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Improving the accuracy of streamflow predictions in ungauged basins (PUB) has long been a significant challenge
in hydrology. This study hypothesizes that deep learning-based PUB can be enhanced for historical streamflow
reconstruction by integrating local climate data from ungauged or partially gauged basins (the target site) with
streamflow measurements from nearby gauged basins (donor sites). The rationale is that streamflow records from
donor sites offer valuable information for predicting streamflow at the target site. However, in some instances,
local weather data may be more readily available, while available donors might be poorly correlated with the
target. Therefore, prediction accuracy can be improved by weighting both sources effectively. To test this hy-
pothesis, we conducted a case study using over 200 streamflow gauges in the Great Lakes region. We developed a
multi-layer perceptron to estimate rank correlations of streamflow between basins, aiding in the selection of
donor sites. These correlations were fed into a Long Short-Term Memory (LSTM) network, along with streamflow
data from donor sites and weather data from target sites. We compared this model against two other LSTMs — one
trained only with climate data and the other solely with streamflow from donor sites — as well as the average
prediction from those two models. Our findings indicate that the integrated approach outperforms the alterna-
tives, particularly for partially gauged and natural ungauged sites. Lastly, we demonstrate the value of the
approach for improving lake-wide runoff estimates and use explainable Al to investigate how the model uses
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both climate and donor streamflow information.

1. Introduction

Improving the accuracy of daily or sub-daily streamflow predictions
in ungauged basins (PUB) remains a significant challenge in hydrolog-
ical research (Sivapalan et al., 2003; Hrachowitz et al., 2013; Bloschl
et al.,, 2019). Various streamflow regionalization methods have been
developed to address this issue by utilizing hydrological information
from basins with similar characteristics — such as climate, geology, and
topography — to estimate streamflow in ungauged or partially gauged
basins. One widely adopted approach is data-driven regionalization,
which employs statistical, empirical, or machine learning techniques to
predict streamflow based on relationships between hydrological re-
sponses and catchment characteristics (e.g., Fennessey, 1994; Archfield
and Vogel, 2010; Worland et al., 2019a,b). Alternatively, regionaliza-
tion can be based on hydrological models, where calibrated parameters
from gauged basins are transferred to ungauged ones based on spatial
proximity and physical similarity (e.g., Choubin et al., 2019; Pool et al.,
2021; Singh et al., 2022; Wu et al., 2023).
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Despite these efforts, substantial challenges persist in both hydro-
logical model-independent and model parameter regionalization
methods. These challenges stem from various factors, including the
spatial and temporal heterogeneity in basin characteristics, the non-
stationarity of hydrological processes driven by climate change and
human activities, uncertainties in model parameters, and limited data
availability (Hrachowitz et al., 2013; Razavi and Coulibaly, 2013). Such
complexities hinder the generalization of regionalization methods,
making accurate predictions in ungauged basins elusive.

With the rise of big data and advances in artificial intelligence (AD),
deep learning (DL) models have opened new opportunities for
improving streamflow predictions in ungauged basins. Long Short-Term
Memory networks (LSTMs) in particular have shown strong general-
ization to new basins by learning hydrologic patterns from large datasets
containing data from hundreds or thousands of gauged basins (Kratzert
et al.,, 2024). Over the past decade, research has demonstrated that
LSTMs trained on extensive regional data significantly outperform
traditional hydrological models and other statistical approaches in

Received 16 January 2025; Received in revised form 9 May 2025; Accepted 22 June 2025

Available online 23 June 2025

0022-1694/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, Al training, and similar technologies.


https://orcid.org/0000-0003-3538-0675
https://orcid.org/0000-0003-3538-0675
https://orcid.org/0000-0002-8882-1908
https://orcid.org/0000-0002-8882-1908
mailto:sw2275@cornell.edu
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2025.133764
https://doi.org/10.1016/j.jhydrol.2025.133764
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2025.133764&domain=pdf

S. Wietal

predicting streamflow in ungauged basins (e.g., Kratzert et al., 2019;
Mai et al., 2022; Arsenault et al., 2023).

Since LSTMs emerged as a state-of-the-art method for streamflow
regionalization, research has increasingly focused on refining these
models through alternative architectures, innovative training strategies,
and additional information sources. For instance, past work has
improved streamflow prediction by combining Convolutional Neural
Networks (CNNs) with LSTMs to utilize spatial feature extraction with
temporal sequence modeling (Guo et al., 2024; Pokharel and Roy,
2024), and also with attention-based LSTMs to dynamically adapt the
use of historical patterns (e.g., previous months’ snowmelt) for pre-
dictions in different times of the year (Alizadeh et al., 2021). Hybrid
models that integrate LSTMs with hydrological models (Feng et al.,
2024; Jiang et al., 2020) or incorporate physical constraints (Hoedt
et al.,, 2021; Wi and Steinschneider, 2024) enhance the physical con-
sistency of predictions and improve their generalizability across diverse
climatic conditions, including those influenced by climate change.
Additionally, transfer learning has been shown to improve predictions in
under-monitored regions by fine-tuning LSTMs trained on large, high-
quality datasets (Ma et al., 2021; Le et al., 2024; Xu et al., 2023), sup-
ported by globally available remote sensing products (Wilbrand et al.,
2023). Improvements in regionalization have also been achieved
through the development of region-specific LSTMs based on watershed
clustering using physiographic attributes (He et al., 2024), or by itera-
tively training LSTMs to all sites and those in specific clusters to improve
cluster-specific performance (Ghaneei et al., 2024).

This study focuses on the value of another strategy — data integration
- to advance DL-based hydrologic modeling, specifically in the context
of historical streamflow estimation. Data integration (also referred to as
data fusion) combines multiple, disparate sources of information to
improve predictions over what is achievable with a single data source
(Dasarathy, 1997). This approach is straightforward with deep learning
models but can be challenging with physically based models, which
require complex data assimilation schemes to integrate novel data
streams (Feng et al., 2020). Past work has shown that data integration
can improve hydrologic prediction by combining different precipitation
datasets (Kratzert et al., 2021), multi-scale soil moisture measurements
(Liu et al., 2022), and the combined use of climate and hydrologic state
variables (e.g., streamflow, snow water equivalent, soil moisture). This
last data integration strategy, however, has primarily been employed for
forward simulations (e.g., streamflow forecasting), using forecasted
weather and lagged hydrologic state variables at a target site to improve
forecasts at that site (Fang and Shen, 2020; Feng et al., 2020; Meyal
et al., 2020; Nearing et al., 2022; Jahangir and Quilty, 2024; Song et al.,
2024).

In addition to forward simulations, an equally important goal of PUB
is the reconstruction of historical streamflow records. Such reconstruc-
tion is crucial for improving our understanding of past water availability
and variability, making it an essential component of sustainable water
resource management in the face of a changing climate and growing
demand (Milly et al., 2005; Vorosmarty et al., 2010). One instance of
data integration that has not been adequately explored in this context is
the fusion of local climate data at a target site and streamflow mea-
surements at nearby donor sites. When considering streamflow recon-
struction (rather than forecasting), streamflow measurements at donor
sites have the potential to provide extremely valuable information for
streamflow prediction at a target site. While this type of approach is
common in the PUB literature (e.g., the QPPQ method promoted by the
United States Geological Survey; see Worland et al., 2019a,b), to the
authors’ knowledge it has not yet been extended to DL-based hydrologic
models.

If donor basins are to be used for streamflow regionalization, they
must be selected with care (Patil and Stieglitz, 2012). One common
approach is to select a donor that is closest to the target basin
(Fennessey, 1994; Mohamoud, 2008). Often, improved predictions are
achieved by using multiple donor gauges selected based on multiple
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criteria (e.g., geographic proximity and physical attributes) rather than
relying on a single similarity measure (Arsenault and Brissette, 2014;
Pool et al., 2021; Shu and Ouarda, 2012; Yang et al., 2018; de Lavenne
et al., 2016). Towards this end, one or more donors can be selected to
have the highest correlation to the target site, as estimated by regional
regressions or kriging that account for multiple similarity measures
(Archfield and Vogel, 2010; Yuan, 2013). We leverage this approach in
the work presented here.

The central hypothesis of this study is that DL-based PUB can be
enhanced for the purpose of historical streamflow reconstruction by
integrating local climate data in ungauged basins with streamflow
measurements from donor gauges. The underlying concept is that
streamflow records from donor basins often provide valuable informa-
tion to predict streamflow at target sites, but in some instances, local
weather data at the target site may offer better predictive capacity when
donor basins are distant or poorly correlated with the target site.
Therefore, by weighting both sources of information, we aim to achieve
more accurate streamflow predictions.

To test the hypothesis, we apply our approach to a case study
involving over 200 streamflow gauges in the Great Lakes region. We
develop a multi-layer perceptron to estimate inter-basin streamflow
correlations and select donor sites. These estimated correlations are also
used as inputs to an LSTM, along with streamflow data from the donor
sites and local weather data from the ungauged basins. We compare the
performance of our integrated model against two other LSTMs — one
trained exclusively on climate data and another solely on donor site
streamflow data - to isolate the value of each information source and the
added value through their integration. We also consider the average
prediction from the LSTMs trained only on climate or donor-site
streamflow, to compare the benefits of a model ensemble averaging
approach (Farmer and Vogel, 2013; Pool et al., 2019; Razavi and Cou-
libaly, 2013; Swain and Patra, 2017; Waseem et al., 2015) to a single
model that integrates all available information sources. We assess all
models in two cases, out-of-sample in time and out-of-sample in space,
to evaluate how each model performs for partially gauged versus
ungauged sites. We also evaluate models separately for sites deemed
more natural and those classified as being subject to anthropogenic
impacts.

Our results demonstrate utility in the approach that integrates local
climate and donor streamflow data, particularly for temporal extrapo-
lation at partially gauged basins and for predictions in ungauged basins
with minimal anthropogenic influence. We show that the use of DL for
streamflow reconstruction can significantly improve the estimations of
lake-wide runoff, with important implications for quantifying the Great
Lake water balance. Finally, we utilize explainable AI techniques to
show how DL models can balance the use of climate and donor site
streamflow information over time and under varying hydrologic
conditions.

2. Study area and data

Our study focuses on the Great Lakes region (Fig. 1), which spans
over 900,000 km? across the United States and Canada (Mai et al.,
2022). Encompassing the Great Lakes basin (~765,000 km?) and the
Ottawa River basin (~146,000 kmz), the vast drainage system exhibits a
complex array of hydrologic responses shaped by varied geographic
features — such as climate, land cover, and topography — as well as sig-
nificant human impacts, including urbanization, agricultural practices,
and water control structures (Kult et al., 2014). The basin’s inherent
complexity poses challenges for streamflow regionalization, which are
further compounded by difficulties in cross-border data access and
integration (Fry et al., 2022; Gronewold et al., 2018). As such, the Great
Lakes region offers a valuable setting for advancing regionalization
techniques, which can improve Great Lakes water level predictions.
Enhanced predictions will, in turn, support better water resource man-
agement, balancing the needs of economic development, environmental
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Fig. 1. Study area of the Great Lakes region, including the Great Lakes watersheds and the Ottawa River basin. This study utilizes data from 212 stream gauges (141
for training and 71 for testing) classified as either natural (i.e., low human impact) or regulated (Mai et al., 2022). The training set comprises 66 natural and 75
regulated gauges, while the testing set includes 33 natural and 38 regulated gauges.

stewardship, and community safety in this populous yet largely unga-
uged area (Gronewold and Rood, 2019; Kult et al., 2014).

This study examines 212 watersheds distributed across the five Great
Lake basins and the Ottawa River basin as shown in Fig. 1. Data for these
watersheds, sourced from a comprehensive rainfall-runoff model inter-
comparison in this region (Mai et al., 2022), include daily streamflow
records, meteorological forcings, and geophysical attributes. Stream-
flow measurements, collected by the U.S. Geological Survey and Water
Survey Canada, span from January 2000 to December 2017. Each
gauging station represents a drainage area of at least 200 km?, with less
than 5 % missing data over the study period. In the experimental setup
(described further in the following section), 141 watersheds are desig-
nated as training sites and the remaining 71 are used for testing (see
Fig. 1). Gauges are classified as being minimally impacted by human
activities or regulated by water control structures, regardless of their
designation as training or testing sites (see Mai et al., 2022; classification
provided in their Supporting Material).

Meteorological forcings are derived from the Regional Deterministic
Reanalysis System v2 (Gasset et al., 2021), a 10 km resolution, hourly
dataset covering North America. Hourly values of precipitation, net
incoming shortwave radiation (Rs), and temperature are aggregated to
produce daily basin-wide averages for precipitation and Rs, along with
daily minimum and maximum temperatures. The precipitation data,
generated through the Canadian Precipitation Analysis, combines sur-
face observations with short-term forecasts from the Regional Deter-
ministic Reforecast System, making it gauge-based and spatially
interpolated rather than purely model-driven.

Geophysical attributes of each watershed are sourced from various
datasets. Basin-wide elevation and slope statistics come from the
HydroSHEDS digital elevation model at 3 arcsec resolution (Lehner
et al., 2008). Soil properties, including soil texture classes, are extracted
from the Global Soil Dataset for Earth System Models at a 30 arcsec
resolution (Shangguan et al., 2014). Land cover data, based on Landsat
imagery from 2010 to 2011 at a 30 m resolution, are obtained from the
North American Land Change Monitoring System (NALCMS, 2017).
These geophysical datasets provide basin-averaged attributes for each
watershed, further detailed in Mai et al. (2022) and listed in Table 1.

3. Methods

Fig. 2 illustrates our experimental design, which is briefly

Table 1

Watershed attributes used as inputs for the deep learning rainfall-runoff models
developed in this study (adapted from Wi and Steinschneider, 2024). Attributes
marked with an asterisk (*) are used in the multi-layer perceptron model for
selecting donor gauges.

Attribute Description

p_mean Mean daily precipitation

pet_mean Mean daily potential evapotranspiration

aridity Ratio of mean PET to mean precipitation

t_mean Mean of daily maximum and daily minimum
temperature

frac_snow Fraction of precipitation falling on days with mean

daily temperatures below 0 °C

Fraction of high-precipitation days (=5 times mean
daily precipitation)

Average duration of high-precipitation events
(number of consecutive days with =5 times mean
daily precipitation)

Fraction of dry days (<1 mm d-1 daily precipitation)
Average duration of dry periods (number of
consecutive days with daily precipitation <1 mm d-1)

high_prec_freq

high_prec_dur

low_prec_freq
low_prec_dur

mean_elev* Catchment mean elevation

std_elev* Standard deviation of catchment elevation
mean_slope* Catchment mean slope

std_slope* Standard deviation of catchment slope
area_km2* Catchment area

Temperate-or-sub-polar-
needleleaf-forest*
Temperate-or-sub-polar-

Fraction of land covered by “Temperate-or-sub-polar-
needleleaf-forest”
Fraction of land covered by “Temperate-or-sub-polar-

grassland* grassland”

Temperate-or-sub-polar- Fraction of land covered by “Temperate-or-sub-polar-
shrubland* shrubland”

Temperate-or-sub-polar- Fraction of land covered by “Temperate-or-sub-polar-
grassland* grassland”

Mixed-Forest* Fraction of land covered by “Mixed-Forest”

Wetland* Fraction of land covered by “Wetland”

Cropland* Fraction of land covered by “Cropland”

Barren-Lands* Fraction of land covered by “Barren-Lands”
Urban-and-Built-up* Fraction of land covered by “Urban-and-Built-up”
Water* Fraction of land covered by “Water”

BD* Soil bulk density (g cm-3)

CLAY* Soil clay content (% of weight)
GRAV* Soil gravel content (% of volume)
oc* Soil organic carbon (% of weight)
SAND* Soil sand content (% of weight)
SILT* Soil silt content (% of weight)
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Fig. 2. Schematic of the experimental design.

summarized here and described in more detail in the subsections below.
This work develops multiple LSTMs for streamflow regionalization
across the Great Lakes region (see step 1 in Fig. 2):

e LSTMqjim: Driven by local climate data, without any donor stream-
flow inputs.

e LSTMpy,: Driven by donor streamflow data, excluding climate
inputs.

e LSTMcjim+pnr: Incorporates both local climate data and streamflow
data from donor gauges.

e LSTMayvg: An ensemble model that averages predictions from
LSTMcjim and LSTMpyy.

Each model incorporates as input either climate data at the target site
(LSTMclim), streamflow data at donor sites (LSTMp,), or both
(LSTMCclim+Dnr)- All models also incorporate static basin features (i.e.,
geophysical attributes) at the target basin as inputs. The LSTM¢ji, model
is the same as the model developed in the rainfall-runoff model inter-
comparison of Mai et al. (2022) and again in Wi and Steinschneider
(2024) and serves as a benchmark model against which to compare
alternative LSTMs that use donor streamflow information. Additionally,
we compare our models with another benchmark model, called the
nearest-neighbor drainage ratio (NNpr) model, which estimates
streamflow for ungauged basins by scaling streamflow data from the
closest donor gauge using the drainage area ratio between the ungauged
and donor sites. This approach is currently used for historical lake-wide
runoff estimation in the Great Lakes (Hunter et al., 2015). Finally,
LSTMayg represents predictions that are averaged from LSTMcjim and
LSTMpy,, and so is not trained separately. This model allows us to
compare the benefits of model ensemble averaging against a single

model that integrates all available information sources (LSTMclim+Dnr)-

To select donor gauges for the LSTMpy,, and LSTMcjim+pnr models
(see step 2 in Fig. 2), we train a Multi-Layer Perceptron (MLP) to predict
inter-basin streamflow correlations. These predictions are then used to
identify donor gauges that are highly correlated with each target gauge,
whose streamflow data and correlation estimates are then used as inputs
in the LSTMpy, and LSTMcim+ pnr models.

The LSTM models are trained on data from 141 training basins
(serving as donor basins) and evaluated on 71 testing gauges, which are
treated as ungauged locations (see step 3 in Fig. 2 and Fig. 1). The period
of record is also split into separate training and testing periods. This
design allows us to evaluate model performance for the testing period at
training sites (i.e., partially gauged sites) and for the training and testing
period at testing sites (fully ungauged sites). Additionally, we evaluate
models separately for sites under minimal human impact and those
affected by regulation or other anthropogenic activity.

We assess lake-wide runoff estimates for six major watersheds in the
study domain: the five Great Lakes watersheds and the Ottawa River
watershed (see step 4 in Fig. 2). For each lake, we calculate monthly
prediction errors from all gauges within the watershed and use these to
estimate lake-wide error variance across the different regionalization
models.

Finally, we use explainable AI to investigate how the integrated DL
model (LSTMcjim-+Dnr) balances the use of climate and donor streamflow
information when making predictions, and how this balance changes
over time and under varying hydrologic conditions (see step 5 in Fig. 2).
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3.1. Long Short-Term Memory network (LSTM) for hydrological
modeling

The application of LSTM networks in hydrological modeling lever-
ages the model’s capacity to retain and recall long-term dependencies in
sequential data, enabled by its unique memory cell structure (Hochreiter
and Schmidhuber, 1997). This feature makes LSTMs particularly well-
suited for modeling rainfall-runoff processes (Kratzert et al., 2018).

An LSTM cell processes input data sequentially, one timestep at a
time, while maintaining and updating its internal memory. At each
timestep ¢, the cell receives:

e the current input vector x; (dimension K),
e the previous hidden state h; ; (dimension D), and
e the previous cell state ¢, ; (dimension D).

The cell state c; is updated based on three gating mechanisms: the
input gate i;, forget gate f,, and output gate o,. These gates regulate the
flow of information into and out of the memory cell, as defined by the
following equations:

i; = 6(W; e [h_1, x| +b; ) (input gate)

f.=o(Wys e [h_1,x]+by ) (forget gate)

¢, = tanh(W. e [h,_1,x,] + b, )(candidate cell state)
o, = o(W, e [h_1,x,]+ b, ) (output gate)

¢ =f, ®c,1 +1i ®c.(updated cell state)

h, = o, © tanh(c,)(updated hidden state)

Here, ¢ indicates the sigmoid function, tanh is the hyperbolic tangent,
and © denotes element-wise multiplication. The matrices W and vectors
b are learnable weights and biases associated with each gate. Each gate
plays a distinct role:

e The input gate i, determines how much new information from ¢, is
added to the cell state.

o The forget gate f, controls how much of the previous cell state ¢,_; is
retained.

e The output gate o, regulates the amount of information from the
current cell state c, that is passed to the hidden state h;.

After processing all T timesteps, the final hidden state hr is passed
through a fully connected layer with a single neuron. A ReLU (Rectified
Linear Unit) activation function is applied to ensure non-negative
streamflow predictions:

¥r = ReLU(W,hr +b,)

We developed three regional LSTM models for daily streamflow pre-
dictions across the Great Lakes region: LSTMcjim, LSTMpy,, and
LSTMclim+Dpnr> €ach with a distinct input configuration. The LSTMcjim
has 39 input features (K = 39): 9 climate variables and 30 catchment
attributes for the target basin. Climate inputs include basin-averaged
daily precipitation, maximum and minimum temperatures, net
incoming shortwave radiation, specific humidity, surface air pressure,
zonal and meridional wind components, and potential evapotranspira-
tion. Catchment attributes are detailed in Table 1. Climate inputs vary
dynamically across all time steps, while catchment attributes remain
static within the input sequence x.

The LSTMp,, takes as input the same 30 catchment attributes as
LSTMcim, but it does not use the dynamic climate inputs. Instead, the
LSTMpy, model takes as input standardized streamflow data from M
donor sites, as well as estimated rank correlations between streamflow
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at each donor site and the target site (leading to a total of 2 M + 30 input
features). More detail on the standardized donor streamflow, estimated
rank correlations, and selection of M donors is provided in Section 3.2.
Both streamflow and correlation inputs for each donor site serve as static
features, since donor streamflow measurements are provided only for
the final time step (T) rather than across all time steps 1,...,T.

The LSTMcjim+ pnr model combines the inputs from the LSTMcjiy, and
LSTMpy, models, for a total of 2 M + 39 inputs. Before training, all input
features for all models are standardized by subtracting the mean and
dividing by the standard deviation across all training sites in the training
period, except for donor gauge streamflow measurements, which were
pre-standardized (see Section 3.2). Observed streamflow, while not
standardized, is divided by drainage area to represent flow in
millimeters.

Each LSTM model is trained on 141 training sites from 2001 to 2010
and evaluated across these sites for the period 2011-2017 to assess out-
of-sample performance in time. Performance is also evaluated on 71 test
gauges over the entire 2001-2017 period (out-of-sample in space). The
models were trained by minimizing the mean-squared error (MSE)
across training watersheds:

N q

where N is the number of training watersheds and T, is the number of

MSE = (an.t - Qn,t)2

M=

2=

t:

||
—_

samples in the n'" watershed. QM and Qp are, respectively, the pre-
dicted and observed streamflow (in mm) for basin n and day t.

The final model architectures are determined using 5-fold cross-
validation to tune hyperparameters such as LSTM size, learning rate,
mini-batch size, sequence length, dropout rate, epochs, and donor gauge
count M (for applicable models). Based on this cross-validation, each
model was optimized with an input sequence of one year (i.e., T = 365
days), one LSTM layer with 256 neurons (D = 256), a mini-batch size of
64, learning rate of 0.0005, drop-out rate of 0.4, and M = 5 donor
gauges. The full cross-validation results and rationale for these selec-
tions are provided in the Supporting Information (Text S1, Figs. S1-S5).
The LSTMcjim models were trained over 30 epochs, while LSTMcjim - pnr
and LSTMp,,; converged faster and were trained for 10 epochs to prevent
overfitting. Network weights were tuned using the ADAM optimizer
(Kingma and Ba, 2015). To address uncertainty in model training, each
model was trained 10 times with different random initializations. The
daily streamflow predictions for each model represent the ensemble
average across these 10 trials.

Finally, we constructed an ensemble model, LSTMayg, which aver-
ages the daily predictions of LSTMcjiy, and LSTMpy,, assigning equal
weights (0.5) to each model’s output to produce a composite streamflow
prediction.

3.2. Multi-Layer Perceptron (MLP) for selecting donor gauges

We employ a MLP to select donor gauges that will inform the
LSTMpp, and LSTMcjim+pnr models (step 2 in Fig. 2). The MLP is used to
estimate the Spearman’s rank correlation for daily streamflow between
pairs of stream gauges, with the goal of identifying donor gauges that are
strongly correlated to target sites (similar to Archfield and Vogel (2010)
and Yuan (2013)). The use of correlation to select donor sites helps
identify hydrologically similar donor basins, even those located beyond
the immediate vicinity of the target site. Spearman’s rank correlation is
adopted to capture monotonic relationships in flow patterns while
mitigating the influence of infrequent extreme values. Initial testing
showed that the use of Spearman correlations led to better performance
of the LSTMpy, and LSTMcjim+pnr models compared to Pearson corre-
lations. Consistent with geostatistical approaches such as Top-kriging
(Skgien and Bloschl, 2007; de Lavenne et al., 2016), we incorporate
multiple donor gauges to enhance prediction robustness and mitigate
the risk associated with relying on a single donor.
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The MLP model is trained on streamflow data from the 141 training
gauges during the training period (2001-2010). The model is structured
with an input layer, two hidden layers, and a fully connected output
layer containing a single neuron, designed to output an estimated rank
correlation in daily streamflow between pairs of training gauges. For
each pair of sites, inputs to the MLP include: 1) the Euclidean distance of
physiographic characteristics between watersheds (see Table 1 for a list
of these characteristics); 2) the Euclidean distance between watershed
centroids; and 3) the Spearman’s rank correlation of daily precipitation
between the two sites. Cross validation over the training period and
training sites was used to optimize model hyperparameters (the number
of neurons and activation functions). The final MLP architecture in-
cludes two hidden layers with 35 neurons each, using a hyperbolic
tangent function in the first layer and a sigmoid activation function in
the second.

Once trained, the MLP model is extended for donor gauge selection
across all 212 gauges (141 training and 71 testing gauges). For each
streamflow gauge, M donor gauges are selected from the training set
based on the highest MLP-estimated correlations. As mentioned in Sec-
tion 3.1, each selected donor gauge contributes two input features to the
regional LSTMpy, and LSTMcJim+pnr models: (1) MLP-estimated corre-
lation, serving as a weight indicating the strength of the relationship,
and (2) donor gauge streamflow data for the day on which a prediction is
generated for the target basin. Importantly, instead of using raw donor
streamflow values as inputs, the donor gauge data are standardized via
quantile mapping. That is, each donor streamflow value is passed
through the empirical flow duration curve at the donor site to derive the
associated non-exceedance probability, which is then passed through
the quantile function of the standard normal distribution to produce a z-
score. This process reduces the impact of outliers at donor gauges that
might otherwise mislead predictions for the target basin.

Rather than relying on a single donor gauge, the MLP model enables
the identification of multiple high-correlation donor gauges. This multi-
donor approach enhances predictive stability by incorporating diverse
hydrological responses, ultimately improving the accuracy of regional
streamflow predictions (Qi et al., 2021; Yang et al., 2018). As mentioned
in Section 3.1, the number of donors M is a hyperparameter of the
LSTMpp, and LSTMcjim+pnr models that is selected through cross-
validation on the training set.

3.3. Model performance evaluation

As noted previously, 141 basins are designated as training sites, and
the remaining 71 basins are used for testing. The training period spans
January 2001 to December 2010, while the testing period extends from
January 2011 to December 2017. This configuration supports both
temporal and spatial out-of-sample evaluation. Additionally, we eval-
uate model performance for sites under minimal human impact sepa-
rately from those affected by regulation or other anthropogenic activity.
This setup results in four groups of target sites for model evaluation:

e Natural, partially gauged sites: evaluate model performance at nat-
ural training gauges for the test period of 2011-2017.

e Regulated, partially gauged sites: evaluate model performance at
regulated training gauges for the test period of 2011-2017.

e Natural, fully ungauged sites: evaluate model performance at natural
test gauges over the entire period of 2001-2017.

e Regulated, fully ungauged sites: evaluate model performance at
regulated test gauges over the entire period of 2001-2017.

Following previous intercomparison studies (Frame et al., 2022; Mai
et al., 2022), we use several metrics for model evaluation, including: the
Nash-Sutcliffe Efficiency (NSE; (Nash and Sutcliffe, 1970)); Kling-Gupta
Efficiency (KGE; (Gupta et al., 2009)); absolute percent bias (PBIAS);
peak flow PBIAS (FHV; (Yilmaz et al., 2008)), focusing on the top 2 % of
flow values; and low flow PBIAS (FLV; (Yilmaz et al., 2008)), focusing on
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the bottom 30 % of flow values. Each metric is calculated independently
for the four modes of model evaluation at each site. For all LSTM
regionalization models, performance results are derived from the
ensemble mean across 10 separate training trials.

3.4. Lake-wide runoff estimate and error evaluation

To evaluate each model’s performance in predicting the Great Lakes
water balance, we analyze errors in lake-wide runoff predictions at a
monthly timescale. We focus on monthly rather than daily values
because this is the timestep most often used to analyze Great Lakes water
balance variability (see (O’Brien et al., 2024)). We estimate lake-wide
runoff for each calendar month across the six major watersheds in the
Great Lakes region—the five Great Lakes watersheds and the Ottawa
River watershed. This monthly assessment enables us to identify po-
tential seasonal patterns or trends, highlighting any systematic biases or
temporal variations in model accuracy.

For each regionalization model, we aggregate streamflow pre-
dictions from all gauges within each of the six major watersheds to
obtain total daily runoff estimates on a lake-wide scale, covering the
period from 2001 to 2017. We do not remove nested gauges when
summing flows to a daily, lake-wide total. Daily lake-wide estimates are
then compiled into monthly totals for each watershed. Monthly error
calculations are performed by comparing model predictions with
observed streamflow data, also aggregated from gauges, to provide a
direct assessment of model accuracy.

To quantify uncertainty in monthly totals at the lake-wide scale, we
derive an aggregated variance of monthly lake-wide runoff error,
calculated using the variance of individual site errors and their co-
variances:

N N N
Var( Z Erri> = Z Cov(Err;, Err;) = Z Var(Err;) + ZCOV(ETTi, Ermy)
o1

ij=1 i=1 i#j

Here, Err; represents the monthly runoff error for each stream gauge
within one of the Great Lakes watersheds. This aggregation process
adheres to the principles of variance for sums of random variables.

We compare the variance of monthly, lake-wide runoff errors across
all models to determine how differences between models — which were
trained at the daily scale for individual rivers and streams — ultimately
propagate into estimates of the monthly water balance across the Great
Lakes. Understanding these differences will help identify the level of
model complexity needed to improve Great Lakes water level estima-
tion, with implications for regional resource management and water
availability.

3.5. Model interpretability

To enhance model interpretability, we applied the Integrated Gra-
dients (IG) method (Sundararajan et al., 2017), a widely adopted tech-
nique in explainable Al IG estimates the contribution of each input
feature to a model’s prediction by integrating the gradients of the
model’s output with respect to its input along a straight path from a
baseline (typically an all-zero or neutral input) to the actual input. As
emphasized by Sundararajan et al.,, (2017), effective attribution
methods should satisfy two key properties: sensitivity and imple-
mentation variance. Sensitivity ensures that if changing an input affects
the output, the input should receive a non-zero attribution. Imple-
mentation variance guarantees that two functionally equivalent models
(i.e., models that produce identical outputs for all inputs) yield identical
attributions. IG satisfies both criteria, making it a theoretically sound
and reliable method for feature attribution.

In our study, we use IG to compute attribution scores for all input
features across all prediction days in the 2001-2017 simulation period
for each of the 212 Great Lakes basins. We explore the average
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attribution scores across all inputs, as well as their seasonal patterns and
co-variability, with a particular focus on climate and donor streamflow
inputs in the LSTMcjimpnr model. This analysis provides insights into
how the model integrates and prioritizes climate versus donor infor-
mation over time and under varying hydrologic conditions.

4. Results
4.1. Donor gauge selection by MLP

The MLP model was trained on data from 141 gauges (2001-2010) to
estimate Spearman’s rank correlations (p,) between gauge pairs. We
evaluate its performance in two aspects: (1) the accuracy of MLP-
predicted correlations (p;) compared to observed correlations (p,); and
(2) the quality of donor gauges selected based on p; (termed ‘estimated
donors’) versus those selected using p, (termed ‘optimal donors’). Note
that in practice, donors for ungauged locations can only be selected
based on p;. However, we compare these donors to those that would be
selected based on perfect information (i.e., using p,) to determine the
degree to which errors in p; lead to the selection of sub-optimal donors.

Fig. 3 presents scatter plots of p, and p; for the four evaluation groups
of target sites (described in Section 3.3), with black asterisks (*) marking
the five donors selected for each target site based on the highest p;.
Fig. S6 presents a similar figure but with selected donors chosen based
on p,. For training sites, predicted correlations closely aligned with
observed values (Fig. 3a and b). The MLP model maintains high accu-
racy for natural testing sites (Fig. 3c), although performance slightly
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declines compared to the training dataset. However, for regulated
testing sites (Fig. 3d), performance deteriorates, with much larger
spread between p; and p; and a notable overestimation bias.

Donors selected for natural sites demonstrate strong correlations to
the target sites, as shown by the clustering of donors in the upper-right
corners of Fig. 3a and c. This indicates that natural sites often have
available highly correlated donor sites, and estimated correlations can
be used to identify these donors. Supporting evidence from Figs. S6a and
S6c (see the Supporting Information) shows similar clustering for
optimal donors, suggesting that the estimated donors closely approxi-
mated the optimal ones. For natural training and testing sites, the donors
selected using estimated correlations match those selected using
observed correlations 78 % and 70 % of the time, respectively.

For regulated training sites, estimated donors largely aligned with
optimal donors (see Fig. 3b and Fig. S6b), indicating limited impacts
from using p; for donor selection. Here, estimated donors match optimal
donors 82 % of the time. However, regulated testing sites reveal notable
errors, including the selection of poorly correlated donors due to sig-
nificant overestimations of p; (Fig. 3d and Fig. S6d). Unlike natural sites,
regulated sites exhibit a broader range of donor correlation values, with
many falling below 0.6 for both estimated and optimal donors. This
suggests that high-correlation donors are more often unavailable for
regulated sites. In addition, the degree of mismatch between estimated
and optimal donors grows to 34 %.

Overall, the MLP model effectively estimates correlations and iden-
tified hydrologically relevant donors for natural sites. At these locations,
estimated donors are highly correlated to the target sites, their estimated
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Fig. 3. Comparison of observed (p,) and MLP-predicted correlations (p,) for (a) natural training sites from 2011 to 2017, (b) regulated training sites from 2011 to
2017, (¢) natural testing sites from 2001 to 2017, and (d) regulated testing sites from 2001 to 2017. Black asterisks (*) indicate donor gauges selected based on p; (i.
e., estimated donors). Mean bias error (MBE) and the coefficient of determination (R?) are presented for both the entire dataset and the subset of selected donors
(marked with *). Positive (negative) MBE indicates an underestimation (overestimation) bias.
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correlations are similar to the true correlations, and differences between
estimated and optimal donors are small. In regulated basins, however,
the use of donors poses larger challenges. In some instances, there are
few if any donors that are highly correlated to the target site, making it
difficult to identify hydrologically meaningful donors even if correla-
tions with the target are known. This challenge likely stems from
anthropogenic impacts causing unique hydrological behavior, and is
further exacerbated by the need to estimate correlations between donors
and regulated target sites, leading to further error in donor selection.
The consequences of these outcomes on streamflow reconstructions are
shown next.

4.2. Model performance evaluation

Fig. 4 compares the predictive performance of five regional rainfall-
runoff models developed for the Great Lakes region, with each panel
corresponding to one of four evaluation groups. Model performance is
assessed using the distribution of Nash-Sutcliffe Efficiency (NSE) across
sites, with distinct lines representing each model. Recall that all results
shown are out-of-sample in time (for the training sites) or out-of-sample
in space (for the testing sites).

The NNpgr model consistently and substantially underperforms across
all evaluation groups and is therefore excluded from detailed compari-
sons. The analysis focuses instead on the LSTM models. At natural
training sites (Fig. 4a), models that utilize donor information (LSTMpy,
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and LSTMclimipnr) outperform those that do not (LSTMcjy). This
highlights the value of hydrologically relevant donors in enhancing
model accuracy, particularly when donors are selected based on strong
correlations with target sites (see Fig. 3a). At regulated training sites
(Fig. 4b), the LSTMcjim+pnr remains the top-performing model, but its
advantage over LSTMcji, diminishes somewhat due to the inclusion of
lower-quality donors at regulated sites (see Fig. 3b). It is also noteworthy
that at the regulated training sites, LSTMpy, performs slightly worse than
LSTMc¢jim even though LSTMcjim+pnr Outperforms LSTMcjim, suggesting
that the LSTMcjim  pnr model learned how to effectively combine climate
and donor information to enhance predictive skill over models that only
use one of those two information sources. Similar results are seen for
LSTMayg (i.e., when predictions from LSTMciim and LSTMp,, are
averaged).

At natural testing sites (Fig. 4c), LSTMclim+pnr and LSTMayg perform
slightly better than the other models, demonstrating the value of high-
quality donors (see Fig. 3c¢) in improving predictions at fully ungauged
sites. However, the degree of improvement of LSTMcjimipnr and
LSTMayg over LSTMcjiy is smaller than seen for the training sites.
Conversely, at regulated testing sites (Fig. 4d), LSTM¢jim emerges as the
best-performing model. Donor-informed models struggle in this sce-
nario, as donor gauges for regulated sites often exhibit overestimated
correlations and low hydrological relevance (see Fig. 3d). These poor-
quality donor inputs mislead the models, resulting in degraded hydro-
logic prediction.
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Fig. 4. Comparison of model performance (NSE) across four evaluation site groups, presented as cumulative distribution functions (CDFs). Median NSE values for

each model are noted in parentheses.
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A comprehensive comparison of model performance across all met-
rics is presented in Table 2. At natural and regulated training sites,
LSTMCclim+pnr consistently outperforms other models across most met-
rics, except for FLV, where LSTMayy is the leading performer. At natural
testing sites, the best-performing model varies depending on the metric.
For instance, LSTMclim+pnr and LSTMayg perform best in NSE, while
LSTMCcim performs best for KGE, and LSTMayg shows a slight advantage
in PBIAS. Interestingly, despite its overall poor performance, NNpg
achieves the smallest FLV bias at natural testing sites. At regulated
testing sites, LSTMcjim demonstrates superior performance across all
metrics, showcasing its robustness when reliable donor inputs are
unavailable.

Overall, these results highlight that the integrated LSTMcjimDnr
model effectively balances donor and local climate inputs, achieving
strong performance at minimally regulated sites and especially at
partially gauged locations. However, the performance of donor-based
models, including LSTMcjimpnr, degrades for regulated testing sites.
LSTMcjim proves to be the optimal model for these locations. Meanwhile,
LSTMayg emerges as a promising alternative, offering competitive per-
formance across different evaluation groups and metrics.

4.3. Donor-informed LSTMs versus LSTMciim

Building on the findings above, we examine in more detail how
donor quality — whether estimated or optimal - affects model perfor-
mance. The goal is to determine the levels of correlation required for
donor-informed models, such as LSTMpy,; and LSTMcjim-+bnr, to enhance
predictive skill, as well as identifying thresholds below which donor
inputs become counterproductive, resulting in underperformance rela-
tive to LSTMcjim, which excludes donor data entirely.

Fig. 5 presents a scatter plot comparing the NSE values of
LSTMclim+pnr models informed by estimated and optimal donors. The
observed Spearman’s rank correlation (p,) of the first (i.e., highest
correlated) donor among the five optimal donors for each target site is
categorized into four groups, represented by different colors. The results
demonstrate that using optimal donors leads to only modest improve-
ments in LSTMcjim+pnr performance compared to using estimated do-
nors, with the most noticeable improvements observed at the regulated
test sites. Similar conclusions are drawn in Fig. S7 for all donor-based
models, which re-evaluates the results of Fig. 4 using optimal donors.
Fig. 5 also reinforces the results from Fig. 3, showing that highly
correlated optimal donors (p; > 0.8) are more readily available for
natural gauges. In contrast, regulated gauges often have optimal donors
with weaker correlations, typically below 0.8 and sometimes even below
0.7.

A clear relationship emerges between donor quality and model
performance. When the highest optimal donor correlation is 0.8 or

Table 2
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below, the NSE values for LSTMcjim pnr rarely reach the levels achieved
with correlations of 0.9 or higher (represented by dark blue-colored
points in Fig. 5). This demonstrates that high-quality donor correla-
tions are critical for maximizing the predictive skill of donor-informed
models. Similar patterns are observed for LSTMp,, in Fig. S8, which
mirrors the results of LSTMcjimpnr in Fig. 5.

Further analysis focuses on evaluating the conditions under which
donor-informed models underperform relative to LSTMcjim. To do this,
Fig. 6 compares the NSEs of LSTMclim.+optpnr (Using optimal donors) and
LSTMcjim across the four evaluation groups. The use of optimal donors
for LSTMclim+optpnr in this comparison eliminates uncertainties stem-
ming from estimated donors. The Spearman’s rank correlation of the
highest-correlated donor is again used to categorize results by color.
Also, the comparison of NSE distributions across all models using
optimal donors is provided in Fig. S7.

The results in Fig. 6 reveal that LSTMclim+optpnr 1argely outperforms
LSTMcjim when donor correlations exceed 0.9. For sites where the
highest donor correlations fall between 0.8-0.9, LSTMclim+optDnr Often
outperforms LSTMcjin, but there are instances when LSTMcy;y, substan-
tially outperforms LSTMclim+optpnr- This becomes even more common
when the highest donor correlations fall between 0.7-0.8. At regulated
sites with very low donor correlations (p; < 0.7), LSTMclim+0ptbnr
struggles, producing highly inaccurate predictions (as evidenced by the
red-colored circles in Fig. 6b and 6d, where NSE values often fall below
zero). In these challenging conditions, even LSTMcjy, which relies
solely on local climate inputs, fails to achieve high predictive skill, with
NSE values often lower than those of LSTMclim+optpnr- This highlights
that local climate inputs alone are insufficient for challenging regulated
sites. Again, similar patterns are observed for LSTMoppnr in Fig. S9,
which mirrors the results of LSTMclim+optpnr in Fig. 6.

Together, the results in Figs. 5 and 6 (and Figs. S7-S9) underscore
two important points: 1) the MLP donor selection algorithm is generally
effective at identifying high-quality donors in most cases, such that the
performance of donor-based models is similar when using estimated or
optimal donors; and 2) the availability of high-quality donors is a more
significant limiting factor in improving the predictive accuracy of donor-
based models than our ability to estimate correlations and select donors.

To complement the results above, Fig. 7 displays the spatial distri-
bution of NSE values for daily streamflow predictions across 141
training sites (2011-2017) and 71 test sites (2001-2017). Across the
training gauges, all LSTM models demonstrate high accuracy in pre-
dicting daily streamflow, consistent with the findings discussed earlier.
However, the maps reveal the locations of a few training sites where
model performance is poor (NSE < 0.5, shown in reddish colors). For
instance, all models perform poorly at two training sites — one in the
Lake Superior watershed and another in the Lake Michigan watershed —
with NSE values below 0.5.

Performance metrics (median values) for all models across evaluation groups. Metrics for percentage bias (PBIAS, FHV, FLV) are reported as absolute values. Best-

performing models are highlighted in bold.

Model Metrics
NSE KGE PBIAS FHV FLV NSE KGE PBIAS FHV FLV
Natural Train Gauges (2011-2017) Regulated Train Gauges (2011-2017)
LSTMciim 0.78 0.81 7.46 22.63 26.13 0.80 0.82 6.68 22.05 19.17
LSTMppr 0.83 0.83 5.89 17.30 21.96 0.79 0.79 6.90 25.64 19.42
LSTMclim-+Dnr 0.89 0.89 4.83 12.19 16.47 0.86 0.87 4.83 14.86 16.23
LSTMavg 0.86 0.82 7.60 21.40 15.32 0.84 0.80 6.89 23.60 16.00
NNpr 0.68 0.69 11.86 23.13 40.20 0.51 0.59 11.65 22.97 39.54
Natural Test Gauges (2001-2017) Regulated Test Gauges (2001-2017)
LSTMciim 0.75 0.79 8.95 19.72 36.72 0.71 0.72 10.82 21.36 26.38
LSTMpp, 0.77 0.73 13.99 22.16 41.54 0.53 0.60 20.62 31.80 43.22
LSTMclim + par 0.79 0.77 10.36 19.05 39.71 0.65 0.64 15.58 22.00 30.60
LSTMavg 0.79 0.78 8.54 19.85 30.59 0.67 0.67 14.47 26.31 28.51
NNpr 0.52 0.66 16.32 19.73 30.05 0.36 0.41 19.31 35.21 47.53
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Fig. 5. Comparison of the Nash Sutcliffe Efficiency (NSE) at target sites for LSTMcjim + pnr When informed by optimal donors versus estimated donors. For each target
site, the highest Spearman’s rank correlation of the optimal donors (p1") is visually represented with different colors. The inset in panel (d) displays the full range of

NSE values for that group of target sites.

More importantly, the maps highlight the spatial distribution of
performance for fully ungauged test sites, where predictions are more
challenging. A clear lake-wide pattern emerges: all LSTM models
perform better at fully ungauged sites in the Lake Huron, Lake Michigan,
Lake Erie, and Lake Ontario watersheds (with few sites showing NSE <
0.5) than in the Lake Superior and Ottawa River basins. The Ottawa
River basin, in particular, presents the greatest challenge, as it contains
the highest proportion of test sites with NSE values below 0.5 across all
models.

The poor performance of donor-informed models, such as LSTMp,,
and LSTMclim+pnr, in the Ottawa River basin is noteworthy. This basin
has only seven training gauges, all of which are relatively small
(drainage areas between 258-3,811 km?) and most located in the south.
In contrast, many of the test sites in the basin are larger (drainage areas
between 246-90,900 km?) and situated further north. These differences
(among others) made it difficult to identify hydrologically relevant do-
nors with high correlations (p; > 0.9) for the test sites. Consequently,
these models underperform relative to LSTMc¢jin,, which relies solely on
local climate data.

Hydrographs from selected test sites (Fig. 8) illustrate these dy-
namics. At regulated sites such as 02LC008 and 02LC029 in the Ottawa
River basin (Fig. 8a and 8b; also see Fig. S10), donor-informed models
failed to accurately predict peak flow events during the snowmelt season
in terms of timing and magnitude. For 02LCO08, this failure resulted
from poorly correlated donor gauges, despite alignment between esti-
mated and optimal donors (see Table S1). At 02LC029, both poor donor
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correlations and misalignment between estimated and optimal donors
contributed to model underperformance (see Fig. 8b and Table S1).
Conversely, in natural basins located in the Lake Erie and Huron wa-
tersheds, high-quality donors enabled donor-informed models to
outperform climate-only models (Fig. 8c and 8d; also see Fig. S10).
Notably, donor-based models (particularly LSTMpy,) significantly sur-
passed LSTM¢jim and avoided overestimation of peak flow events.

4.4. Lake-wide monthly runoff estimate and error

The lake-wide runoff predictions for six major watersheds — Superior
(SUP), Huron (HUR), Michigan (MIC), Erie (ERI), Ontario (ONT), and
Ottawa (OTT) — were assessed using aggregated monthly runoff esti-
mates derived from gauge-level predictions. These estimates were then
compared against observed data, also aggregated to monthly values and
summed across gauge-level observations. Results are shown in Fig. 9.
Notably, the observed data in Fig. 9 are shown only when data were
available for all gauges in a given lake watershed. This restriction limits
the number of lake-wide observations available for comparison with the
model-based estimates.

A clear discrepancy emerges between observations and predictions
from NNpg across several of the Great Lakes watersheds. Among all
models, NNpg demonstrates the poorest performance in predicting lake-
wide monthly runoff. This aligns with earlier findings, where NNpg
showed the lowest predictive skill for daily streamflow at individual
gauges. The accumulation of these poor individual predictions
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Fig. 6. Comparison of the Nash Sutcliffe Efficiency (NSE) between LSTMciim+optpnr (With optimal donors, denoted as OptDnr) and LSTMcyir, at target sites. Similar to
Fig. 5, the highest Spearman’s rank correlation of the optimal donors (p1*) is represented with color coding for each target site. The inset in panel (d) highlights the

full range of NSE values for that group of target sites.

ultimately degrades NNpg’s monthly lake-wide runoff estimates. Despite
its general underperformance, NNpr’s predictions for HUR, MIC, and
ERI watersheds appear closer to those of other LSTM models. However,
for SUP, ONT, and OTT, NNpg’s performance is distinctly worse, largely
due to its consistent overestimation of monthly runoff.

In contrast, the discrepancies observed among LSTM models during
daily runoff predictions at individual gauges diminish when aggregated
to the monthly scale. Across all watersheds, it is challenging to distin-
guish the performance of different LSTM models visually, except for the
Ottawa River Basin (OTT). For OTT, monthly runoff predictions vary
more noticeably among the LSTM models, with LSTMcjim showing a
tendency to estimate lower monthly runoff relative to the other donor-
informed LSTMs. Limited observations in OTT indicate that LSTMpy,
performs better at capturing peak monthly runoff compared to other
LSTM models. In general, the LSTM models yield highly accurate lake-
wide monthly runoff predictions for HUR, MIC, ERI, and ONT, closely
matching observed data. However, their predictive capabilities are more
limited for SUP, particularly during the dry season, as evidenced by their
underestimation of runoff during this period (Fig. 9).

The poorer performance of all LSTM models in SUP and OTT wa-
tersheds can be attributed to spatial variations in predictive skill, as
revealed in Fig. 7. Across all models, the test gauges in SUP and OTT
show the weakest performance, which subsequently affects the lake-
wide monthly runoff estimates. For SUP, the relatively sparse distribu-
tion of training gauges, despite the watershed’s large size, may
contribute to poor predictions at ungauged sites. A similar issue arises in
OTT, where only seven training gauges are available, most of which are
concentrated in the south. This sparse distribution poses challenges for
donor-informed LSTMs, which rely on high-quality donor gauges with
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strong hydrological correlations to the target sites. However, the
LSTMcyim also struggled the most in these regions.

Table 3 provides a detailed analysis of error variances in the lake-
wide monthly runoff estimates for each watershed (described in Sec-
tion 3.4), presented as standard deviations. Note that these lake-wide
error standard devation estimates are derived from aggregating the
monthly error variances and covariances at and between individual
sites, allowing them to better account for missing observations across
sites compared to the results shown in Fig. 9. Consistent with the time
series analysis, NNpr exhibits the highest error standard deviation
among all five models, by a considerable margin, across all watersheds.
In comparison, the LSTM models exhibit significantly lower error stan-
dard deviations. Among these, LSTMcjim pnr cOnsistently achieves some
of the lowest error standard deviation values across all six watersheds.
Although the differences among the LSTM models are subtle, the stan-
dard deviation of error for LSTMpy, is notably lower than that of
LSTMcyin, in all watersheds except ONT. Additionally, the error standard
deviation of LSTMpy,, is comparable to that of LSTMayg. Across all
models, the largest error standard deviation occurs in OTT, followed by
SUP, as anticipated from the time series analysis of monthly runoff
predictions. Overall, these findings emphasize the potential of advanced
LSTM models to improve monthly water balance predictions for the
Great Lakes watersheds.

4.5. Model interpretability

To facilitate the interpretability of LSTMclim+pnr, We employed the
Integrated Gradients (IG) method (Sundararajan et al., 2017) to quantify
the contribution of each input feature to daily streamflow predictions.
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Fig. 7. Nash Sutcliffe Efficiency (NSE) of LSTM daily streamflow predictions across 141 training sites for the period 2011-2017 (left column) and 71 testing sites for
the period 2001-2017 (right column).

donor streamflow to the correlation values associated with those donors
(Fig. 10). As the ratios of IG attribution scores decrease, this suggests
more importance is being placed on donor streamflow relative to pre-
cipitation for model prediction. Fig. 10 shows a consistent negative
trend across all five donors, suggesting that as donor correlations in-
crease, the relative influence of donor streamflow increases. This trend

Average attribution scores across all sites and days (Fig. S11) reveal that
precipitation is the most important individual feature overall, although
donor streamflow information—particularly from the most correlated
donors—plays a significant role in enhancing predictions. To investigate
climate and donor streamflow attributions in more detail, we compare
the ratio of IG-based feature attributions between precipitation and
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indicates that the model is appropriately weighing donor information
based on its hydrologic relevance.

The use of donor streamflow in the LSTMcjim pnr model is not static
through time. Rather, it varies seasonally and with hydrologic condition.
Fig. 11 illustrates the daily attribution scores for precipitation and the
first donor’s streamflow, averaged across all 212 basins for each day of
the year. These results reveal the temporal dynamics of feature impor-
tance over the annual cycle and highlight that donor streamflow con-
tributions peak during the spring snowmelt season (March-May). This
might indicate that donor site streamflow, which integrates the melt of
snowpack that has accumulated over the last several months, represents
information that is particularly useful to transfer to target sites.
Conversely, contributions from precipitation modestly decline in the
winter and summer months, when precipitation is less likely to lead to
immediate runoff responses because of snow processes and depleted soil
moisture storage, respectively. These nuanced temporal patterns illus-
trate the model’s ability to adjust its internal weighting of climate and
flow inputs in ways that reflect seasonal hydrologic processes across a
diverse set of watersheds. Collectively, these findings support the notion
that the LSTMcjim pnr model not only improves predictive accuracy but
also aligns with hydrologic process understanding, offering a path for-
ward for explainable deep learning in hydrology (Xu et al., 2024).

5. Discussion and conclusion

This study highlights the potential of integrating local climate data
with donor gauge streamflow measurements using deep learning models
to enhance streamflow reconstructions in ungauged and partially
gauged basins. Several DL models were developed and compared across
natural and regulated sites in the Great Lakes region, including those
that use climate data (LSTMcjiy), donor streamflow data (LSTMpy,), or
both (LSTMclim+dn; LSTMayg). The integrated LSTMclim+pnr model
consistently outperformed single-source models (LSTMcjim or LSTMpp,)
in basins with high-quality donor gauges. This improvement un-
derscores the value of leveraging donor streamflow information when
strong hydrological correlations exist between target and donor basins.
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By weighting inputs from both data sources, LSTMcjim+pnr effectively
balances local and regional hydrological signals, achieving superior
performance in temporal extrapolation at partially gauged basins and
predictions at natural, ungauged sites. Similar benefits were observed
using LSTMayvg, although this requires the development and averaging of
two separate models.

The success of donor-informed models (LSTMcjim+ pnr and LSTMpp,)
hinges on two key factors: availability of high-quality donors and the
ability to select those donors based on estimated rank correlations. Poor
donor quality, reflected in low observed correlations with target sites,
had a greater impact on predictive accuracy than donor misalignment
caused by suboptimal selection. Even when optimal donors were iden-
tified, the improvements over using estimated donors were generally
small, underscoring that the availability of highly correlated donors is
critical. This condition was observed more frequently in basins with
denser gauging networks (Lake Huron, Michigan, Erie, and Ontario), as
compared to the Lake Superior and Ottawa River basins, where available
donors were sparse.

Importantly, this study identified a threshold for donor usefulness:
when Spearman’s rank correlations between donor and target basins
exceeded 0.9, donor-informed models consistently outperformed
climate-only models. Below this threshold, the advantage of integrating
donor data diminished, and in some cases, performance deteriorated.
For regulated testing sites in particular, the selection of poorly corre-
lated donors — due to a lack of suitable donors and significant over-
estimations of p; — may mislead models that rely on donor information
(i.e., LSTMpp, and LSTMciim+Dnr), potentially degrading predictive per-
formance. Consequently, LSTMcjim proved to be the optimal model in
scenarios where donor quality was questionable.

One of the study’s key practical contributions is the demonstrated
ability of LSTMcjim+pnr to enhance lake-wide monthly runoff estimates,
a crucial metric for quantifying the Great Lakes water balance. The
model reduced error variance in monthly runoff estimates compared to
single-source models across all six Great Lakes watersheds. These
improved runoff estimates could be used as inputs to statistical models
designed to resolve the full water balance of the Great Lakes (Do et al.,
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Table 3
Standard deviation of lake-wide monthly runoff error; unit is 1000 cms. The
lowest error standard deviation for each watershed is highlighted in bold.
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trajectories of long-term water levels (Gronewold et al., 2021).
Despite these successes, several limitations warrant further investi-
gation. One area of improvement involves expanding the training

SUP HUR MIC ERI ONT OTT datasets to include a broader range of regulated basins. Addressing the
LSTMons 423 333 057 .84 183 23.25 challenges ppsed by regulatt.ed sites requires 1nc9rporat1ng rr.lore tra%n%ng
LSTMpy, 4.06 210 1.74 251 2.46 19.50 examples with low-correlation donor-target pairs. The limited training
LSTMclim- por 3.26 1.76 1.44 1.93 1.81 16.26 set of 141 gauges used in this study, with only 7 regulated gauges sup-
LSTMavg 3.45 2.35 1.82 2.38 1.93 21.22 ported by optimal donors with correlations below 0.8, likely constrained
NNpr 11.01 3.13 5.34 3.20 6.60 51.23

2020), thereby improving the accuracy of historical estimates of other
water balance terms (e.g., over-lake precipitation and evaporation).
Such improvements, particularly if extended back several decades, could
help managers in the Great Lakes better understand emerging trends in
the Great Lakes water balance, which has significant implications for the

the model’s ability to generalize in these situations. Expanding the
training dataset to include additional regulated basins with low-
correlation donors would enhance model robustness and generaliz-
ability. Similarly, expanding the methodology to other geographic re-
gions with diverse climatic and hydrological conditions, such as the
CAMELS basins across the contiguous US (Addor et al., 2017), could
further improve its generalizability and help identify region-specific
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factors influencing performance.

The donor selection process presents another area for refinement
(Villalba et al., 2021; Wang et al., 2013). Future work could explore
alternative learning frameworks, such as graph-based models (Villalba
et al., 2021), to further improve donor selection in human-impacted
basins. Similarly, the performance of donor-informed LSTM models
may benefit from the inclusion of additional similarity metrics,
including those that reflect the type and degree of anthropogenic ac-
tivity (e.g., regulation indices, land use intensity, network connectivity)
(Ouyang et al., 2021; Tursun et al., 2024a). Including regulation-specific
inputs could help the model learn when to downweight or decouple
unreliable donor information, improving performance in regulated en-
vironments (Tursun et al., 2024b). Additionally, the use of remotely
sensed runoff data, even if biased and limited in length (e.g., SWOT; (Fu
et al., 2024), could significantly improve the estimation of rank corre-
lations between donor and target sites at both natural and regulated
sites.

Uncertainty quantification is another critical area for future research
(S. Liu et al., 2023). This study did not explicitly address uncertainties in
model structure and input data, such as errors in meteorological forcings
or streamflow measurements, nor did it attempt to estimate the uncer-
tainty in reconstructed streamflow values. Adopting techniques like
ensemble-based methods (Li et al., 2022) or Monte Carlo dropout (Klotz
et al., 2022) for this purpose could enhance the hydrological predictions
by highlighting when their uncertainty is too high for practical use.

Ultimately, the methods introduced in this work — integrating local
climate and regional hydrologic signals in a deep learning framework —
mark a significant advancement in addressing the Prediction in Unga-
uged Basins challenge. These methods provide enhanced accuracy for
site-specific predictions and large-scale water balance assessments. The
results have important implications for water resource management,
which relies on historical streamflow reconstructions across large re-
gions to support decision-making in areas such as reservoir manage-
ment, flood forecasting, and climate change signal detection and
adaptation (Kayastha et al., 2022; O’Brien et al., 2024). As the class of
DL models presented in the work is further refined, there is significant
potential for applying it across large regions with streamflow gauging
networks of moderate density, ultimately creating a state-of-the-art
daily streamflow reconstruction product to support a wide range of
water resource studies.
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