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This work presents a systematic study of the relationship between structural stochasticity and the crush energy
absorption capability of lattice structures, with controlled stiffness and weight. We develop a Voronoi
tessellation-based approach to generate multiple series of lattice structures with either equal weight or equal
stiffness, smoothly transitioning from periodic to stochastic configurations for crush energy absorption analysis.
The generated lattice series fall into two categories, originating from periodic honeycomb and diamond lattice
structures. A new stochasticity metric is proposed for quantifying the structural stochasticity and is compared
with the state-of-the-art stochasticity metrics to ensure a consistent measurement. The crush energy absorption
properties are obtained using explicit finite element analysis and we observe similar stochasticity-property trends
in simulations using both elastic-plastic and hyperelastic materials. We report a new observation that an inter-
mediate level of stochasticity between periodic and high randomness leads to the best crush energy absorption
performance. Our analysis reveals that this optimal performance arises from enhanced activation of deformation

hinges, promoting efficient energy absorption.

1. Introduction

Recent advances in manufacturing have significantly enhanced the
precision of fabricated structural geometries, enabling the fabrication of
highly complex designs [1-5]. Concurrently, these advancements have
facilitated the application of various established structural optimization
methods, such as topology optimization [6-8] and machine learning
[9-111, to efficiently design metamaterials [12-15] and lattice struc-
tures [16-21] for superior performance. Meanwhile, while most existing
metamaterial microstructures are designed based on periodic unit cells,
stochastic (disordered) microstructures are gaining growing attractions
due to their unique characteristics, including lightweight [22], stiffness
[23], mechanical resilience [24,25], and programmable mechanics [26,
27]. However, the influence of structural randomness on performance
metrics related to large deformation, such as the ability of a structure to
absorb crush energy and limit peak loads during a collision, remains
poorly understood. While most prior studies of energy-absorbing lattices
have focused on through-thickness (out-of-plane) crushing of
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honeycomb-type cores, in-plane compression has also been widely
investigated [28,29], including for stochastic and Voronoi-based archi-
tectures [30,31]. The in-plane configuration adopted in this study cap-
tures the dominant deformation mechanisms relevant to crash energy
absorption while allowing efficient, high-throughput comparison across
stochasticity levels. This work systematically quantifies how controlled
degrees of structural stochasticity affect the crush energy absorption of
lattice structures at a constant stiffness or weight. It addresses a critical
knowledge gap, unexplored by prior studies that focused only on narrow
disorder ranges and reported contradictory trends.

Conversely, comparative studies in literature reveal mixed conclu-
sions regarding stochastic versus periodic lattices. Recent studies indi-
cate that introducing stochasticity to lattice structures can either reduce
or enhance certain mechanical performances compared to their periodic
counterparts. For example, structural stochasticity has been observed to
result in lower stiffness [32], higher tolerance to flaws in the plastic
regime [33], lower maximum stress when damages are introduced to the
structure [34], and higher strength and energy absorption capability
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[35]. However, a common limitation of these studies is their focus on a
narrow range of stochastic lattice types. This has limited the compre-
hensive, quantitative understanding of how structural stochasticity in-
fluences mechanical performance. An important question remains
unanswered: what is the benefit of introducing structural stochasticity
(also referred to as structural disorderliness, irregularity, or random-
ness) in the design of lattice structures?

Prior studies have also investigated the internal quantitative rela-
tionship among different aspects of structural stochasticity, measured
using stochasticity metrics [26,36-39] and structural mechanical per-
formances [40-52]. Most of these studies generate lattice structures
with varying levels of stochasticity by perturbing a honeycomb-type
periodic lattice structure (e.g., perturbing locations of cell centers or
lattice joint nodes), while maintaining a consistent number of lattice
cells, ranging from periodic to highly random. The conclusions of these
studies, which sometimes contradict each other, include the following:

e Higher stochasticity leads to lower elastic stiffness [40-44], tensile

strength [45,53], and hydrostatic strength [46], but higher plastic

collapse strength [42] and plateau crash pressure (better energy

absorption capability) [47].

Higher stochasticity accelerates the stress wave propagation and

reduces the plateau crash stress [48].

e A certain moderate level of structural stochasticity leads to the
highest strength, energy absorption [49,50], fracture toughness [45,
51,52], and plastic-collapse strength [44].

A few exceptions also exist in addition to the aforementioned studies
based on honeycomb-type lattice structures with constant numbers of
lattice cells. Christodoulou et al. [54] considered both the number of
lattice cells and the lattice weight. When the number of lattice cells is
kept invariant during structure generation by cell perturbation, the
lattice weight may vary significantly due to the variation in the total
length of cell edges (i.e., total length of lattice bars). It is reported that
higher stochasticity leads to lower elastic stiffness for low-weight lat-
tices but higher elastic stiffness for high-weight lattices. In addition,
higher stochasticity reduces the Mode-I toughness. Montiel et al. [55]
generated lattice structures with various levels of stochasticity based on
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triangular, square, and honeycomb initial structures. They also consid-
ered both the number of lattice cells and the degree of connection. Their
study shows that increasing structural stochasticity leads to lower elastic
stiffness in highly connected (triangular) lattices but higher elastic
stiffness in weakly connected (honeycomb) lattices. In a later work, Luan
et al. [56] reported the same trend in the relationship between nodal
connectivity and stiffness.

Apart from the contradictive conclusions of different literature, the
benefits of introducing stochasticity into lattice structures remain un-
clear. By varying the stochasticity of lattice structures, existing studies
have provided insights into trade-offs among stiffness, weight, and
nonlinear properties such as crash energy absorption. However, the
following question remains unanswered: what is the relationship be-
tween structural stochasticity and crush energy absorption, while
keeping the same stiffness or weight among different stochastic struc-
tures? As one of the most fundamental considerations in engineering
applications, the answer to this question will directly help to determine
how crush energy absorption can be improved without sacrificing
stiffness or weight.

This paper addresses the above question by providing insights into
the physical mechanism underlying the trends observed. We will
numerically study 2D lattice structures with varying levels of stochas-
ticity and quantify the relationship between structural stochasticity and
properties such as energy absorption and crash force efficiency. As
shown in Fig. 1, this research work includes three stages:

1. Data Generation and Sample Selection: We will generate a
comprehensive database of lattice structure samples, encompassing a
wide range of stochasticity levels. These lattice structures are created
using a specialized algorithm that introduces controlled randomness
into the geometric arrangement of the lattice elements. Once the
database is established, the elastic properties and mass of each
structure are evaluated for analysis in the subsequent stages.

2. Crushing Simulation: A carefully curated set of samples are selected
from the database, ensuring that either stiffness or weight is kept
constant while continuously varying the level of stochasticity. Based
on these samples, we will investigate the effect of structural sto-
chasticity on crush energy absorption while minimizing the influence
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Fig. 1. Schematic overview of the methodology and objectives. (a) A diverse database of lattice structures is created through the controlled generation of lattice
architectures with varying weight, stiffness, and levels of structural stochasticity. 40 lattice series with equal stiffness or equal weight are selected. (b) High fidelity
structure crush simulations are performed to assess their crush energy absorption properties. (c) Data analysis is performed to unveil the relationship between

structural stochasticity and crush energy absorption properties.
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of other factors. The selected samples are subjected to crushing
simulations using finite element analysis (FEA) under 2D compres-
sive loading conditions until a specified deformation level is reached.
These simulations capture the complex interactions between lattice
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. Data Analysis: In the final stage, we will analyze the extracted key

metrics from simulation data and establish their relationships with
the level of structural stochasticity. A discussion of the underlying
mechanisms is also provided.

elements during crushing, including progressive failures and energy
absorption. Key metrics such as force-displacement curves, specific 2.
energy absorption (SEA), and crash force efficiency (CFE) are
recorded throughout the simulations. These metrics offer valuable
insights into the performance of the lattice structures under crushing
loads, serving as the foundation for subsequent analysis.

Methodology
2.1. Lattice structure database generation

A comprehensive database of lattice structures is generated to
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Fig. 2. Top: Overview of the lattice generation process for database construction. Starting from simple periodic designs (top), controlled perturbations are introduced
to produce a database of Voronoi-based lattice structures with varying levels of stochasticity. Central perturbation and the resulting lattice structures generated by
applying uniform noise levels of 0.05, 0.15, and 0.8. The bottom side of the figure shows two serials of equal-weight or equal-stiffness with increasing stochasticity.
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systematically explore how varying degrees of stochasticity influence
stiffness and crush energy absorption. Starting from baseline periodic
designs such as periodic honeycomb and diamond patterns, structural
stochasticity is gradually introduced to create lattice ensembles that
continuously span from perfectly regular to highly stochastic
geometries.

Each lattice structure is treated as a cellular structure, where the
boundaries of the cell correspond to the lattice beams, and the interior
region of the cell corresponds to voids. Structural stochasticity is
introduced by perturbing cell center locations, and, consequently, the
cell boundaries through Voronoi tessellation.

Voronoi tessellation is the partitioning of a plane into regions based
on a given set of points, called seeds or centers. Each seed corresponds to
a region called a Voronoi cell, which consists of all points in the plane
that are closer to that seed than to any other seed. The formal definition
of a Voronoi cell is

Ry = x € X|d(x, P,) < d(x, P;), forallj # k, (@)

where Ry represents a specific Voronoi cell in the Voronoi diagram. x €

X means that x is a point in space X, where X is the entire plane or space
in which the Voronoi diagram is constructed. d(x,Py) < d(x,Pj) is a
condition that compares the distances between the point x and two
different seed points (centers) P, and P;. To ensure continuity and
eliminate edge effects, periodic boundary conditions are applied during
the generation of the lattice geometries. Controlled perturbations are
applied to the positions of these cell centers, using a Voronoi tessellation
approach to define the final lattice architecture.

By varying the magnitude of perturbation, we produce families of
lattices with varying stochasticity levels (irregularities). The effect of the
perturbation magnitude is shown in Fig. 2. In practice, we perturb the
coordinates of the cell centers of the periodic structure using a
displacement from an unbiased uniform distribution bounded by =+ b.
We sweep sixteen levels, b = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.10, 0.12, 0.14, 0.16, 0.18, 0.25, 0.30, and for each level
generate 500 independent realizations per topology using the same
perturbation rule, which results in 8000 stochastic lattice samples. In
addition to varying the perturbation magnitude, for each topology we
also consider three baseline cell sizes, defined as three center-to-center
distances for the perfect honeycomb and diamond configurations.

2.2. Crush energy absorption metrics

A widely applied metric for crush energy absorption is the Specific
Energy Absorption (SEA) [57,58], which measures the amount of energy
absorbed per unit weight of a structure (Fig. 3 left). SEA is mathemati-
cally defined as

F(e)de
SEAweight = /&7 (2)

m

where F(¢) is the force as a function of compressive strain ¢, and m is the
mass of the lattice structure.

Force

Force
|
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Since the simulated structures are represented as 2D line networks,
and the material density and the cross-sectional area of the beams are
constant in the comparative study, the total mass m is proportional to the
total length of all beams in the lattice structure. Accordingly, the SEA is
normalized by the total beam length rather than by mass as

B F(e)de
SEA B /'ZiE:1Lei7 (3)

where L,, represents the length of each beam. This 2D normalization
(SEA, in mJ/mm) provides a consistent basis for comparison among
samples. For reference, using a representative cross-sectional area of 6.4
x 107° mm? and proposed material properties from Table 2, the reported
SEA values can be converted to SEA,g; expressed in J/g by multiplying
by 5600.

The second metric used in this work is the Crash Force Efficiency
(CFE) [59]. CFE measures how effectively a structure maintains a
consistent force during deformation, which is crucial for controlled en-
ergy absorption and minimizing peak forces transmitted during a crash
(Fig. 3 right). CFE is formulated as

CFE = l;"mean’ (4)
peak

where Fpeqn is the mean crushing force and Fpeq is the peak crushing
force, evaluated before the structure enters the densification region.

For both SEA and CFE, higher values indicate better crush energy
absorption performances.

2.3. Stochastic metrics and their relationship

Prior studies have proposed various metrics for quantifying struc-
tural stochasticity, which are summarized in Table 1. The first three
metrics focus on connectivity and spatial arrangement of the lattice
cells. The fourth metric, Scaled Standard Deviation of Cell Areas,
directly quantifies variations in the size of individual Voronoi cells.
Structures with large variations in cell areas typically exhibit a wider
spectrum of local deformation modes, potentially affecting overall en-
ergy absorption capabilities.

In this work, we adopt the coefficient of variation of cell areas, which
is mathematically equivalent to the scaled standard deviation of Voronoi
cell areas, providing a normalized measure of spatial irregularity. as our
primary stochasticity measure and benchmark this metric against other
established metrics to ensure consistency in assessing the level of
structural stochasticity. We analyze one series of lattice structures with
increasing magnitude of perturbation (refer to the lattice structure
generation method in Section 2.1) and evaluate the stochasticity metric
values for all samples (Fig. 4). Although each metric is derived from a
distinct aspect of the geometry such as cell connectivity, spacing regu-
larity, or cell size variability, they exhibit strong correlation. Structures
featuring significant irregularities in cell area also display heightened
fluctuations in cell-to-cell spacing and local neighbor counts. Such cross-
metric consistency indicates that choosing different structural

Densification Region

Strain

Strain

Fig. 3. Visualization of crush energy absorption metric. The x-axis is compressive strain; the y-axis shows (a) SEA and (b) CFE.
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Table 1
Summary of stochasticity metrics.

Stochasticity Metric Property of Interest

Mathematical Expression
Variance of the Number

2 =
of Neighboring Cells, N Ty Z' 1 —)*
o .
N HN = 7 Luiz IN
N;: Number of neighbors of
the i th Voronoi cell

py: Mean number of

Fracture paths [52]

neighbors
n: Total number of cells
Variance of the Distance Z Fracture paths [52]
Between Neighbor k= 1 ”D
i 62
Cell Nuclei, o3, Hp == Zk 1 D

Dy: Distance between the k-
th pair of neighboring nuclei
up: Mean distance between
neighbor nuclei

m: Total number of
neighboring pairs

Normalized Minimum EE" Do Fracture toughness
Distance Between PR i [49], tensile strength
Neighbor Cell Nuclei 6 Hp [45], crack toughening

Dj min: Minimum distance [45], elastic moduli
between the nucleus of celli  [40)]

and its neighbors

pp: Mean distance between

neighbor nuclei (from Metric

2)
n: Total number of cells
STD of Cell Areas Scaled Ga =10y = {LA> Energy absorption
by the Number of Ha
Cells, 64 (proposed in if Z;’:l Ai=1
this work; equivalent — 2
to CV of cell areas) A =\~ Zu (Ai — pa)

A;: Area of the i th Voronoi
cell

Ua: Mean cell area

o,4: Standard deviation of cell
areas

n: Total number of cells
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Fig. 4. Comparison of stochasticity metrics for a series of equal-
stiffness structures.

stochasticity metrics will not change the final conclusion regarding the
structural stochasticity-property relationship. It is important to note that
cells adjacent to the domain boundaries are excluded from the sto-
chasticity evaluation to minimize boundary artifacts and obtain more
representative results.

To further interpret this metric across the dataset of 16,000 lattice
structures, we used the 50th percentile (median) value of 0.234 as the
threshold separating moderate and high stochasticity levels. A lower
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bound of 0.01 was also applied to define the periodic limit, ensuring that
minor numerical perturbations near zero were not misclassified as sto-
chastic variations.

2.4. Simulation of structural stiffness and crush energy absorption

Stiffness Characterization Simulation: To determine the elastic
stiffness of each lattice structure, we first conduct quasi-static tensile
tests using Abaqus/Standard (Implicit). Each generated lattice configu-
ration is discretized using Timoshenko beam elements (B21), which are
two-dimensional beam elements incorporating shear deformation ef-
fects. The simulations are performed within the linear elastic regime,
employing a relatively infinitesimal strain increment of approximately
0.01 %. From the resulting stress-strain curves, we extract the slope in
the linear region to obtain the stiffness of each structure.

Crushing Simulation: The crushing response of selected lattice
samples is investigated using Abaqus/Explicit. In this stage, the lattices,
originally scaled to an effective length of 1 mm, are discretized into
three-dimensional, reduced-integration brick elements (C3D8R). To
simulate compressive loading, the lattice is placed between two rigid
plates. The lower plate is fully fixed, while the upper plate is driven
downward to impose compressive deformation. This loading results in
up to 80 % strain, applied at quasi-static strain rate of approximately
757!, ensuring negligible inertial effects. To prevent out-of-plane
deformation and potential buckling, the lattices are constrained to
remain in the XY plane. The reaction force measured at the reference
point of the top plate provides the force-displacement data necessary for
evaluating the crush energy absorption metrics. Fig. 5(b) presents a
comparison between beam and brick elements, and Fig. 5(c) illustrates a
comparison between elastic-plastic and hyperelastic materials under
varying strain levels. Experimental validation of the simulation model is
provided in the Supplemental Information.

Two material models are investigated in this study. The first is an
elastic-plastic model for an aluminum alloy (Al-6101 T6) and the second
is a hyperelastic model for an elastomer [60]. The specific material
properties are provided in Table 2. The Ogden-based hyperelastic model
employed in these simulations is characterized by a set of material
constants in the following constitutive model:

2

U=
a?

N .
I T e —3) Z I —1)%, 5)
i=1

i

Where /; are the deviatoric principal stretches, N is the number of
terms in the summation series, y;, a;, and D; are material constants, and

Table 2

Representative mechanical properties of the elastic-plastic material model (Al-
6101 T6) and parameters for the Ogden-based hyperelastic material model used
in the simulation, including shear-like moduli (i, g, ), nonlinear exponents (a; ,
a5 ), volumetric compressibility parameters (D;, D;), and material density.

Elastic-plastic Material Model

Property Value
Density 2.79 g/cm®
Elastic

Young’s Modulus (E) 68,900 MPa
Poisson’s Ratio 0.33
Plastic

Yield Strength 193 MPa
Ultimate Tensile Strength 221 MPa
Plastic Strain 0.17
Hyperelastic Material Model

" 0.4055 MPa
ay 2.4580

Dy 6.1616E-3 MPa '
Ho 6.1298 MPa
a —1.9004

D, 0Mpa !
Density 1 g/cm?®
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J¢ is the elastic volume ratio.

2.5. Generated lattice series of equal stiffness or equal weight

A major contribution of this work is the isolation of two factors,
weight and stiffness, in investigating the relationship between structural
stochasticity and large deformation behaviors during structure crushing.
Weight defines the total amount of material in a structure and stiffness
(Young’s modulus) determines the linear elastic response of the struc-
ture. The elastic properties of each lattice sample are determined
through stiffness characterization simulations, while the weight is esti-
mated by summing the lengths of the beams, given that all beams have
the same diameter.

Selecting from the large lattice structure database, we obtain 10
series of structures with nearly identical weight (within 1 % error) and
another 10 series with nearly identical stiffness (also within 1 % error)
relative to the baseline periodic honeycomb and diamond lattices. Each
of these series includes 7 structures and spans a broad range of sto-
chasticity, measured by the variation in cell areas. As illustrated in
Section 2.3, a stochasticity metric of zero indicates that all Voronoi cells
have nearly identical areas, corresponding to two periodic arrange-
ments. As stochasticity increases, the variability in cell sizes grows,
leading to more irregular and diverse cell structures.

It is important to note that stochastic structures with identical stiff-
ness or weight as the base structure can be relatively rare at certain
levels of stochasticity. Consequently, we identify a total of 230 unique
structures from the 8500 lattice samples that meet the equal-stiffness or
equal-weight requirements. With these 230 structures, 20 series of lat-
tice structures with increasing stochasticity (ranging from periodic to
highly random) are created for the crush energy absorption analysis
throughout the remainder of the study. The detailed structures of the 20
series are provided in the supporting materials.

3. Results
3.1. Stochasticity-crush energy absorption relationship: equal stiffness

For elastic-plastic lattices, honeycomb-based and diamond-based
lattice series exhibit slightly different trends in the relationship be-
tween structural stochasticity and SEA. The honeycomb-based lattices
exhibit an increase-decrease trend in SEA with increasing structural
stochasticity. The largest SEA is observed at a moderate stochasticity
level, though with large sample-to-sample variance. The diamond-based
lattices achieve the highest SEA at a low stochasticity level, followed by
a decreasing trend in SEA as stochasticity increases. Significant sample-
to-sample variations are also observed in the diamond-based lattice se-
ries, suggesting that at certain levels of structural stochasticity, indi-
vidual samples may outperform or underperform the periodic lattice. It
also suggests that the benefits of stochasticity in diamond-based lattices
are less predictable and may depend more sensitively on the specific
structural patterns.

For hyperelastic lattices, honeycomb-based and diamond-based lat-
tice series exhibit similar trends in the relationship between structural
stochasticity and SEA. For honeycomb lattices, introducing a certain
level of structural stochasticity improves SEA compared to the perfectly
periodic structure, albeit with increased sample-to-sample variability.
For diamond-based lattices, introducing structural stochasticity induces
significantly larger sample-to-sample variations. Some stochastic sam-
ples achieve better SEA than the perfectly periodic structure, while
others at the same stochasticity level perform worse. This large variance
suggests that the benefits of stochasticity in the diamond-based lattices
are less predictable and may depend more sensitively on the specific
structural patterns.

To quantify the robustness of these trends, non-parametric permu-
tation tests and effect size analyses were performed in Supplemental
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Information. For the equal-stiffness configurations, the moderate sto-
chasticity group exhibits statistically significant improvement in SEA (p
< 0.05 in 7-8 of 8 contrasts) with large effect sizes (§ ~ 0.7-0.9). These
results confirm that the observed performance enhancement is repro-
ducible and not due to random sampling variations.

If measuring the crush energy absorption using the CFE metric, the
periodic honeycomb configuration delivers the highest performance for
both elastic-plastic and hyperelastic materials, followed by a general
decrease as structural stochasticity increase. The diamond lattices,
however, present a more complex trend. When the base material is
elastic-plastic, no clear trend is observed. Increasing structural sto-
chasticity can either raise or lower the CFE value, underscoring that the
benefit of randomness may be specific configuration-dependent. When
the base material is hyperelastic, a decreasing trend is observed as sto-
chasticity increases. The relationship between stochasticity and SEA/
CFE under equal-stiffness conditions is illustrated in Fig. 6.

To summarize, when stiffness is held constant, increasing structural
stochasticity of the diamond-based lattice to a certain level can achieve
the highest crush energy absorption performances, measured by either
SEA or CFE. Meanwhile, it is observed that highly stochastic structures
do not yield the best performance. Increasing structural stochasticity of
the honeycomb-based lattice to a moderate level result in the highest
SEA value. However, the overall trend of CFE decreases as stochasticity
increases. This finding holds for both elastic-plastic and hyperelastic
base material properties.

3.2. Stochasticity-crush energy absorption relationship: equal weight

For elastic-plastic lattices, introducing structural stochasticity to
honeycomb-based lattices leads to improvement in SEA, as well as large
sample-to-sample variations. Introducing structural stochasticity to
diamond-based lattices leads to a generally upward trend in SEA, but
with significant sample-to-sample variances. As a result, certain sto-
chastic configurations outperform the periodic reference structure,
whereas others fall below. For both honeycomb-based and diamond-
based series, samples with the highest SEA are observed at moderate
levels of stochasticity.

For hyperelastic lattices, the honeycomb lattices exhibit a more
complex stochasticity-SEA relationship. Although an initial increase in
SEA is observed at low stochasticity levels, a general downward trend in
SEA emerges as stochasticity increases. At high compressive strain (80
%), the large sample-to-sample variance in SEA obscures any clear
pattern, indicating that increasing structural stochasticity can either
increase or decrease SEA, depending on specific structural patterns. The
diamond-based lattices also exhibit significant sample-to-sample vari-
ance as structural stochasticity increases. The statistical analysis also
confirms that the performance advantage of moderate stochasticity di-
minishes under the equal-weight constraint. Only a few contrasts ach-
ieve statistical significance (p < 0.05), and the corresponding effect sizes
are smaller (8 ~ 0.3-0.5), indicating a weaker but still measurable
improvement. However, a general trend emerges, with peak SEA values
observed at moderate levels of stochasticity.

When measuring crush energy absorption using the CFE metric, the
periodic honeycomb configuration delivers the highest performance for
both elastic-plastic and hyperelastic materials, followed by a general
decrease as structural stochasticity increase. On the other hand, in the
diamond-based lattices, the highest and the lowest CFE values are ach-
ieved at moderate structural stochasticity levels. The relationship be-
tween stochasticity and SEA/CFE under equal-weight conditions is
illustrated in Fig. 7.

In summary, we observe the same trend in the equal weight case as in
the equal stiffness case. Increasing structural stochasticity of the
diamond-based lattice to a certain level can achieve the highest crush
energy absorption performance, measured by either SEA or CFE, while
highly stochastic structures do not yield the best performance.
Increasing the structural stochasticity of the honeycomb-based lattice to
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a moderate level results in the highest SEA value. However, the overall
trend of CFE decreases as stochasticity increases. This finding holds for
both elastic-plastic and hyperelastic base material properties.

3.3. Interplay among stiffness, weight, and crush energy absorption

To elucidate the interplay between stiffness, weight, and crush en-
ergy absorption metrics, we analyze representative lattice structure
samples on Pareto frontiers. These frontiers were identified based on two
key crush energy absorption metrics, SEA and CFE, at 80 % strain. Pareto
frontier identifies lattice configurations that cannot be improved in one
performance metric without sacrificing the other, thus capturing the
optimal balance between these competing objectives.

Fig. 8 shows the Pareto frontiers for both honeycomb-based and
diamond-based lattices under varying levels of stochasticity. In both
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types, the Pareto-optimal lattices form a narrow band where moderate
levels of stochasticity yield enhanced crush energy absorption perfor-
mance in both metrics. These findings reinforce our earlier observations:
while highly disordered lattices rarely appear along the Pareto frontier,
lattices with moderate stochasticity often achieve superior or at least
non-inferior trade-offs. This observation suggests that controlled sto-
chasticity may yield lattice architectures that simultaneously excel in
both SEA and CFE, offering pathways toward design strategies that
balance competing performance goals without compromising stiffness
or weight constraints.

4. Discussion and conclusion

Lattice configurations on the Pareto frontier simultaneously achieve
high SEA and CFE, illustrating that the interplay between randomization
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and deformation mechanisms can yield designs that excel both crush
energy absorption dimensions. Results presented above demonstrate
that controlled degrees of structural stochasticity can significantly in-
fluence the crush energy absorption of lattice architectures. Our obser-
vations suggest that neither perfectly periodic nor highly disordered
configurations yield the best energy absorption performance. Instead, an
intermediate level of randomness appears to promote superior crush
energy absorption metrics, including both SEA and CFE.

To understand the underlying mechanisms that drive these phe-
nomena, we examine the spatial distribution of deformation, the local-
ization of deformation, and the resulting stress transfer within the
lattice. Here, we revisit an important concept of “plastic hinge” that has
been extensively used in traditional analysis of structural crashworthi-
ness [61,62]. This concept stemmed from the observation that the large
deformation during crash is highly localized in lines that undergo
bending, rotating, and folding. The majority of structural energy ab-
sorption is through these large-deformation mechanisms around the
hinges. Therefore, the number of hinges and the degrees of rotation
about them represent the total energy absorption.

Plastic-hinge formation is first extracted for elastic-plastic lattices by
scanning the voxel mesh for contiguous clusters in which the element-
wise equivalent plastic strain (PEEQ) exceeds 0.1. To filter out numer-
ical noise, a hinge must span at least 2 x 2 x 2 = 8 elements, forming a
cube that is two-voxel wide in each direction. This size matches the
minimum ligament thickness that can realistically fold in the physical
specimens. The PEEQ threshold of 0.1 is physically meaningful. For the
elastic-plastic alloy considered, a plastic strain of approximately 10 %
marks the onset of significant work-hardening. This strain level also
corresponds to the appearance of sharp folds in the simulation snapshots
(Fig. 5a). For the hyperelastic lattices that do not exhibit plastic defor-
mation, we define the “hyperelastic hinge” as a cluster with at least 2 x 2
x 2 = 8 elements with elastic strain energy density (ESEDEN) exceeding
0.1. A sensitivity analysis using thresholds between 0.05 and 0.20 show
that lower cutoffs tend to overestimate hinge counts. In those cases, the
algorithm starts to mislabel diffuse bending regions, where deformation
is spread broadly across the lattice rather than being concentrated at a
narrow fold. Many elements may exhibit modest strain or energy
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density, but do not behave like a true hinge that can fold sharply and
dissipate energy efficiently. In contrast, thresholds above 0.1 tend to
miss actual fold zones. Although PEEQ and ESEDEN track different state
variables, their values rise sharply where the lattice stores or dissipates
most of the work. Hence plastic hinges in the elastic-plastic model and
hyperelastic hinges in the hyperelastic model are mechanically equiva-
lent indicators of the localized folding mechanisms that govern total
energy absorbed. An example of the visualization of plastic hinges is
shown in Fig. 5(a).

Fig. 9 confirms that the SEA for both diamond and honeycomb lat-
tices scales almost linearly with the total number of hinges that form
during progressive collapse. Each additional hinge supplies a compara-
ble increment of dissipated work, so the SEA-hinge count curve mirrors
the earlier stochasticity-hinge trend reported in Section 3. By definition,
CFE is the ratio of the average reaction force to the peak force, and the
hinge count alone provides no information about the geometry or timing
of that peak. In other words, knowing how many hinges form does not
indicate where and when they nucleate along the loading path. Conse-
quently, two lattices with identical hinge numbers can display very
different peak forces (and thus different CFEs), if their hinges nucleate at
different locations or stages of collapse.

Figs. S6-S8 at Supporting Information show the evolutions of the
strain energy density, displacement contour, and Von Mises stress,
respectively, in hyperelastic diamond lattices with various degrees of
stochasticity at different compressive strains. At a compressive strain of
& = 20 %, deformation initiates near the top surface with early hinge
formation for all degrees of stochasticity. The hinges are more localized
in periodic and highly stochastic lattices, but more diffuse in
intermediate-stochastic lattices. The number of hinges increases sub-
stantially at ¢ = 40 %. Clusters of hinges emerge in regions with irregular
cells in highly stochastic lattices, leading to localized deformation zones
and reduced SEA. By contrast, a broader distribution of hinges is
observed in intermediate-stochastic lattices, leading to enhanced SEA.
At ¢ = 60 %, hinges become more diffuse across the periodic and
intermediate-stochastic lattices, while remaining highly localized in the
upper region in highly stochastic lattices.

A similar trend is observed in the strain energy density, displacement
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(within a 1 % error margin) but varying degrees of geometric randomness.

contour, and Von Mises stress in hyperelastic honeycomb lattices
(Figs. S9-S11). With the increase of compressive strain, hinges evolve
from initially localized near the top surface to more diffuse at increasing
strains. Hinges are also more broadly distributed in periodic and
intermediate-stochastic lattices, while more localized in highly sto-
chastic lattices, which agree well with their corresponding SEA
performances.

Compared to hyperelastic lattices, plastic lattices with periodic order
and intermediate stochasticity show a different initiation of hinges
(Figs. S12-S14 for diamond lattices and Figs. S15-S17 for honeycomb
lattices): hinges first develop near the mid-plane and progressively
diffuse towards the top and bottom with increasing compression.
Correspondingly, these hinges are more diffuse and contribute to higher
SEA in periodic and intermediate-stochastic lattices. By contrast, hinges
are more localized in highly stochastic plastic lattices, similar to their
hyperelastic counterparts, leading to lower SEA.

Overall, these observations allude to a generic toughening mecha-
nism for enhanced SEA and CFE in lattices with different cell geometries:
an intermediate level of lattice stochasticity leads to a more diffuse
distribution of hyperelastic or plastic hinges, hence enhanced SEA and
CFE performances. This mechanism is analogous to the well-developed
toughening strategy for composites by introducing an intermediate de-
gree of sacrificial bonds breaking for large-scale energy dissipation [63,
64]. Examples include fiber-reinforced composites with an intermediate
level of weak fiber-matrix interfaces [65,66], and double-network
elastomers or gels with an intermediate amount of physical cross-
linkers [67,68].

In summary, moderate stochasticity alters deformation pathways by
preventing the formation of a single dominant collapse mode and pro-
moting a more diffuse distribution of hinges and local instabilities. This
distributed deformation leads to higher and more stable energy ab-
sorption, explaining the superior SEA and CFE observed at intermediate
stochasticity levels across both topologies and material models. Moving
forward, these insights can guide the development of new design stra-
tegies for architected materials, where careful tuning of geometric
randomness can yield robust, lightweight structures capable of with-
standing extreme loading conditions.

Building on these findings, we will extend the disturbance model
beyond the current approach to include a broader range of geometric
and manufacturing-relevant perturbations. Future work will explore
alternative noise distributions (e.g., Gaussian) and additional distur-
bance modes such as variations in member dimensions, joint mis-
alignments, and combined perturbations calibrated to realistic
manufacturing tolerances. Furthermore, we will investigate the inter-
action between designed stochasticity and process-induced variability in
additive manufacturing (e.g., SLM, DLP), examining whether fabrication
errors offset, amplify, or filter the intended randomness. These studies
will help establish a process-aware framework linking designed and
manufactured stochasticity for improved prediction and robustness of
energy-absorbing performance.
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