

ICPP ’25, September 08–11, 2025, San Diego, CA, USA Cameron Lloyd Bradley, Anju Mongandampulath Akathoo�, and Martin Burtscher

rather than traversing the entire graph. Next, F-Diam computes

the eccentricities of some of the remaining vertices. With every

new highest eccentricity that it �nds, it incrementally winnows and

eliminates even more vertices. It terminates when no vertices are

left. Its worst-case time complexity is $ (=<), i.e., the same as that

of the state of the art. However, in practice, F-Diam consistently

provides a large speedup compared to prior work.

This paper makes the following main contributions.

• It introduces F-Diam, an exact diameter-�nding algorithm

that incorporates the novel Winnowing and Chain Process-

ing techniques to minimize graph traversals.

• It describes key optimizations, including incremental exten-

sion of the set of vertices whose eccentricity does not need

to be computed.

• It shows that our parallel CPU code outperforms the fastest

prior diameter-�nding codes on all tested inputs, in many

cases by orders of magnitude.

Our OpenMP implementation is freely available in open source

at https://github.com/burtscher/F-Diam.git

The rest of the paper is organized as follows. Section 2 summa-

rizes related work. Section 3 describes background information.

Section 4 details the implementation of our approach. Section 5

discusses our experimental methodology. Section 6 presents and

analyzes the results. Section 7 concludes the paper with a summary.

2 Related Work

One of the �rst public implementations for computing the diameter

of a graph is iFUB [4]. The algorithm starts with a random vertex or

the vertex with the highest degree. From this starting vertex, 2 BFS

calls are performed to �nd 2 vertices that are maximally far apart

from each other. Along the path between the two, a third vertex is

selected from where this process is started again. Totaling 4 BFS

calls, a �nal “central” vertex is found whose eccentricity is close

to the radius of the graph, where the radius refers to the smallest

eccentricity. This 4-SWEEP algorithm is used to determine a lower

bound for the diameter. Next, iFUB calculates the eccentricities

of vertices in groups called fringe sets, which are vertices at a

certain distance from the starting vertex. Based on the distances

in the BFS tree, the algorithm can terminate early and set upper

bounds for the eccentricity of vertices in fringe sets, limiting the

number of BFS calls. We only use 2 BFS calls to determine the initial

bound for the diameter and update it dynamically. Moreover, we

introduce Winnowing to eliminate vertices, which we found to be

more e�ective than early termination and fringe sets.

Pennycu� et al. [14] propose a new algorithm to measure the di-

ameter of an unweighted graph using vertex-centric programming.

Their parallel implementation computes the eccentricity of every

vertex simultaneously by assigning a thread to each vertex and

sending messages to the vertex’s neighbors. Each message includes

a history to prevent it from being re-propagated through the graph.

When no further messages are propagated, the largest eccentricity

has been computed. The authors mention that their approach runs

out of memory for larger graphs and that, for smaller graphs, a non-

parallelized APSP version is faster. Although their vertex-centric

approach provides large amounts of parallelism, it is impractical

for many real-world graphs due to memory constraints.

The Graph-Diameter work [1] presents a novel approach for

computing the diameter of directed graphs. The algorithm uses a

double sweep, starting from a random vertex, to �nd vertices on the

opposite ends of a shortest path. This yields an initial lower bound

of the diameter. An upper bound is computed using the triangle

inequality in strongly connected components, which asserts that,

for any pair of vertices G and ~, 422 (G) ≤ 3 (G,~) + 422 (~), where

3 (G,~) is the length of the shortest path from G to~ and 422 (E) is the

eccentricity of vertex E . The algorithm maintains an upper bound

on the eccentricity for each vertex and updates it with further BFS

traversals of the graph, skipping vertices whose upper bounds are

less than the lower bound of the diameter. F-Diam includes some

of these ideas but eliminates vertices using partial BFS traversals.

Takafuji et al. [18] introduce a GPU version of the blocked Floyd-

Warshall algorithm to compute the length of the shortest path

between all pairs of vertices in a directed graph. They call this the

“single kernel” implementation. They report a speedup of 1.02× to

1.09× on graphs with up to 32768 vertices. They accomplish the

single-kernel implementation by partitioning the adjacency matrix

used to represent the graph into tiles. A CUDA block is thus able to

execute the parallel Floyd-Warshall algorithm for a number of tiles

in stages without synchronization. They show higher speedups for

smaller graphs. In contrast, F-Diam uses the compressed-sparse-row

(CSR) representation [7] to �t sparse graphs with many millions of

vertices and edges into the main memory.

Korf [10] presents a novel algorithm for �nding the diameter of

an undirected graph using partial BFS traversals. This approach

takes advantage of the observation that larger eccentricities can

only be found between two vertices that have not been starting

vertices of earlier BFS calls. This involves maintaining a set (of

active vertices. Each BFS traversal terminates as soon as all vertices

in (have been visited. Upon termination, the starting vertex is

removed from (. A parallel version of this algorithm was found to

deliver speedups of up to 5× over complete BFS traversals. We do

not use this optimization because we found early termination to

hurt performance as it con�icts with our new techniques.

We have implemented, empirically evaluated, and adopted sev-

eral of the aforementioned state-of-the-art optimizations. However,

they do not su�ciently address the large number of BFS calls. To

further reduce the number of these calls in an e�cient and paral-

lelizable manner, we devised Winnowing and Chain Processing.

3 Background

In this paper, we consider graphs � = (+ , �) containing |+ | = =

vertices and |� | = < edges that are undirected and unweighted.

When describing the distance 3 (G,~) between two vertices G,~ ∈ + ,

we refer to the number of edges that must minimally be traversed to

reach one vertex from the other. We call each traversal of an edge

a step. For example, if the two vertices are adjacent, they are 1 step

away from each other, meaning their distance is 1.

We denote the eccentricity of a vertex E ∈ + by 422 (E). As men-

tioned, the eccentricity is de�ned as the largest shortest distance,

that is, 422 (E) = <0GG∈+ (3 (E, G)). The diameter of a graph is the

maximum eccentricity, that is, 380<(�) = <0GE∈+ (422 (E)). Ver-

tices with eccentricities close to the diameter represent the graph’s

2

Fast Exact Diameter Computation of Sparse Graphs ICPP ’25, September 08–11, 2025, San Diego, CA, USA

periphery. Since the diameter of a disconnected graph is in�nite,

we focus on connected graphs in this background section.

The following paragraphs describe known theorems about ec-

centricities. We exploit them to �nd vertices whose eccentricity

does not need to be computed while still guaranteeing that we will

�nd the largest eccentricity, i.e., the true diameter of the graph.

Theorem 1. The eccentricity of two adjacent vertices G,~ ∈ +

cannot di�er by more than 1, that is, 422 (~) −1 ≤ 422 (G) ≤ 422 (~) +1

and 422 (G) − 1 ≤ 422 (~) ≤ 422 (G) + 1.

Proof: Since G and ~ are adjacent, 3 (G,~) = 1. Given that � is

a connected graph, for all E ∈ + , we can �nd a path from G to E

through ~ by combining the two shortest paths G → ~ and ~ → E ,

which have lengths 3 (G,~) and 3 (~, E), respectively. Since 3 (G, E)

is the length of the shortest path between G and E , we know that

3 (G, E) ≤ 3 (G,~) + 3 (~, E) = 1 + 3 (~, E). By de�nition, 3 (~, E) ≤

422 (~). Adding 1 on both sides, we �nd 1 + 3 (~, E) ≤ 1 + 422 (~).

Hence, 3 (G, E) ≤ 1 + 3 (~, E) ≤ 1 + 422 (~) must hold for all E ∈ + ,

including the E that is the farthest away from G , in which case

3 (G, E) = 422 (G). Putting everything together, we obtain 422 (G) ≤

1 + 422 (~). Subtracting 1 on both sides yields 422 (G) − 1 ≤ 422 (~).

Symmetrically, by swapping G and ~, we get 422 (~) ≤ 1 + 422 (G)

and 422 (~) − 1 ≤ 422 (G), proving Theorem (1).

Once the eccentricity of a vertex E has been determined, we can

use Theorem (1) to compute an upper bound of the eccentricity of

every other vertex I. Speci�cally, if I is B steps away from E , the

eccentricity of I must be 422 (I) ≤ 422 (E) + B . We use this fact to

discard all vertices from consideration1 whose upper bound is less

than or equal to the largest eccentricity computed so far, as they

cannot yield a higher eccentricity.

Theorem 2. Any connected graph � with at least two vertices

has two or more vertices with maximum eccentricity, that is, ∃G,~ ∈ +

such that G ≠ ~ and 422 (G) = 422 (~) = 380<(�).

Proof: A connected graph with at least two vertices contains

at least one edge. The end-point vertices of this edge are adjacent

and have a distance of 1 (see above). Therefore, the diameter of

the graph must be at least 1. Since the diameter is the largest ec-

centricity of any vertex in the graph, there must be at least one

vertex G for which 422 (G) = 380<(�). Let ~ be a vertex that is

422 (G) steps away from G . Per the de�nition of the eccentricity,

such a vertex must exist. Moreover, ~ cannot be G as 3 (G, G) = 0

and we already established that the diameter is at least 1. Since the

graph is undirected, 3 (G,~) = 3 (~, G) holds, meaning that 422 (~) is

at least as large as 422 (G). But 422 (G) is the largest eccentricity in

the graph. Therefore, 422 (~) = 422 (G) must hold, and we found a

second vertex with the highest eccentricity, proving Theorem (2).

We use Theorem (2) to safely discard vertices from consideration

for which we can guarantee that another vertex with the same

eccentricity is still being considered. This is the key new insight

behind our Winnowing technique. It is more powerful than prior

approaches because it is the �rst technique that can safely discard

some vertices with eccentricities that are higher than the current

bound for the diameter.

1Throughout this paper, “removing a vertex from consideration” means we do not have
to compute its eccentricity, but the vertex remains in the graph and can be traversed
during the eccentricity calculations of other vertices.

Theorem 3. The smallest eccentricity in any connected graph is

at least half of the diameter, that is,<8=E∈+ (422 (E)) ≥ 380<(�)/2.

Proof:Assumewe have a vertex G whose eccentricity is less than

half of the diameter 3 . This means all vertices can be reached from

G in fewer than 3/2 steps. Since we consider undirected graphs,

this also means that all vertices can reach G in fewer than 3/2 steps.

Therefore, all vertices can reach all other vertices via G in fewer

than 3/2 +3/2 = 3 steps, contradicting that 3 is the diameter of the

graph. Hence, no vertex with an eccentricity of less than half the

diameter can exist, proving Theorem (3).

Winnowing uses Theorem (3) in combination with Theorem (2)

to discard all vertices from consideration that are within 3/2 steps

of an arbitrary vertexD. This approach is most bene�cial ifD has the

smallest eccentricity (called the radius of the graph), that is, if D is a

“center” vertex. Finding such a vertex is as expensive as computing

the diameter. Instead, we use the highest-degree vertex as it tends

to be centrally located. For the same reason, the highest-degree

vertex is sometimes used as the starting vertex in related work [4]

and as a potentially central vertex in studies on core-periphery

structures in networks [16].

In the rest of this paper, we denote the highest-degree vertex as

D. It is important to note that high-degree vertices tend to be core

vertices in the core-periphery structure of the graph and are some

of the most “centrally” located [23] (in the sense of, for example,

betweenness centrality [19]). As a consequence, they typically have

some of the smallest eccentricities. Conversely, vertices with a low

degree and, in particular, vertices with degree 1 tend to be on the

“periphery” of a graph and are likely to have some of the highest

eccentricities. Our Chain Processing targets such degree-1 vertices.

4 Approach

This section describes our F-Diam algorithm and its parallel im-

plementation in detail. Our code computes the eccentricity of a

vertex E by performing a parallel level-synchronous BFS starting

from E and counting the number of levels. Section 4.6 outlines how

this works. Doing so for all vertices in the graph to �nd the largest

eccentricity (i.e., the diameter) would be prohibitively slow. Instead,

F-Diam employs various optimizations to minimize the number of

vertices whose eccentricity needs to be computed. This strategy

is outlined in Algorithm 1 along with the following subsections

explaining our optimizations, how they are put together in F-Diam,

and how they are parallelized.

Note that Algorithm 1 and the following algorithms use a 2>D=C4A

value to check whether a vertex has already been visited in the

current iteration. We use a counter rather than a �ag to avoid a

costly reset procedure after each BFS traversal. Note further that

any write to a vertex’s eccentricity (e.g., E422) not only sets the

eccentricity but also removes the vertex from consideration.

Algorithm 1 outlines the overall procedure. First, we compute

an initial bound using the 2-sweep approximation with D as the

starting vertex. In this process, we compute the eccentricity using

Algorithm 2 of both D and a vertexF that is as far away as possible

from D. After computing the initial lower bound, we call Winnow

(Algorithm 3) and Chain-processing (Algorithm 4) to remove a

large number of vertices from consideration. Then, we compute

the eccentricities of some of the remaining vertices via BFS calls.

3

Fast Exact Diameter Computation of Sparse Graphs ICPP ’25, September 08–11, 2025, San Diego, CA, USA

Incrementally extending the winnowed region is trivial as it is

centered around one starting vertex. Extending all prior eliminated

regions is more involved. Since we just found a new largest ec-

centricity, all previously computed eccentricities must be smaller.

Therefore, we theoretically need to call Eliminate on all prior ver-

tices for which an eccentricity was computed, which would be slow.

F-Diam avoids this by recording the upper bound for the eccen-

tricity in each eliminated vertex. This allows it to place all vertices

with an eccentricity bound that is equal to the old 1>D=3 value onto

a worklist and then performs a single, partial, multi-source, level-

synchronous BFS. It is partial because we only eliminate as many

levels as the di�erence between the new and the old 1>D=3 val-

ues. Hence, incrementally extending all prior eliminated regions is

e�cient and independent of the number of prior evaluated vertices.

F-Diam repeats the above steps until each vertex has either been

eliminated or its eccentricity computed. The �nal 1>D=3 value is

the true diameter of the graph.

4.6 Parallelization

F-Diam often eliminates a majority of the vertices due to a combina-

tion of the previously mentioned techniques. However, the number

of removed vertices is dependent on the topology of the input. In

the worst case, which is a graph where all vertices have the same

eccentricity, the complexity of F-Diam is$ (=<) because the Chain

Processing and Eliminate techniques do not apply and Winnow can

only remove fewer than half of the vertices. Hence, most vertices

still need to have their eccentricity computed explicitly.

We parallelized our implementation to boost the performance of

F-Diam even on such inputs. Speci�cally, every level-synchronous

BFS traversal of the entire graph is done in parallel. As an alter-

native, we also tried running multiple BFS traversals in parallel.

However, this did not yield a speedup because it resulted in too

much redundant work, as concurrent Eliminate operations would

overlap in removing vertices from consideration. After all, our ap-

proach tends to require only a few eccentricity evaluations (see

Section 6.3), and it is di�cult to predict which vertices need to have

their eccentricity computed.

In our parallel code, each thread is assigned a chunk of vertices

from the current worklist. The threads then visit the neighbors of

those vertices in parallel and atomically check if these neighbors

have already been visited. Neighbors that have not are atomically

added to the second worklist. All threads synchronize at a barrier

before the two worklists are swapped and the procedure repeats.

The traversal ends when the new worklist is empty.

F-Diam employs state-of-the-art direction-optimized BFS [2, 22]

to reduce the number of edges examined. This hybrid approach

switches between a conventional data-driven top-down BFS and a

topology-driven bottom-up BFS when the worklist exceeds a size

threshold that is computed based on the number of vertices in

the graph. The bottom-up BFS requires no atomic operations but

performs some wasted work, which is why it is only preferable

when the worklist size is large. F-Diam switches back to the top-

down BFS when the frontier size drops below the threshold again in

line with the latest direction-optimized BFS implementations [22].

We experimentally determined a threshold of 10% of the num-

ber of vertices to yield good performance. Once the worklist size

reaches this threshold, the following frontier consists of the unvis-

ited neighbors of these vertices, which is often close to 50% of the

graph, making the bottom-up BFS very e�ective.

5 Evaluation Methodology

We compare the performance of a serial and a parallel implementa-

tion of F-Diam with serial Graph-Diameter [1] and serial and paral-

lel implementations of iFUB [4]. These are the fastest publicly avail-

able implementations we could �nd. Although Graph-Diameter was

developed for directed graphs, it also works on undirected graphs

in CSR format, in which each undirected edge is represented by

two directed edges in opposite directions.

We use the 17 real-world and synthetic graphs from Table 1

as inputs. The table lists the graph name, origin, type, number of

vertices, number of edges (including back edges), average degree,

maximum degree, and the largest eccentricity in any connected

component. Several of these graphs are disconnected, meaning the

actual diameter is in�nite. This is �agged in the output of our code.

F-Diam and all other tested codes support disconnected graphs and

report the largest eccentricity among all connected components.

We choose these inputs for their variety in topology, degree, size,

type, and diameter. They stem from the Galois framework [9], Stan-

ford Network Analysis Platform [11], SuiteSparse Matrix Collec-

tion [17], and the Center for Discrete Mathematics and Theoretical

Computer Science at the University of Rome [6].

We evaluated all codes on a shared-memory NUMA system with

an AMDRyzen Threadripper 3970X 32-core processor.We compiled

the codes using g++ version 13.3.0, which supports OpenMP 5.2.

We run the codes 9 times on each input and use the median run-

time. This is done to account for variability in system performance.

Moreover, we limited the running time to 2.5 hours per input. We

primarily report performance in terms of throughput, which is the

number of vertices in the graph divided by the running time. Doing

so normalizes the results as the graphs vary greatly in size and,

therefore, in runtime. Throughput is a higher-is-better metric.

6 Results

In this section, we �rst compare the performance of F-Diam with

the state of the art across di�erent graph topologies. Then, we

separately evaluate the performance of various features of F-Diam.

6.1 Performance Comparison

Figure 6 shows the throughput (in vertices per second) of our serial

and parallel CPU codes as well as that of iFUB and Graph-Diameter.

Note that the y-axis is logarithmic. The x-axis lists the input graphs.

iFUB times out on the 2d-2e20.sym, cit-Patents, delaunay_n24, eu-

rope_osm, kron_g500-logn21, uk-2002,USA-road-d.NY, andUSA-road-

d.USA inputs. Graph-Diameter times out on delaunay_n24. Table 2

lists the corresponding runtimes.

The serial code of F-Diam already outperforms iFUB and Graph-

Diameter on all tested inputs. In fact, it is nearly an order of mag-

nitude faster in most cases. Our parallel code is even faster and

outperforms our serial version on each input.

Based on the geometric-mean throughputs, the serial implemen-

tation of F-Diam is 1267.0× faster than serial iFUB, 686.4× faster

7

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Approach
	4.1 Initial Diameter
	4.2 Winnow
	4.3 Chain Processing
	4.4 Eliminate
	4.5 Extending Winnow and Eliminate
	4.6 Parallelization

	5 Evaluation Methodology
	6 Results
	6.1 Performance Comparison
	6.2 Scalability
	6.3 Number of BFS Traversals
	6.4 Effectiveness of Stages in F-Diam
	6.5 Optimizations

	7 Conclusion
	Acknowledgments
	References

