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S U M M A R Y

This work presents a systematic study of the relationship between structural stochasticity and the crush energy 
absorption capability of lattice structures, with controlled stiffness and weight. We develop a Voronoi 
tessellation-based approach to generate multiple series of lattice structures with either equal weight or equal 
stiffness, smoothly transitioning from periodic to stochastic configurations for crush energy absorption analysis. 
The generated lattice series fall into two categories, originating from periodic honeycomb and diamond lattice 
structures. A new stochasticity metric is proposed for quantifying the structural stochasticity and is compared 
with the state-of-the-art stochasticity metrics to ensure a consistent measurement. The crush energy absorption 
properties are obtained using explicit finite element analysis and we observe similar stochasticity-property trends 
in simulations using both elastic-plastic and hyperelastic materials. We report a new observation that an inter
mediate level of stochasticity between periodic and high randomness leads to the best crush energy absorption 
performance. Our analysis reveals that this optimal performance arises from enhanced activation of deformation 
hinges, promoting efficient energy absorption.

1. Introduction

Recent advances in manufacturing have significantly enhanced the 
precision of fabricated structural geometries, enabling the fabrication of 
highly complex designs [1–5]. Concurrently, these advancements have 
facilitated the application of various established structural optimization 
methods, such as topology optimization [6–8] and machine learning 
[9–11], to efficiently design metamaterials [12–15] and lattice struc
tures [16–21] for superior performance. Meanwhile, while most existing 
metamaterial microstructures are designed based on periodic unit cells, 
stochastic (disordered) microstructures are gaining growing attractions 
due to their unique characteristics, including lightweight [22], stiffness 
[23], mechanical resilience [24,25], and programmable mechanics [26,
27]. However, the influence of structural randomness on performance 
metrics related to large deformation, such as the ability of a structure to 
absorb crush energy and limit peak loads during a collision, remains 
poorly understood. While most prior studies of energy-absorbing lattices 
have focused on through-thickness (out-of-plane) crushing of 

honeycomb-type cores, in-plane compression has also been widely 
investigated [28,29], including for stochastic and Voronoi-based archi
tectures [30,31]. The in-plane configuration adopted in this study cap
tures the dominant deformation mechanisms relevant to crash energy 
absorption while allowing efficient, high-throughput comparison across 
stochasticity levels. This work systematically quantifies how controlled 
degrees of structural stochasticity affect the crush energy absorption of 
lattice structures at a constant stiffness or weight. It addresses a critical 
knowledge gap, unexplored by prior studies that focused only on narrow 
disorder ranges and reported contradictory trends.

Conversely, comparative studies in literature reveal mixed conclu
sions regarding stochastic versus periodic lattices. Recent studies indi
cate that introducing stochasticity to lattice structures can either reduce 
or enhance certain mechanical performances compared to their periodic 
counterparts. For example, structural stochasticity has been observed to 
result in lower stiffness [32], higher tolerance to flaws in the plastic 
regime [33], lower maximum stress when damages are introduced to the 
structure [34], and higher strength and energy absorption capability 
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[35]. However, a common limitation of these studies is their focus on a 
narrow range of stochastic lattice types. This has limited the compre
hensive, quantitative understanding of how structural stochasticity in
fluences mechanical performance. An important question remains 
unanswered: what is the benefit of introducing structural stochasticity 
(also referred to as structural disorderliness, irregularity, or random
ness) in the design of lattice structures?

Prior studies have also investigated the internal quantitative rela
tionship among different aspects of structural stochasticity, measured 
using stochasticity metrics [26,36–39] and structural mechanical per
formances [40–52]. Most of these studies generate lattice structures 
with varying levels of stochasticity by perturbing a honeycomb-type 
periodic lattice structure (e.g., perturbing locations of cell centers or 
lattice joint nodes), while maintaining a consistent number of lattice 
cells, ranging from periodic to highly random. The conclusions of these 
studies, which sometimes contradict each other, include the following: 

• Higher stochasticity leads to lower elastic stiffness [40–44], tensile 
strength [45,53], and hydrostatic strength [46], but higher plastic 
collapse strength [42] and plateau crash pressure (better energy 
absorption capability) [47].

• Higher stochasticity accelerates the stress wave propagation and 
reduces the plateau crash stress [48].

• A certain moderate level of structural stochasticity leads to the 
highest strength, energy absorption [49,50], fracture toughness [45,
51,52], and plastic-collapse strength [44].

A few exceptions also exist in addition to the aforementioned studies 
based on honeycomb-type lattice structures with constant numbers of 
lattice cells. Christodoulou et al. [54] considered both the number of 
lattice cells and the lattice weight. When the number of lattice cells is 
kept invariant during structure generation by cell perturbation, the 
lattice weight may vary significantly due to the variation in the total 
length of cell edges (i.e., total length of lattice bars). It is reported that 
higher stochasticity leads to lower elastic stiffness for low-weight lat
tices but higher elastic stiffness for high-weight lattices. In addition, 
higher stochasticity reduces the Mode-I toughness. Montiel et al. [55] 
generated lattice structures with various levels of stochasticity based on 

triangular, square, and honeycomb initial structures. They also consid
ered both the number of lattice cells and the degree of connection. Their 
study shows that increasing structural stochasticity leads to lower elastic 
stiffness in highly connected (triangular) lattices but higher elastic 
stiffness in weakly connected (honeycomb) lattices. In a later work, Luan 
et al. [56] reported the same trend in the relationship between nodal 
connectivity and stiffness.

Apart from the contradictive conclusions of different literature, the 
benefits of introducing stochasticity into lattice structures remain un
clear. By varying the stochasticity of lattice structures, existing studies 
have provided insights into trade-offs among stiffness, weight, and 
nonlinear properties such as crash energy absorption. However, the 
following question remains unanswered: what is the relationship be
tween structural stochasticity and crush energy absorption, while 
keeping the same stiffness or weight among different stochastic struc
tures? As one of the most fundamental considerations in engineering 
applications, the answer to this question will directly help to determine 
how crush energy absorption can be improved without sacrificing 
stiffness or weight.

This paper addresses the above question by providing insights into 
the physical mechanism underlying the trends observed. We will 
numerically study 2D lattice structures with varying levels of stochas
ticity and quantify the relationship between structural stochasticity and 
properties such as energy absorption and crash force efficiency. As 
shown in Fig. 1, this research work includes three stages: 

1. Data Generation and Sample Selection: We will generate a 
comprehensive database of lattice structure samples, encompassing a 
wide range of stochasticity levels. These lattice structures are created 
using a specialized algorithm that introduces controlled randomness 
into the geometric arrangement of the lattice elements. Once the 
database is established, the elastic properties and mass of each 
structure are evaluated for analysis in the subsequent stages.

2. Crushing Simulation: A carefully curated set of samples are selected 
from the database, ensuring that either stiffness or weight is kept 
constant while continuously varying the level of stochasticity. Based 
on these samples, we will investigate the effect of structural sto
chasticity on crush energy absorption while minimizing the influence 

Fig. 1. Schematic overview of the methodology and objectives. (a) A diverse database of lattice structures is created through the controlled generation of lattice 
architectures with varying weight, stiffness, and levels of structural stochasticity. 40 lattice series with equal stiffness or equal weight are selected. (b) High fidelity 
structure crush simulations are performed to assess their crush energy absorption properties. (c) Data analysis is performed to unveil the relationship between 
structural stochasticity and crush energy absorption properties.

L. Xu et al.                                                                                                                                                                                                                                       Thin-Walled Structures 219 (2026) 114169 

2 



of other factors. The selected samples are subjected to crushing 
simulations using finite element analysis (FEA) under 2D compres
sive loading conditions until a specified deformation level is reached. 
These simulations capture the complex interactions between lattice 
elements during crushing, including progressive failures and energy 
absorption. Key metrics such as force-displacement curves, specific 
energy absorption (SEA), and crash force efficiency (CFE) are 
recorded throughout the simulations. These metrics offer valuable 
insights into the performance of the lattice structures under crushing 
loads, serving as the foundation for subsequent analysis.

3. Data Analysis: In the final stage, we will analyze the extracted key 
metrics from simulation data and establish their relationships with 
the level of structural stochasticity. A discussion of the underlying 
mechanisms is also provided.

2. Methodology

2.1. Lattice structure database generation

A comprehensive database of lattice structures is generated to 

Fig. 2. Top: Overview of the lattice generation process for database construction. Starting from simple periodic designs (top), controlled perturbations are introduced 
to produce a database of Voronoi-based lattice structures with varying levels of stochasticity. Central perturbation and the resulting lattice structures generated by 
applying uniform noise levels of 0.05, 0.15, and 0.8. The bottom side of the figure shows two serials of equal-weight or equal-stiffness with increasing stochasticity.
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systematically explore how varying degrees of stochasticity influence 
stiffness and crush energy absorption. Starting from baseline periodic 
designs such as periodic honeycomb and diamond patterns, structural 
stochasticity is gradually introduced to create lattice ensembles that 
continuously span from perfectly regular to highly stochastic 
geometries.

Each lattice structure is treated as a cellular structure, where the 
boundaries of the cell correspond to the lattice beams, and the interior 
region of the cell corresponds to voids. Structural stochasticity is 
introduced by perturbing cell center locations, and, consequently, the 
cell boundaries through Voronoi tessellation.

Voronoi tessellation is the partitioning of a plane into regions based 
on a given set of points, called seeds or centers. Each seed corresponds to 
a region called a Voronoi cell, which consists of all points in the plane 
that are closer to that seed than to any other seed. The formal definition 
of a Voronoi cell is 

Rk = x ∈ X|d(x, Pk) ≤ d
(
x, Pj

)
, for all j ∕= k, (1) 

where Rk represents a specific Voronoi cell in the Voronoi diagram. x ∈

X means that x is a point in space X, where X is the entire plane or space 
in which the Voronoi diagram is constructed. d(x, Pk) ≤ d

(
x, Pj

)
is a 

condition that compares the distances between the point x and two 
different seed points (centers) Pk and Pj. To ensure continuity and 
eliminate edge effects, periodic boundary conditions are applied during 
the generation of the lattice geometries. Controlled perturbations are 
applied to the positions of these cell centers, using a Voronoi tessellation 
approach to define the final lattice architecture.

By varying the magnitude of perturbation, we produce families of 
lattices with varying stochasticity levels (irregularities). The effect of the 
perturbation magnitude is shown in Fig. 2. In practice, we perturb the 
coordinates of the cell centers of the periodic structure using a 
displacement from an unbiased uniform distribution bounded by ± b. 
We sweep sixteen levels, b = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 
0.08, 0.09, 0.10, 0.12, 0.14, 0.16, 0.18, 0.25, 0.30, and for each level 
generate 500 independent realizations per topology using the same 
perturbation rule, which results in 8000 stochastic lattice samples. In 
addition to varying the perturbation magnitude, for each topology we 
also consider three baseline cell sizes, defined as three center-to-center 
distances for the perfect honeycomb and diamond configurations.

2.2. Crush energy absorption metrics

A widely applied metric for crush energy absorption is the Specific 
Energy Absorption (SEA) [57,58], which measures the amount of energy 
absorbed per unit weight of a structure (Fig. 3 left). SEA is mathemati
cally defined as 

SEAweight =

∫
F(ε)dε

m
, (2) 

where F(ε) is the force as a function of compressive strain ε, and m is the 
mass of the lattice structure.

Since the simulated structures are represented as 2D line networks, 
and the material density and the cross-sectional area of the beams are 
constant in the comparative study, the total mass m is proportional to the 
total length of all beams in the lattice structure. Accordingly, the SEA is 
normalized by the total beam length rather than by mass as 

SEA =

∫
F(ε)dε
∑E

i=1Lei

, (3) 

where Lei represents the length of each beam. This 2D normalization 
(SEA, in mJ/mm) provides a consistent basis for comparison among 
samples. For reference, using a representative cross-sectional area of 6.4 
× 10⁻⁵ mm² and proposed material properties from Table 2, the reported 
SEA values can be converted to SEAweight expressed in J/g by multiplying 
by 5600.

The second metric used in this work is the Crash Force Efficiency 
(CFE) [59]. CFE measures how effectively a structure maintains a 
consistent force during deformation, which is crucial for controlled en
ergy absorption and minimizing peak forces transmitted during a crash 
(Fig. 3 right). CFE is formulated as 

CFE =
Fmean

Fpeak
, (4) 

where Fmean is the mean crushing force and Fpeak is the peak crushing 
force, evaluated before the structure enters the densification region.

For both SEA and CFE, higher values indicate better crush energy 
absorption performances.

2.3. Stochastic metrics and their relationship

Prior studies have proposed various metrics for quantifying struc
tural stochasticity, which are summarized in Table 1. The first three 
metrics focus on connectivity and spatial arrangement of the lattice 
cells. The fourth metric, Scaled Standard Deviation of Cell Areas, 
directly quantifies variations in the size of individual Voronoi cells. 
Structures with large variations in cell areas typically exhibit a wider 
spectrum of local deformation modes, potentially affecting overall en
ergy absorption capabilities.

In this work, we adopt the coefficient of variation of cell areas, which 
is mathematically equivalent to the scaled standard deviation of Voronoi 
cell areas, providing a normalized measure of spatial irregularity. as our 
primary stochasticity measure and benchmark this metric against other 
established metrics to ensure consistency in assessing the level of 
structural stochasticity. We analyze one series of lattice structures with 
increasing magnitude of perturbation (refer to the lattice structure 
generation method in Section 2.1) and evaluate the stochasticity metric 
values for all samples (Fig. 4). Although each metric is derived from a 
distinct aspect of the geometry such as cell connectivity, spacing regu
larity, or cell size variability, they exhibit strong correlation. Structures 
featuring significant irregularities in cell area also display heightened 
fluctuations in cell-to-cell spacing and local neighbor counts. Such cross- 
metric consistency indicates that choosing different structural 

Fig. 3. Visualization of crush energy absorption metric. The x-axis is compressive strain; the y-axis shows (a) SEA and (b) CFE.
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stochasticity metrics will not change the final conclusion regarding the 
structural stochasticity-property relationship. It is important to note that 
cells adjacent to the domain boundaries are excluded from the sto
chasticity evaluation to minimize boundary artifacts and obtain more 
representative results.

To further interpret this metric across the dataset of 16,000 lattice 
structures, we used the 50th percentile (median) value of 0.234 as the 
threshold separating moderate and high stochasticity levels. A lower 

bound of 0.01 was also applied to define the periodic limit, ensuring that 
minor numerical perturbations near zero were not misclassified as sto
chastic variations.

2.4. Simulation of structural stiffness and crush energy absorption

Stiffness Characterization Simulation: To determine the elastic 
stiffness of each lattice structure, we first conduct quasi-static tensile 
tests using Abaqus/Standard (Implicit). Each generated lattice configu
ration is discretized using Timoshenko beam elements (B21), which are 
two-dimensional beam elements incorporating shear deformation ef
fects. The simulations are performed within the linear elastic regime, 
employing a relatively infinitesimal strain increment of approximately 
0.01 %. From the resulting stress-strain curves, we extract the slope in 
the linear region to obtain the stiffness of each structure.

Crushing Simulation: The crushing response of selected lattice 
samples is investigated using Abaqus/Explicit. In this stage, the lattices, 
originally scaled to an effective length of 1 mm, are discretized into 
three-dimensional, reduced-integration brick elements (C3D8R). To 
simulate compressive loading, the lattice is placed between two rigid 
plates. The lower plate is fully fixed, while the upper plate is driven 
downward to impose compressive deformation. This loading results in 
up to 80 % strain, applied at quasi-static strain rate of approximately 
7s−1, ensuring negligible inertial effects. To prevent out-of-plane 
deformation and potential buckling, the lattices are constrained to 
remain in the XY plane. The reaction force measured at the reference 
point of the top plate provides the force-displacement data necessary for 
evaluating the crush energy absorption metrics. Fig. 5(b) presents a 
comparison between beam and brick elements, and Fig. 5(c) illustrates a 
comparison between elastic-plastic and hyperelastic materials under 
varying strain levels. Experimental validation of the simulation model is 
provided in the Supplemental Information.

Two material models are investigated in this study. The first is an 
elastic-plastic model for an aluminum alloy (Al-6101 T6) and the second 
is a hyperelastic model for an elastomer [60]. The specific material 
properties are provided in Table 2. The Ogden-based hyperelastic model 
employed in these simulations is characterized by a set of material 
constants in the following constitutive model: 

U =
∑N

i=1

2 μi

α2
i

(
λαi

1 + λαi
2 + λαi

3 − 3
)i

+
∑N

i=1

1
Di

(
Jel − 1

)2i
, (5) 

Where λi are the deviatoric principal stretches, N is the number of 
terms in the summation series, μi, αi, and Di are material constants, and 

Table 1 
Summary of stochasticity metrics.

Stochasticity Metric Mathematical Expression Property of Interest

Variance of the Number 
of Neighboring Cells, 
σ2

N

σ2
N =

1
M

∑M
i=1

(Ni − μN)
2 

μN =
1
n

∑n
i=1

Ni 

Ni: Number of neighbors of 
the i th Voronoi cell 
μN: Mean number of 
neighbors 
n: Total number of cells

Fracture paths [52]

Variance of the Distance 
Between Neighbor 
Cell Nuclei, σ2

D

σ2
D =

1
m

∑m
k=1

(Dk − μD)
2 

μD =
1
m

∑m
k=1

Dk 

Dk: Distance between the k- 
th pair of neighboring nuclei 
μD: Mean distance between 
neighbor nuclei 
m: Total number of 
neighboring pairs

Fracture paths [52]

Normalized Minimum 
Distance Between 
Neighbor Cell Nuclei δ

δ =

1
n

∑n
i=1Di,min

μD 
Di,min: Minimum distance 
between the nucleus of cell i 
and its neighbors 
μD: Mean distance between 
neighbor nuclei (from Metric 
2) 
n: Total number of cells

Fracture toughness 
[49], tensile strength 
[45], crack toughening 
[45], elastic moduli 
[40]

STD of Cell Areas Scaled 
by the Number of 
Cells, σ̃A (proposed in 
this work; equivalent 
to CV of cell areas)

σ̃A = nσA =
σA

μA
,

if
∑n

i=1
Ai = 1 

σA =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1

(Ai − μA)
2

√

μA =
1
n

∑n
i=1

Ai 

Ai: Area of the i th Voronoi 
cell 
μA: Mean cell area 
σA: Standard deviation of cell 
areas 
n: Total number of cells

Energy absorption

Fig. 4. Comparison of stochasticity metrics for a series of equal- 
stiffness structures.

Table 2 
Representative mechanical properties of the elastic-plastic material model (Al- 
6101 T6) and parameters for the Ogden-based hyperelastic material model used 
in the simulation, including shear-like moduli (μ1, μ2), nonlinear exponents (α1 ,

α2), volumetric compressibility parameters (D1, D2), and material density.

Elastic-plastic Material Model

Property Value

Density 2.79 g/cm³
Elastic
Young’s Modulus (E) 68,900 MPa
Poisson’s Ratio 0.33
Plastic
Yield Strength 193 MPa
Ultimate Tensile Strength 221 MPa
Plastic Strain 0.17
Hyperelastic Material Model
μ1 0.4055 MPa
α1 2.4580
D1 6.1616E-3 MPa−1

μ2 6.1298 MPa
α2 −1.9004
D2 0 MPa−1

Density 1 g/cm³
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Jel is the elastic volume ratio.

2.5. Generated lattice series of equal stiffness or equal weight

A major contribution of this work is the isolation of two factors, 
weight and stiffness, in investigating the relationship between structural 
stochasticity and large deformation behaviors during structure crushing. 
Weight defines the total amount of material in a structure and stiffness 
(Young’s modulus) determines the linear elastic response of the struc
ture. The elastic properties of each lattice sample are determined 
through stiffness characterization simulations, while the weight is esti
mated by summing the lengths of the beams, given that all beams have 
the same diameter.

Selecting from the large lattice structure database, we obtain 10 
series of structures with nearly identical weight (within 1 % error) and 
another 10 series with nearly identical stiffness (also within 1 % error) 
relative to the baseline periodic honeycomb and diamond lattices. Each 
of these series includes 7 structures and spans a broad range of sto
chasticity, measured by the variation in cell areas. As illustrated in 
Section 2.3, a stochasticity metric of zero indicates that all Voronoi cells 
have nearly identical areas, corresponding to two periodic arrange
ments. As stochasticity increases, the variability in cell sizes grows, 
leading to more irregular and diverse cell structures.

It is important to note that stochastic structures with identical stiff
ness or weight as the base structure can be relatively rare at certain 
levels of stochasticity. Consequently, we identify a total of 230 unique 
structures from the 8500 lattice samples that meet the equal-stiffness or 
equal-weight requirements. With these 230 structures, 20 series of lat
tice structures with increasing stochasticity (ranging from periodic to 
highly random) are created for the crush energy absorption analysis 
throughout the remainder of the study. The detailed structures of the 20 
series are provided in the supporting materials.

3. Results

3.1. Stochasticity-crush energy absorption relationship: equal stiffness

For elastic-plastic lattices, honeycomb-based and diamond-based 
lattice series exhibit slightly different trends in the relationship be
tween structural stochasticity and SEA. The honeycomb-based lattices 
exhibit an increase-decrease trend in SEA with increasing structural 
stochasticity. The largest SEA is observed at a moderate stochasticity 
level, though with large sample-to-sample variance. The diamond-based 
lattices achieve the highest SEA at a low stochasticity level, followed by 
a decreasing trend in SEA as stochasticity increases. Significant sample- 
to-sample variations are also observed in the diamond-based lattice se
ries, suggesting that at certain levels of structural stochasticity, indi
vidual samples may outperform or underperform the periodic lattice. It 
also suggests that the benefits of stochasticity in diamond-based lattices 
are less predictable and may depend more sensitively on the specific 
structural patterns.

For hyperelastic lattices, honeycomb-based and diamond-based lat
tice series exhibit similar trends in the relationship between structural 
stochasticity and SEA. For honeycomb lattices, introducing a certain 
level of structural stochasticity improves SEA compared to the perfectly 
periodic structure, albeit with increased sample-to-sample variability. 
For diamond-based lattices, introducing structural stochasticity induces 
significantly larger sample-to-sample variations. Some stochastic sam
ples achieve better SEA than the perfectly periodic structure, while 
others at the same stochasticity level perform worse. This large variance 
suggests that the benefits of stochasticity in the diamond-based lattices 
are less predictable and may depend more sensitively on the specific 
structural patterns.

To quantify the robustness of these trends, non-parametric permu
tation tests and effect size analyses were performed in Supplemental 

Information. For the equal-stiffness configurations, the moderate sto
chasticity group exhibits statistically significant improvement in SEA (p 
< 0.05 in 7–8 of 8 contrasts) with large effect sizes (δ ≈ 0.7–0.9). These 
results confirm that the observed performance enhancement is repro
ducible and not due to random sampling variations.

If measuring the crush energy absorption using the CFE metric, the 
periodic honeycomb configuration delivers the highest performance for 
both elastic-plastic and hyperelastic materials, followed by a general 
decrease as structural stochasticity increase. The diamond lattices, 
however, present a more complex trend. When the base material is 
elastic-plastic, no clear trend is observed. Increasing structural sto
chasticity can either raise or lower the CFE value, underscoring that the 
benefit of randomness may be specific configuration-dependent. When 
the base material is hyperelastic, a decreasing trend is observed as sto
chasticity increases. The relationship between stochasticity and SEA/ 
CFE under equal-stiffness conditions is illustrated in Fig. 6.

To summarize, when stiffness is held constant, increasing structural 
stochasticity of the diamond-based lattice to a certain level can achieve 
the highest crush energy absorption performances, measured by either 
SEA or CFE. Meanwhile, it is observed that highly stochastic structures 
do not yield the best performance. Increasing structural stochasticity of 
the honeycomb-based lattice to a moderate level result in the highest 
SEA value. However, the overall trend of CFE decreases as stochasticity 
increases. This finding holds for both elastic-plastic and hyperelastic 
base material properties.

3.2. Stochasticity-crush energy absorption relationship: equal weight

For elastic-plastic lattices, introducing structural stochasticity to 
honeycomb-based lattices leads to improvement in SEA, as well as large 
sample-to-sample variations. Introducing structural stochasticity to 
diamond-based lattices leads to a generally upward trend in SEA, but 
with significant sample-to-sample variances. As a result, certain sto
chastic configurations outperform the periodic reference structure, 
whereas others fall below. For both honeycomb-based and diamond- 
based series, samples with the highest SEA are observed at moderate 
levels of stochasticity.

For hyperelastic lattices, the honeycomb lattices exhibit a more 
complex stochasticity-SEA relationship. Although an initial increase in 
SEA is observed at low stochasticity levels, a general downward trend in 
SEA emerges as stochasticity increases. At high compressive strain (80 
%), the large sample-to-sample variance in SEA obscures any clear 
pattern, indicating that increasing structural stochasticity can either 
increase or decrease SEA, depending on specific structural patterns. The 
diamond-based lattices also exhibit significant sample-to-sample vari
ance as structural stochasticity increases. The statistical analysis also 
confirms that the performance advantage of moderate stochasticity di
minishes under the equal-weight constraint. Only a few contrasts ach
ieve statistical significance (p < 0.05), and the corresponding effect sizes 
are smaller (δ ≈ 0.3–0.5), indicating a weaker but still measurable 
improvement. However, a general trend emerges, with peak SEA values 
observed at moderate levels of stochasticity.

When measuring crush energy absorption using the CFE metric, the 
periodic honeycomb configuration delivers the highest performance for 
both elastic-plastic and hyperelastic materials, followed by a general 
decrease as structural stochasticity increase. On the other hand, in the 
diamond-based lattices, the highest and the lowest CFE values are ach
ieved at moderate structural stochasticity levels. The relationship be
tween stochasticity and SEA/CFE under equal-weight conditions is 
illustrated in Fig. 7.

In summary, we observe the same trend in the equal weight case as in 
the equal stiffness case. Increasing structural stochasticity of the 
diamond-based lattice to a certain level can achieve the highest crush 
energy absorption performance, measured by either SEA or CFE, while 
highly stochastic structures do not yield the best performance. 
Increasing the structural stochasticity of the honeycomb-based lattice to 
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a moderate level results in the highest SEA value. However, the overall 
trend of CFE decreases as stochasticity increases. This finding holds for 
both elastic-plastic and hyperelastic base material properties.

3.3. Interplay among stiffness, weight, and crush energy absorption

To elucidate the interplay between stiffness, weight, and crush en
ergy absorption metrics, we analyze representative lattice structure 
samples on Pareto frontiers. These frontiers were identified based on two 
key crush energy absorption metrics, SEA and CFE, at 80 % strain. Pareto 
frontier identifies lattice configurations that cannot be improved in one 
performance metric without sacrificing the other, thus capturing the 
optimal balance between these competing objectives.

Fig. 8 shows the Pareto frontiers for both honeycomb-based and 
diamond-based lattices under varying levels of stochasticity. In both 

types, the Pareto-optimal lattices form a narrow band where moderate 
levels of stochasticity yield enhanced crush energy absorption perfor
mance in both metrics. These findings reinforce our earlier observations: 
while highly disordered lattices rarely appear along the Pareto frontier, 
lattices with moderate stochasticity often achieve superior or at least 
non-inferior trade-offs. This observation suggests that controlled sto
chasticity may yield lattice architectures that simultaneously excel in 
both SEA and CFE, offering pathways toward design strategies that 
balance competing performance goals without compromising stiffness 
or weight constraints.

4. Discussion and conclusion

Lattice configurations on the Pareto frontier simultaneously achieve 
high SEA and CFE, illustrating that the interplay between randomization 

Fig. 5. (a) Representative snapshots of equivalent plastic strain (PEEQ) from the crushing simulations, including an enlarged view of the rigid plate (top) and a close- 
up of a forming plastic hinge (bottom). (b) A visual comparison of lattice modeling using beam-type B21 elements versus solid-type C3D8R elements. (c) The same 
lattice structure under various levels of compressive deformation, shown for both elastic-plastic (top series) and hyperelastic (bottom series) material models. (d) 
Corresponding Reaction force-Displacement curve.
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and deformation mechanisms can yield designs that excel both crush 
energy absorption dimensions. Results presented above demonstrate 
that controlled degrees of structural stochasticity can significantly in
fluence the crush energy absorption of lattice architectures. Our obser
vations suggest that neither perfectly periodic nor highly disordered 
configurations yield the best energy absorption performance. Instead, an 
intermediate level of randomness appears to promote superior crush 
energy absorption metrics, including both SEA and CFE.

To understand the underlying mechanisms that drive these phe
nomena, we examine the spatial distribution of deformation, the local
ization of deformation, and the resulting stress transfer within the 
lattice. Here, we revisit an important concept of “plastic hinge” that has 
been extensively used in traditional analysis of structural crashworthi
ness [61,62]. This concept stemmed from the observation that the large 
deformation during crash is highly localized in lines that undergo 
bending, rotating, and folding. The majority of structural energy ab
sorption is through these large-deformation mechanisms around the 
hinges. Therefore, the number of hinges and the degrees of rotation 
about them represent the total energy absorption.

Plastic-hinge formation is first extracted for elastic-plastic lattices by 
scanning the voxel mesh for contiguous clusters in which the element- 
wise equivalent plastic strain (PEEQ) exceeds 0.1. To filter out numer
ical noise, a hinge must span at least 2 × 2 × 2 = 8 elements, forming a 
cube that is two-voxel wide in each direction. This size matches the 
minimum ligament thickness that can realistically fold in the physical 
specimens. The PEEQ threshold of 0.1 is physically meaningful. For the 
elastic-plastic alloy considered, a plastic strain of approximately 10 % 
marks the onset of significant work-hardening. This strain level also 
corresponds to the appearance of sharp folds in the simulation snapshots 
(Fig. 5a). For the hyperelastic lattices that do not exhibit plastic defor
mation, we define the “hyperelastic hinge” as a cluster with at least 2 × 2 
× 2 = 8 elements with elastic strain energy density (ESEDEN) exceeding 
0.1. A sensitivity analysis using thresholds between 0.05 and 0.20 show 
that lower cutoffs tend to overestimate hinge counts. In those cases, the 
algorithm starts to mislabel diffuse bending regions, where deformation 
is spread broadly across the lattice rather than being concentrated at a 
narrow fold. Many elements may exhibit modest strain or energy 

density, but do not behave like a true hinge that can fold sharply and 
dissipate energy efficiently. In contrast, thresholds above 0.1 tend to 
miss actual fold zones. Although PEEQ and ESEDEN track different state 
variables, their values rise sharply where the lattice stores or dissipates 
most of the work. Hence plastic hinges in the elastic-plastic model and 
hyperelastic hinges in the hyperelastic model are mechanically equiva
lent indicators of the localized folding mechanisms that govern total 
energy absorbed. An example of the visualization of plastic hinges is 
shown in Fig. 5(a).

Fig. 9 confirms that the SEA for both diamond and honeycomb lat
tices scales almost linearly with the total number of hinges that form 
during progressive collapse. Each additional hinge supplies a compara
ble increment of dissipated work, so the SEA-hinge count curve mirrors 
the earlier stochasticity-hinge trend reported in Section 3. By definition, 
CFE is the ratio of the average reaction force to the peak force, and the 
hinge count alone provides no information about the geometry or timing 
of that peak. In other words, knowing how many hinges form does not 
indicate where and when they nucleate along the loading path. Conse
quently, two lattices with identical hinge numbers can display very 
different peak forces (and thus different CFEs), if their hinges nucleate at 
different locations or stages of collapse.

Figs. S6-S8 at Supporting Information show the evolutions of the 
strain energy density, displacement contour, and Von Mises stress, 
respectively, in hyperelastic diamond lattices with various degrees of 
stochasticity at different compressive strains. At a compressive strain of 
ε = 20 %, deformation initiates near the top surface with early hinge 
formation for all degrees of stochasticity. The hinges are more localized 
in periodic and highly stochastic lattices, but more diffuse in 
intermediate-stochastic lattices. The number of hinges increases sub
stantially at ε = 40 %. Clusters of hinges emerge in regions with irregular 
cells in highly stochastic lattices, leading to localized deformation zones 
and reduced SEA. By contrast, a broader distribution of hinges is 
observed in intermediate-stochastic lattices, leading to enhanced SEA. 
At ε = 60 %, hinges become more diffuse across the periodic and 
intermediate-stochastic lattices, while remaining highly localized in the 
upper region in highly stochastic lattices.

A similar trend is observed in the strain energy density, displacement 

Fig. 6. Influence of stochasticity on crush energy absorption metrics under equal-stiffness conditions. Plots compare SEA in unit length at multiple strain levels (20 
%, 40 %, 60 %, and 80 %) and CFE at 60 % strain for both elastic-plastic (top row) and hyperelastic (bottom row) material models in diamond and honeycomb 
lattices. The percentage of strain represents ratio between the compressed size and original size. Each point represents a distinct lattice configuration with the same 
stiffness (within a 1 % error margin) but varying degrees of geometric randomness. When the stochastic metric is 0, the structure is periodic.
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contour, and Von Mises stress in hyperelastic honeycomb lattices 
(Figs. S9-S11). With the increase of compressive strain, hinges evolve 
from initially localized near the top surface to more diffuse at increasing 
strains. Hinges are also more broadly distributed in periodic and 
intermediate-stochastic lattices, while more localized in highly sto
chastic lattices, which agree well with their corresponding SEA 
performances.

Compared to hyperelastic lattices, plastic lattices with periodic order 
and intermediate stochasticity show a different initiation of hinges 
(Figs. S12-S14 for diamond lattices and Figs. S15-S17 for honeycomb 
lattices): hinges first develop near the mid-plane and progressively 
diffuse towards the top and bottom with increasing compression. 
Correspondingly, these hinges are more diffuse and contribute to higher 
SEA in periodic and intermediate-stochastic lattices. By contrast, hinges 
are more localized in highly stochastic plastic lattices, similar to their 
hyperelastic counterparts, leading to lower SEA.

Overall, these observations allude to a generic toughening mecha
nism for enhanced SEA and CFE in lattices with different cell geometries: 
an intermediate level of lattice stochasticity leads to a more diffuse 
distribution of hyperelastic or plastic hinges, hence enhanced SEA and 
CFE performances. This mechanism is analogous to the well-developed 
toughening strategy for composites by introducing an intermediate de
gree of sacrificial bonds breaking for large-scale energy dissipation [63,
64]. Examples include fiber-reinforced composites with an intermediate 
level of weak fiber-matrix interfaces [65,66], and double-network 
elastomers or gels with an intermediate amount of physical cross
linkers [67,68].

In summary, moderate stochasticity alters deformation pathways by 
preventing the formation of a single dominant collapse mode and pro
moting a more diffuse distribution of hinges and local instabilities. This 
distributed deformation leads to higher and more stable energy ab
sorption, explaining the superior SEA and CFE observed at intermediate 
stochasticity levels across both topologies and material models. Moving 
forward, these insights can guide the development of new design stra
tegies for architected materials, where careful tuning of geometric 
randomness can yield robust, lightweight structures capable of with
standing extreme loading conditions.

Building on these findings, we will extend the disturbance model 
beyond the current approach to include a broader range of geometric 
and manufacturing-relevant perturbations. Future work will explore 
alternative noise distributions (e.g., Gaussian) and additional distur
bance modes such as variations in member dimensions, joint mis
alignments, and combined perturbations calibrated to realistic 
manufacturing tolerances. Furthermore, we will investigate the inter
action between designed stochasticity and process-induced variability in 
additive manufacturing (e.g., SLM, DLP), examining whether fabrication 
errors offset, amplify, or filter the intended randomness. These studies 
will help establish a process-aware framework linking designed and 
manufactured stochasticity for improved prediction and robustness of 
energy-absorbing performance.
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