
Pooling local climate and donor gauges with deep learning for improved 
reconstructions of streamflow in ungauged and partially gauged basins

Sungwook Wi *, Rohini Gupta , Scott Steinschneider
Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA

A R T I C L E  I N F O

This manuscript was handled by A. Bardossy, 
Editor-in-Chief, with the assistance of Shreed
har Maskey, Associate Editor

Keywords:
Prediction in ungauged basins (PUB)
Deep learning
Long Short-Term Memory network
Great Lakes

A B S T R A C T

Improving the accuracy of streamflow predictions in ungauged basins (PUB) has long been a significant challenge 
in hydrology. This study hypothesizes that deep learning-based PUB can be enhanced for historical streamflow 
reconstruction by integrating local climate data from ungauged or partially gauged basins (the target site) with 
streamflow measurements from nearby gauged basins (donor sites). The rationale is that streamflow records from 
donor sites offer valuable information for predicting streamflow at the target site. However, in some instances, 
local weather data may be more readily available, while available donors might be poorly correlated with the 
target. Therefore, prediction accuracy can be improved by weighting both sources effectively. To test this hy
pothesis, we conducted a case study using over 200 streamflow gauges in the Great Lakes region. We developed a 
multi-layer perceptron to estimate rank correlations of streamflow between basins, aiding in the selection of 
donor sites. These correlations were fed into a Long Short-Term Memory (LSTM) network, along with streamflow 
data from donor sites and weather data from target sites. We compared this model against two other LSTMs – one 
trained only with climate data and the other solely with streamflow from donor sites – as well as the average 
prediction from those two models. Our findings indicate that the integrated approach outperforms the alterna
tives, particularly for partially gauged and natural ungauged sites. Lastly, we demonstrate the value of the 
approach for improving lake-wide runoff estimates and use explainable AI to investigate how the model uses 
both climate and donor streamflow information.

1. Introduction

Improving the accuracy of daily or sub-daily streamflow predictions 
in ungauged basins (PUB) remains a significant challenge in hydrolog
ical research (Sivapalan et al., 2003; Hrachowitz et al., 2013; Blöschl 
et al., 2019). Various streamflow regionalization methods have been 
developed to address this issue by utilizing hydrological information 
from basins with similar characteristics – such as climate, geology, and 
topography – to estimate streamflow in ungauged or partially gauged 
basins. One widely adopted approach is data-driven regionalization, 
which employs statistical, empirical, or machine learning techniques to 
predict streamflow based on relationships between hydrological re
sponses and catchment characteristics (e.g., Fennessey, 1994; Archfield 
and Vogel, 2010; Worland et al., 2019a,b). Alternatively, regionaliza
tion can be based on hydrological models, where calibrated parameters 
from gauged basins are transferred to ungauged ones based on spatial 
proximity and physical similarity (e.g., Choubin et al., 2019; Pool et al., 
2021; Singh et al., 2022; Wu et al., 2023).

Despite these efforts, substantial challenges persist in both hydro
logical model-independent and model parameter regionalization 
methods. These challenges stem from various factors, including the 
spatial and temporal heterogeneity in basin characteristics, the non- 
stationarity of hydrological processes driven by climate change and 
human activities, uncertainties in model parameters, and limited data 
availability (Hrachowitz et al., 2013; Razavi and Coulibaly, 2013). Such 
complexities hinder the generalization of regionalization methods, 
making accurate predictions in ungauged basins elusive.

With the rise of big data and advances in artificial intelligence (AI), 
deep learning (DL) models have opened new opportunities for 
improving streamflow predictions in ungauged basins. Long Short-Term 
Memory networks (LSTMs) in particular have shown strong general
ization to new basins by learning hydrologic patterns from large datasets 
containing data from hundreds or thousands of gauged basins (Kratzert 
et al., 2024). Over the past decade, research has demonstrated that 
LSTMs trained on extensive regional data significantly outperform 
traditional hydrological models and other statistical approaches in 
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predicting streamflow in ungauged basins (e.g., Kratzert et al., 2019; 
Mai et al., 2022; Arsenault et al., 2023).

Since LSTMs emerged as a state-of-the-art method for streamflow 
regionalization, research has increasingly focused on refining these 
models through alternative architectures, innovative training strategies, 
and additional information sources. For instance, past work has 
improved streamflow prediction by combining Convolutional Neural 
Networks (CNNs) with LSTMs to utilize spatial feature extraction with 
temporal sequence modeling (Guo et al., 2024; Pokharel and Roy, 
2024), and also with attention-based LSTMs to dynamically adapt the 
use of historical patterns (e.g., previous months’ snowmelt) for pre
dictions in different times of the year (Alizadeh et al., 2021). Hybrid 
models that integrate LSTMs with hydrological models (Feng et al., 
2024; Jiang et al., 2020) or incorporate physical constraints (Hoedt 
et al., 2021; Wi and Steinschneider, 2024) enhance the physical con
sistency of predictions and improve their generalizability across diverse 
climatic conditions, including those influenced by climate change. 
Additionally, transfer learning has been shown to improve predictions in 
under-monitored regions by fine-tuning LSTMs trained on large, high- 
quality datasets (Ma et al., 2021; Le et al., 2024; Xu et al., 2023), sup
ported by globally available remote sensing products (Wilbrand et al., 
2023). Improvements in regionalization have also been achieved 
through the development of region-specific LSTMs based on watershed 
clustering using physiographic attributes (He et al., 2024), or by itera
tively training LSTMs to all sites and those in specific clusters to improve 
cluster-specific performance (Ghaneei et al., 2024).

This study focuses on the value of another strategy – data integration 
– to advance DL-based hydrologic modeling, specifically in the context 
of historical streamflow estimation. Data integration (also referred to as 
data fusion) combines multiple, disparate sources of information to 
improve predictions over what is achievable with a single data source 
(Dasarathy, 1997). This approach is straightforward with deep learning 
models but can be challenging with physically based models, which 
require complex data assimilation schemes to integrate novel data 
streams (Feng et al., 2020). Past work has shown that data integration 
can improve hydrologic prediction by combining different precipitation 
datasets (Kratzert et al., 2021), multi-scale soil moisture measurements 
(Liu et al., 2022), and the combined use of climate and hydrologic state 
variables (e.g., streamflow, snow water equivalent, soil moisture). This 
last data integration strategy, however, has primarily been employed for 
forward simulations (e.g., streamflow forecasting), using forecasted 
weather and lagged hydrologic state variables at a target site to improve 
forecasts at that site (Fang and Shen, 2020; Feng et al., 2020; Meyal 
et al., 2020; Nearing et al., 2022; Jahangir and Quilty, 2024; Song et al., 
2024).

In addition to forward simulations, an equally important goal of PUB 
is the reconstruction of historical streamflow records. Such reconstruc
tion is crucial for improving our understanding of past water availability 
and variability, making it an essential component of sustainable water 
resource management in the face of a changing climate and growing 
demand (Milly et al., 2005; Vörösmarty et al., 2010). One instance of 
data integration that has not been adequately explored in this context is 
the fusion of local climate data at a target site and streamflow mea
surements at nearby donor sites. When considering streamflow recon
struction (rather than forecasting), streamflow measurements at donor 
sites have the potential to provide extremely valuable information for 
streamflow prediction at a target site. While this type of approach is 
common in the PUB literature (e.g., the QPPQ method promoted by the 
United States Geological Survey; see Worland et al., 2019a,b), to the 
authors’ knowledge it has not yet been extended to DL-based hydrologic 
models.

If donor basins are to be used for streamflow regionalization, they 
must be selected with care (Patil and Stieglitz, 2012). One common 
approach is to select a donor that is closest to the target basin 
(Fennessey, 1994; Mohamoud, 2008). Often, improved predictions are 
achieved by using multiple donor gauges selected based on multiple 

criteria (e.g., geographic proximity and physical attributes) rather than 
relying on a single similarity measure (Arsenault and Brissette, 2014; 
Pool et al., 2021; Shu and Ouarda, 2012; Yang et al., 2018; de Lavenne 
et al., 2016). Towards this end, one or more donors can be selected to 
have the highest correlation to the target site, as estimated by regional 
regressions or kriging that account for multiple similarity measures 
(Archfield and Vogel, 2010; Yuan, 2013). We leverage this approach in 
the work presented here.

The central hypothesis of this study is that DL-based PUB can be 
enhanced for the purpose of historical streamflow reconstruction by 
integrating local climate data in ungauged basins with streamflow 
measurements from donor gauges. The underlying concept is that 
streamflow records from donor basins often provide valuable informa
tion to predict streamflow at target sites, but in some instances, local 
weather data at the target site may offer better predictive capacity when 
donor basins are distant or poorly correlated with the target site. 
Therefore, by weighting both sources of information, we aim to achieve 
more accurate streamflow predictions.

To test the hypothesis, we apply our approach to a case study 
involving over 200 streamflow gauges in the Great Lakes region. We 
develop a multi-layer perceptron to estimate inter-basin streamflow 
correlations and select donor sites. These estimated correlations are also 
used as inputs to an LSTM, along with streamflow data from the donor 
sites and local weather data from the ungauged basins. We compare the 
performance of our integrated model against two other LSTMs – one 
trained exclusively on climate data and another solely on donor site 
streamflow data – to isolate the value of each information source and the 
added value through their integration. We also consider the average 
prediction from the LSTMs trained only on climate or donor-site 
streamflow, to compare the benefits of a model ensemble averaging 
approach (Farmer and Vogel, 2013; Pool et al., 2019; Razavi and Cou
libaly, 2013; Swain and Patra, 2017; Waseem et al., 2015) to a single 
model that integrates all available information sources. We assess all 
models in two cases, out-of-sample in time and out-of-sample in space, 
to evaluate how each model performs for partially gauged versus 
ungauged sites. We also evaluate models separately for sites deemed 
more natural and those classified as being subject to anthropogenic 
impacts.

Our results demonstrate utility in the approach that integrates local 
climate and donor streamflow data, particularly for temporal extrapo
lation at partially gauged basins and for predictions in ungauged basins 
with minimal anthropogenic influence. We show that the use of DL for 
streamflow reconstruction can significantly improve the estimations of 
lake-wide runoff, with important implications for quantifying the Great 
Lake water balance. Finally, we utilize explainable AI techniques to 
show how DL models can balance the use of climate and donor site 
streamflow information over time and under varying hydrologic 
conditions.

2. Study area and data

Our study focuses on the Great Lakes region (Fig. 1), which spans 
over 900,000 km2 across the United States and Canada (Mai et al., 
2022). Encompassing the Great Lakes basin (~765,000 km2) and the 
Ottawa River basin (~146,000 km2), the vast drainage system exhibits a 
complex array of hydrologic responses shaped by varied geographic 
features – such as climate, land cover, and topography – as well as sig
nificant human impacts, including urbanization, agricultural practices, 
and water control structures (Kult et al., 2014). The basin’s inherent 
complexity poses challenges for streamflow regionalization, which are 
further compounded by difficulties in cross-border data access and 
integration (Fry et al., 2022; Gronewold et al., 2018). As such, the Great 
Lakes region offers a valuable setting for advancing regionalization 
techniques, which can improve Great Lakes water level predictions. 
Enhanced predictions will, in turn, support better water resource man
agement, balancing the needs of economic development, environmental 
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stewardship, and community safety in this populous yet largely unga
uged area (Gronewold and Rood, 2019; Kult et al., 2014).

This study examines 212 watersheds distributed across the five Great 
Lake basins and the Ottawa River basin as shown in Fig. 1. Data for these 
watersheds, sourced from a comprehensive rainfall-runoff model inter
comparison in this region (Mai et al., 2022), include daily streamflow 
records, meteorological forcings, and geophysical attributes. Stream
flow measurements, collected by the U.S. Geological Survey and Water 
Survey Canada, span from January 2000 to December 2017. Each 
gauging station represents a drainage area of at least 200 km2, with less 
than 5 % missing data over the study period. In the experimental setup 
(described further in the following section), 141 watersheds are desig
nated as training sites and the remaining 71 are used for testing (see 
Fig. 1). Gauges are classified as being minimally impacted by human 
activities or regulated by water control structures, regardless of their 
designation as training or testing sites (see Mai et al., 2022; classification 
provided in their Supporting Material).

Meteorological forcings are derived from the Regional Deterministic 
Reanalysis System v2 (Gasset et al., 2021), a 10 km resolution, hourly 
dataset covering North America. Hourly values of precipitation, net 
incoming shortwave radiation (Rs), and temperature are aggregated to 
produce daily basin-wide averages for precipitation and Rs, along with 
daily minimum and maximum temperatures. The precipitation data, 
generated through the Canadian Precipitation Analysis, combines sur
face observations with short-term forecasts from the Regional Deter
ministic Reforecast System, making it gauge-based and spatially 
interpolated rather than purely model-driven.

Geophysical attributes of each watershed are sourced from various 
datasets. Basin-wide elevation and slope statistics come from the 
HydroSHEDS digital elevation model at 3 arcsec resolution (Lehner 
et al., 2008). Soil properties, including soil texture classes, are extracted 
from the Global Soil Dataset for Earth System Models at a 30 arcsec 
resolution (Shangguan et al., 2014). Land cover data, based on Landsat 
imagery from 2010 to 2011 at a 30 m resolution, are obtained from the 
North American Land Change Monitoring System (NALCMS, 2017). 
These geophysical datasets provide basin-averaged attributes for each 
watershed, further detailed in Mai et al. (2022) and listed in Table 1.

3. Methods

Fig. 2 illustrates our experimental design, which is briefly 

Fig. 1. Study area of the Great Lakes region, including the Great Lakes watersheds and the Ottawa River basin. This study utilizes data from 212 stream gauges (141 
for training and 71 for testing) classified as either natural (i.e., low human impact) or regulated (Mai et al., 2022). The training set comprises 66 natural and 75 
regulated gauges, while the testing set includes 33 natural and 38 regulated gauges.

Table 1 
Watershed attributes used as inputs for the deep learning rainfall-runoff models 
developed in this study (adapted from Wi and Steinschneider, 2024). Attributes 
marked with an asterisk (*) are used in the multi-layer perceptron model for 
selecting donor gauges.

Attribute Description

p_mean Mean daily precipitation
pet_mean Mean daily potential evapotranspiration
aridity Ratio of mean PET to mean precipitation
t_mean Mean of daily maximum and daily minimum 

temperature
frac_snow Fraction of precipitation falling on days with mean 

daily temperatures below 0 ◦C
high_prec_freq Fraction of high-precipitation days (=5 times mean 

daily precipitation)
high_prec_dur Average duration of high-precipitation events 

(number of consecutive days with =5 times mean 
daily precipitation)

low_prec_freq Fraction of dry days (<1 mm d-1 daily precipitation)
low_prec_dur Average duration of dry periods (number of 

consecutive days with daily precipitation <1 mm d-1)
mean_elev* Catchment mean elevation
std_elev* Standard deviation of catchment elevation
mean_slope* Catchment mean slope
std_slope* Standard deviation of catchment slope
area_km2* Catchment area
Temperate-or-sub-polar- 

needleleaf-forest*
Fraction of land covered by “Temperate-or-sub-polar- 
needleleaf-forest”

Temperate-or-sub-polar- 
grassland*

Fraction of land covered by “Temperate-or-sub-polar- 
grassland”

Temperate-or-sub-polar- 
shrubland*

Fraction of land covered by “Temperate-or-sub-polar- 
shrubland”

Temperate-or-sub-polar- 
grassland*

Fraction of land covered by “Temperate-or-sub-polar- 
grassland”

Mixed-Forest* Fraction of land covered by “Mixed-Forest”
Wetland* Fraction of land covered by “Wetland”
Cropland* Fraction of land covered by “Cropland”
Barren-Lands* Fraction of land covered by “Barren-Lands”
Urban-and-Built-up* Fraction of land covered by “Urban-and-Built-up”
Water* Fraction of land covered by “Water”
BD* Soil bulk density (g cm-3)
CLAY* Soil clay content (% of weight)
GRAV* Soil gravel content (% of volume)
OC* Soil organic carbon (% of weight)
SAND* Soil sand content (% of weight)
SILT* Soil silt content (% of weight)
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summarized here and described in more detail in the subsections below.
This work develops multiple LSTMs for streamflow regionalization 

across the Great Lakes region (see step 1 in Fig. 2): 

• LSTMClim: Driven by local climate data, without any donor stream
flow inputs.

• LSTMDnr: Driven by donor streamflow data, excluding climate 
inputs.

• LSTMClim+Dnr: Incorporates both local climate data and streamflow 
data from donor gauges.

• LSTMAvg: An ensemble model that averages predictions from 
LSTMClim and LSTMDnr.

Each model incorporates as input either climate data at the target site 
(LSTMClim), streamflow data at donor sites (LSTMDnr), or both 
(LSTMClim+Dnr). All models also incorporate static basin features (i.e., 
geophysical attributes) at the target basin as inputs. The LSTMClim model 
is the same as the model developed in the rainfall-runoff model inter
comparison of Mai et al. (2022) and again in Wi and Steinschneider 
(2024) and serves as a benchmark model against which to compare 
alternative LSTMs that use donor streamflow information. Additionally, 
we compare our models with another benchmark model, called the 
nearest-neighbor drainage ratio (NNDR) model, which estimates 
streamflow for ungauged basins by scaling streamflow data from the 
closest donor gauge using the drainage area ratio between the ungauged 
and donor sites. This approach is currently used for historical lake-wide 
runoff estimation in the Great Lakes (Hunter et al., 2015). Finally, 
LSTMAvg represents predictions that are averaged from LSTMClim and 
LSTMDnr and so is not trained separately. This model allows us to 
compare the benefits of model ensemble averaging against a single 

model that integrates all available information sources (LSTMClim+Dnr).
To select donor gauges for the LSTMDnr and LSTMClim+Dnr models 

(see step 2 in Fig. 2), we train a Multi-Layer Perceptron (MLP) to predict 
inter-basin streamflow correlations. These predictions are then used to 
identify donor gauges that are highly correlated with each target gauge, 
whose streamflow data and correlation estimates are then used as inputs 
in the LSTMDnr and LSTMClim+Dnr models.

The LSTM models are trained on data from 141 training basins 
(serving as donor basins) and evaluated on 71 testing gauges, which are 
treated as ungauged locations (see step 3 in Fig. 2 and Fig. 1). The period 
of record is also split into separate training and testing periods. This 
design allows us to evaluate model performance for the testing period at 
training sites (i.e., partially gauged sites) and for the training and testing 
period at testing sites (fully ungauged sites). Additionally, we evaluate 
models separately for sites under minimal human impact and those 
affected by regulation or other anthropogenic activity.

We assess lake-wide runoff estimates for six major watersheds in the 
study domain: the five Great Lakes watersheds and the Ottawa River 
watershed (see step 4 in Fig. 2). For each lake, we calculate monthly 
prediction errors from all gauges within the watershed and use these to 
estimate lake-wide error variance across the different regionalization 
models.

Finally, we use explainable AI to investigate how the integrated DL 
model (LSTMClim+Dnr) balances the use of climate and donor streamflow 
information when making predictions, and how this balance changes 
over time and under varying hydrologic conditions (see step 5 in Fig. 2).

Fig. 2. Schematic of the experimental design.
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3.1. Long Short-Term Memory network (LSTM) for hydrological 
modeling

The application of LSTM networks in hydrological modeling lever
ages the model’s capacity to retain and recall long-term dependencies in 
sequential data, enabled by its unique memory cell structure (Hochreiter 
and Schmidhuber, 1997). This feature makes LSTMs particularly well- 
suited for modeling rainfall-runoff processes (Kratzert et al., 2018).

An LSTM cell processes input data sequentially, one timestep at a 
time, while maintaining and updating its internal memory. At each 
timestep t, the cell receives: 

• the current input vector xt (dimension K),
• the previous hidden state ht−1 (dimension D), and
• the previous cell state ct−1 (dimension D).

The cell state ct is updated based on three gating mechanisms: the 
input gate it, forget gate f t, and output gate ot. These gates regulate the 
flow of information into and out of the memory cell, as defined by the 
following equations: 

it = σ(Wi • [ht−1, xt ] + bi )(input gate)

f t = σ
(
Wf • [ht−1, xt ] + bf

)
(forget gate)

c̃t = tanh(Wc • [ht−1, xt ] + bc )(candidate cell state)

ot = σ(Wo • [ht−1, xt ] + bo )(output gate)

ct = f t ⊙ ct−1 + it ⊙ c̃t(updated cell state)

ht = ot ⊙ tanh(ct)(updated hidden state)

Here, σ indicates the sigmoid function, tanh is the hyperbolic tangent, 
and ⊙ denotes element-wise multiplication. The matrices W and vectors 
b are learnable weights and biases associated with each gate. Each gate 
plays a distinct role: 

• The input gate it determines how much new information from c̃t is 
added to the cell state.

• The forget gate f t controls how much of the previous cell state ct−1 is 
retained.

• The output gate ot regulates the amount of information from the 
current cell state ct that is passed to the hidden state ht .

After processing all T timesteps, the final hidden state hT is passed 
through a fully connected layer with a single neuron. A ReLU (Rectified 
Linear Unit) activation function is applied to ensure non-negative 
streamflow predictions: 

yT = ReLU
(
WyhT + by

)

We developed three regional LSTM models for daily streamflow pre
dictions across the Great Lakes region: LSTMClim, LSTMDnr, and 
LSTMClim+Dnr, each with a distinct input configuration. The LSTMClim 
has 39 input features (K = 39): 9 climate variables and 30 catchment 
attributes for the target basin. Climate inputs include basin-averaged 
daily precipitation, maximum and minimum temperatures, net 
incoming shortwave radiation, specific humidity, surface air pressure, 
zonal and meridional wind components, and potential evapotranspira
tion. Catchment attributes are detailed in Table 1. Climate inputs vary 
dynamically across all time steps, while catchment attributes remain 
static within the input sequence x.

The LSTMDnr takes as input the same 30 catchment attributes as 
LSTMClim, but it does not use the dynamic climate inputs. Instead, the 
LSTMDnr model takes as input standardized streamflow data from M 
donor sites, as well as estimated rank correlations between streamflow 

at each donor site and the target site (leading to a total of 2 M + 30 input 
features). More detail on the standardized donor streamflow, estimated 
rank correlations, and selection of M donors is provided in Section 3.2. 
Both streamflow and correlation inputs for each donor site serve as static 
features, since donor streamflow measurements are provided only for 
the final time step (T) rather than across all time steps 1,…,T.

The LSTMClim+Dnr model combines the inputs from the LSTMClim and 
LSTMDnr models, for a total of 2 M + 39 inputs. Before training, all input 
features for all models are standardized by subtracting the mean and 
dividing by the standard deviation across all training sites in the training 
period, except for donor gauge streamflow measurements, which were 
pre-standardized (see Section 3.2). Observed streamflow, while not 
standardized, is divided by drainage area to represent flow in 
millimeters.

Each LSTM model is trained on 141 training sites from 2001 to 2010 
and evaluated across these sites for the period 2011–2017 to assess out- 
of-sample performance in time. Performance is also evaluated on 71 test 
gauges over the entire 2001–2017 period (out-of-sample in space). The 
models were trained by minimizing the mean-squared error (MSE) 
across training watersheds: 

MSE =
1
N

∑N

n=1

1
Tn

∑Tn

t=1

(
Q̂n,t − Qn,t

)2 

where N is the number of training watersheds and Tn is the number of 
samples in the nth watershed. Q̂n,t and Qn,t are, respectively, the pre
dicted and observed streamflow (in mm) for basin n and day t.

The final model architectures are determined using 5-fold cross- 
validation to tune hyperparameters such as LSTM size, learning rate, 
mini-batch size, sequence length, dropout rate, epochs, and donor gauge 
count M (for applicable models). Based on this cross-validation, each 
model was optimized with an input sequence of one year (i.e., T = 365 
days), one LSTM layer with 256 neurons (D = 256), a mini-batch size of 
64, learning rate of 0.0005, drop-out rate of 0.4, and M = 5 donor 
gauges. The full cross-validation results and rationale for these selec
tions are provided in the Supporting Information (Text S1, Figs. S1–S5). 
The LSTMClim models were trained over 30 epochs, while LSTMClim+Dnr 
and LSTMDnr converged faster and were trained for 10 epochs to prevent 
overfitting. Network weights were tuned using the ADAM optimizer 
(Kingma and Ba, 2015). To address uncertainty in model training, each 
model was trained 10 times with different random initializations. The 
daily streamflow predictions for each model represent the ensemble 
average across these 10 trials.

Finally, we constructed an ensemble model, LSTMAvg, which aver
ages the daily predictions of LSTMClim and LSTMDnr, assigning equal 
weights (0.5) to each model’s output to produce a composite streamflow 
prediction.

3.2. Multi-Layer Perceptron (MLP) for selecting donor gauges

We employ a MLP to select donor gauges that will inform the 
LSTMDnr and LSTMClim+Dnr models (step 2 in Fig. 2). The MLP is used to 
estimate the Spearman’s rank correlation for daily streamflow between 
pairs of stream gauges, with the goal of identifying donor gauges that are 
strongly correlated to target sites (similar to Archfield and Vogel (2010)
and Yuan (2013)). The use of correlation to select donor sites helps 
identify hydrologically similar donor basins, even those located beyond 
the immediate vicinity of the target site. Spearman’s rank correlation is 
adopted to capture monotonic relationships in flow patterns while 
mitigating the influence of infrequent extreme values. Initial testing 
showed that the use of Spearman correlations led to better performance 
of the LSTMDnr and LSTMClim+Dnr models compared to Pearson corre
lations. Consistent with geostatistical approaches such as Top-kriging 
(Skøien and Blöschl, 2007; de Lavenne et al., 2016), we incorporate 
multiple donor gauges to enhance prediction robustness and mitigate 
the risk associated with relying on a single donor.
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The MLP model is trained on streamflow data from the 141 training 
gauges during the training period (2001–2010). The model is structured 
with an input layer, two hidden layers, and a fully connected output 
layer containing a single neuron, designed to output an estimated rank 
correlation in daily streamflow between pairs of training gauges. For 
each pair of sites, inputs to the MLP include: 1) the Euclidean distance of 
physiographic characteristics between watersheds (see Table 1 for a list 
of these characteristics); 2) the Euclidean distance between watershed 
centroids; and 3) the Spearman’s rank correlation of daily precipitation 
between the two sites. Cross validation over the training period and 
training sites was used to optimize model hyperparameters (the number 
of neurons and activation functions). The final MLP architecture in
cludes two hidden layers with 35 neurons each, using a hyperbolic 
tangent function in the first layer and a sigmoid activation function in 
the second.

Once trained, the MLP model is extended for donor gauge selection 
across all 212 gauges (141 training and 71 testing gauges). For each 
streamflow gauge, M donor gauges are selected from the training set 
based on the highest MLP-estimated correlations. As mentioned in Sec
tion 3.1, each selected donor gauge contributes two input features to the 
regional LSTMDnr and LSTMClim+Dnr models: (1) MLP-estimated corre
lation, serving as a weight indicating the strength of the relationship, 
and (2) donor gauge streamflow data for the day on which a prediction is 
generated for the target basin. Importantly, instead of using raw donor 
streamflow values as inputs, the donor gauge data are standardized via 
quantile mapping. That is, each donor streamflow value is passed 
through the empirical flow duration curve at the donor site to derive the 
associated non-exceedance probability, which is then passed through 
the quantile function of the standard normal distribution to produce a z- 
score. This process reduces the impact of outliers at donor gauges that 
might otherwise mislead predictions for the target basin.

Rather than relying on a single donor gauge, the MLP model enables 
the identification of multiple high-correlation donor gauges. This multi- 
donor approach enhances predictive stability by incorporating diverse 
hydrological responses, ultimately improving the accuracy of regional 
streamflow predictions (Qi et al., 2021; Yang et al., 2018). As mentioned 
in Section 3.1, the number of donors M is a hyperparameter of the 
LSTMDnr and LSTMClim+Dnr models that is selected through cross- 
validation on the training set.

3.3. Model performance evaluation

As noted previously, 141 basins are designated as training sites, and 
the remaining 71 basins are used for testing. The training period spans 
January 2001 to December 2010, while the testing period extends from 
January 2011 to December 2017. This configuration supports both 
temporal and spatial out-of-sample evaluation. Additionally, we eval
uate model performance for sites under minimal human impact sepa
rately from those affected by regulation or other anthropogenic activity. 
This setup results in four groups of target sites for model evaluation: 

• Natural, partially gauged sites: evaluate model performance at nat
ural training gauges for the test period of 2011–2017.

• Regulated, partially gauged sites: evaluate model performance at 
regulated training gauges for the test period of 2011–2017.

• Natural, fully ungauged sites: evaluate model performance at natural 
test gauges over the entire period of 2001–2017.

• Regulated, fully ungauged sites: evaluate model performance at 
regulated test gauges over the entire period of 2001–2017.

Following previous intercomparison studies (Frame et al., 2022; Mai 
et al., 2022), we use several metrics for model evaluation, including: the 
Nash-Sutcliffe Efficiency (NSE; (Nash and Sutcliffe, 1970)); Kling-Gupta 
Efficiency (KGE; (Gupta et al., 2009)); absolute percent bias (PBIAS); 
peak flow PBIAS (FHV; (Yilmaz et al., 2008)), focusing on the top 2 % of 
flow values; and low flow PBIAS (FLV; (Yilmaz et al., 2008)), focusing on 

the bottom 30 % of flow values. Each metric is calculated independently 
for the four modes of model evaluation at each site. For all LSTM 
regionalization models, performance results are derived from the 
ensemble mean across 10 separate training trials.

3.4. Lake-wide runoff estimate and error evaluation

To evaluate each model’s performance in predicting the Great Lakes 
water balance, we analyze errors in lake-wide runoff predictions at a 
monthly timescale. We focus on monthly rather than daily values 
because this is the timestep most often used to analyze Great Lakes water 
balance variability (see (O’Brien et al., 2024)). We estimate lake-wide 
runoff for each calendar month across the six major watersheds in the 
Great Lakes region—the five Great Lakes watersheds and the Ottawa 
River watershed. This monthly assessment enables us to identify po
tential seasonal patterns or trends, highlighting any systematic biases or 
temporal variations in model accuracy.

For each regionalization model, we aggregate streamflow pre
dictions from all gauges within each of the six major watersheds to 
obtain total daily runoff estimates on a lake-wide scale, covering the 
period from 2001 to 2017. We do not remove nested gauges when 
summing flows to a daily, lake-wide total. Daily lake-wide estimates are 
then compiled into monthly totals for each watershed. Monthly error 
calculations are performed by comparing model predictions with 
observed streamflow data, also aggregated from gauges, to provide a 
direct assessment of model accuracy.

To quantify uncertainty in monthly totals at the lake-wide scale, we 
derive an aggregated variance of monthly lake-wide runoff error, 
calculated using the variance of individual site errors and their co
variances: 

Var

(
∑N

i=1
Erri

)

=
∑N

i,j=1
Cov

(
Erri, Errj

)
=

∑N

i=1
Var(Erri) +

∑

i∕=j
Cov

(
Erri, Errj

)

Here, Erri represents the monthly runoff error for each stream gauge 
within one of the Great Lakes watersheds. This aggregation process 
adheres to the principles of variance for sums of random variables.

We compare the variance of monthly, lake-wide runoff errors across 
all models to determine how differences between models – which were 
trained at the daily scale for individual rivers and streams – ultimately 
propagate into estimates of the monthly water balance across the Great 
Lakes. Understanding these differences will help identify the level of 
model complexity needed to improve Great Lakes water level estima
tion, with implications for regional resource management and water 
availability.

3.5. Model interpretability

To enhance model interpretability, we applied the Integrated Gra
dients (IG) method (Sundararajan et al., 2017), a widely adopted tech
nique in explainable AI. IG estimates the contribution of each input 
feature to a model’s prediction by integrating the gradients of the 
model’s output with respect to its input along a straight path from a 
baseline (typically an all-zero or neutral input) to the actual input. As 
emphasized by Sundararajan et al., (2017), effective attribution 
methods should satisfy two key properties: sensitivity and imple
mentation variance. Sensitivity ensures that if changing an input affects 
the output, the input should receive a non-zero attribution. Imple
mentation variance guarantees that two functionally equivalent models 
(i.e., models that produce identical outputs for all inputs) yield identical 
attributions. IG satisfies both criteria, making it a theoretically sound 
and reliable method for feature attribution.

In our study, we use IG to compute attribution scores for all input 
features across all prediction days in the 2001–2017 simulation period 
for each of the 212 Great Lakes basins. We explore the average 
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attribution scores across all inputs, as well as their seasonal patterns and 
co-variability, with a particular focus on climate and donor streamflow 
inputs in the LSTMClim+Dnr model. This analysis provides insights into 
how the model integrates and prioritizes climate versus donor infor
mation over time and under varying hydrologic conditions.

4. Results

4.1. Donor gauge selection by MLP

The MLP model was trained on data from 141 gauges (2001–2010) to 
estimate Spearman’s rank correlations (ρs) between gauge pairs. We 
evaluate its performance in two aspects: (1) the accuracy of MLP- 
predicted correlations (ρ̂s) compared to observed correlations (ρs); and 
(2) the quality of donor gauges selected based on ρ̂s (termed ‘estimated 
donors’) versus those selected using ρs (termed ‘optimal donors’). Note 
that in practice, donors for ungauged locations can only be selected 
based on ρ̂s. However, we compare these donors to those that would be 
selected based on perfect information (i.e., using ρs) to determine the 
degree to which errors in ρ̂s lead to the selection of sub-optimal donors.

Fig. 3 presents scatter plots of ρs and ̂ρs for the four evaluation groups 
of target sites (described in Section 3.3), with black asterisks (*) marking 
the five donors selected for each target site based on the highest ρ̂s. 
Fig. S6 presents a similar figure but with selected donors chosen based 
on ρs. For training sites, predicted correlations closely aligned with 
observed values (Fig. 3a and b). The MLP model maintains high accu
racy for natural testing sites (Fig. 3c), although performance slightly 

declines compared to the training dataset. However, for regulated 
testing sites (Fig. 3d), performance deteriorates, with much larger 
spread between ρs and ρ̂s and a notable overestimation bias.

Donors selected for natural sites demonstrate strong correlations to 
the target sites, as shown by the clustering of donors in the upper-right 
corners of Fig. 3a and c. This indicates that natural sites often have 
available highly correlated donor sites, and estimated correlations can 
be used to identify these donors. Supporting evidence from Figs. S6a and 
S6c (see the Supporting Information) shows similar clustering for 
optimal donors, suggesting that the estimated donors closely approxi
mated the optimal ones. For natural training and testing sites, the donors 
selected using estimated correlations match those selected using 
observed correlations 78 % and 70 % of the time, respectively.

For regulated training sites, estimated donors largely aligned with 
optimal donors (see Fig. 3b and Fig. S6b), indicating limited impacts 
from using ̂ρs for donor selection. Here, estimated donors match optimal 
donors 82 % of the time. However, regulated testing sites reveal notable 
errors, including the selection of poorly correlated donors due to sig
nificant overestimations of ̂ρs (Fig. 3d and Fig. S6d). Unlike natural sites, 
regulated sites exhibit a broader range of donor correlation values, with 
many falling below 0.6 for both estimated and optimal donors. This 
suggests that high-correlation donors are more often unavailable for 
regulated sites. In addition, the degree of mismatch between estimated 
and optimal donors grows to 34 %.

Overall, the MLP model effectively estimates correlations and iden
tified hydrologically relevant donors for natural sites. At these locations, 
estimated donors are highly correlated to the target sites, their estimated 

Fig. 3. Comparison of observed (ρs) and MLP-predicted correlations (ρ̂s) for (a) natural training sites from 2011 to 2017, (b) regulated training sites from 2011 to 
2017, (c) natural testing sites from 2001 to 2017, and (d) regulated testing sites from 2001 to 2017. Black asterisks (*) indicate donor gauges selected based on ρ̂s (i. 
e., estimated donors). Mean bias error (MBE) and the coefficient of determination (R2) are presented for both the entire dataset and the subset of selected donors 
(marked with *). Positive (negative) MBE indicates an underestimation (overestimation) bias.
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correlations are similar to the true correlations, and differences between 
estimated and optimal donors are small. In regulated basins, however, 
the use of donors poses larger challenges. In some instances, there are 
few if any donors that are highly correlated to the target site, making it 
difficult to identify hydrologically meaningful donors even if correla
tions with the target are known. This challenge likely stems from 
anthropogenic impacts causing unique hydrological behavior, and is 
further exacerbated by the need to estimate correlations between donors 
and regulated target sites, leading to further error in donor selection. 
The consequences of these outcomes on streamflow reconstructions are 
shown next.

4.2. Model performance evaluation

Fig. 4 compares the predictive performance of five regional rainfall- 
runoff models developed for the Great Lakes region, with each panel 
corresponding to one of four evaluation groups. Model performance is 
assessed using the distribution of Nash-Sutcliffe Efficiency (NSE) across 
sites, with distinct lines representing each model. Recall that all results 
shown are out-of-sample in time (for the training sites) or out-of-sample 
in space (for the testing sites).

The NNDR model consistently and substantially underperforms across 
all evaluation groups and is therefore excluded from detailed compari
sons. The analysis focuses instead on the LSTM models. At natural 
training sites (Fig. 4a), models that utilize donor information (LSTMDnr 

and LSTMClim+Dnr) outperform those that do not (LSTMClim). This 
highlights the value of hydrologically relevant donors in enhancing 
model accuracy, particularly when donors are selected based on strong 
correlations with target sites (see Fig. 3a). At regulated training sites 
(Fig. 4b), the LSTMClim+Dnr remains the top-performing model, but its 
advantage over LSTMClim diminishes somewhat due to the inclusion of 
lower-quality donors at regulated sites (see Fig. 3b). It is also noteworthy 
that at the regulated training sites, LSTMDnr performs slightly worse than 
LSTMClim even though LSTMClim+Dnr outperforms LSTMClim, suggesting 
that the LSTMClim+Dnr model learned how to effectively combine climate 
and donor information to enhance predictive skill over models that only 
use one of those two information sources. Similar results are seen for 
LSTMAvg (i.e., when predictions from LSTMClim and LSTMDnr are 
averaged).

At natural testing sites (Fig. 4c), LSTMClim+Dnr and LSTMAvg perform 
slightly better than the other models, demonstrating the value of high- 
quality donors (see Fig. 3c) in improving predictions at fully ungauged 
sites. However, the degree of improvement of LSTMClim+Dnr and 
LSTMAvg over LSTMClim is smaller than seen for the training sites. 
Conversely, at regulated testing sites (Fig. 4d), LSTMClim emerges as the 
best-performing model. Donor-informed models struggle in this sce
nario, as donor gauges for regulated sites often exhibit overestimated 
correlations and low hydrological relevance (see Fig. 3d). These poor- 
quality donor inputs mislead the models, resulting in degraded hydro
logic prediction.

Fig. 4. Comparison of model performance (NSE) across four evaluation site groups, presented as cumulative distribution functions (CDFs). Median NSE values for 
each model are noted in parentheses.
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A comprehensive comparison of model performance across all met
rics is presented in Table 2. At natural and regulated training sites, 
LSTMClim+Dnr consistently outperforms other models across most met
rics, except for FLV, where LSTMAvg is the leading performer. At natural 
testing sites, the best-performing model varies depending on the metric. 
For instance, LSTMClim+Dnr and LSTMAvg perform best in NSE, while 
LSTMClim performs best for KGE, and LSTMAvg shows a slight advantage 
in PBIAS. Interestingly, despite its overall poor performance, NNDR 
achieves the smallest FLV bias at natural testing sites. At regulated 
testing sites, LSTMClim demonstrates superior performance across all 
metrics, showcasing its robustness when reliable donor inputs are 
unavailable.

Overall, these results highlight that the integrated LSTMClim+Dnr 
model effectively balances donor and local climate inputs, achieving 
strong performance at minimally regulated sites and especially at 
partially gauged locations. However, the performance of donor-based 
models, including LSTMClim+Dnr, degrades for regulated testing sites. 
LSTMClim proves to be the optimal model for these locations. Meanwhile, 
LSTMAvg emerges as a promising alternative, offering competitive per
formance across different evaluation groups and metrics.

4.3. Donor-informed LSTMs versus LSTMClim

Building on the findings above, we examine in more detail how 
donor quality – whether estimated or optimal – affects model perfor
mance. The goal is to determine the levels of correlation required for 
donor-informed models, such as LSTMDnr and LSTMClim+Dnr, to enhance 
predictive skill, as well as identifying thresholds below which donor 
inputs become counterproductive, resulting in underperformance rela
tive to LSTMClim, which excludes donor data entirely.

Fig. 5 presents a scatter plot comparing the NSE values of 
LSTMClim+Dnr models informed by estimated and optimal donors. The 
observed Spearman’s rank correlation (ρs) of the first (i.e., highest 
correlated) donor among the five optimal donors for each target site is 
categorized into four groups, represented by different colors. The results 
demonstrate that using optimal donors leads to only modest improve
ments in LSTMClim+Dnr performance compared to using estimated do
nors, with the most noticeable improvements observed at the regulated 
test sites. Similar conclusions are drawn in Fig. S7 for all donor-based 
models, which re-evaluates the results of Fig. 4 using optimal donors. 
Fig. 5 also reinforces the results from Fig. 3, showing that highly 
correlated optimal donors (ρs > 0.8) are more readily available for 
natural gauges. In contrast, regulated gauges often have optimal donors 
with weaker correlations, typically below 0.8 and sometimes even below 
0.7.

A clear relationship emerges between donor quality and model 
performance. When the highest optimal donor correlation is 0.8 or 

below, the NSE values for LSTMClim+Dnr rarely reach the levels achieved 
with correlations of 0.9 or higher (represented by dark blue-colored 
points in Fig. 5). This demonstrates that high-quality donor correla
tions are critical for maximizing the predictive skill of donor-informed 
models. Similar patterns are observed for LSTMDnr in Fig. S8, which 
mirrors the results of LSTMClim+Dnr in Fig. 5.

Further analysis focuses on evaluating the conditions under which 
donor-informed models underperform relative to LSTMClim. To do this, 
Fig. 6 compares the NSEs of LSTMClim+OptDnr (using optimal donors) and 
LSTMClim across the four evaluation groups. The use of optimal donors 
for LSTMClim+OptDnr in this comparison eliminates uncertainties stem
ming from estimated donors. The Spearman’s rank correlation of the 
highest-correlated donor is again used to categorize results by color. 
Also, the comparison of NSE distributions across all models using 
optimal donors is provided in Fig. S7.

The results in Fig. 6 reveal that LSTMClim+OptDnr largely outperforms 
LSTMClim when donor correlations exceed 0.9. For sites where the 
highest donor correlations fall between 0.8–0.9, LSTMClim+OptDnr often 
outperforms LSTMClim, but there are instances when LSTMClim substan
tially outperforms LSTMClim+OptDnr. This becomes even more common 
when the highest donor correlations fall between 0.7–0.8. At regulated 
sites with very low donor correlations (ρs < 0.7), LSTMClim+OptDnr 
struggles, producing highly inaccurate predictions (as evidenced by the 
red-colored circles in Fig. 6b and 6d, where NSE values often fall below 
zero). In these challenging conditions, even LSTMClim, which relies 
solely on local climate inputs, fails to achieve high predictive skill, with 
NSE values often lower than those of LSTMClim+OptDnr. This highlights 
that local climate inputs alone are insufficient for challenging regulated 
sites. Again, similar patterns are observed for LSTMOptDnr in Fig. S9, 
which mirrors the results of LSTMClim+OptDnr in Fig. 6.

Together, the results in Figs. 5 and 6 (and Figs. S7–S9) underscore 
two important points: 1) the MLP donor selection algorithm is generally 
effective at identifying high-quality donors in most cases, such that the 
performance of donor-based models is similar when using estimated or 
optimal donors; and 2) the availability of high-quality donors is a more 
significant limiting factor in improving the predictive accuracy of donor- 
based models than our ability to estimate correlations and select donors.

To complement the results above, Fig. 7 displays the spatial distri
bution of NSE values for daily streamflow predictions across 141 
training sites (2011–2017) and 71 test sites (2001–2017). Across the 
training gauges, all LSTM models demonstrate high accuracy in pre
dicting daily streamflow, consistent with the findings discussed earlier. 
However, the maps reveal the locations of a few training sites where 
model performance is poor (NSE < 0.5, shown in reddish colors). For 
instance, all models perform poorly at two training sites – one in the 
Lake Superior watershed and another in the Lake Michigan watershed – 
with NSE values below 0.5.

Table 2 
Performance metrics (median values) for all models across evaluation groups. Metrics for percentage bias (PBIAS, FHV, FLV) are reported as absolute values. Best- 
performing models are highlighted in bold.

Model Metrics

NSE KGE PBIAS FHV FLV NSE KGE PBIAS FHV FLV

Natural Train Gauges (2011–2017) Regulated Train Gauges (2011–2017)

LSTMClim 0.78 0.81 7.46 22.63 26.13 0.80 0.82 6.68 22.05 19.17
LSTMDnr 0.83 0.83 5.89 17.30 21.96 0.79 0.79 6.90 25.64 19.42
LSTMClim+Dnr 0.89 0.89 4.83 12.19 16.47 0.86 0.87 4.83 14.86 16.23
LSTMAvg 0.86 0.82 7.60 21.40 15.32 0.84 0.80 6.89 23.60 16.00
NNDR 0.68 0.69 11.86 23.13 40.20 0.51 0.59 11.65 22.97 39.54

​ Natural Test Gauges (2001–2017) Regulated Test Gauges (2001–2017)
LSTMClim 0.75 0.79 8.95 19.72 36.72 0.71 0.72 10.82 21.36 26.38
LSTMDnr 0.77 0.73 13.99 22.16 41.54 0.53 0.60 20.62 31.80 43.22
LSTMClim+Dnr 0.79 0.77 10.36 19.05 39.71 0.65 0.64 15.58 22.00 30.60
LSTMAvg 0.79 0.78 8.54 19.85 30.59 0.67 0.67 14.47 26.31 28.51
NNDR 0.52 0.66 16.32 19.73 30.05 0.36 0.41 19.31 35.21 47.53
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More importantly, the maps highlight the spatial distribution of 
performance for fully ungauged test sites, where predictions are more 
challenging. A clear lake-wide pattern emerges: all LSTM models 
perform better at fully ungauged sites in the Lake Huron, Lake Michigan, 
Lake Erie, and Lake Ontario watersheds (with few sites showing NSE <
0.5) than in the Lake Superior and Ottawa River basins. The Ottawa 
River basin, in particular, presents the greatest challenge, as it contains 
the highest proportion of test sites with NSE values below 0.5 across all 
models.

The poor performance of donor-informed models, such as LSTMDnr 
and LSTMClim+Dnr, in the Ottawa River basin is noteworthy. This basin 
has only seven training gauges, all of which are relatively small 
(drainage areas between 258–3,811 km2) and most located in the south. 
In contrast, many of the test sites in the basin are larger (drainage areas 
between 246–90,900 km2) and situated further north. These differences 
(among others) made it difficult to identify hydrologically relevant do
nors with high correlations (ρs > 0.9) for the test sites. Consequently, 
these models underperform relative to LSTMClim, which relies solely on 
local climate data.

Hydrographs from selected test sites (Fig. 8) illustrate these dy
namics. At regulated sites such as 02LC008 and 02LC029 in the Ottawa 
River basin (Fig. 8a and 8b; also see Fig. S10), donor-informed models 
failed to accurately predict peak flow events during the snowmelt season 
in terms of timing and magnitude. For 02LC008, this failure resulted 
from poorly correlated donor gauges, despite alignment between esti
mated and optimal donors (see Table S1). At 02LC029, both poor donor 

correlations and misalignment between estimated and optimal donors 
contributed to model underperformance (see Fig. 8b and Table S1). 
Conversely, in natural basins located in the Lake Erie and Huron wa
tersheds, high-quality donors enabled donor-informed models to 
outperform climate-only models (Fig. 8c and 8d; also see Fig. S10). 
Notably, donor-based models (particularly LSTMDnr) significantly sur
passed LSTMClim and avoided overestimation of peak flow events.

4.4. Lake-wide monthly runoff estimate and error

The lake-wide runoff predictions for six major watersheds – Superior 
(SUP), Huron (HUR), Michigan (MIC), Erie (ERI), Ontario (ONT), and 
Ottawa (OTT) – were assessed using aggregated monthly runoff esti
mates derived from gauge-level predictions. These estimates were then 
compared against observed data, also aggregated to monthly values and 
summed across gauge-level observations. Results are shown in Fig. 9. 
Notably, the observed data in Fig. 9 are shown only when data were 
available for all gauges in a given lake watershed. This restriction limits 
the number of lake-wide observations available for comparison with the 
model-based estimates.

A clear discrepancy emerges between observations and predictions 
from NNDR across several of the Great Lakes watersheds. Among all 
models, NNDR demonstrates the poorest performance in predicting lake- 
wide monthly runoff. This aligns with earlier findings, where NNDR 
showed the lowest predictive skill for daily streamflow at individual 
gauges. The accumulation of these poor individual predictions 

Fig. 5. Comparison of the Nash Sutcliffe Efficiency (NSE) at target sites for LSTMClim+Dnr when informed by optimal donors versus estimated donors. For each target 
site, the highest Spearman’s rank correlation of the optimal donors (ρ1st

s ) is visually represented with different colors. The inset in panel (d) displays the full range of 
NSE values for that group of target sites.
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ultimately degrades NNDR’s monthly lake-wide runoff estimates. Despite 
its general underperformance, NNDR’s predictions for HUR, MIC, and 
ERI watersheds appear closer to those of other LSTM models. However, 
for SUP, ONT, and OTT, NNDR’s performance is distinctly worse, largely 
due to its consistent overestimation of monthly runoff.

In contrast, the discrepancies observed among LSTM models during 
daily runoff predictions at individual gauges diminish when aggregated 
to the monthly scale. Across all watersheds, it is challenging to distin
guish the performance of different LSTM models visually, except for the 
Ottawa River Basin (OTT). For OTT, monthly runoff predictions vary 
more noticeably among the LSTM models, with LSTMClim showing a 
tendency to estimate lower monthly runoff relative to the other donor- 
informed LSTMs. Limited observations in OTT indicate that LSTMDnr 
performs better at capturing peak monthly runoff compared to other 
LSTM models. In general, the LSTM models yield highly accurate lake- 
wide monthly runoff predictions for HUR, MIC, ERI, and ONT, closely 
matching observed data. However, their predictive capabilities are more 
limited for SUP, particularly during the dry season, as evidenced by their 
underestimation of runoff during this period (Fig. 9).

The poorer performance of all LSTM models in SUP and OTT wa
tersheds can be attributed to spatial variations in predictive skill, as 
revealed in Fig. 7. Across all models, the test gauges in SUP and OTT 
show the weakest performance, which subsequently affects the lake- 
wide monthly runoff estimates. For SUP, the relatively sparse distribu
tion of training gauges, despite the watershed’s large size, may 
contribute to poor predictions at ungauged sites. A similar issue arises in 
OTT, where only seven training gauges are available, most of which are 
concentrated in the south. This sparse distribution poses challenges for 
donor-informed LSTMs, which rely on high-quality donor gauges with 

strong hydrological correlations to the target sites. However, the 
LSTMClim also struggled the most in these regions.

Table 3 provides a detailed analysis of error variances in the lake- 
wide monthly runoff estimates for each watershed (described in Sec
tion 3.4), presented as standard deviations. Note that these lake-wide 
error standard devation estimates are derived from aggregating the 
monthly error variances and covariances at and between individual 
sites, allowing them to better account for missing observations across 
sites compared to the results shown in Fig. 9. Consistent with the time 
series analysis, NNDR exhibits the highest error standard deviation 
among all five models, by a considerable margin, across all watersheds. 
In comparison, the LSTM models exhibit significantly lower error stan
dard deviations. Among these, LSTMClim+Dnr consistently achieves some 
of the lowest error standard deviation values across all six watersheds. 
Although the differences among the LSTM models are subtle, the stan
dard deviation of error for LSTMDnr is notably lower than that of 
LSTMClim in all watersheds except ONT. Additionally, the error standard 
deviation of LSTMDnr is comparable to that of LSTMAvg. Across all 
models, the largest error standard deviation occurs in OTT, followed by 
SUP, as anticipated from the time series analysis of monthly runoff 
predictions. Overall, these findings emphasize the potential of advanced 
LSTM models to improve monthly water balance predictions for the 
Great Lakes watersheds.

4.5. Model interpretability

To facilitate the interpretability of LSTMClim+Dnr, we employed the 
Integrated Gradients (IG) method (Sundararajan et al., 2017) to quantify 
the contribution of each input feature to daily streamflow predictions. 

Fig. 6. Comparison of the Nash Sutcliffe Efficiency (NSE) between LSTMClim+OptDnr (with optimal donors, denoted as OptDnr) and LSTMClim at target sites. Similar to 
Fig. 5, the highest Spearman’s rank correlation of the optimal donors (ρ1st

s ) is represented with color coding for each target site. The inset in panel (d) highlights the 
full range of NSE values for that group of target sites.
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Average attribution scores across all sites and days (Fig. S11) reveal that 
precipitation is the most important individual feature overall, although 
donor streamflow information—particularly from the most correlated 
donors—plays a significant role in enhancing predictions. To investigate 
climate and donor streamflow attributions in more detail, we compare 
the ratio of IG-based feature attributions between precipitation and 

donor streamflow to the correlation values associated with those donors 
(Fig. 10). As the ratios of IG attribution scores decrease, this suggests 
more importance is being placed on donor streamflow relative to pre
cipitation for model prediction. Fig. 10 shows a consistent negative 
trend across all five donors, suggesting that as donor correlations in
crease, the relative influence of donor streamflow increases. This trend 

Fig. 7. Nash Sutcliffe Efficiency (NSE) of LSTM daily streamflow predictions across 141 training sites for the period 2011–2017 (left column) and 71 testing sites for 
the period 2001–2017 (right column).
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indicates that the model is appropriately weighing donor information 
based on its hydrologic relevance.

The use of donor streamflow in the LSTMClim+Dnr model is not static 
through time. Rather, it varies seasonally and with hydrologic condition. 
Fig. 11 illustrates the daily attribution scores for precipitation and the 
first donor’s streamflow, averaged across all 212 basins for each day of 
the year. These results reveal the temporal dynamics of feature impor
tance over the annual cycle and highlight that donor streamflow con
tributions peak during the spring snowmelt season (March–May). This 
might indicate that donor site streamflow, which integrates the melt of 
snowpack that has accumulated over the last several months, represents 
information that is particularly useful to transfer to target sites. 
Conversely, contributions from precipitation modestly decline in the 
winter and summer months, when precipitation is less likely to lead to 
immediate runoff responses because of snow processes and depleted soil 
moisture storage, respectively. These nuanced temporal patterns illus
trate the model’s ability to adjust its internal weighting of climate and 
flow inputs in ways that reflect seasonal hydrologic processes across a 
diverse set of watersheds. Collectively, these findings support the notion 
that the LSTMClim+Dnr model not only improves predictive accuracy but 
also aligns with hydrologic process understanding, offering a path for
ward for explainable deep learning in hydrology (Xu et al., 2024).

5. Discussion and conclusion

This study highlights the potential of integrating local climate data 
with donor gauge streamflow measurements using deep learning models 
to enhance streamflow reconstructions in ungauged and partially 
gauged basins. Several DL models were developed and compared across 
natural and regulated sites in the Great Lakes region, including those 
that use climate data (LSTMClim), donor streamflow data (LSTMDnr), or 
both (LSTMClim+dnr; LSTMAvg). The integrated LSTMClim+Dnr model 
consistently outperformed single-source models (LSTMClim or LSTMDnr) 
in basins with high-quality donor gauges. This improvement un
derscores the value of leveraging donor streamflow information when 
strong hydrological correlations exist between target and donor basins. 

By weighting inputs from both data sources, LSTMClim+Dnr effectively 
balances local and regional hydrological signals, achieving superior 
performance in temporal extrapolation at partially gauged basins and 
predictions at natural, ungauged sites. Similar benefits were observed 
using LSTMAvg, although this requires the development and averaging of 
two separate models.

The success of donor-informed models (LSTMClim+Dnr and LSTMDnr) 
hinges on two key factors: availability of high-quality donors and the 
ability to select those donors based on estimated rank correlations. Poor 
donor quality, reflected in low observed correlations with target sites, 
had a greater impact on predictive accuracy than donor misalignment 
caused by suboptimal selection. Even when optimal donors were iden
tified, the improvements over using estimated donors were generally 
small, underscoring that the availability of highly correlated donors is 
critical. This condition was observed more frequently in basins with 
denser gauging networks (Lake Huron, Michigan, Erie, and Ontario), as 
compared to the Lake Superior and Ottawa River basins, where available 
donors were sparse.

Importantly, this study identified a threshold for donor usefulness: 
when Spearman’s rank correlations between donor and target basins 
exceeded 0.9, donor-informed models consistently outperformed 
climate-only models. Below this threshold, the advantage of integrating 
donor data diminished, and in some cases, performance deteriorated. 
For regulated testing sites in particular, the selection of poorly corre
lated donors – due to a lack of suitable donors and significant over
estimations of ρ̂s – may mislead models that rely on donor information 
(i.e., LSTMDnr and LSTMClim+Dnr), potentially degrading predictive per
formance. Consequently, LSTMClim proved to be the optimal model in 
scenarios where donor quality was questionable.

One of the study’s key practical contributions is the demonstrated 
ability of LSTMClim+Dnr to enhance lake-wide monthly runoff estimates, 
a crucial metric for quantifying the Great Lakes water balance. The 
model reduced error variance in monthly runoff estimates compared to 
single-source models across all six Great Lakes watersheds. These 
improved runoff estimates could be used as inputs to statistical models 
designed to resolve the full water balance of the Great Lakes (Do et al., 

Fig. 8. Example hydrographs for two regulated test sites (a and b) and two natural target test sites (c and d) for the water year of 2013. NSE values for each model are 
noted in parentheses. Site locations are marked in Fig. S10.
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Fig. 9. Lake-wide monthly runoff predictions for six Great Lakes watersheds: Superior (SUP), Huron (HUR), Michigan (MIC), Erie (ERI), Ontario (ONT), and 
Ottawa (OTT).
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2020), thereby improving the accuracy of historical estimates of other 
water balance terms (e.g., over-lake precipitation and evaporation). 
Such improvements, particularly if extended back several decades, could 
help managers in the Great Lakes better understand emerging trends in 
the Great Lakes water balance, which has significant implications for the 

trajectories of long-term water levels (Gronewold et al., 2021).
Despite these successes, several limitations warrant further investi

gation. One area of improvement involves expanding the training 
datasets to include a broader range of regulated basins. Addressing the 
challenges posed by regulated sites requires incorporating more training 
examples with low-correlation donor-target pairs. The limited training 
set of 141 gauges used in this study, with only 7 regulated gauges sup
ported by optimal donors with correlations below 0.8, likely constrained 
the model’s ability to generalize in these situations. Expanding the 
training dataset to include additional regulated basins with low- 
correlation donors would enhance model robustness and generaliz
ability. Similarly, expanding the methodology to other geographic re
gions with diverse climatic and hydrological conditions, such as the 
CAMELS basins across the contiguous US (Addor et al., 2017), could 
further improve its generalizability and help identify region-specific 

Table 3 
Standard deviation of lake-wide monthly runoff error; unit is 1000 cms. The 
lowest error standard deviation for each watershed is highlighted in bold.

SUP HUR MIC ERI ONT OTT

LSTMClim 4.23 3.33 2.57 2.84 1.83 23.25
LSTMDnr 4.06 2.10 1.74 2.51 2.46 19.50
LSTMClim+Dnr 3.26 1.76 1.44 1.93 1.81 16.26
LSTMAvg 3.45 2.35 1.82 2.38 1.93 21.22
NNDR 11.01 3.13 5.34 3.20 6.60 51.23

Fig. 10. The relationship between donor correlation and the ratio of IG-based attribution scores for precipitation and donor streamflow across 212 Great Lakes basins 
for each of five donors. The ratios being presented are averaged across all days of record for each site. Lower ratios indicate greater influence of donor streamflow 
relative to precipitation.

Fig. 11. Average day-of-year, IG-based attribution scores for precipitation and streamflow from the first (i.e., most correlated) donor for the LSTMClim+Dnr model, 
computed over the 2001–2017 simulation period. Solid lines indicate daily mean attribution scores across all 212 Great Lakes basins; shaded bands represent the 90 
% inter-basin range.

S. Wi et al.                                                                                                                                                                                                                                       Journal of Hydrology 661 (2025) 133764 

15 



factors influencing performance.
The donor selection process presents another area for refinement 

(Villalba et al., 2021; Wang et al., 2013). Future work could explore 
alternative learning frameworks, such as graph-based models (Villalba 
et al., 2021), to further improve donor selection in human-impacted 
basins. Similarly, the performance of donor-informed LSTM models 
may benefit from the inclusion of additional similarity metrics, 
including those that reflect the type and degree of anthropogenic ac
tivity (e.g., regulation indices, land use intensity, network connectivity) 
(Ouyang et al., 2021; Tursun et al., 2024a). Including regulation-specific 
inputs could help the model learn when to downweight or decouple 
unreliable donor information, improving performance in regulated en
vironments (Tursun et al., 2024b). Additionally, the use of remotely 
sensed runoff data, even if biased and limited in length (e.g., SWOT; (Fu 
et al., 2024), could significantly improve the estimation of rank corre
lations between donor and target sites at both natural and regulated 
sites.

Uncertainty quantification is another critical area for future research 
(S. Liu et al., 2023). This study did not explicitly address uncertainties in 
model structure and input data, such as errors in meteorological forcings 
or streamflow measurements, nor did it attempt to estimate the uncer
tainty in reconstructed streamflow values. Adopting techniques like 
ensemble-based methods (Li et al., 2022) or Monte Carlo dropout (Klotz 
et al., 2022) for this purpose could enhance the hydrological predictions 
by highlighting when their uncertainty is too high for practical use.

Ultimately, the methods introduced in this work – integrating local 
climate and regional hydrologic signals in a deep learning framework – 
mark a significant advancement in addressing the Prediction in Unga
uged Basins challenge. These methods provide enhanced accuracy for 
site-specific predictions and large-scale water balance assessments. The 
results have important implications for water resource management, 
which relies on historical streamflow reconstructions across large re
gions to support decision-making in areas such as reservoir manage
ment, flood forecasting, and climate change signal detection and 
adaptation (Kayastha et al., 2022; O’Brien et al., 2024). As the class of 
DL models presented in the work is further refined, there is significant 
potential for applying it across large regions with streamflow gauging 
networks of moderate density, ultimately creating a state-of-the-art 
daily streamflow reconstruction product to support a wide range of 
water resource studies.

CRediT authorship contribution statement

Sungwook Wi: Writing – original draft, Validation, Methodology, 
Data curation, Writing – review & editing, Visualization, Software, 
Investigation, Conceptualization, Resources, Formal analysis. Rohini 
Gupta: Methodology, Validation, Resources, Writing – review & editing, 
Formal analysis, Software. Scott Steinschneider: Validation, Re
sources, Methodology, Conceptualization, Writing – original draft, Su
pervision, Investigation, Formal analysis, Writing – review & editing, 
Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgements

This research was supported by the U.S. National Science Foundation 
(NSF) through the Global Center for Climate Change and Transboundary 
Waters (GCTW) (award no. 2330317), with partial support also pro
vided through NSF award no. 2144332.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jhydrol.2025.133764.

Data availability

The code and data used for this study is available at https://doi.org/ 
10.5281/zenodo.14610023. All data used to train and evaluate the 
models are available at https://doi.org/10.20383/103.0598.

References

Addor, N., Newman, A.J., Mizukami, N., Clark, M.P., 2017. The CAMELS data set: 
catchment attributes and meteorology for large-sample studies. Hydrol. Earth Syst. 
Sci.

Alizadeh, B., Ghaderi Bafti, A., Kamangir, H., Zhang, Y., Wright, D.B., Franz, K.J., 2021. 
A novel attention-based LSTM cell post-processor coupled with bayesian 
optimization for streamflow prediction. J. Hydrol. 601, 126526. https://doi.org/ 
10.1016/j.jhydrol.2021.126526.

Archfield, S.A., Vogel, R.M., 2010. Map correlation method: selection of a reference 
streamgage to estimate daily streamflow at ungaged catchments. Water Resour. Res. 
46 (10), 2009WR008481. https://doi.org/10.1029/2009WR008481.

Arsenault, R., Brissette, F.P., 2014. Continuous streamflow prediction in ungauged 
basins: the effects of equifinality and parameter set selection on uncertainty in 
regionalization approaches. Water Resour. Res. 50 (7), 6135–6153. https://doi.org/ 
10.1002/2013WR014898.

Arsenault, R., Martel, J.-L., Brunet, F., Brissette, F., Mai, J., 2023. Continuous streamflow 
prediction in ungauged basins: Long short-term memory neural networks clearly 
outperform traditional hydrological models. Hydrol. Earth Syst. Sci. 27 (1), 
139–157. https://doi.org/10.5194/hess-27-139-2023.
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