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ARTICLE INFO ABSTRACT

Keywords: In this paper, we propose and study a framework for disaster housing logistics planning
Disaster Housing Recovery under demand uncertainty. Specifically, we utilize a two-stage chance-constrained stochastic
Logistics Planning programming model to achieve the balance between logistics operational cost and demand
Optimization under Uncertainty fulfillment especially towards extreme disaster scenarios. To do so, we incorporate two
Spatial Regression Model operational modalities, one for the ordinary modality and the other for the emergency modality,

and the emergency modality is only allowed to be activated for a certain percentage of scenarios
that is specified by the decision maker among all scenarios. The set of scenarios is generated
according to a spatial regression model for characterizing the disaster housing demand based
on a selected number of independent variables related to both the hazard and socioeconomic
factors, which is trained offline from historical data. We conduct a numerical experiment based
on Hurricane Ian, and our numerical results show the effectiveness of the proposed approach
compared to some standard benchmark approaches. We also highlight the managerial insights
for disaster housing logistics planning gained through this numerical experiment.

1. Introduction

Direct housing is one of the most critical resources following disaster displacement. When confronted with
large-scale foreseeable disasters like flooding and hurricanes, individuals are displaced from their homes or habitual
dwellings to avoid the impacts. In the United States (US), the frequency and severity of displacements linked to
disasters have seen a consistent rise in recent decades (Deng, 2001). Although disaster displacement endeavors to
minimize human exposure to natural hazards and reduce the risk of direct injuries resulting from disasters, prolonged
displacement caused by a disaster event has been shown to result in significant social issues, such as unemployment
and mental illness (Hori and Schafer, 2010). In order to mitigate the social costs caused by these issues, direct housing
emerges as one of the critical resources employed to alleviate the suffering of displaced victims in the current practice
of the Federal Emergency Management Agency (FEMA) of US. Its significance is further accentuated in extreme
circumstances, as direct housing is regarded as the “last resort” (FEMA, 2020) in the entire spectrum of disaster
housing assistance, after alternative housing resources such as the rental units are exhausted.

One of the challenges in disaster housing logistics planning is to effectively address the disaster housing demand
uncertainty (Katrina, 2007; Laura Layden, 2022; National Low Income Housing Coalition, 2018). For instance,
during Hurricane Harvey, approximately 30,000 families endured prolonged displacement in emergency shelters for
at least one month (Pam Fessler, 2017). Similarly, in the aftermath of Hurricane Sandy, around 11,000 families found
themselves in shelters for nearly six weeks following the storm (Patrick Adcroft, 2022). The absence of a comprehensive
logistics plan for direct housing assistance can result in extended periods of displacement during major disasters,
exceeding initial expectations. This motivates us to develop a framework for direct housing logistics planning, offering
an efficient logistical plan that leads to a timely fulfillment of disaster housing demand.

To construct such a logistics plan for direct housing, it is crucial to characterize the uncertainty associated with
housing demand stemming from disaster events, with a focus on hurricane disasters in this paper. In order to ensure a
timely delivery of disaster housing units to victims, the logistics operation must be initiated shortly after the occurrence
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of a disaster event, such as when a major hurricane makes landfall. The challenge is that only a rough estimation of the
housing demand is available at that time. The actual demand information from victims, e.g., through FEMA’s Individual
Assistance (IA) program (FEMA, 2023), can take weeks or even months to collect. The discrepancy between estimated
and actual demand data cannot be neglected, as it can lead to either over-preparation or under-preparation, either of
which can incur substantial economic and social cost. For instance, FEMA purchased more MHUs than needed in Texas
after Hurricane Harvey in 2017, leading to unnecessary expenditure of up to $152 million (Erwin, 2020). Conversely,
the under-utilization of disaster housing assistance led to 11,000 families in emergency shelters for nearly six weeks
after the storm during Hurricane Sandy in 2012 (By Ken Serrano, Asbury Park (N.J.) Press, 2012). Addressing the
uncertain housing demand is critical to a timely and effective implementation of a disaster housing plan.

In this paper, we propose a data-driven decision-support framework that integrates disaster housing demand
estimation into disaster housing logistics planning via a two-stage chance-constrained stochastic programming (TSCC)
model. We construct a spatial regression model for estimating housing demand based on a selected number of
independent variables related to both the hazard and socioeconomic factors, which is trained from historical demand
data from past major hurricane events. This regression model is subsequently used to generate disaster housing demand
scenarios, which are incorporated into the TSCC model as input data. This framework allows us to (i) address disaster
housing logistics planning in the aftermath of a disaster event and (ii) achieve the balance between logistics operational
cost and its robustness towards extreme disastrous situations by leveraging two operational modalities, an ordinary
modality and an emergency modality (Liu, Kiiciikyavuz, and Luedtke, 2016), with the latter serving as a contingency
plan for situations when the demand is unexpectedly high. For the emergency modality, we allow emergency acquisition
decisions at the expense of a higher cost. Since the emergency modality should only be activated in the most extreme
situations where an unexpectedly high demand is realized, the percentage of scenarios that an emergency modality can
be activated among all scenarios is set to be a risk tolerance parameters that is specified by the decision maker, giving
rise to a chance-constrained model.

The rest of the paper is organized as follows. In Section 2, we review relevant literature on disaster housing logistics
planning and disaster relief problems solved by stochastic programming. In Section 3, we describe in detail the TSCC
model and the methods employed for solving the model. In Section 4, we present a spatial regression model for
estimating disaster housing demand, followed by our numerical results based on a case study on Hurricane Ian in
Section 5. These results show the efficacy of the TSCC model in comparison to other models and offer insights into
disaster housing logistics planning through a set of sensitivity analyses.

2. Literature Review

In this section, two relevant topics are reviewed. First, we provide a general literature review on disaster housing
logistics planning. Then, we review stochastic programming models applied to the disaster relief problems most
relevant to our research.

2.1. Literature on disaster housing research

Compared with the general topic of disaster relief, the literature on disaster housing research is rather limited,
mostly due the data scarcity, policy complexity, among other complicating factors. Most of the literature focuses on
disaster housing architecture design and disaster housing demand estimation, instead of their logistics planning that
integrates the two, which is what we focus on in this paper.

The literature related to disaster housing architecture design emphasizes on how decision-making in housing design
can lead to a potential impact on the process of disaster housing recovery. For example, Hendriks, Basso, Sposini, van
Ewijk, and Jurkowska (2017); Patel and Hastak (2013) aim to identify a better disaster housing design, with the goal of
reducing the vulnerability of individuals affected by disasters through a deeper understanding of the principles related
to hazard-resistant construction. Moreover, Wagemann (2017) focuses on the development and evaluation of housing
design strategies, Félix, Branco, and Feio (2013) explore permanent housing reconstruction, and Félix, Monteiro,
Branco, Bologna, and Feio (2015) identify the main causes of issues in temporary housing units. Within our proposed
framework, by evaluating the performances of disaster housing logistics planning with and without alternative disaster
housing solutions, we can showcase the value of these alternative designs in comparison with the existing disaster
housing solutions.

The literature related to disaster housing demand estimation, requirement, and fulfillment focuses on characterizing
the correlation between key natural hazard factors, socioeconomic factors, and the post-disaster housing needs. Perrucci
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and Baroud (2020) underscore the need for further research in proactive management, storage, sustainability, and
community resilience to effectively enhance post-disaster temporary housing with simulation approach. El-Anwar and
Chen (2016) conduct a similar study, employing an optimization model to quantify the specific needs and preferences
of each displaced family and optimize housing decisions. Perrucci and Baroud (2021) employ simulation approaches
to address key decision-making trade-offs associated with critical attributes of disaster housing, such as locations,
structures, and costs to estimate the losses for disaster housing. We emphasize that the estimation of housing demand
is just one facet of the overall logistical plan — it is important to take a holistic perspective on disaster housing logistics
planning. In our proposed framework, we integrate disaster housing demand estimation into disaster housing logistics
planning using an appropriate stochastic programming model.

2.2. Literature on disaster relief logistics

While the literature on the logistics planning for disaster housing specifically is limited, the literature on general
disaster relief logistics spans a wide range of topics. This breadth arises from the extensive disaster relief supply chain
network operated by FEMA and state emergency management agencies in the US (Vanajakumari, Kumar, and Gupta,
2016). Stochastic programming is frequently employed in disaster planning to address the uncertainty arising from the
disaster. Existing stochastic programming models for disaster relief logistics planning have predominantly concentrated
at the strategic level, utilizing two-stage stochastic programs.

In these two-stage stochastic programming models, strategic-level logistics decisions, such as relief supply pre-
positioning and transportation capacity allocation, are modeled as the first-stage decisions prior to the realization of
demand, and operational-level decisions such as the delivery of disaster relief commodities to the disaster victims
are modeled as the second-stage decisions with the realized demand information. Alem, Clark, and Moreno (2016)
introduce a two-stage stochastic network flow model aimed at enhancing emergency logistics in disaster relief. This
model takes into account multiple factors, including budget allocation, fleet sizing, procurement, and varying lead
times, and incorporates the application of risk measures. Paul and Zhang (2019) develop a two-stage stochastic
programming model for hurricane preparedness. The goal of the model is to determine the location of distribution
points, medical supply levels, and transportation capacity before the hurricane, and make transportation decisions
after the hurricane. Also, Yang, Duque, and Morton (2022) introduce a two-stage stochastic programming model and
apply it in a rolling-horizon fashion to optimize fuel supply chain operations so that emergency diesel fuel demand for
power generation in a hurricane’s immediate aftermath can be mitigated. Similar hurricane preparedness studies can
be found in, e.g., Duran, Gutierrez, and Keskinocak (2011); Morrice, Cronin, Tanrisever, and Butler (2016); Rawls and
Turnquist (2010); Salmerén and Apte (2010); Sanci and Daskin (2021); Pouraliakbari-Mamaghani, Saif, and Kamal
(2023); Siiticen, Batun, and Celik (2023); Velasquez, Mayorga, and Ozaltin (2020); Wang, Dong, and Hu (2021).
Nevertheless, despite the abundance of literature exploring logistics decisions for general relief supplies, there is a
lack of research addressing the logistical planning of disaster housing in the face of demand uncertainty.

We will model the disaster housing logistic planning as a TSCC optimization model. This model encompasses
strategic-level logistics decisions while also incorporating emergency modality to address unforeseen high-demand
situations. The decision to adopt a chance-constrained model stems from the associated high cost of activating the
emergency modality contingency plan. It is essential to limit the chance that the emergency modality is activated to
be no larger than a prescribed risk level. This is consistent with the national disaster relief and emergency response
framework established by FEMA.

3. Problem Description

In this section, we introduce a TSCC model for disaster housing logistics planning in alignment with the current
direct housing practices of FEMA (see Figure 1), following their established timeline (FEMA, 2020). After the
activation of the Individuals and Households Program (IHP) following the Presidential disaster declaration to a major
disaster event, FEMA will initiate an evaluation of its direct housing inventory and start the procurement of new direct
housing if necessary from contracted producers based on the estimated housing demand. We incorporate this planning
decision into the first stage of the two-stage model, where planning decisions on housing acquisition are made with
predicted housing demand information to minimize the total expected logistics and social cost. Afterwards, it takes
several weeks to several months for FEMA to acquire the actual demand data through direct housing requests from
victims and subsequent approvals. FEMA then proceeds with delivering direct housing to those in need based on the
actual demand data. This operational decision is integrated into the second stage of the two-stage model.
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Figure 1: The Timeline of the Direct Disaster Housing Logistics Plan by FEMA.

To further enhance the adaptability and effectiveness of our proposed plan, especially in addressing scenarios with
unexpectedly high demand, we consider two operational modalities for the second stage, the ordinary modality and
the emergency modality. For the ordinary modality, all housing allocation decisions are made based on the housing
acquisition decision in the first stage, and no emergency acquisition is permitted. For the emergency modality, we
allow emergency acquisition decisions at the expense of a higher cost. Since the emergency modality should only be
activated in the most extreme situations where an unexpectedly high demand is realized, we limit the chance that an
emergency modality is activated among all scenarios to be under a given threshold, giving rise to a chance-constrained
stochastic programming model, which we discuss next.

3.1. Two-stage Chance-constrained Stochastic Programming

We consider a logistics planning problem for direct disaster housing, which is mainly concerned about the planning
decisions on disaster housing acquisition and staging shortly after a major hurricane makes landfall, and operational
decisions on housing allocation after the disaster housing demand is realized. Motivated by the criticality of a timely
delivery of disaster houses to victims, we propose a time-indexed formulation to model the problem as a multi-period
supply chain network flow model. We assume for the baseline model that each time period corresponds to a single
day for simplicity, but this definition can be made flexible as we discuss in Section 5. The entire planning horizon
is specified by a set T = {1,2,..,T — 1,T}. In the two-stage model, the first stage comprises of time periods
Tf ={1,2,... ,Tf} C T and the second stage comprises of time periods 7, = {Tf + 1,Tf +2,...,T-1,T} CT.
Furthermore, we define set 7, = {T;, T, + 1,...,T —1,T} C T,, where each t € T, represents a time period at which
the deprivation cost will incur, as we discuss in more detail next.

Another crucial reason for integrating a time-indexed formulation into the model is to account for deprivation
costs. Deprivation cost functions play an important role in disaster logistics planning, allowing for the quantification
of human suffering in the aftermath of disasters over time (Pernett, Amaya, Arellana, and Cantillo, 2022). Another
rationale for integrating deprivation costs into the logistics planning model is to capture the cost that victims incur
due to the lack of emergency planning (Moreno, Alem, Ferreira, and Clark, 2018). In recent years, most research
within the area of disaster relief logistics planning has incorporated deprivation costs, such as Moreno et al. (2018);
Pérez-Rodriguez and Holguin-Veras (2016); Rivera-Royero, Galindo, and Yie-Pinedo (2016). Despite the large number
of studies on deprivation costs for different goods or services, to the best of our knowledge there is no prior study on
deriving the deprivation cost function for disaster housing. However, Holguin-Veras, Pérez, Jaller, Van Wassenhove,
and Aros-Vera (2013) conclude that the solutions will be similar as long as the model’s estimated deprivation cost
function strictly dominates the true function. In the study, we adopt the deprivation cost function by adapting from the
literature (Holguin-Veras, Amaya-Leal, Cantillo, Van Wassenhove, Aros-Vera, and Jaller, 2016).

We model the disaster housing logistics network as a supply chain network with three types of nodes: the supply
nodes I, the transshipment nodes W, and the demand nodes J (see Figure 9 in Appendix D for an illustration). This
network structure is commonly used for a generic disaster relief logistics setting, as can be found in, e.g., Alem et al.
(2016); Paul and Zhang (2019); Siddig and Song (2022), etc. We consider a set H of different types of housing solutions
that are currently adopted by FEMA, including travel trailers and manufactured housing units (MHUs).

To enhance the model’s flexibility to incorporate any alternative disaster housing architecture designs, we configure
the model to allow alternative housing solutions, which are referred to as the “Alternative Modular Houses” (AMHs).
We assume that these AMHs have the flexibility to substitute any of the existing housing solutions, i.e., trailers and
MHUEs. In Section 4, we will demonstrate how even a modestly designed AMH can provide benefits to the underlying
problem. We consider a set N of different types of AMHs. Each AMH, denoted by n € N, has the capability to
substitute existing housing solutions by utilizing a specific number of its own units and a specific assembly time. We
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assume that the existing disaster houses and the ones made through the substitutions of the AMHs provide the same
living condition for victims for simplicity in this work, although we acknowledge that the disaster victims’ preferences
play an important role in disaster housing allocation. We define set P = H U N to include all types of disaster housing

solutions.

Alternative Modular Existing Housing
Houses N Solutions H

Housing Demand

see
(1T}

T —
(1]

Figure 2: An illustration of the substitution of existing housing solutions by AMHs.

Finally, to incorporate the uncertainty in the disaster housing demand into our model, we consider a set of scenarios
K, which are assumed to be equally likely for simplicity. Each scenario specifies a disaster housing demand realization

for each of the demand nodes.

We are now ready to present the proposed TSCC model. We start with the parameter definition, followed by the

definitions of decision variables and constraints, and finish with the complete formulation.
Parameters

C; 1, p* unit transportation cost from supply node i to transshipment node w for type-p houses.

C,, ; ,: unit transportation cost from transshipment node w to victims in demand node j for type-p houses.

w,j.p*

F. . e .
Oi’p. first-stage unit acquisition cost of type-p houses from supply node i.

O3 : second-stage unit acquisition cost of type-p houses from supply node i (under the emergency modality).

ip*
C,? : unit penalty cost incurred by unmet demand for type-A houses.

C;/: unit penalty cost incurred by unused inventory for type-p houses.

CP - unit penalty cost incurred by deprivation of type-A houses for a deprivation time of ¢ periods.

ht*
U,,: inventory capacity of transshipment node w.
u,: amount of inventory level occupied by each type-p house.
E;: number of production lines available at supply node i.
E;: number of extra production lines available for emergency modality at supply node i.
D;" 5+ amount of demand of type-h houses in demand node j in scenario k.
A,: amount of transportation capacity levels occupied by each type-p house.

¢, - installation time of type-n AMH used to substitute an existing type-A house.

B, ;: number of units of type-n AMH required to substitute an existing type-A house.
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V; p+ initial inventory level of type-p houses at supply node .

7; »/ T p: production time of type-p house in supply node i under the ordinary/emergency modality.

0;/0,,: maximum number of housing units that can be sent from supply node i/transshipment node w within a single
time period.

A,; ,,: number of time periods required for housing units to be shipped from supply node i to transshipment node w.

A, ;- number of time periods required for housing units to be shipped from transshipment node w to demand node

J
In our decision making framework, the first-stage problem determines the acquisition and staging decisions on
disaster houses, while the second-stage problem focuses on the delivery decisions to the demand nodes under each
scenario. We use the notation below for the decision variables:
First-stage decision variables

X; w.ps- umber of type-p houses sent from supply node i € I to transshipment node w € W at departure time ?.
s; p- number of type-p houses started be manufactured from supply node i at time 7.
My p, inventory level of type-p houses in transshipment node w at time 7.
v; p;+ iInventory level of type-p houses at supply node i at time 7.
a; - number of production lines used by supply node i at the beginning of time 7.
Second-stage decision variables (all associated with a scenario index k)

f l’; it number of type-p houses sent from transshipment node w to demand node j at time ¢.

fikj ot number of type-p houses sent from supply node i to demand node j at time z.

ff’: .- number of type-n AMHs starting to be assembled to substitute type 4 € H houses in demand node j at time
t

k .

Vit number of type-p houses started to be manufactured from supply node i at time 7 under the emergency modality.

4 ikj ot number of type-p houses produced by supply node i for demand node j at time ¢t under emergency modality.

'ullfu,p,t: inventory level of type-p houses in transshipment node w at time z.

by number of extra production lines used by supply node i in the emergency modality at time ¢.

qj’? 5+ amount of unsatisfied housing demand at demand node j for type-h houses at time ?.

As mentioned earlier, we provide two operational modalities for the second-stage problem, the ordinary modality
and the emergency modality. Under the ordinary modality, the housing allocation decisions are made based on the
first-stage acquisition and staging decisions, without the opportunity to make additional housing acquisitions after
time 7. Under the emergency modality, the emergency acquisition and delivery are permitted after 7. For notational
convenience, we denote X := (x, u, s, v) as the first-stage solution that is used as an input to the second-stage model,
either with the ordinary modality or the emergency modality. Next, we present the formulations of the second-stage
problem under the ordinary modality and the emergency modality, respectively.

Ordinary modality:
—mi k U  k
Fi(x) = my]n Z Z 2 Z Cw,/‘,l’fw,j,p,r + Z Z Cu 49j.nr
weW jelJ teT, peP j€J heH
Vv k D k
+ Z Z Cp Hwp1 + 2 Z Z Cj,h,tqj,h,t (12)
weWw peP JE€J teT, heH
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s.t. upr Huwp.Ts> YweW,peP (1b)
k
wpt+1 wa/pt+1 lewlﬂ A; ]l(t_ lw_1)+”wpt’
iel
VweW,t:Tf,Tf+1,..., -1, pePrP (1c)
ZZApfu’jjptse VieT, weW (1d)
jeJ peP
D S = Z Sinisgy, VI ETHJ €T, nEN (le)
wew
k _ gk kn
dinivt = djpe Z S i, 1O P 2 T+ D
+Zf,'j”htA 1@ - ij_Tf+1) Vield,teT\{T}, he H (1)
wew
df, +ds,, =D, Vi€J, he H 1T, (1g)
fjht—01ft+¢ >T,VneN,jeJ,he H,teT (1h)
k _ .
fM)jpt 0,iftr+A,; 2T, VvweW,jeJ,peP,teT (11)
All variables are nonnegative
Emergency modality:
k
Fi(x)= mln Z Z 2 ZCWJwa1p1+Z Z qJJl’T
weW jel teT, peP je€J heH
vk
+ Z ZC WPT+Z Z Z /htq/,h,t
weW peP JE€J teT; he H
S
SDIDIDIPN TN/ 2a)
iel jeJ teT, peP
s.t. (1b), (1c), (1g) (2b)
Uipr, = Uipry VIEL, PEP (2¢)
k k
Ui,p,t+l + Z Xiwpirt T Z fi,j,p,t+1
wew JEJj
Oyt F Sipamr, 10 =71, 2 D+ vl.]fp’t_i__i’p]l(t— 7, 2T+ 1),
Viel, peP, t:Tf,Tf+1 , T —1 2d)
k
Z i,j.nt=4; ; AI]—Tf+1)+wa1ntA IL(I AM}J—Tf-i_l)
iel wew
Z WVJEJ neN,teT, (2e)
heH
VieJ,heH, teT, (2f)
k .
bl”l 0,viel 29
_ _ k .
b Z Vipario, L+ 1=, 2 Ty +1) = v b VielL 1T, (2h)
pEP pEP
b, <E,Viel, teT, (2i)
k _ gk kn
dj/’ll+1 dj/’lt Z ,ht¢,,]1(t_¢n,h2Tf+l)
k
+ wa,th 1@ — AwJ_Tf+l)+Zf,]htA 1t - A, 2 Tp+ 1),
wew iel
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VjeJ, teT\(T}, he H @)
fikjpt—O1ft+A,]_TVzteer€PteT (2k)
f/ht_OIft+¢ >T,VneN,jeJ,he H,teT 2D
lpt—Olft+Tlp_TVl€Ip€Pt€T (2m)

All variables are nonnegative.

The objective function (1a) minimizes the total cost of shipping, unmet demand penalty, unused inventory penalty,
and deprivation penalty. Constraints (1b) establish the initial inventory of houses in the transshipment nodes at the
beginning of the second stage, which equals to the inventory level of disaster housing units at the end of the first stage.
Constraints (1c) ensure the balance constraints in the flow of houses delivered to victims (/') and houses procured from
suppliers (x) in each transshipment node at each time ¢ (see an illustration of the flow balance constraints in Figure 10a).
At each time ¢, the number of the housings sent from the transshipment node is constrained by (1d). Since AMHs can
be assembled to substitute any existing housing solutions 2 € H, constraints (1e) model the assignment of the AMHs
to serve the purpose of the existing houses. Constraints (1f) account for the number of houses received in each demand
node at each time ¢ (see an illustration in Figure 10b), and constraints (1g) restrict the total number of houses received
in each demand node by time 7 to not exceed the actual demand by including unsatisfied housing demand variables g.

The emergency modality model is similar to the ordinary modality model, with three key distinctions: (i) we
introduce an extra set of decision variables to capture the emergency acquisition decisions; (ii) since emergency
acquisitions will change the inventory in the supply nodes, we employ v* to monitor changes in the supply nodes
inventory during the second stage instead of v. We also ensure a balance in the flow among the inventory v, first-stage
decision x, emergency acquisition v, and emergency delivery f via constraints (2d); and (iii) we have constraints (21)
and (2h) to model both the emergency acquisition and the production limits of supply nodes (see an illustration in
Figure 10c).
The overall TSCC model:

Based on the two modalities defined above, the proposed TSCC model is given by:

min 2 D Y DO+ Crop i + IKI D (= 2 Fx) + 2. F () (3a)
iel weW pePteT kek

st Yz <e-|K| (3b)
kekK
Vip1=Vip Vi€el,peP (3c)
Vipart + D Xiwpast = Vipe + Sipios, W0 =7, 2 1), Vi€ I, pe P, 1 € T\(T} (3d)

wew
DD Ay SO VET i€ (3e)
weWw peP
Hoopast = Zx,.,w,p,,_%n(t — Dy 2 Dy, YweEW, teT\{T}, pe P (3f)
iel
2 Uphpps SU, VWEW, 1 ET (32)
peEP
a,=0,Viel (3h)
Giaat + 0 Siperton, WO+ 1 =7, 2 1) = Y 5, +a,,Viel, 1€ T\{T) (3i)
pEP pEP
a, <E,Viel,teT (€1))
z, €{0,1}, Vk € K
xiwp,—O ift+A;,>2T,Viel,weW,pe P,teT (3k)
Sips =0, ift+7,, 2T, Viel,pe P,teT 3D

,wp,>0 Viel, weW,peP, teT
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The objective (3a) is to minimize the total expected cost, including both the first-stage and second-stage costs.
Constraints (3d) maintain the flow balance in the inventory level v with the acquisitions s from supply nodes, and
the delivered housing units x to demand points. The delivery capacity at any time ¢ is bounded by constraints (3e).
Constraints (3f) are used to keep track of the number of each house type present at the transshipment nodes during
each time period ¢. These flow balance constraints are illustrated in Figure 10 in the Appendix. Additionally, (3g)
incorporates the transshipment nodes’ capacities. It is assumed that each production line has the capacity to produce
only one house at a time. This restriction is enforced through the constraints specified in (3h) through (3j). In particular,
(3i) tracks the number of production lines in use, and (3j) ensures that the total number of production lines being utilized
at any given time ¢ does not exceed the capacity E;. (3b) limit the number of scenarios that the emergency modality
can be activated, where ¢ is a user-specified risk tolerance parameter. We note that the relatively complete recourse
property holds in our model — the inclusion of the decision variables representing demand shortages ensures that a
feasible second-stage solution exists for any feasible first-stage solution.

Before we finish this subsection, we give a brief discussion on the threshold-based policy (Liu et al., 2016) provided
by the TSCC model (3). The threshold-based policy is derived from the solution to the TSCC model associated with
a given set of scenarios K, namely the in-sample scenarios. This policy can be applied to any demand realization,
including scenarios that are not necessarily included in the scenario set K, namely the out-of-sample scenarios.
Specifically, the threshold value v* provides a guidance on whether or not the emergency modality should be activated
for any demand realization, which is specified as: v* = max; g { F(x*) : z, = 0}, where x* is an optimal first-stage
solution to (3). In other words, when a decision maker executes the threshold-based policy for real-time operations,
given any demand realization in the second stage, if the second-stage cost based on x* under the ordinary modality
exceeds v*, then they will opt for the emergency modality; otherwise, they will operate under the ordinary modality.

3.2. Solution Approach

Solving formulation (3) directly by a commercial optimization solver, e.g., Gurobi, is unlikely to scale well
as the number of scenarios |K| increases. We apply a scenario decomposition framework for solving the TSCC
model as outlined in Liu et al. (2016), while utilizing the optimality cuts introduced in Liu et al. (2016), Luedtke
(2014) and Zeng, An, and Kuznia (2014). To begin, we define the master problem with a set of optimality cuts:
0 > a,x+ pyz+7y,,V¢ € L, used to approximate the second-stage value function, a set of scenarios K|, that have the
corresponding z variables set to 0, and a set of scenarios K that have the corresponding z variables set to 1. Initially,
L=0¢,Ky=0and K; =@ in (4).

M(Kp, Kpy=min 37 3" D 3 (OF +C )% 1050 +0 (4a)
iel weW pePteT

s.t. Constraints (3¢) — (3j) (4b)

0> a,x+pyz+y,¥¢ €L (4¢)

7, =0,k € K (4d)

2 = LkeK, (de)

all decision variables are nonnegative

Next, we define the subproblems with a generic notation for the simplicity of presentation. For any given k, the
corresponding subproblems for the ordinary modality plan and the emergency modality are defined as follows, with
7, and 7; being the corresponding dual variables, respectively:

(Ordinary) mir}qz{Cyk Wy, =2 hy — TR} = max{n (h —TX) : zW < C} %)
yk€R+ Tk
(Emergency) min {Cy;, : Wy, > h, — TR} = max{w,(h, — TX) : zW < C} (6)
FER? Tk

The first set of optimality cuts are referred to as the big-M cuts (Luedtke, 2014). Given relaxation solution (X, Z)
where 2 € {0, 1}!K1, we define two sets: S(Z) = {k € K : 2, = 0} and S(2) = K\S(2), and the big-M cut is given
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by:

0+ ) Mz + ) Ml -2 > Y mhy =T+ Y Fhy —Tx) )

keS(z) keS(z) K] keS(z) keS(z)

where M|, is a large enough number such that inequality (7) is redundant whenever z, = 1 for some k € S(Z)orz; =0
for some k € S(2). To see its validity, for the given solution (&, Z), this cut provide a lower bound on the second-stage
cost. For any other integer feasible solution, we must have one k € S(Z) withz;, = 1 or k € S(z) with z; = 0. Thus,
with a large enough number M, inequality (7) is still valid.

Based on formulation (1) and (2), we can write the big-M cuts as follows, where the superscripts on the dual
variables correspond to their respective constraint labels in formulation (1) and (2):

0+ ) M+ ) (1-z)M;

keS(2) keS(2)
2 % Z Z Z ”W’P’Tfnl(clsf)p + Z Z Z (Z )C"’L“’ll”’—A:',w]1 (t Qw2 1)> ”l(c{;)),t,p
keS(z) \ weW peP weW peP teT, \i€l
+ 3 Tl 3T T AR+ T (T Bani,
WEW teT; teT, jeJ geG weW peP
+2 2> <2x,wpt 8, L0 =4, 2 1 )ﬁ,((l;)tp+ PIDIDIE A
weW pePteT, \i€l teT, jeJ geCG
+ Z Z lpr _l(czzcz; + Z Z 2 < lp,t—T,-,p]]-(t —Tip 21)- Z xi,w,p,t+1> _;Czldt)p
iel peP teT, peP i€l wew

+) D Ex, (8a)

iel teT;

The big-M parameters M, and M, need to be chosen to be sufficiently large. In Appendix A, we describe in detail
how these parameters are chosen.

The second set of optimality cuts is referred to as the special cuts (Liu et al., 2016). Based on the generic notation
of the subproblems shown in (5) and (6), the special cuts are given as follows (the validity follows from Theorem 1
in Liu et al. (2016)):

020 3 (mlhy =T+ (minlmhy : k € K\S@) - mh)z)
keS(Z)
— ©)
+ |11<| Y (Fhy — T+ (min{7hy : k € K\S@)} - 7)1 — 2,))
keS(2)

Based on (9), we can find that the special cut is similar to a big-M cut with specific big-M values where
ZkeS(i) zy M = ZkeS(i)(min{”khk : k € K\S@)} — m.hy)z;, and ZkeS‘(i)(l — zp)M, = (min{7h, @ k €
K\S(2)} — @, hy)(1 — z;). The special cuts are shown to be stronger than the big-M cuts (Liu et al., 2016), which help
accelerate the branch-and-bound procedure. However, more computational effort needs to be spent on generating these
cuts compared to generating the big-M cuts: generating a special cut involves solving two subproblems, i.e., both the
ordinary and emergency modalities, instead of only one that is involved in generating the big-M cuts.

The third set of optimality cuts is based on simple Benders cuts 6, > a,x + y, and 0, > @,x + 7, that lower
approximate the value functions of the ordinary modality F, (x) and emergency modality F (x), respectively. Model (4)
can then be written as:

M (K,, K;) = min Z Z Z Z(OF + Ciw ) Xiwps + |Il<| Z (1 = 20y + 2,0;)

iel weW pePteT keK
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s.t. Constraints (3c) - (3j) (10a)
O > a,x+y,, VO €Ly (10b)
O, > ayx+7,,V8 € Ly, (10c)
z;, =0,k € K (10d)
zy =1,k € K, (10e)

all decision variables are nonnegative

Specifically, based on formulations (1) and (2), the Benders cuts 6, > a,x + v, and 8, > @,X + 7, can be written
as follows:

gk > Z Z MW-,P-,Tfﬂl(c],E;),p + Z 2 2 <2xi,w,p,t—Ai’u,]l ([ - Ai,w = 1)> ”I((f((;)’[,p (113)

weW peP weW pePreT, \iel
CEDI R
DI Dijo1 g
wWeW teT; teT, jeJ geG
) _(1b) _(1c)
Oy = Z Z HuwpTr T p + Z Z Z (Z xi’l’v’p’t_Ai,lU]]-(t —Aj 2 1)> T iwit,p (11b)
weW peP weW peP T, \i€l
_(1g) nk Z 2 k —_(2c)
WIDIDI IR I IR o
teT, jeJ geG iel peP
_(2d)
IDIDY <s,._,,_,_7,__pm —tpz D= ) )
teT, peP i€l wew

Model (10) involves bilinear terms in the objective function. These linear terms can be linearized using McCormick
reformulations with big-M parameters or left to be handled directly by MIP solvers such as Gurobi. In our numerical
experiment, we found that the latter option yielded better computational performance.

The complete details of the branch-and-cut decomposition algorithm for model (4) with big-M cuts and special
cuts are shown in Algorithm 1 in Appendix A. The procedure is similar for the bilinear formulation (10) with Benders
cuts (11).

4. Direct Temporary Disaster Housing Demand Estimation

In this section, we describe a spatial regression model for estimating housing demand data based on the
disaster hazard conditions and socioeconomic factors, using available historical data collected from various sources.
Specifically, we provide details of the data collection process in Section 4.1, and we describe the spatial regression
model in Section 4.2.

4.1. Data Collection

Instead of estimating the housing demand quantity directly, we use the housing assistance rate (with respect to the
total population) as the predictor, which is a normalized value that takes into account the potential number of direct
housing assistance for trailers or MHUs. This rate is defined as the proportion of individuals in need of direct housing
assistance for trailers or MHUS in relation to the total count of owner-occupied housing units.

As mentioned above, there are two categories of factors that have a significant impact on the number of
individuals displaced (Deng, 2001), consequently influencing the housing assistance rate: (i) the prevailing natural
hazard conditions, and (ii) the social vulnerability that quantifies the absence of necessary resilience to withstand
the consequences of such hazards. In our experiments, we focus on hurricane disaster events and we consider
high-water marks and the distance between the county and the hurricane’s landfall point as predictive variables for
assessing natural hazard conditions, following what is typically done in the literature (Davlasheridze and Miao, 2021).
Unlike Davlasheridze and Miao (2021), we select the duration of sustained wind speeds rather than the maximum
wind speed as our factor. This is because that the duration of wind storms above a threshold wind speed is recognized
as a critical parameter for assessing damage and losses, as losses typically escalate with prolonged duration. This
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Figure 3: Housing Assistance Rate Distribution from Hurricane lan (regions shaded in gray have a housing assistance rate
over 0.03).

phenomenon is attributable to the heightened peak pressures observed during longer durations, the susceptibility of
various building components and cladding systems to diverse fatigue mechanisms, and the dependency of the yielding
of linear elastic materials in the plastic range on the frequency of load cycles (Kopp, Li, and Hong, 2021). Hence,
by integrating the duration of sustained wind speeds, we encompass not only the direct impact of wind speed on
the housing but also the incorporation of diverse factors influencing the structural integrity of the housing. Thus, we
opted to gather information on the total duration of sustained wind speeds during the hurricane passes surpassing the
Saffir-Simpson category 3 threshold as our factor. Additionally, we have chosen the social vulnerability index (SVI)
and population as our predictive variables for evaluating vulnerability and the insufficiency of resilience necessary to
withstand these hazards.

We collected 265 county-level data points from eight recent major hurricane events, including Hurricane Florence,
Harvey, Ida, Irma, Laura, Michael, Delta, and Sally. We determine the number of individuals requiring direct housing
assistance for trailers and MHUs by extrapolating data from the OpenFEMA Dataset on major hurricanes, as the
actual numbers of trailers and MHUs deployed for these disaster events are not publicly available to the best of
our knowledge. This extrapolation is based on the financial aid disbursed through the Individual Assistance (IA)
program (FEMA, 2023), taking the market prices of these disaster houses into account. Additionally, we gather data
on the number of residents in owner-occupied housing units from the United States Census Bureau (U.S. Census
Bureau., 2022). For the data on the aforementioned predicting factors, we collect: (i) the duration of sustained wind
speeds in a county from NOAA’s (National Oceanic and Atmospheric Administration) HURDAT? database (National
Oceanic and Atmospheric Administration., 2022), (ii) high-water marks from USGS’s (U.S. Geological Survey)
database (The United States Geological Survey., 2022), (iii) the distance between the county and the hurricane’s point
of landfall, (iv) social vulnerability index (SVI) from CDC (Center for Disease Control and Prevention) (The Centers
for Disease Control and Prevention., 2020), which aggregates 16 social factors from United States Census Bureau, and
(v) population. In the case of SVI, since SVI is published biennially, we calculate missing data by averaging the values
from the previous and subsequent year.

4.2. Spatial Regression Models

We observe from historical data that the housing assistance rate for both trailers and MHU s is strongly correlated
with that of its neighboring counties (see Figure 3 for an illustration for Hurricane Ian). Based on this observation, we
perform Moran’s I test (Moran, 1950) to capture the spatial autocorrelation in the dataset, which is given by:

_n Z:-lzl Z;lzl w; j(x; = X)(x; — X)

SO Z:’l:l(xi - 3_‘)2

where x; is a vector that represents the predicting factors associated with county i = 1,2, ..., n, w; ; represents the

spatial weight parameter, which corresponds to the distance between county i and j, calculated by the geodesic distance

; 12)
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based on their locations (we used the geographical center of each county to represent their location), and S, is the
aggregate of all spatial weights:

So=) Y w, (13)

i=1 j=1

To compute Moran’s I statistic, we must first create a distance weights matrix. To simplify the process, for each
county, we opted to use the latitude and longitude of the geographical center of the county to represent the county’s
coordinates. Following the Moran’s I test, the Moran’s I statistic yielded values of 0.5055 for trailers and 0.4976 for
MHUs. The p-value, found to be less than 10~'¢ for both trailer and MHU, allows us to reject the null hypothesis,
indicating the existence of significant spatial autocorrelation in the housing assistance rate for both trailers and MHUs
at a statistical confidence level of 0.05.

To proceed, we employed two distinct spatial models: the spatial error model and the spatial lag model (Anselin and
Bera, 1998), for the trailer and MHU data, respectively. In both regression models, we employed a log transformation
for the predictors and standardized the factors (to achieve better performance). Specifically, the spatial error model is
given by :

y=Xp+U, - W) e, (14)

where f is the regression coefficient vector, 4 is the parameter indicating the intensity of spatial interdependency, W
is the spatial weight matrix, where each entry w;; is specified in the same way as (12), and e is a multivariate normally
distributed random variable, € ~ N (0, o2l ), where [ is the identity matrix.

Similarly, the spatial lag model is given by:

y=,— pW) ' Xp+ U, — pW)le, (15)

where f is the regression coefficient vector, p is the parameter indicating the intensity of spatial interdependency, and
W and € are defined in the same way as those in (14). For both models (14) and (15), we put together the predicting
factor data x; (as detailed in Section 4.1) for each county i = 1,2,...,n as X, and the housing assistance rate data
points as Y. We try to fit coefficients 4 and f and coefficients p and f using W, X and Y, respectively.

We employed these two models to analyze the data, with different choices for the number of closest neighbors,
which represents the spatial relationships between observations in space. We observe in our experiments that after
applying a spatial regression model, the strong spatial correlation in the data is notably diminished for both trailers and
MHU (see Figure 4). When the number of neighbors exceeds 4, the spatial correlation keeps at a similar level for both
trailers and MHU. As a result, we choose a spatial regression model with the number of nearest neighbors set to be 4
in our experiments. The estimated housing assistance rate for both trailers and MHUs are shown in Figure 5.

5. Numerical Experiments

In this section, we present the experiment results of the proposed approaches via a case study based on Hurricane
Ian 2022, with Florida (FL) being the study region. Hurricane Ian caused extensive damage, estimated to be between
$50 billion and $65 billion damages, after its landfall in western FL with extreme winds and torrential rain. Mandatory
evacuation orders were issued for parts of multiple counties. However, post-disaster disaster housing assistance was
considered inefficient and delayed (Kimberly Kuizon, 2023). Our primary emphasis is placed on a county-level
resolution, entailing the collection of county-level data or the aggregation of data into county-level data, as described
in Section 4.

We start with Section 5.1 which outlines the process of constructing hurricane scenarios in our experiments using
the spatial regression model described in Section 4. In Section 5.2, we describe the disaster housing data used in our
experiments, including a specific type of AMH solution. Afterwards, we show how to apply our modeling and solution
framework described in Section 3, and present computational results and sensitivity analyses on several key problem
parameters.

5.1. Construction of Disaster Housing Demand Scenarios
To generate disaster housing demand scenarios for our case study based on Hurricane Ian, we collect data on the
hurricane hazard conditions of Hurricane Ian and the socioeconomic data on the study region of FL at the county level.
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Figure 4: Spatial Correlation in the Data Shown by Moran's | Test.
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Figure 5: Housing Assistance Rate Prediction for Hurricanes lan.

We then generate disaster housing demand scenarios according to the spatial regression models shown in (14) and (15),
by sampling from the probability distribution of the error term e, which follows a normal distribution with mean of 0
and variance 6°.

The comparison between the mean predictions and the actual data is illustrated in Figure 5 and Figure 3. The
mean squared error (MSE) of the mean prediction given by the spatial regression model is 0.0002 for the trailer and
0.0014 for the MHU. We have made a comparison of the spatial regression model with alternative prediction models,
and the results will be shown in Section 5.5. While we can observe a discrepancy between our estimated value and
the actual value in certain areas, the correlation coefficient reveals a positive association. Specifically, the Pearson
correlation coefficient is 0.6052 for the trailer and 0.5247 for MHU. Additionally, the ranking of our estimated values
aligns positively with the actual values, as indicated by the Spearman’s rank correlation coefficients of 0.7519 for the
trailer and 0.7668 for MHU. These results have shown the regression model’s capability to capture the disaster housing
demand to a certain degree.

5.2. Alternative Modular Housing Solutions

From a disaster housing design perspective, the proposed modeling and solution framework can serve as an
optimization simulator capable of showing the value of any AMH designed for the disaster relief/recovery purpose.
In the literature, numerous studies have delved into the design of post-disaster housing solutions (Hendriks et al.,
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2017; John Squerciati, P.E, 2020; Patel and Hastak, 2013). However, these studies often lack an approximation of the
potential reductions in social and logistical costs associated with implementing these new housing solutions. Here,
our framework serves as a valuable tool for estimating both pre- and post-implementation of the values and costs in
adopting an alternative modular housing (AMH) solution.

As a proof-of-concept for this effort, we include a specific type of AMH solution in our case study: a prototype
unit from Liv-Connected (Liv for short) (Marissa Gluck., 2023). There are two reasons why Liv was chosen in the
case study: (i) Liv is capable of replacing the trailer or MHU with the potential for expansion into a permanent house,
and (ii) Liv is a modular house recommended as an alternative solution in the report by Texas General Land Office
by Hagerty Consulting, Inc. (2020). When evaluating the capacities of a trailer, an MHU, and a Liv unit, we make
the assumption that a single Liv unit can substitute a trailer, and two Liv units can equivalently substitute an MHU.
In our experiments, we set the cost for a trailer to be $33,364, and the cost for an MHU to be $73,735, according
to John Squerciati, P.E (2020). The cost information for Liv, as provided by Texas General Land Office by Hagerty
Consulting, Inc. (2020), is presented in terms of cost per square foot. Consequently, we calculate the cost of a Liv’s
replacing a trailer or MHU by multiplying Liv’s cost per square foot by the square footage of a trailer or MHU, which
results in $47,940 and $95, 880 respectively. We note that the cost estimated here is significantly different from the
cost shown on Liv’s website (Marissa Gluck., 2023). This is because the housing units that Liv proposed for disaster
relief are considerably simpler than those showcased on the website, which are designed for the regular residence
scenario. Solely focusing on the manufacturing process, the construction time of an MHU can range from two days
to five weeks (Roy Diez., 2023). Here, we assume that trailer production takes less time than MHUs, with production
rates set at 1/3 and 1/7 unit per day per production line, respectively. We set the production rate of a Liv unit to 1/7 units
per day, based on the finding in Marissa Gluck. (2023) that the production time for a Liv unit is approximately one
week, excluding the duration of the manufacturing drawings and some business processes. Additionally, Texas General
Land Office by Hagerty Consulting, Inc. (2020) states that once the supply chain and factory are established, up to 250
units can be produced per month. By combining the production rate of a Liv unit with the monthly production capacity,
we deduce that there are approximately 60 production lines and we use this data in our baseline instance. Finally, the
Liv units require an additional three days for installation after delivery, while trailers and MHUs do not require any
installation time.

5.3. Disaster Housing Logistics Network Construction and Problem Setting

To establish the logistics network for direct temporary disaster housing, we first construct three types of nodes in the
supply chain network as defined in Section 3.1: The set of supply nodes I, the transshipment nodes W, and the demand
nodes J. Due to the limited information on the actual logistics network operated and managed by FEMA, we construct
a realistic logistics network based on our best estimate from relevant information in publicly available data source.
Specifically, we selected nine locations as the supply nodes, including two designated permanent storage sites (Selma,
AL, and Cumberland, MD), and six FEMA advance contractors as detailed in Erwin (2020); FEMA (2023). Under
normal circumstances, the housing units produced by the contractors will be stored in the permanent storage sites. In
the event of a disaster, the houses will be relocated from the permanent storage sites to temporary storage sites near the
affected areas, and FEMA may acquire additional housing units from the contractors. Consequently, we selected the
two permanent storage sites as suppliers with inventory but without production capability, and the six contractors are
considered suppliers with certain production capability but zero starting inventory. For the transshipment nodes, one
location was randomly picked from FL’s boundary inland, which is appropriate for our purpose as deliveries can reach
any county within a single time period (a day) from any point in Florida. For the demand nodes, all counties in FL
were selected. The distances between locations were calculated using the Google Map API, and the unit transportation
cost (per mile) was set to be $10. For the deprivation cost function, we follow the function y = 0.9814¢%0188% from the
literature (Holguin-Veras et al., 2016), where x represents the number of days delayed, and y represents the deprivation
cost factor. We compute the deprivation cost by multiplying the deprivation cost factor by a base cost, which is chosen
to be 1/120 of the cost of the demanded housing type, where the maximum deprivation cost that a victim can incur
is approximately 120 times the base cost, given by ¥, Ta ¢,0.9814¢%0188x The guiding assumption here is that the
maximum deprivation cost for a victim, i.e., the demand is fulfilled at the end of the planning horizon, is equivalent to
the cost of the demanded housing type. For the unmet penalty cost, we set the unit of unmet penalty cost as five times
of the cost of the demanded housing type in the baseline instance. Following FEMA’s current practice, which allows
for the re-utilization of housing in the subsequent disaster events, the incurred additional expense for the unused units
merely entails their return to the permanent staging areas. We thus choose the unmet penalty cost to be 0.05 times the
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housing price, representing the average transportation cost from staging area to permanent staging areas. The housing
inventory and production rate information is collected from FEMA (2018). In addition, FEMA checks if the units in
the inventory meet their standard before delivery. According to FEMA (2018), there are approximately 1,250 mobile
homes, but only 630 passed quality and cleaning inspections for delivery. Therefore, we conduct a sensitivity analysis
in Appendix C on different initial inventory levels to provide a more realistic assessment.

5.4. Experiment Results

We implemented the proposed model and solution approaches in Python, using Gurobi 10.0 as the optimization
solver with the computational time limit set to be four hours. All experimental results were obtained utilizing a compute
node sourced from the Palmetto Cluster Clemson University (2024) with a 48GB RAM, 2.10GHz CPU, one thread
per core and 96 cores per socket configuration. First, we present in Section 5.4.1 the computational performances
of the proposed time-indexed model. Subsequently, we present the performance of an out-of-sample stability test in
Section 5.4.2 focusing on the resulting threshold policy obtained from solving the TSCC model. Finally, we compare
the performances of the proposed TSCC model with alternative approaches in Section 5.4.3.

5.4.1. Computational Performance Enhancements

In our preliminary experiment results using using the special cuts and big-M cuts with model (4), we observe
that when the number of scenarios | K| is large, no feasible solution can be produced within the time limit of four
hours. This motivated us to develop the following heuristic approach to provide an initial feasible solution. The idea
of the heuristic approach is that, given a preparation decision X, the activation of emergency modality will prioritize
scenarios that have the greatest benefit from activating it. Equivalently, it will assign to scenarios having the most
substantial decrease in cost upon activating the emergency modality, which is given by F}(X) — F, (X) for each scenario
k. Based on the observation, in the absence of an appropriate preparation decision X, we estimate the decrease in cost
resulting from activating the emergency modality for each scenario by assigning each scenario with the corresponding
perfect-information preparation decisions. Specifically, first, we solve a combined problem that includes both the first-
and second-stage problem for each scenario under both the ordinary and emergency modalities. This is equivalent to
solving model (3) with a single scenario at a time with either ordinary and emergency modality, while excluding the
constraint (3b). The two solutions that we obtain from each scenario, one for the ordinary modality and the other for
the emergency modality, are used to assign the z values in the following heuristic way: we set z; = 1 to the top €| K|
scenarios with the greatest cost differences between ordinary and emergency modality solutions, and set z;, = O for
all other scenarios. Then, we re-solve model (3) with this fixed z to obtain an initial heuristic solution, which is a
two-stage stochastic linear program. When | K| > 20, this model becomes too large for Gurobi to handle, necessitating
the utilization of the branch-and-cut decomposition algorithm for solving this two-stage model. The cuts generated
during this branch-and-cut procedure can be preserved and later added as valid inequalities into the original TSCC
model (3). Consequently, when solving the original model (3), we benefit not only from an initial heuristic feasible
solution but also some optimality cut information derived from generating the heuristic solution.

In Table 1, we show the general computational performance on the branch-and-cut algorithm with and without
the initial feasible solution obtained by this simple heuristics, across various values of |K| (|K| = 20,50, 100)
and € (¢ = 5%,10%) and different types of cuts. We use the following abbreviations for the column titles: (i)
Approach: “Spec+BigM with (4)” represents the approach using model (4) with both the special cuts and big-M
cuts, “Spec+Benders with (10)” represents the approach using model (10) with both the special cuts and Benders cuts,
and “Benders with (10)” represents the approach using model (10) with only the Benders cuts. (ii) Initial Heuristic:
“Heur” represents the setting where the heuristic solution described above is provided as an initial feasible solution,
while “Heur+Cuts” represents the setting where both the initial solution and the cuts generated through the process
of generating this solution are included for the TSCC model; (iii) Heuristic Time: the percentage of the total time
spent on finding the initial heuristic solution; (iv) Big-M Cut Time, Special Cut Time and Benders Cut Time: the
proportion of overall time dedicated to generating big-M cuts, special cuts and Benders cuts, respectively (Note that
the Special Cut Time here does not include the time spent solving additional subproblems.); (v) Subproblem Total
Time: the proportion of total time expended on solving the subproblems; (vi) Time per Subproblem: the average
time to solve a single subproblem. In addition, we use “TL” to indicate that the total runtime hits the time limit of four
hours, and we use “c0” to denote the case when a feasible solution is not found by the time limit.

From Table 1, it is evident that solely offering an initial heuristic solution may not have benefits across all instances
with small |K|. However, the incorporating initial heuristic solution becomes critical for dealing with instances with
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K| B Approach Initial Heuristic Optimality Total Big-M Cut Special Cut Benders Cut Subproblem Time Per
Heuristic Time Gap Time Time Time Time Total Time  Subproblem
- - 0% 1221 5.2% 3.3% 0.0% 91.2% 0.12
Spec + BigM with (4) Heur 34% 0% 690 5.1% 3.3% 0.0% 91.2% 0.12
Heur+Cuts 38% 0% 637 5.3% 3.3% 0.0% 91.0% 0.12
- - 0% 265 0.0% 3.4% 3.0% 94.3% 0.11
5%  Spec + Benders with (10) Heur 58% 0% 219 0.0% 4.3% 1.1% 93.5% 0.11
Heur+Cuts 59% 0% 221 0.0% 3.3% 2.2% 94.5% 0.11
- - 0% 168 0.0% 0.0% 2.4% 96.5% 0.10
Benders with (10) Heur 63% 0% 199 0.0% 0.0% 4.1% 94.0% 0.11
20 Heur+Cuts 59% 0% 209 0.0% 0.0% 3.5% 95.6% 0.10
- - 0% 4101 5.4% 3.5% 0.0% 91.0% 0.10
Spec + BigM with (4) Heur 15% 0% 1999 5.7% 3.7% 0.0% 90.5% 0.10
Heur+Cuts 14% 0% 2143 5.9% 3.8% 0.0% 90.3% 0.10
- - 0% 228 0.0% 3.6% 2.3% 93.8% 0.11
10% Spec + Benders with (10) Heur 57% 0% 178 0.0% 3.5% 2.5% 93.1% 0.10
Heur+Cuts 56% 0% 178 0.0% 3.3% 2.0% 94.3% 0.10
- - 0% 124 0.0% 0.0% 3.8% 95.7% 0.14
Benders with (10) Heur 61% 0% 128 0.0% 0.0% 7.9% 91.3% 0.11
Heur+Cuts 60% 0% 118 0.0% 0.0% 5.0% 94.0% 0.10
- - 0% TL 5.3% 3.3% 0.0% 91.5% 0.12
Spec + BigM with (4) Heur 6% 0% 13640 5.2% 3.3% 0.0% 91.4% 0.12
Heur+Cuts 6% 0% TL 5.4% 3.4% 0.0% 93.6% 0.12
- - 0% 1198 0.0% 1.4% 3.2% 95.1% 0.11
5%  Spec + Benders with (10) Heur 31% 0% 1013 0.0% 3.4% 1.6% 94.6% 0.12
Heur+Cuts 19% 0% 1623 0.0% 3.3% 1.0% 95.5% 0.11
- - 0% 560 0.0% 0.0% 1.6% 98.0% 0.10
Benders with (10) Heur 19% 0% 1101 0.0% 0.0% 1.4% 97.5% 0.10
50 Heur+Cuts 31% 0% 678 0.0% 0.0% 1.8% 97.6% 0.10
- - 0 TL 57% 3.7% 0.0% 91.9% 0.10
Spec + BigM with (4) Heur 6% 8% TL 6.0% 3.9% 0.0% 91.7% 0.10
Heur+Cuts 6% 8% TL 6.1% 3.8% 0.0% 92.4% 0.10
- - 0% 354 0.0% 3.2% 2.0% 91.5% 0.10
10% Spec + Benders with (10) Heur 43% 0% 589 0.0% 3.0% 1.9% 86.8% 0.10
Heur+Cuts 54% 0% 447 0.0% 3.0% 2.0% 89.5% 0.10
- - 0% 314 0.0% 0.0% 2.5% 70.8% 0.10
Benders with (10) Heur 36% 0% 540 0.0% 0.0% 2.4% 71.7% 0.10
Heur+Cuts 33% 0% 574 0.0% 0.0% 2.2% 77.4% 0.10
- - oo TL 5.5% 3.5% 0.0% 94.0% 0.12
Spec + BigM with (4) Heur 10% 6% TL 5.5% 3.5% 0.0% 93.4% 0.12
Heur+Cuts 10% 6% TL 5.7% 3.5% 0.0% 91.4% 0.10
- - 0% 3039 0.0% 2.6% 0.7% 79.2% 0.10
5%  Spec + Benders with (10) Heur 15% 0% 4367 0.0% 2.1% 0.8% 66.8% 0.10
Heur+Cuts 27% 0% 2343 0.0% 3.0% 1.0% 87.8% 0.10
- - 7% TL 0.0% 0.0% 0.1% 4.9% 0.10
Benders with (10) Heur 3% 9% TL 0.0% 0.0% 0.1% 5.1% 0.10
Heur+Cuts 3% 10% TL 0.0% 0.0% 0.1% 6.0% 0.10
100 - - P TL 57% 3.6% 0.0% 91.1% 0.10
Spec + BigM with (4) Heur 13% 12% TL 6.0% 3.8% 0.0% 92.0% 0.10
Heur+Cuts 13% 9% TL 5.7% 3.7% 0.0% 91.9% 0.12
- - 6% TL 0.0% 0.4% 0.1% 10.1% 0.10
10% Spec + Benders with (10) Heur 4% 5% TL 0.0% 0.2% 0.1% 5.3% 0.10
Heur+Cuts 4% 5% TL 0.0% 0.2% 0.1% 4.9% 0.09
- - 60% TL 0.0% 0.0% 0.1% 4.9% 0.10
Benders with (10) Heur 2% 58% TL 0.0% 0.0% 0.1% 4.8% 0.10
Heur+Cuts 2% 59% TL 0.0% 0.0% 0.1% 3.5% 0.10
Table 1

Computational Performances for Various Approaches and Initial Heuristics Settings.

larger | K|, which are more challenging instances, in reducing the optimality gap within time limits. Additionally, while
providing only an initial heuristic solution may not be advantageous, incorporating cuts generated through getting initial
heuristic solution as extra constraints appears to help reduce the computational time.

In addition, when |K| < 50, we observe that Benders with (10) yields significantly competitive results than Spec
+ BigM with (4) and Spec + Benders with (10). However, this is not the case for | K| = 100: Spec + Benders with (10)
becomes more effective. While using Spec + BigM with (4), we note that the computational challenge in the branch-
and-cut algorithm stems from the long computational time for solving the subproblems in all the cases, irrespective
of the presence of an initial heuristic solution, which accounts for approximately 90% to 94% of the total time. On the
other hand, for Benders with (10), this is the case when |K| < 50, but the time spent on solving the subproblems is
only attributed to approximately 3% to 6% of the total computational time when |K| = 100. This indicates that the
computational challenge in these settings shifts from solving the subproblems to solving the master problems, possibly
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Total Heuristic  Total  Coarse Model  Coarse Model Refinement First-stage Subproblem # of B&B  Time Per

Approach (IKl.e) Tiv Cost Gap Time Optimality Gap Time Time Cost Time Nodes Subproblem
1 796038 690 0% 690 0 71% 413 95 0.11
(20,5%) 2 832703 5% 604 0% 593 11 60% 415 202 0.05
! 3 858128 8% 557 0% 536 21 55% 339 267 0.03
4 956498 20% 504 0% 479 25 44% 340 374 0.02
1 779400 1999 0% 1999 0 2% 1535 412 0.09
(20,10%) 2 813383 4% 1470 0% 1460 10 62% 1198 600 0.05
! 3 836239 7% 1182 0% 1167 15 56% 937 733 0.03
4 920184 18% 1275 0% 1253 22 43% 954 1029 0.02
1 843992 13640 0% 13640 0 67% 11690 1074 0.11
(50,5%) 2 892887 6% 6276 0% 6217 59 56% 5264 1004 0.05
! 3 928164 10% 13855 0% 13785 70 51% 12009 3752 0.03
Spec + Big with (4) 4 1024094 21% 7175 0% 7089 86 39% 5970 2674 0.02
1 821628 TL 8% TL 0 69% 13209 1328 0.10
(50,10%) 2 864457 5% TL 5% TL 52 58% 12960 2609 0.05
! 3 896096 9% TL 5% TL 67 52% 12752 4065 0.03
4 984760 20% TL 3% TL 87 41% 12682 5545 0.02
1 865009 TL 6% TL 0 65% 13451 619 0.11
(100,5%) 2 918879 6% TL 4% TL 56 55% 13118 1295 0.05
! 3 957538 11% TL 4% TL 76 49% 12938 2044 0.03
4 1053353 22% TL 3% TL 140 38% 12709 2753 0.02
1 842646 TL 12% TL 0 67% 13242 689 0.10
(100,10%) 2 894172 6% TL 7% TL 146 56% 13038 1273 0.05
! 3 929918 10% TL 7% TL 126 51% 12835 2005 0.03
4 1019845 21% TL 6% TL 192 39% 12796 2810 0.02
1 796038 219 0% 219 0 71% 87 21 0.10
(20,5%) 2 832703 5% 93 0% 93 2 60% 33 20 0.04
! 3 858128 8% 71 0% 71 2 55% 35 27 0.03
4 956498 20% 60 0% 60 2 44% 31 35 0.02
1 779400 178 0% 178 0 72% 70 18 0.10
(20,10%) 2 813383 4% 113 0% 113 2 62% 56 29 0.05
! 3 836239 7% v 0% 7 3 56% 39 30 0.03
4 920184 18% 48 0% 48 4 43% 21 24 0.02
1 843992 1013 0% 1013 0 67% 665 60 0.11
o, 2 892887 6% 355 0% 355 2 56% 216 44 0.05
(50.5%) 3 928164 10% 282 0% 282 7 51% 182 58 0.03
. 4 1024094 21% 146 0% 146 7 39% 75 35 0.02
Spec + Benders with (10) 1 817715 589 0% 589 0 69% 292 31 0.00
(50,10%) 2 859708 5% 312 0% 312 7 58% 132 31 0.04
! 3 897099 10% 365 0% 365 7 52% 129 45 0.03
4 993397 21% 393 0% 393 14 40% 98 48 0.02
1 865000 4367 0% 4367 0 65% 2490 125 0.12
(100,5%) 2 917929 6% 13654 0% 13654 14 55% 366 42 0.04
! 3 963013 11% 7785 0% 7785 14 49% 485 87 0.03
4 1067434 23% 4908 0% 4908 14 38% 280 66 0.02
1 842597 TL 5% TL 0 67% 758 40 0.12
(100,10%) 2 889503 6% TL 6% TL 6 56% 369 45 0.04
! 3 930799 10% TL 4% TL 14 51% 251 42 0.03
4 1028384 22% TL 4% TL 14 39% 263 70 0.02

Table 2
Computational Performance of the Time Period Coarsening Heuristic Approach.

due to the existence of bilinear terms in the objective function of (10). Furthermore, when | K| = 100, Benders with (10)
resulted in a stronger upper bound but a much weaker lower bound compared to Spec + BigM with (4). In this case,
Spec + Benders with (10) appears to leverage the advantages of both Benders with (10) and Spec + BigM with (4),
yielding better computational results by effectively balancing the time required to solve the subproblem and the master
problem.

A heuristic approach based on time period coarsening Motivated by instances and approaches where the
primary computational challenge stems from the time spent on solving the subproblems, we propose a heuristic
solution approach based on coarsening the definition of a time period from one day per period to y > 1 days per

T
period. Under the transition, the first-stage encompasses time periods 7, f“' = {1,2, ey [;fj }, while the second-

stage comprises time periods 7," = { [Z/—fj +1, L%J +2,..., [5] } As a result, the entire planning horizon is

truncated into 7% = 7' UT,”. To accommodate the coarsened time period definition, the following parameters require
adjustments by multiplication with y: the inventory capacity of the staging area (U), the unit capacity in a delivery (4),
and the number of production lines (E). On the other hand, the following parameters necessitate modification through
division by y: the installation time for building an AMH (¢) and the production time (7). Additionally, the input for
the deprivation cost function should be adapted to yt. While the solution derived from the coarse time period y > 1
model may be infeasible for the original model due to the necessary adjustments made to align with the coarsened time
period definition, it provides an upper limit on the delivery flow for every ¢ time periods. With this information, we
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can refine the solution of the model with coarsened time periods to find a feasible solution of the original model, by
solving the original model with the flow limitation constraints and the fixed z values from the model with coarsened
time periods.

Table 2 presents the results regarding the impact of time period coarsening on computational time, cost structure and
the solution quality. In this table, we use the following abbreviations for the column titles: (i) Approach: “Spec+BigM
with (4)” represents the approach using model (4) with both the special cuts and big-M cuts, and “Spec+Benders
with (10)” represents the approach using model (10) with both the special cuts and Benders cuts; (ii) TIU: the time
coarsening factor y; (iii) Heuristic Gap: the percentage increase in the total cost by the coarsened model compared to
the original model (with y = 1); (iv) Coarse Model Optimality Gap: the optimality gap achieved by the coarsened
model; (v) Coarse Model Time and Refinement Time: the time taken for solving the coarsened model and for the
solution refinement process described above, respectively; (vi) Total Time: the overall computational time; (vii)
Subproblem Time: the total time spent to solve subproblems; (viii) # of B&B Nodes: the total number of B&B
nodes explored by the branch-and-cut algorithm for the coarsened model. The experiments are conducted with an
initial feasible solution constructed based on the proposed heuristic approach, as this setting offers the best overall
computational performance according to Table 1.

In Table 2, for solving the model with coarsened time periods, we can see that although it remains evident that the
percentage of time spent solving subproblem is still similar to Table 1, there has been a notable decrease in the time
spent on solving subproblems due to the coarsened time periods. Consequently, this allows the algorithm to explore
more nodes within the branch-and-bound tree, resulting in an enhanced performance. In the instances that are solved to
optimality (i.e., with a 0% optimality gap) within the time limit, the overall solution time by the model with coarsened
time periods can be significantly reduced. For instances not solved to optimality within the time limit using Spec +
BigM with (4), the number of nodes explored in the branch-and-bound algorithm is between 2 to 4 times larger than
that of the original problem. Moreover, the computational efficiency improvements do not largely compromise solution
quality. Compared to the total cost of the original model, setting w = 2,3, and 4 incurs a 5%, 8%, and 21% increase
on average, respectively. This shows the effectiveness of the proposed time period coarsening heuristic approach in
achieving the balance between computational time and solution quality using approach Spec + BigM with (4). On the
other hand, we see that although the same observation can be made in applying this time period coarsening heuristic
to Spec + Benders with (10) for instances with |K| < 50, for larger instances (when | K| = 100), the effectiveness of
this heuristic is relatively insignificant.

5.4.2. Solution Stability

We investigate the out-of-sample solution stability on the number of scenarios |K| based on the threshold-based
policy provided by the TSCC model (Liu et al., 2016), which is explained in Section 3.1. Recall that the threshold-based
policy is derived from the solution to the TSCC model associated with a given set of scenarios K. Given that solving the
TSCC with different numbers of scenarios | K| yields distinct threshold values of v*, it is imperative to have a sufficient
number of scenarios to ensure the stability of the resulting threshold-based policy, which is specified by value v*. In
this experiment, we utilize the first-stage solution x* and derive the threshold v* from various (| K|, €) settings, and test
their out-of-sample performance under an out-of-sample size of 1000 scenarios. For each sample size | K|, we conduct
10 replications and a threshold value v* for each replication. By computing the percentage of emergency modality
activation within this set of out-of-sample scenarios, which is denoted as &, with the original e values, we can assess
the corresponding solution stability in each setting. We note that the é values are computed by the average over the 10
replications.

The solution stability results on the threshold-based policy are presented in Figure 6 and Figure 7. In Figure 6,
the x-axis and y-axis represent the e value used in the TSCC model and the € value derived from the out-of-sample
experiment, respectively. Here, we observe that when |K| = 100, the corresponding dashed line closely aligns with
the black line, whereas a considerable amount of deviation is observed when |K| is smaller. This indicates that a
satisfactory level of solution stability can be achieved when | K| = 100 in our test instances. In Figure 7, we show the
out-of-sample performance of the threshold-based policy on more detail, each subfigure depicting a specific (| K|, €)
setting. The x-axis and y-axis denote the operational cost of a scenario and its frequency (among the 1000 out-of-sample
scenarios), respectively. The solid line and dashed line represent the costs associated with the é-quantile and e-quantile,
respectively. Each subfigure in Figure 7 contains two dashed lines: the left one represents the minimum threshold value
v* among the 10 replications, and the right one represents the maximum threshold value v*. We observe that all the
figures have similar cost distributions. Given a fixed | K|, as the value of € increases, the costs associated with both
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the é-quantile and e-quantile decrease. Additionally, when the sample size | K| increases from 50 to 100, the distance
between the two dashed lines decreases. This means that | K| = 100 leads to a more stable and closer match between
the costs associated with the é-quantile and e-quantile. We therefore conclude that having a sample size of | K| = 100
is sufficient from the standpoint of solution stability in the out-of-sample performance.
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Figure 6: Solution Stability Reflected in the Out-of-sample Performance of the Threshold-based Policy.
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Figure 7: Cost Structure and Out-of-sample Stability Test of the Threshold-based Policy.

5.4.3. Comparison with Alternative Optimization Models
In this section, we present our experiment results for the proposed two-stage chance-constrained model (denoted
as “TSCC”) compared to the static (single-stage) chance-constrained model (denoted as “SS”), two-stage stochastic
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programming model (denoted as “TS”), perfect-information model (denoted as “Perfect”) and the wait-and-see model
(denoted as “WS”). We test the performance of each model with the same set of scenarios sampled from the spatial
regression model explained above. Specifically, the WS model makes no planning decisions and only makes acquisition
and delivery decisions after collecting the actual housing demand (and therefore only operates in the second stage).
The formulation of the WS model mirrors that of the TSCC, except that it sets the first-stage decision variables on
acquisition and transportation to zero and activates the emergency modality in every scenario in the second stage. The
TS model is the special case of the TSCC model with either no emergency modality allowed (¢ = 0%) or the full
flexibility of using the emergency modality (¢ = 100%). Additionally, for the perfect-information model (“Perfect”),
we solve a two-stage (deterministic) optimization model individually for each scenario, and then we compute the
average across all scenarios (this is done for both the ordinary modality and the emergency modality). We note that for
“Perfect”, the first-stage decision has the (unrealistic) flexibility to adapt to each scenario due to its ability to foresee
the demand realization in each scenario. While it is practically impossible to have the perfect information, this model
provides a lower bound benchmark for all other models. Finally, the SS model is more involved, and we explain it in
more details next.

The SS model considers the disaster housing preparation decisions only, aiming at satisfying the demand at a certain
high percentage among all scenarios. It does not incorporate the post-disaster logistics costs and penalty costs that are
involved in the second stage of TSCC. However, this does not imply that post-disaster logistics operations are ignored
in the SS model. The constraints of delivery flow, staging area inventory capacity, and delivery flow limitations are
crucial for deriving a feasible decision. Therefore, the goal in the SS model is to determine a decision that integrates
both pre-disaster and post-disaster logistics, satisfying the demand at a certain high percentage among all scenarios.
Thus, the formulation of SS is similar to that of the first-stage of TSCC. In addition, we incorporate the following
constraints for SS.

Puopert = Dy Xisopi-d,, 10 = By 2 D+ iy, Yw €W, 1 € T\{Ty}, p € P (16a)
iel
Huw.pr+l + Z fw,j,p,t+1 = Z xi,w,p,t—Ai’w]l(t - Ai,w 2D+ Huw.prs
JjEJ iel
VweW, t=T;T;+1,...,T—1,peP (16b)
D gy U, YwEW, tET (16¢)
pEP
DD hpfuwgps SO VIET WEW (16d)
jeJ peP
Z fuojms = Z f;h’ww’j, VteT,jel,neN (16e)
wew heH
1
dingrr = dine+ 51 amg 1= bup 2 Tr + 1)+ D Fuwginimng, 10 = By = Ty +1),
n,h wew
ViedJ,teT\{T}, he H (16f)
djpr, 2 Dy, (1-2),Vj€J, he H, ke K (16g)
Jwjpi=0.ift+A,; >T,YVweW,jeJ,peP,teT (16h)
[l =0 ift+¢,, >T,Vjel he H1eT (161)

Constraints (16a) and (16b) keep track of the number of each type of house at the staging area at each time period,
and constraint (16¢) incorporates the capacities of the staging areas. Every delivery for staging area w at each time ¢ is
bounded by its delivery capacity via constraints (16d). Constraint (16e) models the assignment of the AMHs to serve
the purpose of the existing houses, and constraint (16f) represents the assignment of delivered houses to victims and
captures the number of houses received at each demand node at each time t. Constraint (16g) ensures that the total
number of received houses at each demand node by time T} is more than the actual demand for each scenario k with
z; =0.

To facilitate a fair comparison with TSCC, we compute the total cost of the solution obtained by incorporating
planning decisions from the SS model into the TSCC model’s first-stage solution. To be more specific, we plug in the
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Model Total First-stage Second-stage Emergency Penalty Unused Unmet Deprivation
Cost Cost Cost Cost Cost Cost Cost Cost
2% 853898 66.18% 33.82% 0.80% 19.02% 0.16% 16.23% 2.62%
4% 843998 66.97% 33.03% 1.52% 17.58% 0.16% 14.88% 2.53%
TSCC 6% 834215 67.76% 32.24% 2.21% 16.16% 0.17% 13.56% 2.44%
8% 824870 68.52% 31.48% 2.84% 14.76% 0.16% 12.56% 2.35%
10% 817715 69.11% 30.89% 3.36% 13.64% 0.16% 11.22% 2.27%
2% 1434060 90.79% 9.21% 0.01% 1.78% 1.03% 0.19% 0.56%
4% 1427836 89.52% 10.48% 0.01% 2.06% 1.02% 0.36% 0.67%
SS 6% 1419250 89.94% 10.06% 0.10% 2.65% 1.03% 0.96% 0.66%
8% 1416316 88.99% 11.01% 0.15% 2.71% 1.03% 1.03% 0.66%
10% 1269116 87.54% 12.46% 0.29% 3.75% 0.89% 2.01% 0.85%
WS - 637280 0.00% 100.00% 100.00% 0.00% 0.00% 0.00% 0.00%
Ts 0% 864731 65.36% 34.64% 0.00% 20.58% 0.16% 17.72% 2.70%
100% 627238 0.86% 99.14% 99.14% 0.00% 0.00% 0.00% 0.00%
Perfect(Ordinary) - 781771 69.08% 30.92% 0.00% 30.92% 15.14% 12.44% 2.69%
Perfect(Emergency) - 627044 1.75% 98.25% 98.25% 0.00%  0.00%  0.00% 0.00%
Table 3

Performance Comparison between models TSCC, SS, WS, TS, and Perfect.

solution to the SS model into the TSCC model as the first-stage solution. Subsequently, we solve the TSCC model with
the same remaining constraints.

Table 3 shows the total expected cost, as well as the breakdowns of the first-stage cost and penalty costs under
various choices of € with | K| = 50. We note that all the values associated with costs are presented using thousand $
as the unit in Table 3 and subsequent tables. Comparing TS with € = 0% to TSCC, TS with € = 0% has higher unmet
penalty cost. Due to the absence of an emergency modality, there is no emergency acquisition to reduce unmet demand
in extreme scenarios. Consequently, although the proportion of preparation costs in the total costs is nearly the same
for both TSCC and TS with ¢ = 0%, TS with € = 0% incurs a higher unmet penalty cost, resulting in an overall higher
penalty cost. On the other hand, comparing TS with ¢ = 100% to TSCC, since the emergency modality is activated
in all scenarios, only minimal preparation is required in the first stage, and the high demand in extreme scenarios can
be fulfilled by emergency acquisition. Thus, TS with ¢ = 100% has a significant emergency cost, low first-stage cost,
and zero penalty cost. The cost structure of WS is similar to that of TS with ¢ = 100%. However, as a result of simply
waiting (i.e., no preparation) in the first stage, WS misses the opportunity to have the minimal preparation that TS
does, leading to higher overall cost than TS. Through comparing WS, TS and TSCC, it appears that higher activation
percentages of emergency modality lead to lower overall costs, which may suggest that utilizing the TS model with
€ = 100% for planning is preferable. However, this overlooks the fact that the emergency modality is associated with
significant additional resource allocation, and therefore, activating the emergency modality plan incurs significant extra
cost. This activation cost is implicitly modeled in the TSCC model via the risk tolerance parameter e, which provides an
upper limit on the likelihood of emergency modality activation among all the scenarios. Additionally, we can observe
the expected value of perfect information by comparing Perfect (Ordinary) and TS with € = 0% and comparing Perfect
(Emergency) and TS with ¢ = 100%. We can see that with the emergency modality, due to the additional resources
activated, the (expected) value of perfect information is not significant, and this is due to the minimal level of first-stage
preparation operation needed. However, with the ordinary modality only, a significant amount of first-stage preparation
operation becomes necessary in minimizing the overall cost, and the (expected) value of perfect information becomes
significant.

Comparing SS to TSCC, we see that the decisions obtained from SS ignores various important factors such as the
unmet penalty cost and the unused penalty cost. This results in a missed opportunity to optimize logistics effectively
by balancing operational decisions and penalty cost in the second stage, leading to significantly higher first-stage costs
for SS. Furthermore, in the SS model, the absence of emergency considerations in the planning phase leads to an
inefficient utilization of the emergency modality plan. In comparison to the TSCC model, SS incurs a higher first-stage
cost and a higher cost associated with the emergency modality plan. Unlike SS, TSCC makes acquisition and logistics
decisions by considering the second-stage recourse decisions with two possible modalities, and incorporating unmet
penalty, and unused penalty costs. Overall, we observe that TSCC leads to more effective logistics decisions.
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Type Trailer MHU
Model SR SRF SVM GNN SR SRF SVM GNN
MSE | 0.0002 0.0063 0.0006 0.2405 | 0.0014 0.0028 0.0015 0.0024
RMSE | 0.0387 0.2503 0.0770 0.1551 | 0.1194 0.1688 0.1234 0.1547
Table 4
The MSE/RMSE Comparison between Different Prediction Models.
First-Stage Second-Stage Emergency Unused Unmet Deprivation
Model Total Cost Cost Cost Cost Cost Cost Cost
Perfect 214067 173394 32944 0 0 0 0
GNN 687849 584671 103177 0 68784 0 0
SRF 632691 569421 63269 0 25307 0 0
SVM 444856 102316 342539 0 0 306950 13345
SR(Point) 605342 538754 605342 0 18160 0 0
SR 311749 268104 43644 0 3117 0 0
Table 5
Performance Comparison between Different Prediction Models with the Ordinary Modality.
First-Stage Second-Stage Emergency Unused Unmet Deprivation
Model Total Cost Cost Cost Cost Cost Cost Cost
Perfect 191075 0 191075 191075 0 0 0
GNN 206421 32712 173709 161281 0 0 0
SRF 194449 30572 163877 158119 0 0 0
SVM 192042 9562 182480 181077 0 0 0
SR(Point) 191083 126 190958 190952 0 0 0
SR 191075 0 191075 191075 0 0 0

Table 6
Performance Comparison between Different Prediction Models with the Emergency Modality.

5.5. Comparison with Alternative Prediction Models

In this section, we compare the proposed spatial regression model with alternative prediction models and investigate
the impact of prediction accuracy on decision making in the context of the disaster housing assistance planning
problem. First, we present the mean squared error (MSE) and root mean squared error (RMSE) metrics for different
prediction models. Subsequently, we compare the operational decisions derived from these models following the
predict-and-optimize framework.

We compare the spatial regression model used in our numerical experiments with alternative machine learning
models, including spatial random forest regression, support vector machine regression, and graph neural networks.
All models are implemented in R using the following packages: (i) Bivand, Millo, and Piras (2021); Bivand and Piras
(2015); Bivand, Hauke, and Kossowski (2013a); Bivand, Pebesma, and Gémez-Rubio (2013b); Pebesma and Bivand
(2023) for spatial regression models; (ii) Wright and Ziegler (2017); Benito (2021) for the spatial random forest model;
(iii) Meyer, Dimitriadou, Hornik, Weingessel, and Leisch (2022) for support vector machine regression; and (iv) Falbel
and Luraschi (2023) for the graph neural network model. All models are used default setting from these packages. For
the graph neural network model, we have three layers. Each layer aggregates features from the neighboring nodes,
applies a linear transformation to these aggregated features, and subsequently employs a ReLLU activation function.
The network starts with five input features, then expands to 32 features, then to 64 features, and finally aggregates to
produce a single output.

Table 9 provides the prediction error results in terms of the mean squared error (MSE) and the root mean squared
error (RMSE) for different prediction models. In this table, we use the following abbreviations for the different
prediction models: (i) SR for spatial regression; (ii) SRF for spatial random forest regression; (iii) SVM for support
vector machine; (iv) GNN for graph neural network. From the table, we can see that SR and SVM achieved the smallest
prediction error in terms of the MSE and RMSE.
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To understand the impact of these predictions on decision making, it is essential to examine the difference in the cost
structure between decisions derived under perfect information and decisions derived from the predictive information
provided by the prediction model. In the context of our problem, the decisions under perfect information can be derived
by solving a two-stage (deterministic) optimization model with the exact housing demand information. For SVM,
SRF, and GNN, we follow the predict-and-optimize framework by solving the two-stage (deterministic) model using
the point prediction given by these prediction models, and then we evaluate the corresponding first-stage housing
preparation decisions. For SR, we generate a set of demand realization scenarios (in our experiment we use sample
size | K| = 50) by sampling the error term in the spatial regression model, solve a two-stage stochastic programming
model (same as the TS model in Table 3) with these scenarios, and then evaluate the corresponding first-stage housing
preparation decision with the exact realized housing demand information. Note that the numbers presented here are
different from the ones shown in Table 3, which represent the expected costs with respect to the associated set of
scenarios used in the TS model. To assess the solution quality of the housing preparation decisions associated with
these prediction models, we evaluate them in the two-stage (deterministic) optimization model with the exact housing
demand information, i.e., the same model where the perfect information solution is obtained from. For the sake of
comparison, we consider a single modality here, either the ordinary or emergency modality, and Tables 5 and 6 show
the cost structures of the solutions obtained under different prediction models with the ordinary modality and the
emergency modality, respectively.

In Tables 5 and 6, Perfect represents the perfect-information model with the exact demand realization information.
In addition to SR, GNN, SRF and SVM that we describe above, we also consider SR(Point), in which the solution
is derived solely from employing the point estimation from the spatial regression model using the deterministic two-
stage optimization model instead of a two-stage stochastic program with a set of scenarios (as what is done in SR).
From Table 5, where the ordinary modality is considered, we see that the solution employing GNN and SRF tends
to exhibit overpreparation, consequently incurring higher penalty costs due to unused resources. This observation
also implies an overestimation of housing demand by these two models. In contrast, the SVM-based model shows
underpreparation, leading to increased penalty from unmet demands. Additionally, the solution employing SR, which
exhibits comparable MSE and RMSE to SVM, has a cost structure closest to Perfect. However, for SR(Point), which
uses the same prediction model with SR but only employs only the point estimate, the cost structure resembles that of
SREF, indicating overpreparation. Therefore, integrating the variability information (represented by the set of employed
scenarios) into the optimization model helps alleviate the impact of the prediction error on decision making. On the
other hand, based on the result in Table 6, where the emergency modality is considered, the prediction errors by different
prediction models do not significantly impact the performance of the corresponding solution. This is due to the available
resources that are activated from the emergency modality, which make the (first-stage) housing preparation decisions
less crucial — as we can see from Table 6, the first-stage cost is insignificant in all options compared to the case when
only the ordinary modality is used.

5.6. Sensitivity Analyses

In this section, we present the results from two types of sensitivity analyses. In Section 5.6.1, we perform the
sensitivity analysis of the model with and without incorporating the AMHs. In Section 5.6.2, we perform the sensitivity
analyses of various penalty cost parameters.

5.6.1. Incorporating Alternative Modular Housing Solutions

Table 7 shows the total expected cost with and without incorporating LiV, a specific type of AMH in our case
study. We set |K| = 50 and use the abbreviation Total Housing Prep. in Table 7 to represent the percentage of the
total number of houses prepared in the first stage with respect to the total expected housing demand.

In Table 7, we observe a notable decrease in the overall cost with the incorporation of LiV for both TSCC and SS.
As the € value increases from 2% to 10%, we see that TSCC and SS achieve a reduction of approximately 22% to 26%
and 0.4% to 7%, respectively. We note that there is no cost reduction by incorporating AMH units in the case of WS
(and we chose not to present the results in the table for this reason). This is because WS makes decisions only after the
actual housing demand becomes realized, but the AMH solutions such as Liv, which involve higher costs in exchange
for their flexibility to accommodate demand uncertainty, do not exhibit any advantage for WS when equipped with
the exact demand realization information. Additionally, from observing the Total Housing Prep, it is noted that the
inclusion of AMHs in both the TSCC and SS models does not significantly increase the number of house preparations,
particularly in SS. Although there is a rise in the proportion of deprivation penalty costs within the overall cost due
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Model Modular € Total Cost First-stage Cost Unused Cost Unmet Cost Deprivation Cost Total Housing Prep

With 29 853898 66.18% 0.16% 16.23% 2.62% 28.12%

W/o ’ 1090230 71.43% 0.30% 17.60% 1.28% 29.45%

With 4% 843998 66.97% 0.16% 14.88% 2.53% 28.07%

W/o 1081252 71.72% 0.29% 16.94% 1.23% 29.90%

Tscc With 6% 834215 67.76% 0.17% 13.56% 2.44% 27.98%
W/o 1073499 72.67% 0.30% 15.25% 1.17% 29.90%

With 8% 824870 68.52% 0.16% 12.26% 2.44% 29.53%

W/o ’ 1065326 72.73% 0.29% 14.61% 1.09% 29.88%

With 10% 817715 69.11% 0.16% 11.22% 2.35% 27.97%

W/o 1057858 71.03% 0.20% 16.06% 1.10% 26.23%

With 2% 1434060 90.79% 1.03% 0.19% 0.56% 45.31%

W/o 1584302 88.78% 1.53% 1.58% 0.76% 44.59%

With 4% 1427836 89.52% 1.02% 0.36% 0.67% 44.40%

W/o 1512016 89.17% 1.43% 1.15% 0.71% 43.48%

s With 6% 1419250 89.94% 1.03% 0.96% 0.66% 43.97%
W/o 1445291 89.71% 1.52% 0.37% 0.71% 43.48%

With 8% 1416316 88.99% 1.03% 1.03% 0.66% 43.48%

W/o 1422631 89.90% 1.41% 0.21% 0.66% 42.12%

With 10% 1269116 87.54% 0.89% 2.01% 0.85% 39.53%

W/o 1293346 88.06% 1.29% 1.17% 0.83% 39.64%

Table 7

Cost Composition with and without Alternative Modular Housing Solutions (in Thousand $).

Parameter  Factor Total  First-Stage Second-Stage Unused Unmet Deprivation Unused Unused Unused Unmet Demand Unmet Demand
Cost Cost Cost Cost Cost Cost Modular Houses  Trailers MHUs Trailers MHUs
0.2 809177 564832 244345 1278 101059 3999 2.57% 0.00% 6.96% 15.00% 0.00%
Deprivation 0.5 815132 564997 250135 1278 101059 9789 2.57% 0.00% 6.96% 15.00% 0.00%
Penalty 1 824870 565187 259683 1305 101090 19368 2.52% 0.00% 7.21% 15.00% 0.00%
2 844180 565444 278737 1410 101260 38401 2.56% 0.00% 7.94% 15.03% 0.00%
5 901654 565594 336060 1491 101575 95520 2.63% 0.00% 8.47% 15.08% 0.00%
0.2 420176 38955 381221 0 286599 67739 0.00% 0.00% 0.00% 86.18% 82.31%
Unmet 0.5 641165 366420 274746 691 131601 18086 0.00% 0.00% 5.07% 37.83% 0.14%
Penalty 1 824870 565187 259683 1305 101090 19368 2.52% 0.00% 7.21% 15.00% 0.00%
2 884840 551492 333347 2042 182791 18174 4.35% 0.00% 10.90% 13.57% 0.00%
5 986115 672262 313853 4802 172211 12228 11.92% 0.03%  24.03% 4.95% 0.06%
0.2 832323 574473 257850 2068 99366 19595 7.57% 0.00%  8.04% 14.75% 0.00%
Unused 0.5 834602 573249 261353 1623 100009 21516 4.96% 0.00% 7.24% 14.84% 0.00%
Penalty 1 824870 565187 259683 1305 101090 19368 2.52% 0.00% 7.21% 15.00% 0.00%
2 836459 573128 263331 1324 102510 19641 2.56% 0.00% 7.31% 15.22% 0.00%
5 835818 568989 266829 1286 101766 19657 2.55% 0.00% 7.04% 15.11% 0.00%
Table 8

Sensitivity Analyses on the Deprivation Penalty Factor and Unmet Demand Penalty Factor.

to the installation time requirement of the AMHs, for both models, the adoption of these more flexible AMHs not
only reduces the proportion of preparation cost within the overall cost but also decreases the proportion of unused and
unmet penalty costs. In sum, we observe from this set of sensitivity analyses the value of AMHs under the inherent
uncertainty of housing demand due to their flexibility.

5.6.2. Sensitivity Analyses on Key Parameters

Table 8 presents the results concerning the impacts of various key parameters, including the deprivation penalty,
unmet penalty, and unused penalty parameters. In this table, we use the following abbreviations for the column titles:
(i) Factor: multiplier applied to the original parameter setting; (ii) Unused AMHs/Trailers/MHUs: the average
percentage of AMHs/Trailers/MHUs left unused across all scenarios; (iii) Unmet Trailers/MHUs: the average
percentage of unmet demand in Trailers/MHUs across all scenarios. The baseline setting for these parameters, which
corresponds to a factor of 1, follows what is described in Section 5.3.

From Table 8, we observe the impacts of various penalty parameters and on the cost structure. For the deprivation
penalty, increasing the deprivation penalty factor directly increases the second-stage cost. As the deprivation penalty
increases, the logistics operational decisions are adjusted to expedite the arrival of the houses to the victims, aiming to
minimize the deprivation costs. For the unmet penalty parameter, adjustments to the penalty factor directly influence
the amount of unmet trailers and MHUs s as well as the first-stage cost. Specifically, as the unmet penalty factor increases,
a greater number of houses are prepared to avoid potential unmet penalty costs. It is noteworthy that with factor=0.2,
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there is a considerable increase in unmet MHUSs compared to the baseline setting, surging to 82.31%. This is because the
unmet demand penalty in this setting falls below the acquisition price of a house, discouraging additional acquisitions
of MHU, that is, only the ones from the existing inventory at the permanent warehouses are utilized. For the unused
penalty, due to current FEMA practices, we initially set the value in the baseline model to a relatively small level,
resulting in insignificant difference in total cost. Despite its insignificance, changes of the unused penalty factor directly
influence the increase or decrease of unused housing units: when the factor increases from 0.2 to 5, it results in a
decrease from 7.57% to 2.55% and 8.04% to 7.04% for unused AMHs and MHUs, respectively.

We close this section by noting that the sensitivity analyses conducted here are particularly useful for addressing the
disparities of community resilience against natural disasters in different regions, since individuals may exhibit different
tolerances for housing demand shortages or deprivation. The TSCC model can generate the corresponding acquisition
and logistical decisions to accommodate these differences by adjusting the penalty parameters. For example, when an
anticipated housing shortage in a region is considered unacceptable, we may increase the unmet penalty parameter
until the housing deficit reaches an acceptable threshold. Hence, the adjustments facilitates a balance between victims’
priorities and the overall incurred costs, allowing the decision-maker to identify an optimal solution under different
circumstances.

6. Conclusion

In this work, we have proposed a modeling and solution framework for the direct temporary disaster housing
logistics planning problem under demand uncertainty. We have formulated the problem as a two-stage chance-
constrained stochastic program with disaster housing demand scenarios generated in a data-driven fashion based on
a spatial regression model that characterizes the correlation of disaster housing demand on a selected set of hazard
quantification and socioeconomic factors. We have conducted an extensive numerical experiment with a case study
for Hurricane Ian, based on which we have shown the advantage of the proposed model compared to some alternative
approaches.

From a methodological perspective, we have identified two future directions that could further enhance this
research. The first direction is to enhance the robustness of a model and hedge against the ambiguity of the demand
distribution. In Section 5.4.2, the out-of-sample scenarios are generated from the same distribution as the in-sample
scenarios, which corresponds to the error term in the employed spatial regression model. However, the out-of-sample
test fails to account for the impact of the discrepancies between the training and test environments. A distributionally
robust optimization (DRO) (Rahimian and Mehrotra, 2019) framework can be applied to address this issue, which is
particularly valuable in making operational decisions where demand uncertainty could significantly impact decision-
making. The second direction is to integrate the prediction model into an optimization framework. For example,
following Sadana, Chenreddy, Delage, Forel, Frejinger, and Vidal (2024), there are two different paradigms for
such integration: (i) a decision-rule based optimization approach, which applies a parameterized mapping as the
decision rule and determining the parameter that optimizes the empirical performance based on available data; (ii) an
integrated learning and optimization approach, which aims to identify a predictive model guiding contextual stochastic
optimization problems toward optimal actions rather than precision in prediction alone. By integrating the prediction
model into an optimization framework, we can potentially enhance the robustness and effectiveness of our model in
handling demand uncertainty.

From a modeling perspective, we have identified two future research directions that expand the scope of logistics
planning for direct temporary disaster housing. First, the proposed two-stage stochastic programming model can
be extended to a multi-stage stochastic optimization model to capture additional information resolution during the
disaster housing preparation and logistics operation, such as the uncertainty on funding availability. Second, while
the short-term logistic plan equips us with the ability to address housing demand resulting from anticipated disaster
displacement, transitioning to a more efficient planning strategy requires adopting a long-term perspective. Effective
long-term disaster housing inventory planning can enhance the stability of our short-term logistical supply, thereby
reducing both time and cost. However, unlike other consumed disaster relief resources, the aftermath of disaster
housing must be address since it can only be provided for a maximum period of 18 months, governed by the Stafford
Act (FEMA, 2019). Hence, in the planning of long-term disaster housing inventory, it is imperative to contemplate
a broader spectrum of actions in comparison to other disaster relief resource planning. This includes considerations
of housing for reimbursement, retrieval and acquisition, and presents an opportunity to explore alternative housing
solutions that feature the transition from temporary to permanent solutions.
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A. Detailed solution approach

In this section, we describe the detailed branch-and-cut decomposition algorithm for solving the proposed two-stage
chance-constrained stochastic program in Algorithm 1. Within Algorithm 1, we use functions BigM() and Specut()
to represent the functions that generate big-M cuts (7) and special cuts (9), respectively. We also provide details on
how to properly choose valid big-M parameters to use in the big-M cuts (7). Note that the relatively complete recourse
property holds in our model, thus there is no need to discuss feasibility cuts.

Algorithm 1 Decomposition algorithm for TSCC

t < 0,0PEN « {0},UB « 00,LB « —o0;
while OPEN # 0 do

Pick I € OPEN, OPEN « OPEN\{/};

while CUTFOUND # TRUE & LB < UB do

AAAAA

LB « M(Ko(l), K (1));

for k € K do

if 2, = 0, z) < Solve f(%, 1, k);

if 2, = 1, 7, < Solve f(&,3, 1, 0, k);
end for

f |]7| Yiek ((L=20f G, i, k) + 2, f(%,5, 1,0, k)) > 0 then
if 2, =0, 7 « Solve (%3, 4, 0, k);
if2, =1, 7 « Solve f(fc i, k);
L « Specut(;z 7r 7r Jl'k) BlgM(i[k,Jl'k)
else
CUTFOUND # TRUE
UB «< LB
end if
end while
if LB < UB then
Choose k € K s.t. 2, € (0, 1)
Ko+ 1) « Ko() U {k}, Kt + 1) « Ki(]);
Ko(t+2) « Ko() U {k}, K (t +2) < K; (D) U {k};
t—t+2;
OPEN « OPEN U{t + 1,7+ 2}
end if
end while

We consider the following to derive a sufficiently large big-M value:
(1) By duality, 7, (ld) ., and 71'(21) are always nonpositive.

(2) Based on constraint (3g),
) (1b)
ZWEW ZpEP ”wz?Tf k,w,p < Z:MEW ZPEP U, ”k ,w,p’
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Variable Type Unit
Regressands Trailer Ass.istance Rate Percentage
MHU Assistance Rate

High-water Mark ft

Duration of Sustained Wind Speed | Numerical Day

Predictors Distance to Landfall Location Mile
SVI (Social Vulnerability Index) -

Population Person

Table 9
Description of Regressands and Predictors Used in the Spatial Regression Models.

(3) Based on constraint (3e),
Zwew Lpep EteTs(zieI Xjw,pi—Ay 1= By j 2 1))”1(61;),1,,;
< Dwew ZpEP ZzeTS(ZieI 91')7[1(({;),,@
(4) Based on constraint (3c) and constraint (3j),
2iel 2pep Uf-f,,,Tfﬁ,(fﬁL < ier 2per(Ei + Ip)”i(czz
(5) Based on constraint (31) and constraint (3j),
ZteTS zpeP Ziel(si,p,t—r,-_p]l(’ Tip 2 D= Xew Xiwpir)T 1(<2,dr)p
< Sier, per Zier Zwew Euii,

According to the above consideration, the big-M values can be set as follows:

U, o
LIPS WD IDIDIL D IDIPIL (172)
weW peP weW pePteT, i€l teT, j€J geG
_ U
M= 2 2 G ™ 20 20 20 20y 2 DB+ ViR,
weW peP ~P wWEW peP teT i€l iel peP

DIPIPIPIR i (17b)

teT, peP i€l weW

B. Data Description

Table 9 describes the regressands and predictors used in the spatial regression models, including their units and
types. The SVI value is in the range between 0 and 1, which is derived from 15 different selected variables (Flanagan,
Gregory, Hallisey, Heitgerd, and Lewis, 2011). Figure 9 presents the Spearman’s correlation between regressands and
predictors from the used dataset.

C. Sensitivity Analysis for the Initial Inventory Level

Based on the information from FEMA (2018), before housing units are deployed to fulfill the disaster housing
needs, FEMA performs cleaning and quality inspections to these units. Therefore, the initial inventory level may
fluctuate and it is important to understand how different initial inventory level may affect decision making and the
associated cost structure. Table 10 presents the results for different initial inventory levels. From the table, it is evident
that the first-stage cost and unmet cost decrease with increasing initial inventory: with more initial available inventory,
it is expected that less housing preparation is made, and a larger number of houses could potentially be used for demand
fulfillment, leading to a reduced unmet penalty cost as well.

D. Additional Ilustrations

In this section, we provide some additional illustrations on the proposed optimization models and the problem data.
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Figure 8: Spearman’s Correlation between Factors and Predictors.
Initial Total Cost First-Stage Second-Stage Emergency Unused Unmet Deprivation
Level otal L.os Cost Cost Cost Cost Cost Cost
120 837894 569767 268127 24299 1256 107501 20193
300 833597 576182 257415 23090 1667 100198 20152
600 820881 574431 257414 22757 1917 98531 19838
1200 804544 550927 253617 23091 1600 95701 19246
3000 733877 492142 241735 22729 1539 86630 17863

Table 10
Performance Comparison under Different Initial Inventory Level.
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First-Stage Second-Stage
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Demand Nodes / Demand Nodes J Demand Nodes | Demand Nodes J Demand Nodes J

Figure 9: An illustration of the logistics flow in the proposed disaster housing logistics planning model (assuming A, , =1
and A, ; =1 forall i, j, w).
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(c) Emergency Modality Constraint Flows.

Figure 10: lllustration of flow balance constraints in the proposed model.
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