existing standards
of care. Such explanations are intuitive and engaging because they
focus only on the knowledge gap, addressing the speci�c points of
divergence that are of interest or confusion to the explainee.

While numerous computational approaches have been intro-
duced for generating contrastive explanations [1, 3, 48, 95], their
focus typically lies on computing the contrast between the fact
and the foil rather than on determining a high quality foil. Some
approaches consider the foil to be the closest class to the fact in
the model [95], which we argue results in a model-centric foil that
does not necessarily align with human reasoning about the task.
Others assume the foil is provided or explicitly inputted by the
user [48]. Such additional step of making initial decisions has been
shown to a�ect both the acceptance of systems and subjective ex-
perience in AI-assisted decision-making [11, 32]. Thus, predicting a
human-centered foil without asking for explicit user input remains
a challenge for generating useful contrastive explanations.

Building on the existing insights intoAI-assisted decision-making,
in this paper, we propose a novel approach to enhance AI-powered
decision-support systems by generating human-centric contrastive
explanations. Our method leverages a “mental model” of humans
to provide an explanation in the form of “Why P rather than Q?” —
where P represents the AI’s recommendation and Q is a plausible
alternative response from a human perspective. Unlike unilateral
explanations, which justify a recommendation by listing all dimen-
sions that contributed to a decision, our contrastive explanations
focus on the distinctions between the AI’s suggestion and a likely
human response, while highlighting only the dimensions in which

the two choices di�er. We hypothesize that such contrastive expla-
nations, which highlight knowledge gaps between AI and predicted
human responses, will foster greater cognitive engagement and
enhance task learning compared to unilateral explanations, while
maintaining similar decision accuracy. Additionally, we explore
how the quality of the foil (predicted vs. random) and timing (be-
fore the person makes a decision vs. after an initial decision) of
the contrastive explanation a�ect their e�ectiveness, hypothesiz-
ing that high-quality foils will maximize learning outcomes and
pre-decision timing will maximize acceptance.

To generate contrastive explanations with which to test the
hypotheses, we introduce a human-centric framework, which we
instantiated for an exercise recommendation decision-making task.
Our framework consists of four modules: (1) an AI task model that
predicts a response to a decision task (fact), (2) a human model that
predicts an average human’s response for the same task (foil), (3)
a contrast module that identi�es the relevant dimensions where
the fact and foil di�er, and (4) an LLM-powered presentation mod-
ule that formats these di�erences into an explanation and adds
common sense knowledge (within the constraints provided by the
other modules) that bridges the knowledge gap between the AI’s
recommendation and the human response. To test our hypotheses,
we conducted an online between-subjects experiment (N=628) com-
paring �ve conditions: no AI, unilateral explanations, contrastive
explanations with a predicted foil, contrastive explanations with a
random foil, and contrastive explanations provided after an initial
decision was made (inputted foil). Our results demonstrated that
contrastive explanations with a predicted foil enhanced human skill
on the task (i.e., human learning) signi�cantly more than unilat-
eral explanations, without sacri�cing decision accuracy. Within
contrastive conditions, we found that timing of contrastive expla-
nations a�ected subjective experience but not objective outcomes.
Participants in the contrastive explanations with predicted vs. in-
putted foil did not di�er signi�cantly in terms of decision accuracy
or human learning but contrastive explanations with predicted foils
resulted in signi�cantly higher subjective perceptions of compe-
tence, autonomy, and relatedness to the AI than contrastive expla-
nations with inputted foils. Further, we found that the quality of
the foil matters: although we used a single model to predict human
responses, participants interacting with contrastive explanations
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featuring a predicted foil improved their learning more than those
with a random foil, though the di�erencewas onlymarginally signif-
icant. This result suggests that personalized foil models, �ne-tuned
for each individual, may o�er additional bene�ts.

Our study explored only the short-term e�ects of explanations
on learning. Further research is needed to understand whether
these positive e�ects persist over time.

In summary, this paper makes the following main contributions:

• We introduced a contrastive explanations framework for
generating human-centered contrastive explanations which
compare AI’s decision choice to a predicted human response
for the same task.

• Our results demonstrated that such human-centered con-
trastive explanations signi�cantly enhance decision-making
skills without sacri�cing decision accuracy compared to
unilateral explanations, a default explanation design in AI-
powered decision support.

• We further presented evidence about which design aspects
of contrastive explanations a�ect objective outcomes and
people’s intrinsic motivation to engage with the decision
task.

• Our work is the �rst to demonstrate that the content of ex-
planations signi�cantly impacts the improvement of human
skills, opening up new opportunities for developing more
e�ective explanation designs.

• Our research suggests that decision support tools that con-
sider the decision-makers’ knowledge and mental model of
the task can enhance people’s understanding and pro�ciency
in the task more e�ectively than current designs of decision-
support which provide AI-centric unilateral explanations.
With the growing adoption of AI-powered support across
tasks and settings, we believe that our �ndings may o�er a
path forward toward AI systems that upskill, augment, and
improve human capabilities.

2 RELATED WORK

2.1 Contrastive Explanations

The �eld of Explainable AI (XAI) has developed a wide range
of methods aimed at making AI systems more understandable
and useful to people [38]. Seminal approaches include feature-
based explanations like LIME [79] and SHAP [65], which demon-
strate how individual features in�uence an AI decision, as well as
saliency maps [87], which highlight image regions that contributed
to the outcome. These methods, which we refer to as unilateral
approaches, focus on explaining why the AI made a speci�c deci-
sion but do so in isolation, without explicitly comparing it to other
plausible alternatives.

Meanwhile, Miller [70]’s extensive review of social science re-
search has underscored the signi�cance of contrastive explana-
tions, sparking a new line of inquiry in ML and HCI research.
Miller’s review highlights that, according to social science liter-
ature, explanations people seek and provide are predominantly
contrastive [59, 62, 70]. Rather than simply asking “Why P?” to
receive a list of features or a sequence of causal events, people often
want to know “Why P instead of Q?” — seeking an explanation that
clari�es the di�erence between the actual outcome and an (often

implicit) alternative they expected. Lipton [62] refers to “P”, the
actual event, as the fact, and the alternative “Q” as the foil.

Social science experts emphasize the value of contrastive expla-
nations for twomain reasons [71]. Firstly, they arise from a person’s
surprise over an unexpected event, revealing their preconceived
expectations — essentially o�ering insight into the individual’s
mental model and highlighting their knowledge gaps [59, 69]. Sec-
ondly, providing and asking for contrastive explanations is less
complex and cognitively demanding, making the process more ef-
�cient for both the inquirer and the respondent [59, 62, 103]. In
AI-assisted decision-making, we further hypothesize that because
contrastive explanations highlight (1) the knowledge gap of the
inquirer and (2) are shorter, and thus easier to parse, they will re-
sult in improved knowledge acquisition from the decision-maker
compared to explanations that highlight all the decision factors.

In recent years, machine learning scholars have introduced vari-
ous computational approaches for generating contrastive explana-
tions, such as pairwise class comparisons [1, 3], tree-based meth-
ods [89, 95], or identifying pertinent positives and negatives [29].
Unlike in our work in which the foil seeks to convey explainee’s
thinking and is generated by a separate model, in the existing tech-
niques, the foil is commonly determined as the closest alternative
outcome that would alter the model’s decision. For example, in tree-
based approaches, foils are selected as the closest non-matching
class leaf, while in counterfactual reasoning Hendricks et al. [41],
foils are chosen based on their proximity to the input data but
belonging to a di�erent class. It is not clear, however, if these meth-
ods correctly anticipate how people and the models disagree. We
argue that contrastive explanations in which the foil presents the
decision-maker’s reasoning more accurately re�ect the social sci-
ence understanding of contrastive reasoning, which seek to clarify
the gaps in the explainee’s reasoning.

One example of contrastive explanations in HCI literature is
Zhang et al. [104]’s framework for generating contrastive expla-
nations in vocal emotion recognition. Like other machine learn-
ing techniques, this framework highlights the di�erences between
two similar instances with di�erent class labels, using high-level,
human-interpretable concepts rather than granular features. Other
related systems produce counterfactual explanations which com-
pare decision instances or hypothetical input space changes [51, 99],
rather than outcome di�erences. It is important to note that con-
trastive explanations are often con�ated with counterfactual expla-
nations, which explore how minimal input changes could lead to
di�erent outcomes, while contrastive explanations clarify di�er-
ences between two outcomes (e.g., “Why treatment P rather than
Q?”). In multi-class settings, these explanations (contrastive and
counterfactual) are distinct, but for binary classi�cations tasks, the
distinction blurs.

2.2 AI-Assisted Decision-Making

2.2.1 Why optimizing human decision-making skills in AI-assisted

decision-making ma�ers? A growing concern, especially with the
recent developments in generative AI [60, 100], deskilling refers to
the process by which workers lose skills or their pro�ciency in tasks
due to a reduced need to actively engage in those tasks [9]. This of-
ten occurs when technology, such as AI and automation [91], takes
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over some or all responsibilities that were previously performed by
humans. As individuals become more reliant on these systems to
handle complex or repetitive tasks, they may stop developing or
maintaining the expertise required to perform those tasks indepen-
dently [4]. For example, in AI-assisted decision-making, workers
might depend on AI to make recommendations or decisions, which
can diminish their critical thinking, problem-solving abilities, and
overall competence in that domain over time. Indeed, recent empir-
ical evidence shows that the current designs of decision-support
tools that provide AI recommendations and explanations do not
seem to support people’s growth of decision-making skills [33]
and evidence from expert-based systems shows that long-term de-
pendence on such systems does lead to deskilling in those very
tasks [80].

While powerful, AI systems can be wrong. They make errors due
to biases in the data, limitations in the model, or unforeseen circum-
stances and they even hallucinate. In the short term, when humans
have strong decision-making skills, they are better equipped to
recognize and override AI mistakes, can critically assess the AI’s
recommendations, apply domain expertise, and contribute mean-
ingfully to the decision-making process, resulting in more accurate
and nuanced outcomes. In the long term, nurturing independent
and strong decision-making skills is essential for humans to re-
tain autonomy in decision-making, transfer their expertise to new
situations, and adapt to evolving technologies. Such independent
decision-making protects both accountability and human agency
as AI becomes more integrated into work�ows.

Our work adds to the nascent body of research in AI-assisted
decision-making, which is concernedwith improving human decision-
making skills in addition to accuracy of the decisions [12, 33]. While
related, AI in education is a distinct �eld that focuses primarily
on utilizing AI to enhance students’ learning outcomes and skill
development. A notable recent advancement in scalable tutoring
involves leveraging large language models (LLMs) as virtual tutors.
These models infer student errors and address knowledge gaps by
emulating strategies employed by expert tutors [96]. While some
of these approaches may be applicable to decision-making contexts,
we believe educational interventions operate under a di�erent set
of constraints. For instance, introducing substantial friction in in-
teractions (e.g., as explored in [53]) is often acceptable in education
but may not be suitable for real world decision-making scenarios.
For a broader overview of related work of AI in education, we direct
readers to a recent review [25].

2.2.2 Eliciting cognitive engagement to calibrate reliance on AI.

Early optimism that AI decision-support tools will inevitably en-
hance human decision quality [67] has dwindled in light of accruing
empirical evidence that paints a more complex picture [5, 11, 35, 82,
98]. Intuitive designs that rely on simple XAI approaches, such as
providing AI recommendations alongside (unilateral) explanations,
have been shown to lead to overreliance — where users follow
incorrect AI advice — across diverse tasks, settings, and explana-
tion styles [5, 11, 34, 47, 82]. This empirical evidence has prompted
extensive research in designing interventions beyond explanation
content that encourage appropriate human reliance on AI. Some
endeavours to addressing this challenge focus on training or on-
boarding sessions aimed at helping individuals develop a mental

model of the AI [19, 20, 52, 73, 74, 78], providing meta-information
about the AI’s uncertainty and limitations [16, 55, 73], helping indi-
viduals calibrate their own self-con�dence about the task [40, 66],
or enhance user agency by giving them control over input feature
selection and algorithmic assistance [22, 56].

By prompting users to re�ect on two choices, contrastive ex-
planations fall within one such growing category of interventions
designed to compel deeper cognitive engagement with AI support.
Scholars have suggested that overreliance on AI often stems from
people’s super�cial engagement with AI recommendations and
explanations [11, 33]. In response, various interventions have been
developed to enhance cognitive engagement, including cognitive
forcing [11], evaluative AI [72], explanations provided without deci-
sion recommendations [33], explanations framed as questions [26],
or o�ering more than one decision suggestion [23, 64].

Whilemany of these interventions have shown promise in human-
AI decision-making quality, they often introduce trade-o�s, such
as reducing subjective experience [11] or requiring more time [21,
92, 93], compared to simply providing AI recommendations with
explanations. For instance, cognitive forcing functions [11] compel
deeper cognitive engagement by requiring people to make decisions
before receiving AI support. While these interventions signi�cantly
reduce overreliance compared to presenting AI recommendations
and explanations upfront, they also lead to signi�cantly lower sub-
jective experience. Empirical evidence suggests that people gen-
erally tend to dislike receiving AI support after having made a
decision [11, 32]. Evaluative AI also introduces a paradigm where
decision-makers form provisional decisions and then receive AI-
generated critiques [72]. Albeit, a recent study implemented this
concept as an interactive interface that allows users to iteratively
re�ne their hypotheses and observe how the evidence aligns or
con�icts with their reasoning [57], which appears to preserve the
subjective experience compared to receiving static critiques post-
hoc. Building on this evidence, we hypothesize that providing static
contrastive explanations after prompting a person to make an ini-
tial decision may similarly have a negative e�ect on subjective
experience, thus hindering the uptake of systems that provide such
support in real-life scenarios. However, there is a trade-o� here
because providing a contrastive explanation after a person has re-
vealed their initial decision has the obvious advantage of revealing
the actual foil to the system. This, in turn, canmake the explanations
more useful for human decision-making and learning compared to
settings where the foils are imperfectly predicted.

O�ering more than one decision suggestion or source of advice
has also been explored as a mechanism to enhance engagement and
calibrate reliance on AI support [5, 23, 64]. For example, Bansal et al.
[5] show that providing top two AI predictions and Lu et al. [64]
show that o�ering a “second opinion” in addition to the main AI
support, either from another AI or peers, can reduce overreliance on
AI recommendations in certain situations. Contrastive explanations
also make two options salient to the decision-maker — the fact
and foil — along with reasoning that supports one over the other.
It is unclear whether the presence of the explicit comparison in
contrastive explanations might dilute the “second opinion” e�ect
that previous studies have shown reduces overreliance.
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Finally, the studies mentioned above treat cognitive engagement
as a mechanism for fostering appropriate reliance on AI, mostly fo-
cusing on optimizing human-AI decision accuracy by encouraging
deeper thought about AI recommendations. Building on the work
of Gajos and Mamykina [33], our study instead examines cognitive
engagement as a means of enhancing human learning about the
task.

2.2.3 Assisting decision-making with LLM-generated explanations.

The emergence of Large Language Models (LLMs) has sparked
interest in their potential to generate explanations that enhance
decision-making. In the domain of programming assistants, Yan
et al. [102] introduced an LLM-powered system that generates nat-
ural language explanations to clarify the functionality of each code
suggestion. For data annotation tasks, Wang et al. [97] leveraged
an LLM to predict annotation labels and provide explanations for
its choices. In recommendation systems, Silva et al. [86] used LLMs
both as the recommendation engine and as a generator of person-
alized explanations to improve user experience. In the context of
LLM-powered fact-checking, providing contrastive explanations
that present evidence on both why a claim might be true and why
it might be false has been shown to e�ectively reduce overreliance
on incorrect LLM predictions [85].

In contrast to such approaches, which use LLMs for both task-
centric predictions (e.g., code suggestions, recommendations) and
explanation, our work separates these functions. Like Slack et al.
[88], who introduce a chat-based interface to query a predictive
machine learning model, we exploit LLMs for their language gener-
ation capabilities, and in addition for their common sense reasoning.
We rely on a trusted predictive model for generating task-related
predictions and explanation dimensions, while the LLM is solely
responsible for turning a sca�old produced by the predictive model
into natural language, and �lling in small common-sense knowledge
gaps needed to interpret the model’s predictions. This separation
preserves the accuracy of predictions and explanations while ben-
e�ting from the interpretability and coherence of LLM-generated
rationalizations, thereby minimizing the risk of the notorious hal-
lucinations for which LLMs are known [50].

2.3 Human Intrinsic Motivation and AI
Assistance

With AI systems rede�ning work�ows and the way tasks are car-
ried out, questions surrounding their e�ect on people’s motivation
about the tasks for which they receive assistance are becoming
more pressing [12]. According to the seminal Self-Determination
Theory (SDT), individuals feel intrinsically motivated when three
psychological needs—competence, autonomy, and relatedness—are
met during an activity [27]. Competence refers to the need to feel
skilled and e�ective in the activity, autonomy re�ects the need to
have control over how the activity is carried out, and relatedness
involves the need to feel connected to others and to experience
a sense of belonging while engaging in the activity. These three
needs are fundamental for fostering intrinsic motivation, which
leads to greater engagement, performance, and overall satisfaction
with the task [27]. The introduction of AI assistance into decision-
making processes can a�ect these psychological needs in multiple
ways. For example, while AI might enhance short-term feelings

of competence by providing support in the moment of decision-
making [31], it may simultaneously undermine long-term mastery,
as current designs do not always facilitate skill development [33].
Similarly, AI can diminish a user’s sense of autonomy if they feel
overly dependent on the system, reducing their ownership of task
outcomes.

We hypothesize that both the outcomes of the interaction and
the design of the AI system in�uence perceptions of competence
and autonomy. On the outcome side, we expect that AI systems
that actively support skill development will enhance feelings of
competence. In terms of design, approaches where the AI critiques
each decision after it is made (e.g., contrastive after) may undermine
users’ feelings of competence and autonomy, as they could perceive
the AI more as a micromanager than a supportive tool, constantly
pointing out �aws and dictating its preferred way of doing things.
Additionally, even when AI assistance is provided before a decision,
designs that emphasize only one option (e.g., unilateral condition)
may reduce the sense of autonomy by shifting the decision-maker
into a more passive role. In contrast, designs that present multiple
options promote active engagement, allowing the decision-maker to
weigh di�erent possibilities before making a choice (e.g., contrastive
before conditions).

In SDT, relatedness refers to the connection an individual feels
toward colleagues or collaborators, typically measured through
questions about trust, similarity in reasoning, and willingness to
engage in future interactions. We adapt these constructs to assess
relatedness to AI, hypothesizing that designs fostering competence
and autonomy will similarly enhance relatedness to AI systems.

3 THE CONTRASTIVE EXPLANATION
FRAMEWORK & HYPOTHESES

Imagine a clinician reviewing an AI-powered decision-support sys-
tem’s recommendation for a patient’s treatment plan. The AI sug-
gests Medication A, but the clinician had Medication B in mind
based on their experience with this condition. Existing AI systems
would simply explain whyMedication A is recommended. However,
this leaves the clinician wondering why Medication B, which they
deemed suitable, is not the better choice. A contrastive explanation
may elucidate this knowledge gap as follows: “While Medication B

is a common and a viable choice for most patients because of its short

treatment duration, Medication A is recommended due to its lower

risk of drug interactions with this patient’s current medications.”

We propose the Contrastive Explanation Framework to address
the limitations of current AI-powered decision-support systems
by providing contrastive explanations that acknowledge human’s
alternative considerations when suggesting a decision. This frame-
work is composed of four main components: (1) an AI task model,
(2) a model of how humans are likely to reason about this task, (3)
a contrastive module, and (4) a presentation module. The AI task
model is the standard AI system that predicts the AI’s response
for a given decision task (fact), while the human model predicts an
average user’s response — a plausible alternative (foil) — for the
same task based on a model trained on previous human decisions.
Based on AI model (e.g., weights), the contrastive module then
analyzes the di�erences between the AI’s and the likely human’s
responses, generating task concepts in which the fact is superior to
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Figure 2: The Contrastive Explanation Framework: The AI task model predicts the AI’s response for a given decision task

(fact), while the human model predicts the user’s response for the same task (foil). The contrastive module then analyzes the

di�erences between the AI’s and the human’s responses, generating task dimensions where the fact is superior to the foil

((fact) and, if any, where the foil is superior to the fact ((foil). Finally, the presentation module, powered by a large language

model (LLM), formats the information into an interpretable explanation, �lling in small common-sense knowledge gaps within

the constraints of the predictive models. The example generation outlined in the �gure is relates to the character vignette in

Figure 3.

.

the foil (e.g., lower risk of drug interaction) and task concepts, if
any, in which the foil is superior to the fact (e.g., shorter treatment
duration). Finally, the presentation module, powered by a large
language model, formats these dimensions into prose and �lls in
the common sense knowledge that focuses on the knowledge gap
that may lead someone to pick foil as opposed to fact.

To evaluate the e�ectiveness of contrastive explanations in im-
proving human learning and accuracy inAI-assisted decision-making,
we instantiated this framework with an exercise recommendation
task, and conducted an experiment in which people were asked to
complete a sequence of decisions and were randomized in one of
the 5 di�erent conditions:

• No AI (Baseline). Participants in the No AI condition com-
pleted the study without any AI support.

• Unilateral In this condition, participants interacted with the
typical AI recommendation and explanation paradigm. The
AI suggested a choice and provided reasoning to justify why
that choice was the best one. The explanation was unilateral,
emphasizing all the concepts and evidence supporting the
AI’s suggestion.

• Contrastive predicted (with predicted foil). The con-

trastive predicted condition was designed to provide partici-
pants with a contrastive explanation that compares the AI
recommendation (fact) with the alternative (foil) that a hu-
man may likely consider, as predicted by the human model.
In the interface, we presented the foil as a choice that “many
people” would likely make in a similar situation. The ex-
planation highlighted only the concept(s) in which the two
choices di�er, emphasizing why the AI’s recommendation is
superior to the foil.

• Contrastive random (with random foil). Presentation-
wise, the contrastive random condition was identical to the
contrastive condition. However, in this case, the foil was
selected randomly from the six possible choices rather than
being predicted by the human model.

• Contrastive after (with inputted foil). In the contrastive
after condition, participants �rst made their own decision be-
fore receiving the AI’s recommendation and the contrastive
explanation, in which participant’s decision was used as the
foil. In situations when the inputted foil was the same as the
AI suggestion, participants were presented with a unilateral
explanation supporting their choice.

3.1 Hypotheses and Research Questions

In our hypotheses, we sometimes refer jointly to contrastive pre-

dicted and contrastive after conditions, in which the foil is not
random, as contrastive with a sensible foil.

Our main hypotheses are that contrastive explanations with a
sensible foil will improve participants’ decision-making skills 1

more e�ectively and result in accuracy that is equal to or better
than unilateral explanations. Furthermore, within the contrastive
conditions, we hypothesize that contrastive explanations with a

predicted foil will result in greater human learning than those with
a random foil, and o�er a superior subjective experience compared
to contrastive explanations with an inputted foil.

We categorize these main and other hypotheses and research
questions by interaction outcomes — human learning, accuracy, and
subjective experience — and elaborate them below. To enhance read-
ability, we abbreviate learning-focused hypotheses and research
questions as H-L and RQ-L and accuracy-focused ones as H-A and
RQ-A, respectively. For hypotheses related to subjective measures,
we use the -S su�x (e.g., H-S1).

3.1.1 Human Learning.

H-L1: Contrastive explanations with sensible foil — predicted
(H-L1a) or inputted (H-L1b) — will lead to more learning than
providing people with no AI support.

1In this paper, we use the terms “improving human learning” and “improving decision-
making skills” interchangeably.
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H-L2: Contrastive explanations with sensible foil — predicted
(H-L2a) or inputted (H-L2b) — will lead to more learning than
unilateral explanations.
H-L3: Contrastive explanations with predicted foil will lead to
more learning than contrastive explanations with a random foil.
RQ-L1: Will contrastive explanations with predicted foil (pro-
vided at the decision-making time) lead to di�erent learning than
contrastive explanations after the decision is made (contrastive
after)?

3.1.2 Accuracy & Overreliance.

H-A1:Contrastive explanations with sensible foil — predicted (H-

A1a) or inputted (H-A1b) — will lead to equal or better decision
accuracy compared to unilateral explanations.
RQ-A1: Will contrastive explanations — predicted or random —
which present two choices, reduce overreliance on AI, compared
to unilateral explanations?

3.1.3 Subjective Experience.

H-S1: Contrastive explanations with predicted foil will lead to
higher perceived competence, autonomy, and relatedness to AI
than unilateral explanations.
H-S2: Contrastive explanations with predicted foil will lead to
higher perceived competence, autonomy, and relatedness to AI
than contrastive explanations with inputted foil.

In the following sections, we describe an exercise recommen-
dation task and the instantiation and implementation of the con-
trastive explanations framework for the exercise recommendation
task.

4 EXERCISE RECOMMENDATION TASK
DESIGN

To create a decision-making task accessible to laypeople on crowd-
sourcing platforms while presenting cognitive challenges similar
to high-stakes decisions (e.g., treatment selection), we collaborated
with a kinesiology expert, a co-author of this paper. We designed
scenarios for an exercise recommendation task, as shown in Fig-
ure 3. Participants are tasked to choose the best exercise from a
list of options based on a �ctional character’s description, goals,
and preferences. This task is designed to be easy to understand yet
complex enough to mimic clinical treatment decisions. Clinicians
consider many (sometimes competing) factors when selecting treat-
ments, such as patient condition, treatment preferences, side-e�ect
tolerance, and constraints. Similarly, selecting the right exercise in-
volves weighing the individual’s goals, preferences, and capabilities,
requiring analogous cognitive steps.

4.1 Generating the �ctitious characters

We generated vignettes of �ctitious people by randomly sampling
their demographics from probabilities obtained from the US Cen-
sus2, Centers for Disease Control and Prevention3, and the US
Bureau of Labor statistics4 (name, age, gender, BMI, physical activ-
ity level, occupation). According to the sampled �ctitious character,
we manipulated or randomly sampled the following factors which

2data.census.gov
3data.cdc.gov
4bls.gov

were deemed important for exercise prescription by the expert: (1)
their �tness level and maximal intensity (based on demographics
and health status), (2) their exercise goal (e.g., building muscles,
weight loss, �exibility), and (3) their exercise preference (e.g., in-
door/outdoor, group/individual). We implemented these steps as
�ctitious character generation process that allowed us to generate
di�erent characters.

4.2 Curating the exercises

To build an exercise repository for recommending activities to �c-
tional individuals, we curated a list of 59 leisure activities from
a comprehensive compendium, which included various physical
activities, from sports to everyday tasks like housework and oc-
cupational activities [2]. In the compendium, each activity was
labeled with its MET (metabolic equivalent), which denotes the
energy requirement for basal homeostasis (1 MET is roughly the
energy required to sleep or watch TV). Moderate activities require
between 3 and less than 6 METs, while vigorous activities require 6
or more METs. We also labeled the exercises based on (i) their goals
(cardio, muscle building, �exibility), (ii) whether they are typically
performed indoors or outdoors, and (iii) whether they are typically
performed individually or in a group. From this list, we selected
seven representative exercises for the dropdown menu: aerobics,
bicycling, boxing, jog/walk combination, pilates, resistance training,
and swimming. See Appendix A.1.2 for a detailed description of the
selection process.

4.3 Representing characters and exercises

To prescribe exercises to characters, we �rst represented exercises
and characters in a joint representation space. Guided by the domain
expert, we constructed a relatively simple representation space
consisting of three broad concepts: (1) intensity, (2) goal, and (3)
preference.

Each exercise and generated character was encoded onto these
three broad concepts as described below.

Intensity. For exercises, intensity captures the level of exertion
or e�ort the exercise requires, measured in METs. One MET is
de�ned as the oxygen consumption of 3.5 milliliters of oxygen
per kilogram of body weight per minute (3.5 ml/kg/min), which is
roughly the rate of oxygen consumption at rest.

For characters, intensity captures the level of exertion or e�ort a
character can sustain during physical activity (i.e., their cardiorespi-
ratory �tness). It is quanti�ed by the reserve oxygen uptake (+$2' ),
which represents the additional oxygen consumption capacity a
person has beyond their resting state. This reserve is determined
by subtracting the resting oxygen uptake (3.5 ml/kg/min or 1 MET)
from the maximal oxygen uptake (+$2<0G

), which is the highest
rate at which the body can use oxygen during intense physical
activity. Maximal oxygen uptake is assessed in clinical settings us-
ing a treadmill test, but various equations have been proposed as
useful proxies [77]. Following Jang et al. [49], we calculated the
cardiorespiratory �tness of a character as a function of age, sex,
BMI, and current physical activity level 5(rating of physical activity
on a 7-point scale [45]).

5+$2<0G
= 48.392 − 0.088(064 ) + 12.335(B4G ;<4= = 1, F><4= = 0) −

0.386(�"� ) + 0.693(%�)
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(a) Sample task with contrastive explanation

     

(b) Unilateral explanation

     

     

(c) Contrastive explanation after

Figure 3: Illustration of the exercise recommendation decision-making task featuring di�erent explanation designs. 3a shows a

sample of the task with contrastive explanation, whereas 3b and 3c depict only the explanations for the respective conditions.

In the contrastive random condition, the presentation was identical to the contrastive condition, but with the alternative (foil)

selected randomly. In the no-AI condition (not illustrated), participants made decisions without any AI assistance.

Goal. For exercises, goal captures the type of bene�t the exer-
cise has on the body, consisting of three dimensions: cardiovas-
cular improvement, muscle building, or �exibility. For characters,
goal re�ects what the character aims to achieve through exercise,
in terms of the same three dimensions: improving cardiovascular
health, building muscle, or enhancing �exibility. Note that addi-
tional domain knowledge (e.g., cardio is bene�cial for weight loss)
is necessary to convert some of the higher level character’s exercise
goals (e.g., losing weight) to the representation space.

Preference. For exercises, preference indicates whether the ex-
ercise is typically performed indoors or outdoors, and whether
it is usually done individually or in a group. For characters, pref-
erence captures the character’s preferred exercise environment
(indoor/outdoor) and social setting (individual/group).

4.4 Designing the objective function

Having constructed joint representations for characters and ex-
ercises, we now formalize our setting and explain the objective
function we designed for recommending exercises to characters.

Let a �ctitious character representation be x ∈ R� and an exer-
cise representation be y ∈ R� , where � = 6 and both representa-
tions are structured with dimensions representing intensity, goals,
and preferences:

x = [GMET, Gcardio, Gmuscle, G�exibility, Genvironment, Gsocial setting]
) ,

with y following a similar structure. Our goal was to create a func-
tion that scores the “goodness” of an exercise for the given character.
We designed a linear objective function:

5 (g(x, y),w) = w) g(x, y), (1)

where g(x, y) is a piece-wise vector-valued function (devised with
the expert) that returns a joint representation (vector) of the person
and the exercise for each dimension. g(x, y) ∈ R�+1 concerning
the following aspects: intensity, goal, and preference.

g(x, y) =



min(0, G1 − ~1)

Intensity: Penalize exercises exceeding character’s capabilities.

min(0, ~1 − G1)

Intensity: Penalize exercises underutilizing character’s capabilities.

[1[G2 > 0] ((~2 − G2 ) + 1[~2 == G2 ])]2∈{2,3,4}
Goal: Match each stated subgoal (cardio, muscle building, �exibility).

1[~2 == G2 ]2∈{5,6}
Preference: Match each preference (environment, social setting).



(2)

In the equation above, the subscripts refer to dimensions of x
and y, and 1 denotes the indicator function, which takes the value
1 if the condition inside the brackets is true and 0 otherwise.
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4.5 Learning the expert weights

The parameterized objective function (equation 1) enables learning
weights w from di�erent sources of labels. We aim to learn 5expert
with weights we based on expert labels, and 5human with weights
wh based on crowdworker labels. The expert model 5expert, takes a
description of a �ctitious character and exercise, and outputs a real-
valued score indicating how well the exercise matches the goals,
abilities and preferences of the �ctitious character. We trained and
validated this model on expert labels of optimal exercises for a
series of characters. Similarly, the human model, which captures
how humans reason on average (described in 5.2), was trained on
crowdworkers’ (i.e., laypeople’s) labels.

Generating a series of diverse �ctitious characters, we asked the
kinesiology expert to select top exercises for them from a list of top
15 exercises (out of 59) selected with a “dummy” scoring function
which equally weighted each dimension. For every character, the
expert provided a best set of exercises S1 typically consisting of
two or three similar exercises (e.g., pilates, yoga), and a second best
set of exercises S2 that would still be a reasonable choice but not
as good as the �rst set. With 15 exercises in the list, these labels
provided multiple pairwise comparisons between the individual
exercises. For every exercise y8 ∈ S1, then y8 is a better choice than
y9 for every other exercise y9 ∉ S1. Similarly, for every exercise
y8 ∈ S2, then y8 is a better choice than y9 for every y9 ∉ {S1

⋃
S2}.

With a dataset of rankings, our goal was to learn the expert
weights w4 from equation 1. Ranking problems, particularly with
linear ranking functions, can be transformed into classi�cation prob-
lems by considering pairwise di�erences between elements [42].
This approach involves transforming the ranking task of a set of
items (e.g., exercises) into several binary classi�cation tasks. For
each item pair, a di�erence vector of their features (u8 − u9 ) is gen-
erated and the label corresponds to their relative order (e.g., the
label E = 1 if item 8 is a better choice than item 9 and −1 otherwise).
In our setting, the items correspond to exercises. A binary classi�er
is then trained on these labeled pairs to predict which of the given
two items should be ranked higher. When using a linear binary
classi�er E = B86=(w) (u8 − u9 ) + 1), the coe�cients of the model
represent the weights of the feature di�erences, thereby indicat-
ing the importance of each feature dimension in determining the
ranking.

Let exercise y∗ be a better choice than exercise y8 for a character
x. In our setting this looks as follows:

[g(x, y∗) − g(x, y8 ), 1] or [g(x, y8 ) − g(x, y∗),−1],

where the �rst element in the square brackets is the input to our
classi�er model, and the second element is the label.

To avoid biasing the classi�er, we randomly assign a pair to
either have a positive (1) or a negative (-1) label (i.e., “y∗ is better
than y8” or “y8 is worse than y∗”). We �t an SVM classi�er with
a linear kernel to these tuples of data with expert labels, thereby
recovering the coe�cients as the expert weights w4 for the scoring
function: 5 (g(x, y),w4 ) = w)

4 g(x, y). (For implementation details
and the evaluation of the expert model see Appendix A.1.1.) We
followed a similar approach to learn the human model weights
from crowd-sourced data, as described in Section 5.2.

5 APPLYING THE CONTRASTIVE
EXPLANATION FRAMEWORK TO THE
EXERCISE TASK

Our goal is to generate contrastive explanations (using the frame-
work in Section 3 for the exercise recommendation task explained
in Section 4). In this section, we describe this process, and we end
up with contrastive explanations like the ones shown in Figure 3. To
do so, we use a simulated AI model (we control the accuracy of this
model), generate foils using the human model weights, generate
contrast concepts using our representation g(x, y), and generate
the explanations using an LLM.

5.1 Simulated AI model: Generating the fact

The AI model in our framework represents the common way in
which models are trained for speci�c tasks (e.g., disease diagnosis)
by exposing them to vast amounts of data, which allows them to
identify patterns and make decisions based on learned statistical
relationships. However, because these models operate solely within
the con�nes of the data they have encountered, they achieve high
performance in familiar decision instances, but they also make
mistakes when encountering novel or poorly-represented scenarios.

To emulate real-world situations, we designed a simulated AI
model such that it performs better than the average human but
that it also occasionally makes mistakes. We chose to simulate
the AI model because we wanted to have control over the types
of mistakes the AI makes. Our formative studies indicated that
unassisted people achieve on average 30% accuracy on selecting
the top exercise out of 7 choices, and we designed the AI model
to have an accuracy 71.4%. We used the expert model weights to
decide the top exercise recommendationwhen the AImade a correct
decision. For a given decision instance (i.e., character), the top AI
suggestion is the exercise with the highest score under the expert
model weights yfact = argmaxy8 (5 (g(x, y

8 ),w4 ). In the contrastive
explanation framework, we refer to the AI generated exercise as
the fact (even when it is a wrong suggestion).

To make the AI err, we chose to select a reasonable alternative
from among the exercises rather than a random one, as the latter
would make AI errors too obvious to participants. Therefore, the
AI suggestion in such instances was the foil — the top exercise
selected by the human model (as described in Section 5.2: this is
always di�erent to the expert model’s top exercise). When the AI
errs, the new foil becomes the second-best choice from the human
model. As a result, in those instances, neither the fact nor the foil
corresponds to the correct answer.

5.2 Human model: Generating the foil

As motivated in previous sections, we believe that contrastive ex-
planations are most e�ective when the foil represents a likely hu-
man answer. For instance, in contexts with established guidelines,
such as medical decision-making, the foil could be the guideline-
recommended action [46]. In situations without established guide-
lines, the foil can be inferred from prior human decisions. In our
implementation of the contrastive explanation framework for the
exercise recommendation task, we chose to implement the foil as
the likely human response to a given question. Speci�cally, we build
a human model that predicts the exercise laypeople would select for
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previously unseen �ctitious characters by training on unassisted
human responses. We implemented a generic model to represent
human decision-making, which was su�cient for our simple task.
However, depending on the context, personalized models that adapt
and update as they learn more about individual users could be more
appropriate.

We generated a series of �ctitious characters and ran an online
study on Proli�c to collect responses from crowd workers who
served as non-domain experts. See Appendix A.2.1 for details of the
data collection study and the evaluation of the human model. To
learn the human model weights, we followed the same procedure
as we did for the expert model weights, and as described in section
4.5.

Given a character and two exercises, our learned linear SVM
classi�er predicted which exercise is more likely to be selected
by the human non-expert. The coe�cients of the classi�er with
which this decision was achieved yielded the human model weights
for each concept (i.e., goal, intensity, preference). Therefore, we
constructed a scoring function based on human model weights as
well: 5 (g(x, y),wℎ) = w)

ℎ
g(x, y).

In our implementation, we selected the foil as the exercise with
the highest score under the human weights that was not the same
as the expert choice: yfoil = argmaxy8 (5 (g(x, y

8 ),wℎ), where y
8
≠

yfact. This approach selects the most likely incorrect human answer.
When the simulated AI was to provide a wrong suggestion (i.e.,
the fact was suboptimal), the output of this human model was
presented as the fact, and the new foil was the second most likely
incorrect human model answer: this is still an incorrect choice, but
less likely to be selected by people than the �rst one.

5.3 Contrast Module: Generating the contrast
concepts

The goal of the contrast module is to generate the dimensions or
features in which the fact and the foil di�er. Speci�cally, what
aspects render the fact superior to the foil, and in what aspects (if
in any) is the foil superior to the fact.

In our setting, these dimensions indicate the three main concepts
of the task: intensity, goal, and preference. To generate these dimen-
sions we employed the following approach. Let yfact and yfoil be
the two exercises generated by the AI and the human model for
character x, respectively. Our goal is to identify the dimensions
in which these two exercises di�er based on the expert model’s
weights. For each exercise, we computed the element-wise product
of the expert model weights with the joint character-exercise repre-
sentation g(x, y), resulting in the weighted vectors w4 ◦ g(x, yfact)

and w4 ◦ g(x, yfoil) for the AI-generated exercise and the human
model-generated exercise, respectively.

Next, we calculated the di�erence between these two weighted
vectors to determine the dimensions alongwhich the exercises di�er
according to the expert model’s weighting scheme. This di�erence
vector, ∆g�� , is given by:

∆g�� = w4 ◦ g(x, yfact) −w4 ◦ g(x, yfoil) (3)

Non-zero dimensions of ∆g�� indicate where the two exercises
di�er. A positive value indicates that the fact is superior to the foil
in that dimension, while a negative value indicates that the foil is

superior to the fact. Therefore, the contrastive module generates
two sets of dimensions, dimensions for which the fact is superior
to the foil: Sfact = {2 | ∆g�� [2] > 0} and those for which the foil
is superior to the fact Sfoil = {2 | ∆g�� [2] < 0}, where 2 denotes
the dimension. Because the foil may not be superior to the fact in
any dimension, Sfoil can be an empty set. However, by de�nition
Sfact ≠ ∅.

5.4 Presentation Module: Generating
interpretable explanations

Once the fact, foil, and the dimensions where they di�er are gen-
erated, the presentation module’s purpose is to convert this in-
formation into a format that is easily understood by humans. We
chose to implement an LLM-powered presentation module which
is guided by our trusted predictive model, allowing little room for
hallucinations. Given yfact, yfoil, and the sets for which each are
superior (Sfact, Sfoil), the LLM-powered presentation module adds
common sense knowledge and turns the explanations into prose.

Speci�cally, the LLM adds knowledge to create the mapping from
the the representation space (i.e., concepts) in which the predictive
model operates to the input (i.e., vignette) and output spaces (i.e.,
exercises). For example, let x be a �ctitious character whose goal is
to lose weight. Let yfact correspond to the representation of activity
running and yfoil correspond to the representation of activity pilates.
Further, let Sfact include {goal_cardio}. In other words, running is
superior to pilates because it supports cardio goals. The remaining
domain knowledge required to fully understand the explanations
are the following: ‘cardio bene�ts weight loss’, ‘running is a cardio
exercise’ and ‘pilates is not a cardio exercise’.

Therefore, highlighting cardio as a di�ering dimension may not
be enough without explaining those domain facts. The LLM is
prompted to �ll in these knowledge gaps, given the information
‘running is superior to pilates in supporting cardio goals’. Note that
there is little room for the LLM to hallucinate facts, because we are
constraining the generation process with the fact, foil, and concepts
(Sfact, Sfoil) that are generated by the predictive models.

The LLM was always shown the character’s vignette, and told
the representation space dimensions that we identi�ed as important
(from Section 4.4).

As shown in Fig 2, for contrastive explanations, the LLM was
given yfact, yfoil, Sfact, Sfoil. For unilateral explanations, only yfact
was provided to the LLM. Templates which guided the LLM to gener-
ate the explanations are provided in the Appendix A.3. We used the
OpenAI API [76] and chose GPT-4 to generate the explanations 6.

6 EXPERIMENT

6.1 Task description

Participants were shown vignettes of �ctitious characters and were
asked to select the optimal exercise for the character in question
based on their goals, capabilities, and preferences. They had to
make a selection of the top exercise among 7 exercises, which were
�xed choices across vignettes and alphabetically ordered in the

6The �rst author manually reviewed the generated explanations to verify whether the
LLM introduced any hallucinations; we elaborate on this process in the limitations
section.
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drop-down list: aerobics, bicycling, boxing, jog/walk combination,
pilates, resistance training, and swimming.

6.2 Conditions

Participants were randomized into one of the �ve conditions:no
AI, unilateral, contrastive predicted, contrastive after, and contrastive

random, as described in Section 3. Figure 3 provides a sample of a
decision task with illustrations of the key conditions.

6.3 Procedure

Participants accessed the study online through Proli�c, where they
�rst provided informed consent. They then completed pre-task
questionnaires, including a brief demographic survey, a six-item
Need for Cognition (NFC) Scale [61], and a seven-item Actively
Open-minded Thinking (AOT) Scale [39]. The study consisted of
three blocks: pre-test and post-test blocks, each with 5 exercise
prescription tasks without AI support which served for measuring
human learning, and an intervention block with 14 tasks where
participants interacted with one of the AI interaction designs (or
no AI, depending on their randomization). After completing the
tasks, participants �lled out a shortened version of the Intrinsic
Motivation Inventory (IMI) [68, 81], a self-reported instrument in-
tended to measure participants’ subjective experience with the task,
which assessed their perceived autonomy, competence, relatedness
to AI, and interest/enjoyment, using 4 questions for each construct
(except for relatedness, for which 3 questions where used). An
additional question was included to assess mental demand.

6.4 Participants

We conducted a power analysis using G*Power [30] to determine
the required sample size for detecting a small e�ect size in our study
with 5 conditions. With a small e�ect size, an U error probability of
0.05, and a desired power of 0.80, the analysis indicated that a total
of 548 participants would be needed to achieve su�cient power
to detect the e�ect. To account for �ltering of spammers, a total
of 800 participants were recruited to complete the task via Proli�c.
Participation was limited to US adults �uent in English. Recruited
in batches, participants received an average compensation of $2.70
(USD) per task. To ensure a compensation rate of $12 per hour,
we adjusted the payment from $2.40 in the initial small batches
to $2.75 in later batches, re�ecting the median time participants
spent on the study. The average age of participants was" = 35.76

((� = 11.71) and their education distribution was 0.5% pre-high
school, 19.4% high school, 75.8% college, 5.7% post-graduate degree,
and 4.6% did not disclose their education.

6.4.1 Exclusion criteria. We retained 628 participants for analyses.
To ensure meaningful engagement, participants with a median re-
sponse time under 4 seconds were excluded, as this suggested insuf-
�cient consideration of the tasks, which required reading vignettes
and selecting exercises. Those with any response time exceeding
2.5 minutes (90th percentile) were also removed to avoid data dis-
tortion from distractions. Additionally, participants in AI-assisted
conditions who performed near random (below 20% accuracy) or
selected the same exercise for more than half of the study were
excluded for potential misunderstanding. For subjective experience

analyses, 6 participants were removed due to technical issues they
encountered during the post-study questionnaire.

6.5 Approval

This study received approval from our institution’s IRB under pro-
tocol number IRB21-0805.

6.6 Design & Analysis

This study followed a between-subjects design, with the condi-
tion as the factor. Each participant interacted with one of the �ve
conditions.

We collected the following indicators of performance and learn-
ing:

• Accuracy: Percentage of correct answers provided by par-
ticipants in the intervention block, where a correct answer
is one that matches the ground truth.

• Overreliance: Percentage of answers that matched the AI’s
suggestions in questions for which participants received AI
support and the AI’s suggestion was incorrect.

• Learning: Percentage of correct answers on post-intervention
questions (controlled by participant’s performance on pre-
intervention questions).

For accuracy, learning, and overreliance in text and in �gures we
report the marginal means produced by the regression models that
included performance on pre-intervention questions as a covariate.

To assess the subjective experience, we collected the following
measures assessed on a 5-point Likert scale, unless stated di�erently
(See Appendix A.4 for the questionnaire):

• Perceived Competence: Four questions adapted from the
Intrinsic Motivation Inventory (IMI) to measure participants’
feelings of e�ectiveness and competence in the task.

• Perceived Autonomy (Choice): Four questions adapted
from the IMI capturing the degree of autonomy and freedom
participants felt in their decision-making.

• Relatedness to AI: Three questions adapted from the IMI
measuring participants’ sense of connection and trust in the
AI.

• Interest/Enjoyment: Four questions adapted from the IMI
to assess participants’ interest and enjoyment during the
study.

• Mental Demand: A single question, measuring the cogni-
tive e�ort required by participants.

To assess the e�ects of experimental conditions on learning,
accuracy, and subjective measures, we employed analysis of co-
variance (ANCOVA). For human learning, ANCOVA was applied
to the average post-intervention correctness per participant, with
pre-test performance as a covariate and condition as a �xed factor.
A Shapiro-Wilk test was conducted on the residuals to check the
normality assumption, which was not violated (, = .993, ? = .137).
Holm-Bonferroni corrections [44, 83] were used to adjust for multi-
ple comparisons across our eight hypotheses and planned analyses
related to learning. Adjusted p-values are reported wherever a cor-
rection was applied. For accuracy, we again used ANCOVA, this
time on the average correctness during the intervention. Pre-test
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Figure 4: Main results. Marginal means of human learning (post-intervention performance, controlled for pre-intervention

performance) and accuracy accross di�erent conditions. Error bars represent one standard error. Signi�cance levels after

Holm-Bonferroni correction are presented only for signi�cant (or marginally signi�cant) di�erences, indicated by: * p < 0.05, **

p < 0.01, *** p < 0.001.

performance was included as a covariate due to its signi�cant corre-
lation with intervention question performance, while condition was
treated as a �xed factor. Subjective measures were analyzed using
ANOVA, with condition as the �xed factor. Post-hoc pairwise com-
parisons between conditionswere corrected usingHolm-Bonferroni
method to account for multiple hypotheses. Throughout the results,
we report e�ect sizes using Cohen’s 3 along with 95% con�dence in-
tervals. E�ect sizes and accompanying con�dence intervals provide
valuable information, particularly when interpreting results where
we hypothesize no signi�cant di�erences. When the con�dence
interval for an e�ect size includes 0, it suggests that the true e�ect
could be negligible or even nonexistent [24, 58, 94]. For correlations,
Pearson’s A is provided.

7 RESULTS

7.1 Main results

7.1.1 Human Learning. Main results for learning are depicted
in Figure 4a. We report adjusted p-values, corrected with Holm-
Bonferroni to account for multiple comparisons. As hypothesized
(H-L1a & H-L1b), participants experienced statistically signi�-
cantly greater learning in the contrastive predicted (" = 0.47,
�1,209 = 38.62, ? = 0.00004, 3 = 0.65 [0.37, 0.94]) and contrastive

after (" = 0.43, �1,216 = 26.68, ? = 0.006, 3 = 0.47 [0.19, 0.74]) con-
ditions compared to participants in the no AI condition (" = 0.32).

Participants in the contrastive random condition also showed
signi�cantly higher gains than those in the no AI condition (" =

0.41, �1,230 = 23.42, ? = 0.02, 3 = 0.40 [0.13, 0.67]). Conversely,
participants in the unilateral condition did not sign�cantly improve
their learnring compared to no AI (" = 0.39, �1,222 = 29.66, ? = =.B.,
3 = 0.30 [0.03, 0.57]).

Comparing contrastive conditions with sensible foil to unilat-
eral explanations, as hypothesized (H-L2a), participants in the
contrastive predicted condition (" = 0.47) learned statistically
signi�cantly more than participants in the unilateral condition
(" = 0.39, �1,260 = 40.99, ? = 0.02, 3 = 0.35 [0.11, 0.60]). How-
ever, the di�erence between contrastive after (" = 0.43) and uni-

lateral explanations was not signi�cant (�1,267 = 33.05, ? = =.B.,
3 = 0.16 [−0.08, 0.40]), not lending support to H-L2b.
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Figure 5: Overreliance across conditions. Error bars represent

one standard error.

Within the contrastive conditions, participants in the contrastive
predicted condition demonstrated greater learning (" = 0.47) com-
pared to those in the contrastive random condition (" = 0.41).
However, this di�erence was only marginally signi�cant (�1,268 =
31.82, ? = 0.09, 3 = 0.26 [0.02, 0.50]), o�ering partial support for
hypothesis H-L3. Addressing research question RQ-L1, the con-
trastive predicted condition did not result in signi�cantly di�erent
learning compared to the contrastive after condition (" = 0.43,
�1,254 = 41.44, ? = =.B., 3 = 0.18 [−0.07, 0.43]).

7.1.2 Accuracy and Overreliance. Figure 4b summarizes results of
human accuracy on the decision task with di�erent conditions. As
hypothesized (H-A1a & H-A1b), the accuracy of participants in
the contrastive predicted (" = 0.56, �1,260 = 20.04, ? = =.B., 3 =

−0.15 [−0.39, 0.10]) and contrastive after (" = 0.57, �1,267 = 9.13,
? = =.B., 3 = −0.08 [−0.32, 0.16]) conditions was not signi�cantly
di�erent from that of participants in the unilateral condition (" =

0.58).
While participants improved their performance on the task sig-

ni�cantly on average when they received AI support (" = 0.56)
compared to receiving no AI support (" = 0.31, �1,627 = 195.32,
? ≪ 0.0001), their performance also signi�cantly degraded when
AI suggestions were suboptimal (" = 0.14) compared to receiving
no support (" = 0.29, �1,627 = 36.34, ? ≪ 0.0001). Note that the
di�erent means for no AI support (" = 0.31, " = 0.29) in this
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Figure 6: Subjective results. Error bars represent one standard error.

analysis occur because we split the performance of participants in
the no AI condition based on whether AI, if provided, would have
been correct or incorrect, to allow a fairer comparison with other
conditions that received incorrect suggestions for only a subset of
questions.

In situations when AI provided a suboptimal recommendation,
participants in the contrastive predicted (" = 0.58, �1,260 = 6.53,
? = =.B., 3 = 0.03 [−0.22, 0.27]) and contrastive random (" =

0.54, �1,281 = 3.83, ? = =.B., 3 = −0.12 [−0.35, 0.12]) exhibited
similar overreliance as those in the unilateral condition (" = 0.58),
addressing RQ-A1.

Similarly, presenting contrastive explanations immediately (con-
trastive predicted), resulted in similar overreliance (" = 0.58)
compared to presenting contrastive explanations after a decision
was made (contrastive after) (" = 0.59, �1,254 = 10.61, ? = =.B.,
3 = −0.01 [−0.25, 0.24]).

7.1.3 Subjective Experience. Subjective results are summarized in
Figure 6.

Condition was a signi�cant predictor of perceived competence
(�4,618 = 6.40, ? ≪ 0.00005). A Holm-Bonferroni corrected post-hoc
test revealed that participants in the contrastive predicted, contrastive
random, and unilateral conditions reported signi�cantly higher
competence compared to those in the contrastive after and no AI

conditions.
Perceived autonomy (i.e., choice) was also signi�cantly predicted

by condition (�4,618 = 8.85, ? ≪ 0.00001). A Holm-Bonferroni cor-
rected post-hoc test revealed that participants in the contrastive
predicted, contrastive random, and no AI conditions perceived sig-
ni�cantly higher autonomy compared to those in the unilateral and
contrastive after conditions.

Condition was also a signi�cant predictor of relatedness to
AI (computed only for conditions involving AI) (�3,533 = 9.02,
? ≪ 0.00001), with a Holm-Bonferroni post-hoc test revealing
that participants in the contrastive after condition felt signi�cantly
less related to the AI compared to those in other AI conditions.

Task enjoyment/interest was not signi�cantly predicted by con-
dition (�4,618 = 1.66, ? = =.B.) and neither was mental demand
(�4,618 = 0.47, ? = =.B.).

Across measures, the subjective results support H-S2, showing
that contrastive explanations with a predicted foil led to signi�-
cantly higher perceptions of competence, autonomy, and related-
ness to the AI compared to the contrastive after condition. Ad-
ditionally, our �ndings partially supportH-S1: while contrastive
explanations with a predicted foil signi�cantly increased perceived
autonomy compared to unilateral explanations, no signi�cant dif-
ferences were observed for competence and relatedness to the AI.

7.1.4 Subjective vs. objective measures. Figure 7 shows the rela-
tionship between subjective experience and objective outcomes
across conditions with AI support (i.e. , no AI condition was not
included in the analysis). Our analysis revealed that there was no
correlation between actual learning and competence, autonomy,
or mental demand and that actual learning was very weakly in-
versely correlated with relatedness to AI (A = −0.08, ? = 0.06) and
task enjoyment (A = −0.09, ? = 0.04). Accuracy was signi�cantly
positively correlated with relatedness to AI (A = 0.26, ? ≪ 0.0001),
a construct that included questions about trust in AI too, and it
was signi�cantly negatively correlated with perceived autonomy
(A = −0.15, ? = 0.0003). Similarly, overreliance was signi�cantly
positively correlated with relatedness to AI (A = 0.22, ? ≪ 0.0001),
and signi�cantly negatively correlated with perceived autonomy
(A = −0.15, ? = 0.0006). In addition, overreliance was signi�cantly
positively correlated with task enjoyment (A = 0.1, ? = 0.02).

7.2 Audit for intervention-generated
inequalities

Intervention-generated inequalities occur when an intervention,
while bene�cial on average, disproportionately bene�ts some groups
over others [63]. Disaggregating results by relevant demographics
or variables can help uncover these disparities. Informed by prior
research in AI-assisted decision-making [11, 33], we conduct a self-
audit and examine whether contrastive explanations, introduced
as interventions to enhance human decision-making skills, bene�t
di�erent groups equally.

Previous studies have shown that individual di�erences in infor-
mation processing can signi�cantly impact the e�ectiveness of AI
support and interventions, particularly for cognitively demanding
outcomes like learning. One individual di�erence that may a�ect
the e�ectiveness of our interventions is Need for Cognition (NFC),
a stable trait that re�ects an individual’s motivation to engage in
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deep thinking and information processing [17]. NFC has been con-
sistently identi�ed as a predictor of performance in cognitive tasks
such as problem-solving and decision-making [18]. In the context
of AI-assisted decision-making, NFC has been found to in�uence
whether cognitive forcing reduces overreliance on AI [14] and how
e�ectively individuals learn from AI assistance [15, 33].

Another important individual di�erence that we reasoned would
be particularly relevant for interventions that require consideration
of multiple viewpoints is Actively Open-Minded Thinking (AOT).
People high in AOT are more likely to critically evaluate new evi-
dence, weigh it against their existing beliefs, take su�cient time
to solve problems, and carefully consider others’ opinions when
forming their own [6, 39]. We investigate whether individuals with
varying levels of AOT bene�t di�erently from contrastive explana-
tions, which provide alternative “viewpoints” for consideration.

Figures 8a and 8b depict results disaggregated by NFC and AOT.
We did not �nd any signi�cant di�erences among the e�ectiveness
of (any) contrastive explanations for people with di�erent levels of
NFC (for detailed ananlyses see Appendix, Table 2). However, our
�ndings reveal a notable contrast in the AOT groups: participants
with high AOT bene�ted signi�cantly more from the contrastive
predicted condition (" = 0.52) compared to those with low AOT
(" = 0.42; �1,122 = 6.67, ? = 0.01, 3 = 0.47 [0.11, 0.84]). Similarly,
the contrastive random condition was more e�ective for individuals
with high AOT (" = 0.46) than for those with low AOT (" =

0.42; �1,142 = 3.77, ? = 0.05, 3 = 0.34 [−0.01, 0.68]). See Table 1
for non-signi�cant conditions. These �ndings uncover AOT as a
relevant individual di�erence to consider in AI-assisted decision-
making and reveal that contrastive explanations may unevenly
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impact individuals, o�ering greater advantages to those with higher
AOT.

8 DISCUSSION

We investigated whether AI decision support systems that account
for the decision-maker’s mental model of the task and explain their
misconceptions can simultaneously enhance decision accuracy and
promote the development of independent decision-making skills.

8.1 On the e�ectiveness of contrastive
explanations in improving human-AI
decision-making outcomes

As expected, our results showed that participants learned signi�-
cantly more with contrastive explanations with predicted foil com-
pared to unilateral explanations (H-L2a) or no AI support (H-L1a)
(Figure 4a). Moreover, also as hypothesized (H-A1a), this improve-
ment in learning was achieved without sacri�cing accuracy: par-
ticipants completing the task with contrastive explanations with
predicted foil were as accurate as their counterparts who received
unilateral explanations (Figure 4b). Additionally, participants in
the contrastive explanations with predicted foil condition reported
signi�cantly greater perceived autonomy (but not competence or re-
latedness to AI) during the task compared to those in the unilateral
condition, providing partial support for HS-1.

The contrastive after condition, where participants received con-
trastive explanations after making an initial decision (inputted
foil), led to signi�cant learning gains compared to receiving no
AI support (lending support to H-L1) but not signi�cantly di�er-
ent learning compared to unilateral explanations (not supporting
H-L2b). As expected (H-A1b), participants’ accuracy in the con-
trastive after condition was not signi�cantly di�erent from those
in the unilateral condition.

Overall, our research provides compelling evidence that con-
trastive explanations with predicted foils signi�cantly enhance
decision-making skills without sacri�cing decision accuracy com-
pared to unilateral explanations, which remain the default explana-
tion design in AI-powered decision support. Our study is the �rst to
demonstrate that even when AI o�ers decision recommendations
(rather than explanations alone [15, 33]), users can still cognitively
engage with its content and improve their learning about the task
when this content is engaging. This �nding opens new possibilities
for optimizing AI decision-support systems by intervening not only
at the interaction level, as previous work suggests [13–15, 105], but
also at the content level of the explanations themselves to improve
human-AI decision-making outcomes.

Lastly, while contrastive explanations with predicted foil im-
proved human decision-making skills, we do not think they are a
panacea for human-AI decision-making. For example, our results
showed that contrastive explanations (as well as unilateral expla-
nations) still resulted in signi�cant overreliance on AI. Also, they
were sign�cantly more e�ective for people high in AOT (who are
inherently driven to consider multiple viewpoints) compared to
those low in AOT. Instead, we believe that contrastive explana-
tions are useful when shown in the right situations, such as when
the AI is con�dent about its decision, and to people who bene�t
from them (e.g., those high in AOT). As such, these explanations

expand the suite of human-AI interaction techniques that can be
adaptively selected in appropriate situations to optimize human-
AI decision-making outcomes, like decision accuracy and human
learning [8, 15, 93].

8.2 What have we learned about the design of
contrastive explanations?

Our results provide evidence about which aspects of contrastive ex-
planations matter for objective and subjective outcomes in human-
AI decision making.

First, as hypothesized (H-S2), our �ndings show that interaction
design matters for subjective experience: contrastive explanations
are as e�ective in objective measures when the foil is predicted as
they are when the foil is inputted (the contrastive after condition)
— even though the inputted foil is the “perfect” comparison. How-
ever, consistent with prior research [11, 32], our results show that
providing contrastive explanations after people make their own
decisions (input their foil) results in signi�cantly lower subjective
experience, even if that advice engages with their own input as in
contrastive explanations after condition. We found no di�erences
in subjective experience between contrastive explanations with a
predicted foil and those with a random foil, suggesting that the
contrastive design, applied before a decision is made, is perceived
favorably regardless of the foil’s quality.

Second, our results show suggestive evidence that quality of the
foil matters for improving learning as the objective outcome of
the interaction. When contrastive explanations are presented at
the decision-making time, high quality foil such as in contrastive

predicted resulted in greater learning on average compared to a
randomly selected foil, albeit the di�erence was only marginally
signi�cant, partially supporting HL-3. We believe that one of the
reasons why the di�erence between these two conditions is not
more pronounced in our study is that even a “random” foil in our
setting is relatively reasonable. A randomly selected exercise from
the list still addresses at least part of the needs or preferences of
the �ctitious character, rendering it a choice worth considering.
We believe that in di�erent situations, such as medical treatment
decisions, where the choices may consist of a wide variety of treat-
ments for a wide array of diseases, a randomly selected choice
would likely be obviously ine�ective or harmful, thus a waste of
cognitive resources for the clinician to consider. In addition, we
believe there is room to further improve the quality of the pre-
dicted foil. In our implementation, the foil was generated using a
single model that predicted the average human response across all
decision-makers. We believe that employing personalized models,
which capture each individual’s unique mental model of the task,
could result in even more accurate foils and, consequently, lead to
greater learning gains. Our analysis of the participants’ responses
used to train the human model revealed high variability in exercise
choices across participants (Appendix A.2.2), further supporting the
need for personalized models. Future research should investigate
how to best �ne-tune models to individuals and assess the added
value of personalized models compared to average human models
for enhancing downstream human-AI decision outcomes.

In this study, we sought to deepen our understanding of the
timing of contrastive explanations and the impact of foil quality.



CHI ’25, April 26-May 1, 2025, Yokohama, Japan Buçinca, et al.

We experimented with a simple, intuitive design in which the foil
represented the choice of many people, while the fact re�ected
the AI’s suggestion in the user interface. However, contrastive
reasoning can be conveyed in various other forms. For example,
two conversational agents—one advocating for the human model’s
choice and the other for the AI’s—could engage in a dialogue, al-
lowing the decision-maker to assess which agent’s reasoning is
more compelling. Alternatively, designs could focus solely on con-
trastive dimensions, rather than the fact and foil, by highlighting
aspects of the decision that the human decision-maker may be
overlooking. This approach could provide insights as intermediate
support without o�ering a direct recommendation (e.g., cardio sup-
ports weight loss goals). Having demonstrated the e�ectiveness of
one human-AI contrastive design in promoting learning, we believe
future research should explore a wider range of design possibilities
for representing human-AI misalignment in even more impactful
ways.

8.3 What have we learned about the e�ects of
contrastive explanations on overreliance?

Evidence from prior work suggested that presenting more than
one AI suggestion (i.e., a “second opinion”) to people may reduce
their overreliance, as it makes them more likely to consider alter-
natives [5, 64]. Our results showed that participants in contrastive
explanations conditions (with predicted or random foils) exhibited
similar rates of overreliance on AI suggestions as those in unilateral
condition (RQ-A1). We believe that we may not be observing the
bene�cial e�ect of second opinion in our study because in situa-
tions when the simulated AI provided incorrect recommendations
(i.e., when the “fact” was a suboptimal choice), the foil was an even
worse choice. Therefore, participants were primed to contrast two
suboptimal choices and resorted to the better choice out of the
two. Future work should explore whether contrastive explanations
would still result in similar overreliance, when the foil is a better
alternative than the fact.

Interestingly, we also found that participants’ overreliance rate
on AI in contrastive after condition was similar to that of the uni-
lateral condition. This contrasts with prior research showing that
providing unilateral explanations after an initial decision reduces
overreliance [14, 36], as people are less likely to follow incorrect
AI advice once they have made a decision. In our study, because
contrastive explanations directly addressed participants’ decision
and provided evidence as to why their choice was inferior to the
AI’s, they seemed more persuasive, potentially diminishing the
positive e�ect of the cognitive forcing.

8.4 What have we learned about intrinsic
motivation in AI-assisted decision-making?

We measured participants’ perceived competence, autonomy, and
relatedness to AI as psychological needs underpinning individ-
uals’ intrinsic motivation about a task. Our results demonstrate
that both interaction and explanation design signi�cantly impact
these constructs. First, as hypothesized H-S2, we found that the
contrastive after condition—in which contrastive explanations “cri-
tiqued” individuals’ inputted answer and presented evidence that

AI’s choice was superior—led to signi�cantly lower perceived com-
petence, autonomy and relatedness to AI compared to situations in
which contrastive explanations were presented before a decision
was made. Second, our results demonstrated that contrastive expla-
nations provided before a decision (whether using a predicted or
random foil), which presented two decision choices, led to signi�-
cantly higher perceived autonomy in task completion—comparable
to participants who received no AI support—compared to unilateral
explanations that o�ered only a single option.

Our analysis of intrinsic motivation constructs and objective
outcomes revealed that actual learning was not correlated with per-
ceived competence. Increased perceived autonomy was correlated
with reduced overreliance but also with lowered accuracy, while
stronger perceptions of relatedness to the AI were correlated with
greater overreliance on AI and higher accuracy.

These �ndings suggest that the design of AI support can sig-
ni�cantly in�uence people’s intrinsic motivation toward a task,
as well as objective outcomes such as accuracy and overreliance.
We believe that when developing new AI-assisted decision-making
systems, researchers should carefully consider and measure how
these designs a�ect people’s intrinsic motivation about the task in
addition to the objective outcomes of the interaction.

8.5 Generalizability & Limitations

We conducted a single controlled experiment with a single task and
with crowdworkers. While prior research on AI-assisted decision-
making suggests that experts often exhibit similar behavior to non-
experts when relying on AI systems [34], we do not know whether
this holds for learning from the AI about a task of their exper-
tise. Jacobs et al. [46] show that clinicians would prefer a system
that explains why AI’s choice di�ered from the established clinical
guidelines, which suggests they may be open for learning from the
AI. Our task choice had inherent learning opportunities (e.g., facts
about exercises). Learning may not be as pronounced in some tasks,
such as hiring, were opportunities for learning exist but are sparser.
Moreover, we assessed only the short-term e�ects of the explana-
tion designs on learning. The long-term bene�ts and whether the
observed learning gains will persist over time remain unstudied.
Further research is needed to understand how generalizeable our
�ndings are for other tasks, domains, and settings.

We believe that our contrastive explanations framework can be
e�ectively applied to a wide range of tasks and settings. Its modular
design allows for �exible adaptation based on speci�c contexts.
What we called an expert model, in a new domain can be replaced
by the predictive model that drives the decision recommendations.
More �exibility exists in how the human model is constructed to
generate sensible foils. If data exist on how human decision-makers
made decisions in a domain, those data can be used to train the
human model. In domains with established guidelines–where AI is
introduced to enable more nuanced decisions than were previously
possible — the foil could be derived from those guidelines, enabling
a comparison between established practices and AI-based predic-
tions. Alternatively, the foil could re�ect a personalized human
model, such as one trained on an individual clinician’s past choices.
The other modules can also be customized according to the domain.
For instance, the contrast module could compute pixel gradients or
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concept activations [54] that highlight di�erences between the fact
and foil. Similarly, the presentation module can be customized to
suit the task, such as employing tailored visualization techniques.
However, we believe that contrastive explanations—and by exten-
sion, our framework—are most valuable in multiclass classi�cation
or ranking scenarios, where the foil is less obvious than in binary
decision contexts.

An important consideration about our work is that we chose to
implement the presentation module with a large language model
(LLM). We used the LLM to turn the sca�old produced by the rest
of the modules into a natural language explanation, while provid-
ing small gaps in the template for it to �ll with domain facts. We
believe the approach of constraining the generation of facts within
the constraints of more trusted predictive models may be useful for
certain settings, such as ours but may not generalize to expert-level
domains where the LLM may not have the nuance to �ll in the
gaps. Moreover, we iteratively arrived at prompts (included in the
Appendix) which produced explanations with almost no hallucina-
tions. The �rst author of the paper reviewed the generations for
all the characters included in the experiment, �nding the LLMs
to only mix the indoor/outdoor preferences of characters at times,
but no other major hallucinations. However, such manual review
cannot be scaled. We believe that our framework can be extended
to include a veri�cation step for the generated explanations. For
example, multiagent frameworks [101] can be used with additional
agents reviewing the generated explanations.

Another limitation of our study is that, in order to control the
AI’s mistakes, we chose to simulate the AI. We introduced errors
in four randomly selected questions during the intervention phase,
where the AI’s suggestion was generated by a human model rather
than the expert model. This approach may have contributed to
overreliance on the AI, as the wrong AI suggestion was a likely
human choice.

Finally, in this study, we investigated the impact of explanation
design on the learning of factual information. While our study was
intentionally structured so that the AI consistently supported its
reasoning with truthful facts, there remains a potential, yet unstud-
ied (to the best of our knowledge), risk of inadvertent outcomes or
misuse of designs that support learning. This risk could manifest
as the propagation of misinformation if the AI were to provide
incorrect explanations. To address this concern, we strongly ad-
vocate for the use of contrastive explanations — or any form of
explanations — in conjunction with an intelligent interaction layer
(e.g., as in [15, 75, 92]). Such a layer would ensure that explanations
are delivered exclusively when the predictive model demonstrates
high con�dence in its recommendations and reasoning, thereby
reducing the likelihood of overreliance and minimizing the risk of
misinformation.

9 CONCLUSION

In this work, we investigated whether explanation designs that
account for human reasoning can improve human decision-making
skills in the task in AI-assisted decision-making. We introduced
a framework for generating human-centric contrastive explana-
tions by showing the di�erence between AI’s reasoning and a likely
human response for the same task. Our results demonstrated that

contrastive explanations signi�cantly enhanced human decision-
making skills compared to unilateral explanations, the default
method of AI support, without compromising accuracy. Sparking
hope about growing deskilling concerns, our work suggests that
AI support that accounts for human mental models of the task can
be a promising approach toward systems that augment and upskill
decision-makers.
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A APPENDIX

A.1 Task Design: Implementation details

A.1.1 Evaluating the expert model. We developed the objective function and expert model iteratively over multiple discussion sessions with
the expert. In each session, we evaluated the critical dimensions for inclusion in the model and assessed its predictions, deciding whether to
add or remove dimensions accordingly. Once we had decided the structure of the g representation, the expert provided a total of 322 pairwise
comparisons among exercises for 12 unique �ctitious characters. For learning the expert weights for the objective function f in Equation 1,
we followed the approach described in Section 4.5. Using the Scikit-learn library in Python, we trained a Support Vector Machine (SVM)
model with a linear kernel and a regularization parameter (C) set to 1.0. We evaluated the model’s performance using 12-fold cross-validation,
where each fold excluded one of the �ctitious characters. The model was trained on the remaining characters and tested on its ability to
predict pairwise comparisons for the excluded character. The model achieved a mean accuracy of 0.86 with a standard deviation of 0.08
across all folds. Additionally, the mean area under the ROC curve (AUC) was 0.86. It is important to note that these results re�ect pairwise
comparisons involving the full set of 59 exercises, and not only the subset of 7 exercises with which we populated the drop-down list in the
interface. For the �nal step, we qualitatively assessed the model’s choices for new �ctitious characters, con�rming that the decisions were
sound and reasonable. (Providing additional validation that the model e�ectively captures expert reasoning about the designed task, another
self-identi�ed kinesiology expert, who participated in one of our formative studies online, achieved a 96% score in the task—signi�cantly
higher than the typical 32% average from crowds.)

A.1.2 Selecting the drop-down exercises. We sought to populate the drop-down list for the interface with a sensible number of exercises
that would not overwhelm the participants. To select a representative set of exercises from the larger set of the 59 exercises, we clustered
the exercises based on their similarity. We generated a large set of 300 �ctitious characters, and scored each of the 59 exercises for each
of the characters with the expert scoring function. We then computed the correlations between the scores of the exercises and clustered
them based on the similarity of their score pro�les using hierarchical clustering (as depicted in Figure 9. This method allowed us to group
exercises that received similar scores across the 300 characters into clusters. We applied agglomerative clustering with Ward’s method. After
generating the dendrogram, we determined an appropriate number of clusters by examining the level at which the clusters remained distinct
while minimizing redundancy across exercises.

To select representative exercises from each cluster, we calculated the centroid of each cluster, representing the average score pro�le across
all exercises in that group. From there, we selected the exercise whose score pro�le was closest to the centroid and that was also a more
common or accessible exercise (e.g., aerobics vs. trampoline jumping) , ensuring that the selected exercise would be a good representative
of the group as a whole. A set of 7 representative exercises (aerobics, bicycling, boxing, jog/walk combination, pilates, resistance training,
swimming) was then used to populate the drop-down list in the interface, providing a diverse but manageable selection that re�ected the
range of exercise options without overwhelming participants with too many choices.

A.2 The Contrastive Explanation Framework: Implementation Details

A.2.1 Data collection study for training the human model. We conducted an online user study on Proli�c for collecting data with which to
train the human model. The task and procedure were identical to those used in the main experiment, but participants completed the task
without AI assistance, as our goal was to capture the human mental model of the task. In total, 20 participants answered 100 questions, with
each participant selecting exercises for 5 characters, randomly sampled from 30 unique characters (distinct from the characters used in the
main experiment). Participants achieved a mean accuracy of 30% on the task.

Figure 10 shows the distributions of exercise choices participants selected per �ctitious character. To evaluate the variability of participants’
responses in selecting exercises for di�erent �ctitious characters, we computed normalized entropy [84] per �ctitious character. High
variability could signal di�ering decision strategies for the task, while low variability would indicate stronger consensus and shared mental
model. We selected normalized entropy as it provides a robust measure of uncertainty, independent of the number of available categories,
making it ideal for comparing variability across di�erent characters. With a computed mean normalized entropy of ` = 0.51, we found that
participants’ choices exhibited moderate variability, indicating that while some patterns emerged, responses remained fairly distributed across
exercise choices. The standard deviation of f = 0.35 further showed notable �uctuation in variability across characters, implying that certain
�ctitious characters elicited more consistent responses, whereas others triggered more diverse decision-making. This analysis informed our
evaluation of the human model, as we expected a moderately, but not highly, accurate model given the variability of participants’ responses.

A.2.2 Evaluating the human model. We trained the human model from the responses collected in the data collection study and by following
the same approach with which we learned the expert weights. The total 100 choices (each out of 7 exercises) from the data collection study,
yielded a total of 600 pairwise exercise comparisons. As with the expert model, we trained a Support Vector Machine (SVM) model with
a linear kernel and a regularization parameter (C) set to 1.0. We used a 30-fold cross-validation for evaluating the human model, where
in each fold one participant was removed from the training set. The model was then trained on the remaining participants and tested
on the excluded one. This process was repeated for all participants, allowing us to assess the model’s generalizability and its ability to
predict individual behavior across di�erent subsets of the data. As expected from the high variance in participant responses, the model was
moderately accurate, with a mean cross-validation accuracy of 0.69 and an AUC of 0.68 for the pairwise comparisons of exercises.
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resistance training
calisthenics
fencing
rock or mountain climbing
pilates
yoga
soccer, casual
basketball
aerobics
martial arts, different types
volleyball
trampoline, competitive
bowling
curling
ethnic or cultural dancing
skating, ice
general dancing
surfing, body or board, competitive
canoeing, on camping trip
swimming
bicycling, mountain
rollerblading, moderate pace, exercise training
polo, on horseback
lacrosse
frisbee playing
jog/walk combination
horseback riding
cricket
kickball
skating, roller
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Figure 9: Correlation heatmaps with hierarchical clustering that served as a basis to select the drop-down exercises for the

interface.
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Figure 10: Distribution of participants’ responses for the 30 �ctitious character in the data collection study.
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As an additional evaluation, we compared the human model to the expert model. We generated a new set of characters to conduct
the evaluation and found that 60% of the unseen 50 characters, both human and expert models produced the same responses. The key
di�erences emerged in speci�c exercise choices: the human model was less likely to select boxing or aerobics, which the expert model
identi�ed as suitable for some characters. Despite the high variability within and across participants, this demonstrates a “wisdom of the
crowd” e�ect [90], where the average human model captured signal across participants’ responses (achieved 60% accuracy on the task,
compared to average participant accuracy of 30%), resembling the expert model (an e�ect also observed in [37]). In the main study, for cases
where the human and expert models provided identical responses for the characters, we selected the second-highest-ranked option from the
human model as the human response (i.e., the foil).

Finally, we sought to compare the outputs of our human-centered foil generator with those of the approach commonly used in prior
work, which typically selects the second-best alternative from the model’s perspective. To address this, we conducted an additional analysis.
Speci�cally, we generated foils for 10 datasets, each containing 100 �ctitious characters. We computed how often the human-centered foil
selected by our approach matched the foil generated by the model-centered approach (i.e., the second-best option according to the model).
The mean agreement was" = 0.627, 95%�� [0.60, 0.65], indicating that our approach selects a di�erent foil approximately 35% to 40% of the
time, highlighting a notable divergence from model-centered foil selection methods.

A.3 LLM Prompts

The variables in double brackets were populated according to the character in question.

A.3.1 Contrastive Explanation Prompt.

[[vignette]]

Here are the aspects that a kinesiology expert considers when making the decision:
(1) Intensity: whether the intensity required to carry out an exercise exceeds the �tness capabilities of the person.
(2) Intensity: whether an exercise matches the intensity the person is capable of exerting.
(3) Goal: whether the exercise matches the person’s goals.
(4) Preference: whether the exercise matches the person’s preference.
According to the expert’s function, [[fact]] is better than [[foil]] on the following: [[positive_contributors_fact]].
Whereas, [[foil]] is better than [[fact]] because of: [[positive_contributors_foil]].
Construct an explanation about why [[fact]] is better than [[foil]] using the following template:
Make it compact. Go into bullet point(s) strictly only for concepts for which the fact is better than the foil according to the
expert’s function. Do not explicitly say anything about the expert. Acknowledge the bene�ts of the foil over the fact if any as
the �rst sentence, then highlight the tradeo�s in high-level concepts at the beginning of the explanation.
Use the following structure for each bullet point, one by one, and include only the concepts for which [[fact]] is superior to
[[foil]]:
• Identify the primary characteristic of the superior exercise (e.g., running is a cardio exercise) and contrast this to the other
exercise.

• Connect this characteristic to a bene�t relevant to the character (e.g., cardio is good for weight loss).
High-level sentence that �rst acknowledges the concepts for which the foil is better than the fact (if any) or states that the foil
is also a good choice, then highlights the concepts for which the fact is superior to the foil. Include only the concepts for which
[[fact]] is superior to [[foil]].
• Concept 1 (e.g., Goal):
• Concept 2: ...
Format the response as a JSON object:
"high_level_contrastive_explanation": "explanation", "contrast_concepts": [{"Formatted name of concept (e.g., Goal)": "explana-
tion"}].

A.3.2 Unilateral Explanation Prompt.

[[vignette]]

Here are the aspects that a kinesiology expert considers when making the decision:
(1) Intensity: whether the intensity required to carry out an exercise exceeds the �tness capabilities of the person.
(2) Intensity: whether an exercise matches the intensity the person is capable of exerting.
(3) Goal: whether the exercise matches the person’s goals.
(4) Preference: whether the exercise matches the person’s preference.
Create a concise explanation for why [[fact]] is the best exercise for the speci�ed character, using the following structure in
bullet points only for aspects the expert considers:
• Identify the primary characteristic of [[fact]] (e.g., running is a cardio exercise).
• Connect this characteristic to a bene�t relevant to the character (e.g., cardio is bene�cial for weight loss).
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Figure 11: Are participants in�uenced by the presence of a foil? Comparison of answer distributions between contrastive and

unilateral designs, with no foil provided in the unilateral condition.

Strictly only include aspects recognized by the expert as bene�cial for the character, omitting any for which [[fact]] may
not be optimal or relevant. Do not explicitly say anything about the expert. Use the terms Goal, Intensity, and Preference

when describing the relevant ’concept’.
Format the response as a list of JSON records with ’concept’ and ’explanation’ as the keys for the records.

A.4 Post-study Questionnaire

Perceived Competence (Adapted from the Intrinsic Motivation Inventory (IMI)).

• I think I performed well in making exercise recommendations during this task.
• This was a task that I couldn’t do very well. (reverse Likert)
• I believe I am skilled at suggesting suitable exercises for di�erent individuals.
• After working at this task for a while, I felt pretty competent.

Perceived Choice — Autonomy (Adapted from IMI).

• I felt like I had a lot of choice in deciding which exercises to recommend.
• I was free to choose the exercises I thought were best suited for the person described.
• I felt like I was strongly in�uenced by the AI on how to recommend exercises. (reverse Likert)
• I recommended exercises in the way I wanted to.

Relatedness to AI (Adapted from IMI).

• I felt I could trust this AI.
• I felt my reasoning on this task was distant from the AI’s. (reverse Likert)
• I would like a chance to interact with this AI in the future.

Interest/Enjoyment (Adapted from IMI).

• I enjoyed this exercise recommendation task.
• This task did not hold my attention at all. (reverse Likert)
• While I was doing this task, I was thinking about how much I enjoyed it.
• I thought this exercise recommendation task was a boring task. (reverse Likert)

Mental Demand.

• I found this task mentally demanding.

A.5 Results: Are participants in�uenced by the presence of a foil?

We aimed to investigate whether presenting participants with two choices in�uenced their likelihood of selecting the foil compared to
when the foil was not visible (i.e., the unilateral condition). Our analysis revealed that when participants picked some choice other than the
fact, that other choice was signi�cantly more likely to be the foil in contrastive designs than in the unilateral condition (Figure 11). This
e�ect was observed in both the contrastive predicted condition, j2 (2, # = 3682) = 99.30, ? < .001, and the contrastive random condition,
j2 (2, # = 3976) = 91.15, ? < .001. Interestingly, participants in the contrastive random and predicted conditions selected the foil at similar
rates, suggesting that the mere presence of a foil, rather than its quality, in�uences decision-making.
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R = − 0.15, p < 2.2e−16

R = − 0.014, p = 0.51

R = − 0.15, p = 1.2e−11

R = − 0.053, p = 0.044
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Figure 12: Correlation between trial number and rank (1BC rank corresponding to expert’s choice) for choices made without AI

assistance. Participants in the contrastive after condition showed signi�cant improvement in their initial choices over time,

even when those choices were incorrect.

A.6 Results: Additional Analysis for Learning

To gain deeper insights into people’s learning throughout the study, we conducted an additional analysis of the no AI and contrastive after

conditions, focusing on participants’ unassisted initial answers (Figure 12). Our results indicate that the initial choices participants provided
in the contrastive after condition signi�cantly improved over the course of the study (A = −0.15, 95%�� [−0.18,−0.11], ? < .0001; CI based on
1000 bootstrap samples). Even when participants provided incorrect initial guesses, those guesses progressively ranked higher according
to the expert weights over time (A = −0.15, 95%�� [−0.19,−0.11], ? < .0001). Participants in the no AI condition did not exhibit signi�cant
overall improvement over time (A = −0.01, 95% CI [-0.05, 0.03], ? = =.B.). However, a very weak correlation of improvement was observed for
instances where they provided incorrect choices (A = −0.05, 95% CI [-0.11, 0.002], ? = 0.04).

A.7 Results: Audit for Intervention-Generated Inequalities

Condition High AOT (SE) Low AOT (SE) Signi�cance E�ect Size (d [CI])

contrastive after 0.42 (0.03) 0.41 (0.03) �1,127 = 0.07, ? = =.B. 0.05 [-0.31, 0.40]
unilateral 0.40 (0.03) 0.38 (0.03) �1,134 = 0.30, ? = =.B. 0.09 [-0.24, 0.43]
contrastive random 0.46 (0.03) 0.38 (0.03) �1,142 = 3.77, ? = 0.05 0.34 [-0.01, 0.68]
contrastive predicted 0.52 (0.03) 0.42 (0.03) �1,122 = 6.67, ? = 0.01 0.47 [0.11, 0.84]
no AI 0.34 (0.03) 0.31 (0.03) �1,83 = 0.64, ? = =.B. 0.17 [-0.26, 0.61]

Table 1: ANCOVA results by condition for AOT groups, showing marginal means (SE), Signi�cance (F-statistic, p-value), and

E�ect size (Cohen’s d with 95% con�dence intervals).

Condition High NFC (SE) Low NFC (SE) Signi�cance E�ect Size (d [CI])

contrastive after 0.43 (0.03) 0.41 (0.03) �1,127 = 0.11, ? = =.B. 0.06 [-0.29, 0.41]
unilateral 0.40 (0.03) 0.38 (0.03) �1,134 = 0.20, ? = =.B. 0.08 [-0.26, 0.42]
contrastive random 0.42 (0.03) 0.42 (0.03) �1,142 = 0.02, ? = =.B. 0.02 [-0.30, 0.35]
contrastive predicted 0.49 (0.03) 0.47 (0.03) �1,122 = 0.35, ? = =.B. 0.11 [-0.25, 0.46]
no AI 0.34 (0.03) 0.31 (0.03) �1,83 = 0.28, ? = =.B. 0.11 [-0.32, 0.55]

Table 2: ANCOVA results by condition for NFC groups, showing marginal means (SE), Signi�cance (F-statistic, p-value), and

E�ect size (Cohen’s d with 95% con�dence intervals).
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