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Abstract

The diameter of a graph is a fundamental topological parameter
that provides valuable insight needed in multiple areas of graph
analytics. The traditional approach to computing the diameter is
solving the all-pairs shortest-paths problem (APSP). Since APSP has
a time complexity that is at least quadratic in the size of the graph, it
is impractical for large graphs. As a remedy, leading algorithms use
Breadth-First Search (BFS) combined with various optimizations
to limit the number of BFS calls required to find the diameter. We
present a new algorithm called F-Diam for quickly computing the
exact diameter of large graphs. It includes new techniques such as
Winnowing to greatly reduce the number of BES calls. Our parallel
CPU implementation of F-Diam is faster than the state of the art
on all tested inputs, often by orders of magnitude.
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1 Introduction

The diameter of a graph describes the length of the longest of all
shortest paths between any two vertices of the graph. In other
words, no matter which vertex we start from, we can always reach
all other vertices by traversing no more than diameter edges. For
instance, the graph in Figure 1 has a diameter of 2 because no vertex
is more than two edges away from any other vertex.

The eccentricity of a vertex is the length of the longest shortest
path starting at that vertex. For example, vertex A in Figure 1 has an
eccentricity of 1 because all other vertices are just one edge away.
For the same reason, vertex D also has an eccentricity of 1. However,
vertex B has an eccentricity of 2 because we must minimally traverse
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2 edges to reach vertex C, which is the longest shortest path in this
case. Symmetrically, vertex C also has an eccentricity of 2. As a
consequence, this graph has a diameter of 2 because the diameter
is always equal to the largest eccentricity.

In graph analytics, the diameter of a graph is a key property. For
instance, in communication networks, it indicates the maximum
message delay [12], in social networks, it shows how closely con-
nected the individuals are [8], in protein-interaction networks, it
provides insight into the efficiency of biological processes [13], and
in computing, it determines the length of the critical path [20].

The diameter is typically computed using the All-Pairs Shortest-
Path (APSP) algorithm [3], which can be broken down into many
Single-Source Shortest Path (SSSP) problems [15], which amount
to Breadth-First Searches (BFS) on unweighted graphs. These ap-
proaches run in O(nm) time on graphs with n vertices and m edges.
However, real-world graphs often contain millions of vertices and
edges or more, making the APSP approach impractical. Some algo-
rithms specialize in specific classes of graphs [21] or assume the
graph to be directed or weighted [5]. Our work targets undirected,
unweighted, sparse graphs as is done in the majority of the related
work. Since the diameter of a disconnected graph is infinite, our im-
plementation outputs infinity as well as the diameter of the largest
connected component in case of a disconnected input.

Prior work includes various optimizations to minimize the num-
ber of BFS calls, that is, to improve performance. A common ap-
proach is to update lower and upper bounds of eccentricities across
the graph as the computation progresses. When the upper and
lower bounds become equal, the program terminates. However,
these updates can be costly as each of them generally involves a
traversal of the entire graph. Moreover, the worst case still requires
O(nm) work.

A B

C D

Figure 1: Example of a graph with a diameter of 2

In this paper, we present the F-Diam algorithm as well as our
parallel CPU implementation thereof. F-Diam is a new algorithm
for computing the exact diameter of large graphs. It incorporates
novel optimizations, including Winnowing and Chain Processing,
to minimize the amount of work performed. Based on the result
of just 2 initial BFS calls to compute the eccentricity of a couple of
vertices, Winnowing eliminates a set of vertices whose eccentric-
ities do not need to be evaluated. This set often covers over 90%
of the graph. Winnowing is accomplished using only a partial BFS
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rather than traversing the entire graph. Next, F-Diam computes
the eccentricities of some of the remaining vertices. With every
new highest eccentricity that it finds, it incrementally winnows and
eliminates even more vertices. It terminates when no vertices are
left. Its worst-case time complexity is O(nm), i.e., the same as that
of the state of the art. However, in practice, F-Diam consistently
provides a large speedup compared to prior work.
This paper makes the following main contributions.

e It introduces F-Diam, an exact diameter-finding algorithm
that incorporates the novel Winnowing and Chain Process-
ing techniques to minimize graph traversals.

o It describes key optimizations, including incremental exten-
sion of the set of vertices whose eccentricity does not need
to be computed.

o It shows that our parallel CPU code outperforms the fastest
prior diameter-finding codes on all tested inputs, in many
cases by orders of magnitude.

Our OpenMP implementation is freely available in open source
at https://github.com/burtscher/F-Diam.git

The rest of the paper is organized as follows. Section 2 summa-
rizes related work. Section 3 describes background information.
Section 4 details the implementation of our approach. Section 5
discusses our experimental methodology. Section 6 presents and
analyzes the results. Section 7 concludes the paper with a summary.

2 Related Work

One of the first public implementations for computing the diameter
of a graph is iFUB [4]. The algorithm starts with a random vertex or
the vertex with the highest degree. From this starting vertex, 2 BFS
calls are performed to find 2 vertices that are maximally far apart
from each other. Along the path between the two, a third vertex is
selected from where this process is started again. Totaling 4 BFS
calls, a final “central” vertex is found whose eccentricity is close
to the radius of the graph, where the radius refers to the smallest
eccentricity. This 4-SWEEP algorithm is used to determine a lower
bound for the diameter. Next, iFUB calculates the eccentricities
of vertices in groups called fringe sets, which are vertices at a
certain distance from the starting vertex. Based on the distances
in the BFS tree, the algorithm can terminate early and set upper
bounds for the eccentricity of vertices in fringe sets, limiting the
number of BFS calls. We only use 2 BFS calls to determine the initial
bound for the diameter and update it dynamically. Moreover, we
introduce Winnowing to eliminate vertices, which we found to be
more effective than early termination and fringe sets.

Pennycuff et al. [14] propose a new algorithm to measure the di-
ameter of an unweighted graph using vertex-centric programming.
Their parallel implementation computes the eccentricity of every
vertex simultaneously by assigning a thread to each vertex and
sending messages to the vertex’s neighbors. Each message includes
a history to prevent it from being re-propagated through the graph.
When no further messages are propagated, the largest eccentricity
has been computed. The authors mention that their approach runs
out of memory for larger graphs and that, for smaller graphs, a non-
parallelized APSP version is faster. Although their vertex-centric
approach provides large amounts of parallelism, it is impractical
for many real-world graphs due to memory constraints.
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The Graph-Diameter work [1] presents a novel approach for
computing the diameter of directed graphs. The algorithm uses a
double sweep, starting from a random vertex, to find vertices on the
opposite ends of a shortest path. This yields an initial lower bound
of the diameter. An upper bound is computed using the triangle
inequality in strongly connected components, which asserts that,
for any pair of vertices x and y, ecc(x) < d(x,y) + ecc(y), where
d(x,y) is the length of the shortest path from x to y and ecc(v) is the
eccentricity of vertex v. The algorithm maintains an upper bound
on the eccentricity for each vertex and updates it with further BFS
traversals of the graph, skipping vertices whose upper bounds are
less than the lower bound of the diameter. F-Diam includes some
of these ideas but eliminates vertices using partial BFS traversals.

Takafuji et al. [18] introduce a GPU version of the blocked Floyd-
Warshall algorithm to compute the length of the shortest path
between all pairs of vertices in a directed graph. They call this the
“single kernel” implementation. They report a speedup of 1.02X to
1.09% on graphs with up to 32768 vertices. They accomplish the
single-kernel implementation by partitioning the adjacency matrix
used to represent the graph into tiles. A CUDA block is thus able to
execute the parallel Floyd-Warshall algorithm for a number of tiles
in stages without synchronization. They show higher speedups for
smaller graphs. In contrast, F-Diam uses the compressed-sparse-row
(CSR) representation [7] to fit sparse graphs with many millions of
vertices and edges into the main memory.

Korf [10] presents a novel algorithm for finding the diameter of
an undirected graph using partial BFS traversals. This approach
takes advantage of the observation that larger eccentricities can
only be found between two vertices that have not been starting
vertices of earlier BFS calls. This involves maintaining a set S of
active vertices. Each BFS traversal terminates as soon as all vertices
in S have been visited. Upon termination, the starting vertex is
removed from S. A parallel version of this algorithm was found to
deliver speedups of up to 5x over complete BFS traversals. We do
not use this optimization because we found early termination to
hurt performance as it conflicts with our new techniques.

We have implemented, empirically evaluated, and adopted sev-
eral of the aforementioned state-of-the-art optimizations. However,
they do not sufficiently address the large number of BFS calls. To
further reduce the number of these calls in an efficient and paral-
lelizable manner, we devised Winnowing and Chain Processing.

3 Background

In this paper, we consider graphs G = (V, E) containing V| = n
vertices and |E| = m edges that are undirected and unweighted.
When describing the distance d(x, y) between two vertices x,y € V,
we refer to the number of edges that must minimally be traversed to
reach one vertex from the other. We call each traversal of an edge
a step. For example, if the two vertices are adjacent, they are 1 step
away from each other, meaning their distance is 1.

We denote the eccentricity of a vertex v € V by ecc(v). As men-
tioned, the eccentricity is defined as the largest shortest distance,
that is, ecc(v) = maxyey (d(v,x)). The diameter of a graph is the
maximum eccentricity, that is, diam(G) = maxycy (ecc(v)). Ver-
tices with eccentricities close to the diameter represent the graph’s
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periphery. Since the diameter of a disconnected graph is infinite,
we focus on connected graphs in this background section.

The following paragraphs describe known theorems about ec-
centricities. We exploit them to find vertices whose eccentricity
does not need to be computed while still guaranteeing that we will
find the largest eccentricity, i.e., the true diameter of the graph.

THEOREM 1. The eccentricity of two adjacent vertices x,y € V
cannot differ by more than 1, that is, ecc(y) —1 < ecc(x) < ecc(y)+1
and ecc(x) — 1 < ecc(y) < ecc(x) + 1.

Proof: Since x and y are adjacent, d(x,y) = 1. Given that G is
a connected graph, for all v € V, we can find a path from x to v
through y by combining the two shortest paths x — y and y — o,
which have lengths d(x, y) and d(y,v), respectively. Since d(x, v)
is the length of the shortest path between x and v, we know that
d(x,v) < d(x,y) +d(y,0) = 1+ d(y,v). By definition, d(y,v) <
ecc(y). Adding 1 on both sides, we find 1 + d(y,v) < 1+ ecc(y).
Hence, d(x,v) < 1+d(y,v) < 1+ ecc(y) must hold for allv € V,
including the v that is the farthest away from x, in which case
d(x,v) = ecc(x). Putting everything together, we obtain ecc(x) <
1+ ecc(y). Subtracting 1 on both sides yields ecc(x) — 1 < ecc(y).
Symmetrically, by swapping x and y, we get ecc(y) < 1+ ecc(x)
and ecc(y) — 1 < ecc(x), proving Theorem (1).

Once the eccentricity of a vertex v has been determined, we can
use Theorem (1) to compute an upper bound of the eccentricity of
every other vertex z. Specifically, if z is s steps away from v, the
eccentricity of z must be ecc(z) < ecc(v) +s. We use this fact to
discard all vertices from consideration' whose upper bound is less
than or equal to the largest eccentricity computed so far, as they
cannot yield a higher eccentricity.

THEOREM 2. Any connected graph G with at least two vertices
has two or more vertices with maximum eccentricity, that is, Ix,y € V
such that x # y and ecc(x) = ecc(y) = diam(G).

Proof: A connected graph with at least two vertices contains
at least one edge. The end-point vertices of this edge are adjacent
and have a distance of 1 (see above). Therefore, the diameter of
the graph must be at least 1. Since the diameter is the largest ec-
centricity of any vertex in the graph, there must be at least one
vertex x for which ecc(x) = diam(G). Let y be a vertex that is
ecc(x) steps away from x. Per the definition of the eccentricity,
such a vertex must exist. Moreover, y cannot be x as d(x,x) = 0
and we already established that the diameter is at least 1. Since the
graph is undirected, d(x,y) = d(y, x) holds, meaning that ecc(y) is
at least as large as ecc(x). But ecc(x) is the largest eccentricity in
the graph. Therefore, ecc(y) = ecc(x) must hold, and we found a
second vertex with the highest eccentricity, proving Theorem (2).

We use Theorem (2) to safely discard vertices from consideration
for which we can guarantee that another vertex with the same
eccentricity is still being considered. This is the key new insight
behind our Winnowing technique. It is more powerful than prior
approaches because it is the first technique that can safely discard
some vertices with eccentricities that are higher than the current
bound for the diameter.

IThroughout this paper, “removing a vertex from consideration” means we do not have

to compute its eccentricity, but the vertex remains in the graph and can be traversed
during the eccentricity calculations of other vertices.
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THEOREM 3. The smallest eccentricity in any connected graph is
at least half of the diameter, that is, minycy (ecc(v)) = diam(G)/2.

Proof: Assume we have a vertex x whose eccentricity is less than
half of the diameter d. This means all vertices can be reached from
x in fewer than d/2 steps. Since we consider undirected graphs,
this also means that all vertices can reach x in fewer than d/2 steps.
Therefore, all vertices can reach all other vertices via x in fewer
than d/2+d/2 = d steps, contradicting that d is the diameter of the
graph. Hence, no vertex with an eccentricity of less than half the
diameter can exist, proving Theorem (3).

Winnowing uses Theorem (3) in combination with Theorem (2)
to discard all vertices from consideration that are within d/2 steps
of an arbitrary vertex u. This approach is most beneficial if u has the
smallest eccentricity (called the radius of the graph), that is, if u is a
“center” vertex. Finding such a vertex is as expensive as computing
the diameter. Instead, we use the highest-degree vertex as it tends
to be centrally located. For the same reason, the highest-degree
vertex is sometimes used as the starting vertex in related work [4]
and as a potentially central vertex in studies on core-periphery
structures in networks [16].

In the rest of this paper, we denote the highest-degree vertex as
u. It is important to note that high-degree vertices tend to be core
vertices in the core-periphery structure of the graph and are some
of the most “centrally” located [23] (in the sense of, for example,
betweenness centrality [19]). As a consequence, they typically have
some of the smallest eccentricities. Conversely, vertices with a low
degree and, in particular, vertices with degree 1 tend to be on the
“periphery” of a graph and are likely to have some of the highest
eccentricities. Our Chain Processing targets such degree-1 vertices.

4 Approach

This section describes our F-Diam algorithm and its parallel im-
plementation in detail. Our code computes the eccentricity of a
vertex v by performing a parallel level-synchronous BFS starting
from v and counting the number of levels. Section 4.6 outlines how
this works. Doing so for all vertices in the graph to find the largest
eccentricity (i.e., the diameter) would be prohibitively slow. Instead,
F-Diam employs various optimizations to minimize the number of
vertices whose eccentricity needs to be computed. This strategy
is outlined in Algorithm 1 along with the following subsections
explaining our optimizations, how they are put together in F-Diam,
and how they are parallelized.

Note that Algorithm 1 and the following algorithms use a counter
value to check whether a vertex has already been visited in the
current iteration. We use a counter rather than a flag to avoid a
costly reset procedure after each BFS traversal. Note further that
any write to a vertex’s eccentricity (e.g., vecc) not only sets the
eccentricity but also removes the vertex from consideration.

Algorithm 1 outlines the overall procedure. First, we compute
an initial bound using the 2-sweep approximation with u as the
starting vertex. In this process, we compute the eccentricity using
Algorithm 2 of both u and a vertex w that is as far away as possible
from u. After computing the initial lower bound, we call Winnow
(Algorithm 3) and Chain-processing (Algorithm 4) to remove a
large number of vertices from consideration. Then, we compute
the eccentricities of some of the remaining vertices via BFS calls.
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Algorithm 1 Fast Exact Diameter Algorithm

Algorithm 2 BFS Traversal to Compute Eccentricity

Require: graph G, max-degree vertex u, int counter
1: Uece < BFS(G, u, counter)

22w «— wlil1[0] // farthest vertex from u
3: bound «— BFS(G, w, counter)

4 Winnow(G, u, bound, counter)

5. Chain(G, counter)

6: 00

7. while v < G.size do

8:  while veoe # active do

9: ve—uov+1

10: if v = G.size then

11: break

12:  Oecc < BFS(G, v, counter)

13:  if vgee > bound then

14: old < bound

15: bound < vecc

16: Winnow(G, u, bound, counter)

17: forie Gdo

18: if i¢ce = 0ld then

19: Eliminate(G, i, old, bound, counter)
20.  else

21: Eliminate(G, v, vecc, bound, counter)

22: diameter «— bound

When a new bound for the diameter is found, we call our Eliminate
function (Algorithm 5) from all vertices that have an eccentricity
equal to the previous bound. Otherwise, we eliminate the vertices
around v that cannot yield a new bound.

4.1 Initial Diameter

The first step of F-Diam is to compute an initial lower bound of the
diameter, which we call bound. In theory, we could start from any
vertex, compute its eccentricity, and use that as the bound. However,
we want this bound to be as close to the actual diameter as possible.
F-Diam employs the following strategy to achieve this. It starts with
the highest-degree vertex u and computes u’s eccentricity, ecc(u).
Recall that this vertex is likely to be centrally located and to have
a low eccentricity. So, ecc(u) is not a good approximation of the
bound we seek. Instead, we pick a vertex v from the last iteration
of the BFS that computed ecc(u). Vertex v is maximally far away
from u and, therefore, likely on the “periphery” of the graph. Next,
we compute ecc(v) and use it as our initial lower bound for the
diameter as is done in some related work.

Performing these operations on the example graph shown in
Figure 2 yields the following. First, we identify the highest-degree
vertex, which is i. Then, we compute its eccentricity, which is 4.
Next, we take one of the vertices with maximal distance from i, for
example vertex d. Finally, we compute ecc(d), which is 6 because
vertex m is 6 steps away from vertex d. We use this eccentricity as
our initial lower bound for the diameter, that is, we set bound to 6.
For reference, we also show the eccentricities in Figure 2.

Require: graph G, vertex source, int counter
1: counter « counter + 1

2: Sourcecp; < counter

3. will « {source}

4 w2 — @

5: level «— 0

6: while wi1 # @ do

7. level < level +1

8:  ratio «— wll.size/|V|

9:  if ratio < 0.1 then

10: for each vertex v € wil do // parallel loop
11: for each vertex n € adj(v) do

12 if nens # counter then

13: Nent <— counter

14: wl2 «— wl2 U {n}

15:  else

16: for each vertex v € G do // parallel loop
17: if vcny # counter do

18: for each vertex n € adj(v) do

19: if nepy = counter do

20: wi2 — wi2 U {v}

21: break

22: for each vertex v € wi2 do // parallel loop
23: Ucnt €< counter

24 will «— @

25:  swap will with wi2
26: return level — 1

Figure 2: Example of finding the initial diameter (left); the
eccentricity of each vertex (right)

4.2 Winnow

The key novelty in F-Diam is that it exploits Theorem (2) to remove,
in parallel, a large number of vertices from consideration. Given
the current lower bound on the diameter (bound) and an arbitrary
starting vertex v, it winnows all vertices that lie within a distance of
|bound/2] from v. Assume w to be such a vertex. This vertex can



Fast Exact Diameter Computation of Sparse Graphs

reach all other vertices in the winnowed region in no more than
bound steps because it can reach v in | bound /2] steps, from where
all other vertices in the region can be reached in another | bound /2]
steps. For the same reason, all other vertices in the winnowed region
can reach w in no more than bound steps. Therefore, if a pair of
vertices exist that are more than bound steps apart, at least one of
those two vertices must be outside of the winnowed region. If no
such pair exists, we have already found the true diameter. Hence, it
is safe to winnow all vertices within a distance of | bound/2| from
v in all cases. Algorithm 3 outlines how F-Diam implements this
winnowing using a partial BFS traversal, where we parallelize the
outer for each loop using atomic operations.

Algorithm 3 Winnow Operation

Require: graph G, vertex source, int bound, int counter
1: counter < counter +1

. sourcecp; <— counter

. wll « {source}

w2 — @

. level < 0

. while level < bound do

level « level +1

for each vertex v € wll do

for each vertex n € adj(v) do
if ncny # counter then

Nenp < counter
Nece < winnowed
wl2 «— wl2 U {n}

wll « 2

swap wil with wi2

// parallel loop

Y- RS Y- NS S NS N

_
= o

// eliminates vertex n

—_m s e

Winnowing is particularly effective when v is centrally located
since central vertices maximize the number of vertices in the win-
nowed region. In contrast, a vertex on the “periphery” would likely
have fewer vertices in the region because it does not have neighbors
“in some directions”. As a consequence, F-Diam uses the highest-
degree vertex u as the starting vertex for winnowing, which tends
to be centrally located as discussed before.

It is critical to note that winnowing can only be done from one
vertex. If we also winnowed from an additional vertex, we would
lose the guarantee that at least one of the two vertices with maxi-
mum eccentricity, based on Theorem (2), is still being considered.

We found winnowing to be relatively low cost in comparison to
more complex approaches such as fringe sets. After the first invoca-
tion, the winnow function is only called when a new bound for the
diameter is found that is larger than the old estimate by at least 2 so
that bound /2 increases by at least 1. We have experimentally found
our initial diameter to often be very close to the exact diameter,
which is why F-Diam rarely calls winnow multiple times for a given
input. Since it tends to remove a majority of the vertices in a single
partial BFS call, winnow can be very effective.

Figure 3 provides an example of winnowing. The highest-degree
vertex is c. For reference, the two vertices with the largest eccentric-
ity are h and j (but the algorithm does not know this yet). Assuming
bound to be 5, we can remove all vertices that are no more than
[5/2] = 2 steps away from vertex ¢ from consideration. Note that
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this includes one of the vertices with maximum eccentricity (h),
but that is okay because we keep the other such vertex (j) active.

Figure 3: Example of Winnow

4.3 Chain Processing

Another novelty of F-Diam is the processing of what we call chains.
Many graphs have some degree-1 vertices. For any such vertex
x that is adjacent to a vertex y, every shortest path starting in x
must pass through y. Hence, whatever the distance from y to some
other vertex z is, the distance from x to z must be one step longer.
This implies that the eccentricity of x must be one larger than the
eccentricity of y (assuming the graph has more than one edge). As
a consequence, we can safely remove all “y” vertices that have a
degree-1 neighbor from consideration. In fact, we can go further
and also remove all direct neighbors of y (other than x) because,
according to Theorem (1), those neighbors cannot have a larger
eccentricity than x. So, keeping just x suffices. Note that this can
be done without computing a single eccentricity.

F-Diam incorporates an extended version of this idea. If the
degree-1 vertex x is adjacent to a degree-2 vertex, which may be
adjacent to another degree-2 vertex, etc., we follow this chain, which
looks like a linked list, until we reach a vertex w whose degree is
not 2. Moreover, we keep track of the length of the chain. Assuming
this length is s and applying the same reasoning as above, we find
that ecc(w) must be equal to ecc(x) — s if there exists at least one
other vertex z that is also at a distance of s from w.

Interestingly, this means we can safely remove all vertices (other
than x) from consideration that lie within a distance of s from
w, irrespective of whether such a vertex z exists. If z does exist,
ecc(w) = ecc(x) — s holds and removing those vertices is safe. If
no such vertex z exists, the depth d of the subgraph rooted in w
(excluding the linked list) must be less than s. This means all vertices
in the subgraph can reach each other in no more than 2d steps (via
w). However, the farthest of those vertices are d +s steps away from
x (again via w). Since s > d, that means x must have the highest
eccentricity of the entire graph in this case. Therefore, it is again
safe to remove all other vertices from consideration. Algorithm 4
outlines how this works. The constant MAX is INT _MAX - 1.
F-Diam treats vertices with eccentricities less than INT MAX as
having been removed from consideration (i.e., as inactive). The
Eliminate function is defined in the next subsection.

Figure 4 shows an example of which vertices can be removed
from consideration using the Chain Processing technique (without
any winnowed vertices). There are two chains, one starting at vertex
e and another starting at vertex g. The first chain is 2 edges long.
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Algorithm 4 Chain Processing

Algorithm 5 Eliminate Operation

Require: Graph G, int counter
1: for each vertex v € G do
2. if deg(v) = 1 then
n <« adj(v)
len «— 1
while deg(n) = 2 do
n « adj(n)
len « len+1
Eliminate(G, n, MAX — len, MAX, counter)
Uece <— active

// forward direction

Hence, all vertices along the chain (other than the starting vertex e)
can be removed from consideration, as can all vertices up to 2 steps
away from vertex c, where the chain ends. The chain starting at g
is only 1 edge long and ends in i, so we can only remove i and its
direct neighbors (other than g). In this example, Chain Processing
removes a majority of the vertices, but this is not usually the case.
Nevertheless, it generally removes vertices that are out of the reach
of Winnow and, therefore, complements Winnow well.

Figure 4: Example of eliminating the chains startingine & g

4.4 Eliminate

If any active vertices are left after Winnow and Chain Process-
ing, F-Diam randomly picks such a vertex x and computes its ec-
centricity. If the eccentricity turns out to be greater than bound,
F-Diam updates bound to the new value. Otherwise, we employ
Theorem (1) to eliminate some vertices from consideration. For
instance, if s = bound — ecc(x) > 0, the theorem tells us that all
vertices that are no more than s steps away from vertex x must have
an eccentricity that is no larger than bound. Consequently, there
is no need to compute their eccentricities as they cannot change
the value of bound. Algorithm 5 outlines how this works. Since this
code tends to only execute a couple of iterations with just a few
elements on the worklist, F-Diam runs it serially as there is typically
not enough work to warrant parallelization. Note that Eliminate is
a known technique that is, for example, used in Graph-diameter [1],
which also runs it serially. The number of BFS calls eliminated is
equal to the number of active vertices reachable from x in s steps.
Whereas other approaches update the bounds of all vertices in the
same connected component with a similar method, F-Diam utilizes
a much faster partial-BFS to eliminate vertices that are known to
not change the value of bound.

Figure 5 provides an example. Assuming that bound is currently
5 and that the eccentricity of vertex c is 4, we can eliminate all

Require: graph G, vertex source, int ecc, int bound, int counter
1: wll « {source}
w2 — @
: counter « counter + 1
: while ecc < bound do
ecc —ecc+1
for each vertex v € wi1 do
for each vertex n € adj(v) do
if nenr # counter then
Nent < counter
Rece < ecc
wi2 «— wil2 U {n}
wll «— @
swap will with wi2

Y e ok W

// sets ecc and eliminates vertex n

[
W NN = O

neighbors of ¢ from consideration that are no more than 5 -4 =1
steps away from c. In other words, we can eliminate the direct
neighbors of ¢ in this example, which are highlighted in yellow.

Figure 5: Example of Eliminate

4.5 Extending Winnow and Eliminate

F-Diam, like many related algorithms, starts out by first computing
an initial lower bound of the diameter (bound). Since the winnowing
and elimination steps are more effective for larger bounds, it tries
to find a large bound as outlined in Section 4.1. This requires first
determining the highest-degree vertex u in the input graph.

Next, F-Diam performs winnowing around vertex u using bound
as described in Section 4.2. For many graphs, this winnows the ma-
jority of the vertices. Based on Theorem (3), we know that Winnow
reaches at least as many vertices as Eliminate. Hence, F-Diam does
not call Eliminate on vertex u. Then, it processes the chains as ex-
plained in Section 4.3. The Chain Processing technique is often able
to remove vertices that are out of reach of Winnow and Eliminate.
Finally, F-Diam loops over the remaining vertices in random order.
For each vertex v, it performs a BFS to compute the eccentricity. If
the eccentricity of v is lower than bound, F-Diam calls Eliminate as
described in Section 4.4. If it is equal to bound, F-Diam only elimi-
nates v. If the eccentricity is larger than bound, F-Diam just found
a new lower bound for the diameter. In this case, it updates bound,
extends the winnowed region around u, and extends the regions of
eliminated vertices as follows.
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Incrementally extending the winnowed region is trivial as it is
centered around one starting vertex. Extending all prior eliminated
regions is more involved. Since we just found a new largest ec-
centricity, all previously computed eccentricities must be smaller.
Therefore, we theoretically need to call Eliminate on all prior ver-
tices for which an eccentricity was computed, which would be slow.
F-Diam avoids this by recording the upper bound for the eccen-
tricity in each eliminated vertex. This allows it to place all vertices
with an eccentricity bound that is equal to the old bound value onto
a worklist and then performs a single, partial, multi-source, level-
synchronous BFS. It is partial because we only eliminate as many
levels as the difference between the new and the old bound val-
ues. Hence, incrementally extending all prior eliminated regions is
efficient and independent of the number of prior evaluated vertices.

F-Diam repeats the above steps until each vertex has either been
eliminated or its eccentricity computed. The final bound value is
the true diameter of the graph.

4.6 Parallelization

F-Diam often eliminates a majority of the vertices due to a combina-
tion of the previously mentioned techniques. However, the number
of removed vertices is dependent on the topology of the input. In
the worst case, which is a graph where all vertices have the same
eccentricity, the complexity of F-Diam is O(nm) because the Chain
Processing and Eliminate techniques do not apply and Winnow can
only remove fewer than half of the vertices. Hence, most vertices
still need to have their eccentricity computed explicitly.

We parallelized our implementation to boost the performance of
F-Diam even on such inputs. Specifically, every level-synchronous
BFS traversal of the entire graph is done in parallel. As an alter-
native, we also tried running multiple BFS traversals in parallel.
However, this did not yield a speedup because it resulted in too
much redundant work, as concurrent Eliminate operations would
overlap in removing vertices from consideration. After all, our ap-
proach tends to require only a few eccentricity evaluations (see
Section 6.3), and it is difficult to predict which vertices need to have
their eccentricity computed.

In our parallel code, each thread is assigned a chunk of vertices
from the current worklist. The threads then visit the neighbors of
those vertices in parallel and atomically check if these neighbors
have already been visited. Neighbors that have not are atomically
added to the second worklist. All threads synchronize at a barrier
before the two worklists are swapped and the procedure repeats.
The traversal ends when the new worklist is empty.

F-Diam employs state-of-the-art direction-optimized BFS [2, 22]
to reduce the number of edges examined. This hybrid approach
switches between a conventional data-driven top-down BFS and a
topology-driven bottom-up BFS when the worklist exceeds a size
threshold that is computed based on the number of vertices in
the graph. The bottom-up BFS requires no atomic operations but
performs some wasted work, which is why it is only preferable
when the worklist size is large. F-Diam switches back to the top-
down BFS when the frontier size drops below the threshold again in
line with the latest direction-optimized BFS implementations [22].

We experimentally determined a threshold of 10% of the num-
ber of vertices to yield good performance. Once the worklist size
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reaches this threshold, the following frontier consists of the unvis-
ited neighbors of these vertices, which is often close to 50% of the
graph, making the bottom-up BFS very effective.

5 Evaluation Methodology

We compare the performance of a serial and a parallel implementa-
tion of F-Diam with serial Graph-Diameter [1] and serial and paral-
lel implementations of iFUB [4]. These are the fastest publicly avail-
able implementations we could find. Although Graph-Diameter was
developed for directed graphs, it also works on undirected graphs
in CSR format, in which each undirected edge is represented by
two directed edges in opposite directions.

We use the 17 real-world and synthetic graphs from Table 1
as inputs. The table lists the graph name, origin, type, number of
vertices, number of edges (including back edges), average degree,
maximum degree, and the largest eccentricity in any connected
component. Several of these graphs are disconnected, meaning the
actual diameter is infinite. This is flagged in the output of our code.
F-Diam and all other tested codes support disconnected graphs and
report the largest eccentricity among all connected components.

We choose these inputs for their variety in topology, degree, size,
type, and diameter. They stem from the Galois framework [9], Stan-
ford Network Analysis Platform [11], SuiteSparse Matrix Collec-
tion [17], and the Center for Discrete Mathematics and Theoretical
Computer Science at the University of Rome [6].

We evaluated all codes on a shared-memory NUMA system with
an AMD Ryzen Threadripper 3970X 32-core processor. We compiled
the codes using g++ version 13.3.0, which supports OpenMP 5.2.

We run the codes 9 times on each input and use the median run-
time. This is done to account for variability in system performance.
Moreover, we limited the running time to 2.5 hours per input. We
primarily report performance in terms of throughput, which is the
number of vertices in the graph divided by the running time. Doing
so normalizes the results as the graphs vary greatly in size and,
therefore, in runtime. Throughput is a higher-is-better metric.

6 Results

In this section, we first compare the performance of F-Diam with
the state of the art across different graph topologies. Then, we
separately evaluate the performance of various features of F-Diam.

6.1 Performance Comparison

Figure 6 shows the throughput (in vertices per second) of our serial
and parallel CPU codes as well as that of iFUB and Graph-Diameter.
Note that the y-axis is logarithmic. The x-axis lists the input graphs.
iFUB times out on the 2d-2e20.sym, cit-Patents, delaunay_n24, eu-
rope_osm, kron_g500-logn21, uk-2002, USA-road-d.NY, and USA-road-
d.USA inputs. Graph-Diameter times out on delaunay_n24. Table 2
lists the corresponding runtimes.

The serial code of F-Diam already outperforms iFUB and Graph-
Diameter on all tested inputs. In fact, it is nearly an order of mag-
nitude faster in most cases. Our parallel code is even faster and
outperforms our serial version on each input.

Based on the geometric-mean throughputs, the serial implemen-
tation of F-Diam is 1267.0x faster than serial iFUB, 686.4X faster
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Table 1: Information about the input graphs

name origin type vertices edges avgdegree max degree CC diameter
2d-2e20.sym Lonestar  grid 1,048,576 4,190,208 4.0 4 2,046
amazon0601 SNAP product co-purchases 403,394 4,886,816 12.1 2,752 25
as-skitter SNAP Internet topology 1,696,415 22,190,596 13.1 35,455 31
citationCiteseer UoFSMC  publication citations 268,495 2,313,294 8.6 1,318 36
cit-Patents UoFSMC  patent citations 3,774,768 33,037,894 8.8 793 26
coPapersDBLP UoFSMC  publication citations 540,486 30,491,458 56.4 3,299 23
delaunay_n24 UoFSMC  triangulation 16,777,216 100,663,202 6.0 26 1,722
europe_osm UoFSMC  road map 50,912,018 108,109,320 2.1 13 30,102
in-2004 UoFSMC  web links 1,382,908 27,182,946 19.7 21,869 43
internet UoFSMC  Internet topology 124,651 387,240 3.1 151 30
kron_g500-logn21 UoFSMC  Kronecker 2,097,152 182,081,864 86.8 213,904 7
rmat16.sym Lonestar RMAT 65,536 967,866 14.8 569 14
rmat22.sym Lonestar RMAT 4,194,304 65,660,814 15.7 3,687 18
soc-LiveJournal1l SNAP journal community 4,847,571 85,702,474 17.7 20,333 20
uk-2002 UoFSMC  web links 18,520,486 523,574,516 28.3 194,955 45
USA-road-d.NY Dimacs9 road map 264,346 730,100 2.8 8 720
USA-road-dUSA  Dimacs9 road map 23,947,347 57,708,624 24 9 8,440
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Figure 6: Throughput of various diameter codes on 17 inputs (missing bars denote timeouts)

Table 2: Measured runtimes in seconds (T/O = timeout)

Graphs F-Diam (ser) F-Diam (par) iFUB (ser) iFUB (par) Graph-Diam.
2d-2e20.sym 0.885 0.138 T/O T/O 3.285
amazon0601 0.169 0.019 259.004 94.916 3.983
as-skitter 0.296 0.051 451.391 402.688 5.959
citationCiteseer 0.192 0.026 187.226 71.575 2.098
cit-Patents 3.520 0.209 T/O T/O 705.259
coPapersDBLP 0.417 0.028 761.575 203.028 3.426
delaunay_n24 2017.863 116.999 T/O0 T/O T/O
europe_osm 52.169 5.095 T/0 T/O 219.913
in-2004 1.018 0.204 728.197 336.903 5.098
internet 0.011 0.003 46.813 26.922 0.192
kron_g500-logn21 8.394 1.175 T/O T/O 210.495
rmat16.sym 0.009 0.003 14.985 12.893 0.176
rmat22.sym 2.740 0.132 1772.274 1226.946 58.329
soc-LiveJournall 3.610 0.262 2024.930 1541.236 448.948
uk-2002 19.369 1.690 T/O T/O 123.839
USA-road-d.NY 0.077 0.053 T/O T/O 0.650
USA-road-d.USA 18.548 2914 T/O T/O 90.976

than parallel iFUB, and 14.6x faster than Graph-Diameter?. On
the worst measured input, F-Diam is still 560.9% faster than serial
iFUB, 330.8x faster than parallel iFUB, and 3.71x faster than Graph-
Diameter. On the best measured input, F-Diam is 4416.3% faster
than serial iFUB, 2539.8x faster than parallel iFUB, and 200.3X
faster than Graph-Diameter.

Our parallel code delivers a geometric-mean throughput that is
9518.8x and 5158.7X higher than iFUB’s serial and parallel imple-
mentations, respectively, and 106.7X faster than Graph-Diameter’s.
In the worst measured case, parallel F-Diam is 3569.6%, 1651.5%, and
12.22x faster, and in the best measured case it is 26,816X, 9288.0X
and 3368.0% faster than the serial and parallel iFUB implementa-
tions and Graph-Diameter, respectively.

2All speedups are computed based on the geometric-mean throughput over only the

inputs on which neither code being compared times out.
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The high performance of F-Diam is primarily due to Winnow.
This new technique is very effective on all tested inputs (see Sec-
tion 6.4), especially on “small world” graphs with low diameters
and high maximum degrees, making F-Diam orders of magnitude
faster than the leading prior approaches.

6.2 Scalability

Based on the geometric mean, our parallel implementation is 7.67x
faster than our serial implementation. The smallest speedup we see
with our parallel code is 1.45X and the largest speedup is 20.74x
over our serial version. The reason for this difference in perfor-
mance is the structure of the graphs. The lowest speedup stems
from USA-road-d.NY, which is a small road map with an average
degree of 3 and a maximum degree of 8. The highest speedup stems
from coPapersDBLP, a power-law graph with an average degree
of 56. This graph yields much more parallelism in each BFS call,
resulting in better utilization of the multiple threads and a higher
speedup. We also see this trend in other small-diameter inputs like
kron_g500-logn21, where the worklist encompasses large portions
of the graph. In contrast, in graphs with diameters as high as 30,102
(e.g., europe_osm), the worklist size never passes the threshold to
utilize the bottom-up code in the direction-optimized BFS.

1.0.1€7
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Throughput (Vertices per second)

1 4 8 12 16 20 24 28 32
Number of Threads

Figure 7: F-Diam throughput for different thread counts

Figure 7 shows the geometric mean of F-Diam’s throughput over
all inputs for different thread counts. The x-axis lists the number of
threads and the y-axis the throughput. The performance increases
up to 32 threads, which is the number of physical cores in our
system. As mentioned, the geometric mean speedup is about 7.67x
across all inputs. It is limited for two reasons. First, the BFS tra-
versals start out with little parallelism and may end with little as
well, especially on high-diameter inputs where the bottom-up BFS
is not invoked. Second, the main-memory bandwidth does not scale
with the core count on this irregular computation that incurs many
cache misses.

6.3 Number of BFS Traversals

Table 3 lists the number of BFS traversals performed by the various
codes on each input. We count a BFS traversal as either the com-
putation of the eccentricity of a vertex or the use of the Winnow
function. Although the Winnow function is a partial BFS, it typi-
cally traverses and eliminates a majority of the vertices, so the cost
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may be close to that of an entire BFS. In contrast, the Eliminate
function typically only traverses a small portion of the graph, so
we do not count it in the number of BFS calls.

Table 3: Number of BFS Traversals

Graphs F-Diam iFUB Graph-Diameter
2d-2e20.sym 10 timeout 6
amazon0601 15 19 35
as-skitter 44 7 767
citationCiteseer 12 22 27
cit-Patents 788 timeout 4154
coPapersDBLP 11 38 10
delaunay_n24 3151 timeout timeout
europe_osm 22 timeout 29
in-2004 102 15 122
internet 3 14 14
kron_g500-logn21 37 timeout 264
rmatl16.sym 3 7 158
rmat22.sym 67 11 19285
soc-LiveJournall 198 10 1172
uk-2002 481 timeout 1090
USA-road-d.NY 17  timeout 26
USA-road-d.USA 26 timeout 31

The number of traversals performed by any of the three codes
is orders of magnitude lower than the number of vertices in the
graphs, showing that the codes represent great improvements over
a basic implementation that simply computes the eccentricity of
every vertex. On most inputs, Graph-Diameter performs the highest
number of traversals, explaining its lower throughput. On about half
the inputs, iFUB performs fewer traversals than F-Diam. This is due
to iFUB’s use of fringe sets [4], which can result in fewer BFS calls
but are expensive to maintain. Hence, the number of BFS traversals
is not the main factor determining the overall performance.

6.4 Effectiveness of Stages in F-Diam

To shed more light on the effectiveness of the various stages used
in F-Diam, Table 4 lists the percentage of vertices removed from
consideration by the Winnow, Eliminate, and Chain Processing
steps. We also show the percentage of vertices with no neighbors,
which have an eccentricity of 0 and require no computation.

Both Eliminate and Chain Processing are only effective on some
inputs. For example, inputs with no degree-1 vertices render Chain
Processing useless. Even when degree-1 vertices are present, the
function typically does not remove a large number of vertices, but it
tends to get rid of vertices with relatively high eccentricities, which,
as mentioned, are often out of reach of Winnow and Eliminate.

Eliminate also appears to be useless on many inputs. However,
that is only because it runs after Winnow, which, in these cases,
covers all vertices that Eliminate can remove. Our new Winnow
technique is by far the most effective stage in F-Diam. It manages to
remove over 70% of the vertices on all tested inputs. On over half of
them, it eliminates more than 99% of the vertices that need compu-
tation. These results show that Winnow is the primary contributor
of F-Diam’s performance gain over the state of the art.

Figure 8 shows the fraction of F-Diam’s overall runtime that each
function contributes, as well as any other runtime. For all inputs,
the few eccentricity computations take the majority of the runtime,
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Table 4: Percentage of vertices removed from consideration
by Winnow, Eliminate, and Chain as well as 0-degree vertices

Graphs Winnow Eliminate Chain Degree-0 Vertices
2d-2e20.sym 75.74% 24.25%  0.00% 0.00%
amazon0601 99.98% 0.01%  0.00% 0.00%
as-skitter 99.89% 0.00%  0.04% 0.00%
citationCiteseer 99.99% 0.00%  0.00% 0.00%
cit-Patents 99.72% 0.00% 0.15% 0.00%
coPapersDBLP 99.99% 0.00%  0.00% 0.00%
delaunay _n24 82.46% 17.53%  0.00% 0.00%
europe_osm 97.23% 0.85%  1.50% 0.00%
in-2004 97.89% 1.27% 0.83% 0.00%
internet 99.99% 0.00% 0.00% 0.00%
kron_g500-logn21 73.62% 0.00%  0.00% 26.37%
rmat16.sym 93.81% 0.00%  0.22% 5.72%
rmat22.sym 89.27% 0.00%  0.46% 9.76%
soc-LiveJournal1l 99.92% 0.00%  0.02% 0.01%
uk-2002 99.67% 0.06% 0.05% 0.20%
USA-road-d.NY 98.79% 0.52% 0.67% 0.00%
USA-road-d.USA 71.11% 14.03% 14.23% 0.00%
100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

s ‘ﬁ& 0\@@ éf‘@o@"@é@ & @(b@ . &‘)Q‘ﬁé\\. : »Q«Qv (\@@i@é’\x . S é@(f & W?, @ 5 &
s ¥ o°° & gﬁ& &\”&\ S $ & «@”} S & 5
¢ "@0 o NN

mEccentricity mEliminate mChain Processing mOther mWinnow

Figure 8: Percentage of runtime of each function in F-Diam

highlighting how inexpensive the other stages are in comparison.
In particular, and despite its high effectiveness, Winnowing is fast.

6.5 Optimizations

Figure 9 shows the throughput of F-Diam and three more versions
of F-Diam in which we disabled Winnow, Eliminate, or the use of
the highest-degree vertex as the starting vertex. We only disable
one feature at a time as disabling multiple together mostly results
in timeouts. All versions are executed in parallel. As before, the
throughput is shown on a logarithmic scale. Note that the missing
bars indicate timeouts, that is, removing the feature results in a
runtime of over two and a half hours on the given input.

Based on the geometric-mean throughputs, disabling the Win-
now function has by far the largest impact on performance, causing
F-Diam to run at a mere 2% of its normal speed, that is, two orders
of magnitude slower. This highlights the importance and the ben-
efit of our new technique. Changing the starting point from the
maximum-degree vertex u to the vertex with ID zero causes the
code to run at 17% of its usual speed. Clearly, starting out with a
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relatively central vertex is important as it boosts the effectiveness
of the first Winnow and Eliminate calls. Finally, disabling the Elim-
inate function causes the code to run at 22% of its normal speed
and times out on delaunay_n24, europe_osm, and USA-road-d.USA.
Hence, the actual impact of disabling this feature is higher.

There are two graphs where changing the starting vertex from
u to the first vertex in the input yields a speedup. In both cases,
the number of BFS calls is lower or equal to what we see when all
optimizations are enabled, as shown in Table 5. This suggests that
the vertex with ID 0 is topologically closer to the center of the graph
than vertex u with the maximum degree, which allows Winnow
or Eliminate to prune more vertices. However, for most inputs, the
number of BFS calls is significantly higher when disabling one of
the tested features than in the baseline F-Diam version. In several
cases, it is orders of magnitude higher, highlighting the importance
of using Winnow, Eliminate, and u together.

Table 5: Number of BFS calls in different versions of F-Diam

Graphs F-Diam no Winnow no Elim. no’u’
2d-2e20.sym 10 12 timeout 10
amazon0601 15 605 71 30
as-skitter 44 1382 92 44
citationCiteseer 12 432 12 24
cit-Patents 788 11234 984 2597
coPapersDBLP 11 491 13 44
delaunay_n24 3151 6351 timeout 4700
europe_osm 22 37  timeout 17
in-2004 102 161 17722 105
internet 3 3021 3 1088
kron_g500-logn21 37 28372 37 25348
rmat16.sym 3 2095 3 151
rmat22.sym 67 57374 68 277
soc-LiveJournall 198 12465 633 203
uk-2002 481 962 12914 764
USA-road-d.NY 17 26 1407 91
USA-road-d.USA 26 47  timeout 105

7 Conclusion

The diameter of a graph is an important metric needed in various ap-
plications. Despite numerous enhancements to the basic approach
of using the all-pairs shortest-path (APSP) algorithm for determin-
ing the diameter, the running time of the state-of-the-art solutions is
often still impractically high for large sparse graphs. Our approach,
called F-Diam, improves efficiency by minimizing the number of
BFS calls through a set of pre-existing and new techniques. In par-
ticular, F-Diam introduces Winnow and Chain Removal to quickly
remove vertices that do not need to be considered, which we show
to be very effective in practice. We implemented F-Diam in both
serial and parallel code that incorporates state-of-the-art direction-
optimized BFS. Our experimental results demonstrate that both
versions of F-Diam outperform the leading implementations by one
to three orders of magnitude on a range of large real-world and
synthetic graphs from different domains.
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Figure 9: Throughput of various F-Diam versions (missing bars denote timeouts)
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