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Abstract—1In order to reduce the size, weight, and cost of
power electronic systems, a high-temperature silicon carbide
(SiC)-based half-bridge power module is proposed in this article.
Two gate drivers, which were fabricated on low-temperature
co-fired ceramic (LTCC) substrates, are integrated into the
power module to reduce the gate loop inductance and size of
the power module. The design and fabrication process of the
LTCC-based gate driver is presented. In addition, the layout
design, simulations, and fabrication materials of the power
module are also discussed. High-temperature components and
materials were implemented to fabricate the power module,
which allows it to operate up to 200 °C. Double pulse tests (DPTs)
were carried out from 25 °C to 200 °C to investigate its switching
performance. The turn-on and turn-off dv/dt of the power
module is from 10 to 15 V/ns, and little degradation was observed
at elevated temperatures. While the power module achieves
functional integration and promising thermal performance, the
operating temperature is limited by the gate driver integrated
circuit (IC). A high-temperature gate driver IC will be designed
and integrated into the power module in future work to improve
thermal reliability. This work provides a critical foundation for
the development of high-temperature and high density power
modules.

Index Terms— Gate driver, high-temperature applications, low-
temperature co-fired ceramic (LTCC), power module packaging,
silicon carbide (SiC).

I. INTRODUCTION
ILICON carbide (SiC) is one of the most commonly used
materials in power applications due to its wide energy
bandgap, high electric field strength, and high thermal con-
ductivity [1], [2]. This significantly increases the power rating,
operating voltage, and power density of power modules [3].
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It has been demonstrated that SiC-based power modules show
higher switching frequencies and lower losses than their silicon
(Si)-based counterparts [4], [S]. In order to further reduce the
size, weight, and cost of power electronic systems, a variety
of methods have been proposed to facilitate the performance
of SiC power modules, such as the optimization of operating
temperatures, the reduction of parasitic elements, and the
integration of driving circuits [6].

Scores of researchers contributed to high-temperature power
modules since the increase in the operating temperature of
power modules allows for the elimination of bulky cool-
ing systems, which significantly reduces the size and cost
of the system and increases the power density. In 2010,
Scofield et al. [7] investigated the reliability of the pack-
aging materials, such as substrate [i.e., direct bond copper
(DBC)] and encapsulation materials, for high-temperature
power modules. Based on these results, Scofield et al. [8]
developed two high-temperature power modules. Cree’s SiC
power MOSFETSs were integrated into the power module, and
the power modules were characterized up to 200 °C. Mean-
while, Chen et al. [9] proposed a 1.2-kV high-temperature
power module. Both SiC power MOSFETs and the power
module were characterized and fully analyzed at a temperature
of 200 °C.

Besides the improvement of the operating temperatures,
the integration of driving circuits into power modules has
also been investigated to optimize SiC-based power mod-
ules. This not only reduces the size of the system but also
decreases the gate loop parasitic inductance. In 2010, silicon-
on-insulator (SOI) gate driver integrated circuits (ICs) were
integrated into a power module [10]. The power module shows
reliable switching behaviors and relatively low-power loss.
Mantooth et al. [11] also proposed a solution for the integration
of gate drivers into power modules. Besides, Infineon also
announced intelligent power modules with integrated gate
drivers for low-power motor drives [12], [13]. These works as
well as some recently published and commercially available
SiC power modules are organized in Table I. According to
Table I, the operating temperatures of power modules with
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TABLE I
RECENTLY PUBLISHED AND COMMERCIALLY AVAILABLE POWER MODULES

Reference Power loop Gate loop Maximum Footprint Gate driver
inductance inductance operating Length Width
temperature
[71, [8] - - 200 °C - - Not integrated
[9] 10 nH - 200 °C 48.4 mm 42.8 mm Not integrated
[10] - - 150 °C - - Integrated
[12], [13] - - 125 °C 34 mm 27 mm Integrated
[14] 6.7 nH - 175 °C 80 mm 53 mm Not integrated
[15] 4.9 nH - 175 °C 110 mm 62 mm Not integrated
[16] 15 nH 74 nH 150 °C 106.4 mm 61.4 mm Not integrated
[17] 8.4nH - 150 °C - - Integrated
[18] 1.3 nH 20nH 150 °C - - Not integrated
[19] 4.3 nH 6 nH - - Not integrated
[20] 3.8nH - - 25.1 mm 18.8 mm Not integrated
[21] 13.8 nH - 150 °C 40 mm 40 mm Not integrated
integrated gate drivers are limited at ~150 °C, and isolators Emitter — —:flhrllle)r
were normally not designed in these gate driver circuits to
protect low-voltage logic controllers [10], [17]. Therefore, the et E—
development and investigation of high-temperature SiC-based Detect
. . . . . . etector — “hi
power modules with integrated gate driver circuits are still —’(fll:'l';
highly desirable for high-density power electronic systems. (a)

Optical isolators (e.g., optocouplers and optical fibers)
and magnetic isolators (e.g., transformers) are often used as
galvanic isolation devices in gate driver circuitry to protect
low-voltage controlling devices from high voltage [22], [23].
Typically, transformers were implemented as isolators for
high-temperature applications [24]. However, the transformers
usually consume a large area of the gate driver circuits, and the
modulation and demodulation circuits increase the complexity
of the circuit design. Therefore, in previous work [25], [26],
[27], [28], [29], [30], [31], high-temperature optocouplers as
galvanic isolators for SiC power modules were proposed and
developed. In order to develop high-temperature optocouplers,
high-temperature light-emitting diodes (LEDs) and photodi-
odes were designed and characterized with a wide range of
temperatures (i.e., from —200 °C to 500 °C) [25], [26], [27],
[28], [29]. Both the LEDs and photodiodes showed good per-
formance at high-temperature conditions. Then, the LEDs and
photodiodes were used as emitters and detectors, respectively,
and packaged with low-temperature co-fired ceramic (LTCC)
materials to form high-temperature optocouplers [30], [31].
Fig. 1(a) and (b) shows the cross section and fabricated sample
of the LTCC-based high-temperature optocouplers, respec-
tively. The emitters and detectors are attached and wire-bonded
to the LTCC-based chip carriers, and the LTCC-based chip car-
riers are connected to the LTCC substrate, allowing the devices
to face each other through the cavity. Then, the optocouplers
were integrated into LTCC substrates, and LTCC-based gate
drivers were fabricated [31]. The LTCC-based gate drivers
were characterized and analyzed from 25 °C to 250 °C. The
results proved the LTCC-based gate driver showed reliable
driving capability. After that, the LTCC-based gate drivers
were integrated into the SiC power module [32], [33]. How-
ever, the maximum operating temperature of the power module
is ~100 °C due to the temperature tolerance of the packaging
materials (i.e., encapsulant), and the power modules were not
fully characterized at high temperatures.

*
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(b)

Fig. 1.  (a) Cross section and (b) fabricated sample of the LTCC-based
high-temperature optocoupler developed in previous works.

mm

In this article, a high-temperature half-bridge power module
with integrated gate drivers was proposed. High-temperature
packaging materials were utilized, which allowed the SiC
power module to operate at 200 °C. Two gate drivers, which
were fabricated on LTCC substrates, were integrated into the
power module to achieve a compact size for the system. This
article is divided as follows. Section II presents the design
and fabrication process as well as the characterization of the
LTCC-based gate driver. In Section III, the design, fabrication,
and characterization of the high-temperature power module
are discussed. The 1.2-kV SiC MOSFETs were utilized as
power switches, and high-temperature packaging materials
were utilized for the encapsulation. Electrothermal simulations
were carried out to analyze the performance of the power
module. Double pulse tests (DPTs) were conducted from
25 °C to 200 °C to characterize the power module. The
power module showed reliable switching behaviors at elevated
temperatures (i.e., 200 °C). Finally, the conclusion is provided
in Section IV.

II. LTCC-BASED GATE DRIVER
A. Design

SiC-based power modules require relatively low parasitic
inductance due to their high switching speed. In order to
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TABLE II
PROPERTIES OF LTCC AND FR4 PCB

Material LTCC FR4 PCB
CTE (ppm/K) 4.4 15
Maximum operating temperature 450 150
0)
Thermal conductivity (W/mK) 4.6 0.4

mitigate parasitics and reduce the passive components (e.g.,
decoupling capacitors and gate resistors), gate driver circuits
are desired to be closely integrated with SiC power devices.
Consequently, SiC power modules with embedded printed cir-
cuit boards (PCBs) have been proposed [34], [35]. The PCBs
cannot only be substrates for passive and driving components
but also provide extra flexibility to the layout. However, the
temperature tolerance of PCB and its coefficient of thermal
expansion (CTE) mismatch with SiC and the ceramic substrate
(i.e., DBC) of power modules limit the operating temperature
of SiC power modules. To solve this issue, in this article,
LTCC is utilized as the substrate material of the gate driver
circuit. LTCC technology utilizes a multilayer fabrication
process, which allows for the creation of vias, interconnects,
cavities, and embedded traces. This makes it well suited as
a substrate for semiconductor devices and ICs. In addition,
LTCC-based components have also been demonstrated to be
easily integrated with power modules [36], [37]. Table II
lists the properties of LTCC and FR4 PCBs. Compared to
FR4 PCBs, LTCC has a closer CTE to SiC (i.e., 4.2 ppm/K)
and the ceramic substrate (e.g., AIN DBC and SizN4 DBC) of
power modules. Moreover, its maximum operating temperature
and thermal conductivity are much higher than those of a
PCB. These make the LTCC substrates more promising to be
integrated into power modules than PCB substrates.

Fig. 2(a) and (b) shows the schematic and the 3-D model of
the LTCC-based gate driver, respectively. A high-temperature
optocoupler, which was developed in previous work [30], [31],
was used as the galvanic isolation device. A transimpedance
amplifier (TIA, i.e., OPA211HT by Texas Instruments (TI)
with a maximum operating temperature of 210 °C) is used to
convert the optocoupler output current to voltage, and a gate
driver IC (i.e., IXD614) is utilized to drive the power devices.
High-temperature resistors [38] and capacitors [39] (both by
Vishay), which are capable of operating at 200 °C, are utilized.
As shown in Fig. 2(b), two slots were designed on the top
and bottom sides of the LTCC substrate for the integration of
the high-temperature optocoupler. Passive components (e.g.,
resistors and capacitors) and ICs are attached to the top layer
of the LTCC substrate. The output signal traces are located on
the bottom side of the LTCC, which makes it easy to connect
with the power module substrate and the power devices.

B. Simulation

The major challenge of the gate driver design is the tradeoff
between the propagation delay and the stability of the circuit.
Due to the low optocoupler output current at high temper-
atures, a high transimpedance gain of the TIA is required.
This limits TIA’s stability and rise/fall time, which affects the

3247
Cr
lvAvA
3 T
N ¥pD Output
PWM in o IN OUTH
WMinput | o> x /—{+
signal -VDD OUTL
-4 r Rout
-5V -5V
High-temperature High-temperature Gate
optocoupler operational driver IC
amplifier
(a)
Input

St .
signal pins

OPA211HT
/ Power

supply pins

l

Optocoupler
«—emitter substrate

Optocoupler
detector —>|
substrate

!

LTCC substrate
IXD614

(b)

Fig. 2. (a) Schematic and (b) 3-D model of the LTCC-based gate driver.

propagation delay of the gate driver circuit. Thus, in order to
optimize the performance of the gate driver circuit, the TIA
was simulated by LTSPICE. Fig. 3(a) shows the simulation
schematic of the TIA. The model of the operational amplifier
(i.e., OPA211) was provided by TI. The optocoupler is mod-
eled as a current source with a 54-pF junction capacitance,
Cin. The output current of the current source was 50 p©A,
which is its output current at 200 °C. The transimpedance
gain is determined by the feedback resistor, R s, which can be
expressed as

Vou = Rflph (1)

where Vo is the TIA output and /,, is the optocoupler output
current. Ry was set as 62 k2, which makes V; higher than
the threshold voltage of the gate driver IC (i.e., 3 V). The TIA
circuit is a two-pole system, and the poles can be expressed

as [40]
1 1 /1
[ Aot
wy = —RfcinTA 3)
Ao+ DR CiT,
Q=ﬂgc)f 2 4)
fCin+ Ty

where Ag and T, are the dc gain and the time constant of
the pole for the operational amplifier, respectively. When Q is
higher than 0.707, which normally results from a high R,Cj,
value, the values of s are complex conjugates, and the circuit is
not stabilized [40]. In order to stabilize the circuit, a feedback
capacitor, Cy, was added in parallel to the feedback resistor.
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Fig. 3. Simulated (a) schematic, (b) ac response, and (c) output waveforms
of the TIA.

The feedback capacitor introduces a zero, which compensates
the poles. The zero can be expressed as [40]

1

= —. 5
¢ 27TRfo ()

The simulated ac responses and output voltage waveforms
with varying C; are shown in Fig. 3(b) and (c), respectively.
When C; < 1 pF, high amplitude peaking and strong rings
are observed in the frequency domain and time domain, which
indicates a not stabilized circuit. When Cy > 2 pF, smooth
ac response and output waveforms can be observed. However,
when C; is 5 pF a high rise/fall time is also observed in
the output waveform due to the low bandwidth of the ac
response. Therefore, a 2-pF feedback capacitor was selected
for the design of the TIA circuit.

C. Fabrication

The LTCC-based gate drive substrate is composed of 16 lay-
ers of individual LTCC. The layout of all the layers with
vias, traces, and cavities is designed in AutoCAD. Then,
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the metal traces, pads, vias, and cavities were extracted to
generate masks for the LTCC fabrication process. 4 shows
the steps of the fabrication process. Dupont 9K7 LTCC sheets
with a thickness of 10 mil are used. These LTCC sheets are
compatible with silver (Ag) and gold (Au) paste and have a
CTE of 4.4 ppm/K and a thermal conductivity of 4.6 W/mK,
which makes them a highly suitable material for the manu-
facturing of integrated gate drives. As shown in Fig. 4, the
fabrication process started with the cavity and via punching
in LTCC sheets. The punched vias were filled with co-fired
silver via fill paste (i.e., Dupont LL601), which has the ability
to withstand 850 °C [41]. Then, the sheets were dried at 70 °C
for 10 min. The dry sheets were screen-printed with silver
paste Dupont LL612 Ag and Dupont LL617 AgPd for the
internal (nonsolderable traces) and external (solderable) trace
formation in the LTCC sheets, respectively (i.e., conductor
printing) [41]. After the screen printing, they were heated at
70 °C for 15 min to cure. The cured sheets were then cut into
sections, stacked one layer on top of the other, and laminated
at a pressure of roughly 2500 Ibf/in>. The laminated LTCC
substrates were sintered and cured at 850 °C for 27 h (i.e.,
cooking), and the cured substrates were then diced to form
the individual LTCC substrates. Finally, components, such as
optocouplers, resistors, capacitors, and ICs, were attached to
the LTCC substrates. The fabricated LTCC-based gate driver
is shown in Fig. 5.

D. Characterization

The LTCC-based gate driver was characterized from 25 °C
to 200 °C to investigate its performance. The experimental
setup is shown in Fig. 6. The LTCC-based gate driver was
placed on a Corning PC-600D hot plate, and thermal grease
was applied to achieve a uniform temperature distribution
during the measurements. An input signal with 100-kHz
frequency and 50% duty cycle was generated by the Rigol
DG1022 function generator, and the output waveforms of
the TIA and gate driver were captured by an oscilloscope
(i.e., MOD4034 by Tektronix). The output waveforms are
shown in Fig. 7(a)—(c). The output voltage (peak to peak)
of the TIA decreases from 4.5 to 3 V when the temperature
increases from 25 °C to 200 °C due to the degradation of
the optocoupler. This resulted in the turn-on propagation delay
increasing from ~330 to ~760 ns, and the turn-off propagation
delay decreasing from ~280 to ~200 ns [Fig. 7(d)]. However,
the output voltage of the gate driver shows little degradation at
200 °C. This proves that the gate driver is capable of driving
power devices at elevated temperatures.

DPTs were carried out to characterize the switching per-
formance of the LTCC-based gate driver circuit. The DPT
setup is shown in Fig. 8. The LTCC-based gate driver was
attached to a transfer board that is made by PCB. A com-
mercial 1.2-kV SiC power module (i.e., CAS300M12BM2
by CREE) was used to investigate the driving capability of
the gate driver. Besides, a PCB-based gate driver, which has
the same schematic [i.e., Fig. 2(a)] as the LTCC-based gate
driver, was also tested as a comparison. The DPT results
were captured by a MOD4034 oscilloscope (by Tektronix).
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A voltage probe (Tektronix P6139A with 500-MHz band-
width), a high-voltage differential probe (Tektronix P5200A
with 50-MHz bandwidth), and a Rogowski coil (i.e., PEM
CWT with 30-MHz bandwidth) were utilized to measure the
gate—source voltage, drain—source voltage, and drain—source
current, respectively. Fig. 9 shows the DPT results of the
gate drivers. The drain—source voltage (V;,) was set at 600 V,
and the maximum drain—source current (/;5) was 120 A. The
LTCC-based gate driver shows good switching performance
with a 10-Q external gate resistor (Rg), which results in
~5- and ~6-V/ns dv/dt at turn-on and turn-off conditions.

When R, is 1 Q,dv/dt of turn-on and turn-off increases
to ~12 V/ns. However, mistriggers were observed after the
second pulse. The PCB-based gate driver with R, = 1 € shows
good switching performance at this condition (i.e., dv/dt =
~12 V/ns). The switching of the power devices generates
electromagnetic interference (EMI) noise, which affects the
gate driver circuit. The common-mode EMI noise current that
affects the gate driver, Iise gp, can be expressed as [42]
and [43]

CCM ' CGD?ground dvds

Inoise_Gp =
- CCM + CGND?ground + CGD?ground dt

(6)

where Ccy is the parasitic capacitance between the floating
potential of the half-bridge circuit and ground, Cgnp_ground 18
the parasitic capacitance between the gate driver GND and
ground, and Cgp_ground 1 the sum of the parasitic capacitance
between the gate driver and ground (except for Cgp_ground)-
In terms of (6), low Cgp_ground and high Coyp_ground are
normally desired to reduce the EMI noise. The relative per-
mittivity of LTCC (i.e., ~7.5) is slightly higher than that of
PCB (i.e., 5.5) [44], which indicates a higher Cgp_grouna Of
the LTCC-based gate driver. Besides, since the metal routing
and layout of the LTCC substrate are limited by its process,
it is difficult to create a shielding GND plane, which indicates
a lower Cgnp_ground- Therefore, the LTCC-based gate driver
has less EMI noise immunity than the PCB-based gate driver
and shows a relatively low switching speed when driving the
power module.

The isolation voltage of the LTCC-based gate driver was
also characterized. Fig. 10(a) shows the setup of the isolation
voltage measurement. Since the isolation voltage is mainly
determined by the optocoupler, only the emitter and detector
of the optocoupler were attached to the LTCC substrate.
A Valhalla 5880A dielectric analyzer was used to characterize
the isolation voltage. The positive probe was placed on the
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Fig. 7. LTCC-based gate driver measurement results (a) overview waveforms,
(b) turn-on waveforms, (c) turn-off waveforms, and (d) propagation delay with
varying temperatures.

detector output, and the negative probe (i.e., ground) was
placed on the emitter input. The maximum isolation volt-
age is registered when the leakage current crosses 100 nA.
Fig. 10(b) shows the isolation voltage measurement result
of the LTCC-based gate driver with varying temperatures.
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As shown in Fig. 10(b), the isolation voltage is 2900 V
at 25 °C. The isolation voltage mainly depends on the air
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Fig. 10. (a) Isolation measurement setup, (b) isolation voltage, and (c) leak-
age current of the LTCC-based gate driver with varying temperatures.

breakdown between the optocoupler’s emitter and detector.
Since the distance between the emitter and detector is ~1 mm,
the air breakdown voltage is 30 kV/cm, and the isolation
voltage of the LTCC-based gate driver is 2900 V. The isolation
voltage decreases to 2800 V at 100 °C due to the decrease
in air breakdown with the increase in temperature. Since
the maximum temperature of the hot plate for the dielectric
analyzer system is 100 °C, and the leakage current was not
recorded by the dielectric analyzer, a Keithley 2470 source
measure unit (SMU) was utilized to perform the measurement
at higher temperatures. Fig. 10(c) shows the leakage current
of the LTCC substrate with varying temperatures. The leakage
current is lower than 1 nA at 1000 V when the temperature is
lower than 100 °C. It increases to ~28 nA at 200 °C. At 250 °C
the isolation voltage drops to ~680 V due to the decrease in
the air breakdown voltage.
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TABLE III
COMPONENTS FOR HIGH-TEMPERATURE POWER MODULE

Component Material Specification
Base plate Cu Au plated
DBC Cu-AIN-Cu Au plated
0.2 mm Cu
0.6 mm AIN
Switch SiC 1.2kV 149 A
MOSFETs
Bond wire Al 5 mil for gate loop
12 mil for power loop
Terminal Cu Au plated
Housing Epoxy 300 °C
resin
Encapsulant Silicone Nusil R-2188
250 °C

III. SiC-BASED HIGH-TEMPERATURE POWER MODULE

Although the fabricated LTCC-based gate driver shows
limited switching speed, it provides an efficient way for
system integration of high-temperature power modules. Con-
sequently, a high-temperature SiC-based half-bridge power
module with integrated LTCC-based gate drivers was designed
and fabricated.

A. Design

Fig. 11(a) and (b) shows the layout and 3-D model of the
proposed high-temperature SiC power module, respectively,
and the components used for the power module are listed in
Table III. Copper (Cu) was selected as the baseplate material
due to its high thermal conductivity (i.e., 398 W/mK). AIN-
based DBC was utilized as the substrate of the power module
since AIN has a high thermal conductivity (i.e., 150 W/mK)
and a close CTE (i.e., 4.6) to SiC. Gold (Au) was plated on
both the baseplate and DBC substrate to prevent the oxidation
of Cu. As shown in Fig. 11(a), 1.2-kV SiC power MOSFETSs
from CREE (i.e., CPM3-1200-0013A) are integrated into the
power module. Each position has three devices in parallel.
Two LTCC-based gate drivers are attached to the DBC and
connected to the power devices with Cu traces (on the DBC)
and bond wires. The integration of the gate drivers reduces not
only the size of the power electronic system but also the gate
loop parasitic inductance. Aluminum (Al) was selected as the
material for bond wires (Table III) due to its reliable bonding
quality. Since the gate pads of power devices are fragile, 5-mil
Al wires were bonded for the gate loop. The 12-mil Al bond
wires were used for the power loop connection to increase
the current carrying capability. As shown in Fig. 11(b), the
dct and dc~ power terminals are placed facing each other
to enhance the mutual inductance, which helps to decrease
the power loop parasitic inductance. The power terminals are
designed to be almost as wide as the DBC (i.e., ~40 mm)
to reduce the power loop parasitic inductance. Moreover,
high-temperature peak carbon material was used to build the
housing and lid structures to increase thermal reliability.
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Fig. 11. (a) Layout and (b) 3-D model of the proposed high-temperature
SiC-based half-bridge power module.

B. Simulations

The parasitic gate loop inductance, L,, and power loop
inductance, L, play a significant role during the operation
of the power module. Therefore, the parasitic inductance of
the power module was extracted by ANSYS Q3D. Fig. 12
shows the extracted gate loop and power loop inductance. For
the power loop simulation, the source and sink were applied
on the dc* and dc™ terminals, respectively. For the gate loop
simulation, the output pad of the LTCC-based gate driver and
the gate pads of the power devices were set as source and
sink. It should be noted that the gate loop inductance shown in
Fig. 12 is the average value of the three parallel power devices.
As shown in Fig. 12, the power loop inductance is ~7.5 nH
at 1 MHz, which is at the same level as commercial SiC
power modules [14], [15]. The gate loop inductance, which
is mainly created by Al bond wires, is ~9.5 nH at 1 MHz.
Since the gate drivers are closely integrated with the SiC
power devices, the gate loop inductance of the proposed power
module is much lower than that of commercial SiC power
modules (i.e., 50-70 nH), as reported in [16] and [45].

In order to estimate the maximum operating current of the
proposed power module with varying temperatures, an elec-
trothermal simulation was carried out by ANSYS Workbench.
The maximum operating current is limited by the melting
point of the solder paste for the terminal attachment (i.e.,
218 °C). As a result, the maximum operating current was
set when the terminal temperature reached 215 °C. Fig. 13(a)
shows the thermal distribution of the proposed power mod-
ule with 450 A (i.e., maximum drain—source current of the
SiC power devices) at the ambient temperature of 25 °C.
The maximum temperature, which is located on the power
devices, is ~240 °C, and the temperatures at the terminals
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Fig. 13.  Thermal simulation results (a) 25 °C ambient temperature and

450-A operating current, (b) 200 °C ambient temperature and 150-A operating
current, and (c) maximum operating current with varying temperatures.
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are ~175 °C. Fig. 13(b) shows the thermal distribution of
the proposed power module with 150-A operating current at
200 °C. Although the maximum temperature in the device is
~224 °C, the temperatures at the terminals are ~215 °C. Thus,
the maximum operating current is limited to 150 A at 200 °C.
The maximum operating current of the power module with
varying temperatures is extracted in Fig. 13(c).
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Fig. 14. Fabrication process of the high-temperature SiC-based half-bridge power module.

C. Fabrication

The fabrication process of the proposed high-temperature
SiC half-bridge power module is shown in Fig. 14, and the sol-
der and adhesive used for the fabrication are listed in Table IV.
First, the DBC substrates were diced by a dicing saw to form
the desired sizes. Then, a plasma clean process was performed
on the DBC and baseplate to remove the organic contamination
and ensure a high-quality die attachment process. The die
attachment process was carried out by silver sintering. Silver
(Ag) paste (i.e., H9890-6A from NAMICS) was utilized to
adhere to the power devices, DBC substrate, and baseplate.
The silver sintering process was conducted in a nitrogen oven
at a maximum temperature of 200 °C. It should be noted
that the bottom copper of the DBC was separated into two
parts with a 1-mm gap, and the baseplate was prebended by
~100 um to avoid the issues caused by the baseplate warpage
during the high-temperature process. After the die attachment
process, Al bond wires were bonded from the power devices to
the DBC substrate to form the connection. Then, Cu terminals
were attached to the DBC substrate by a Sikama Falcon 5C
reflow oven. Subsequently, the housing wall was printed by a
3-D printer and attached to the baseplate with RTV106 high-
temperature epoxy. Then, the LTCC-based gate drivers were
attached to the DBC substrate by CW2400 conductive epoxy,
and high-temperature silicone (i.e., Nusil R-2188, Table III)
was used to coat the power devices, bond wires, and gate
drivers (i.e., encapsulation process). The encapsulation process
was carried out at room temperature for 24 h to remove the air
bubbles trapped in the silicone and then performed at 150 °C
for 1.5 h to cure the silicone. Finally, the lid was attached to
the power module, and the terminals were bent. The length,
width, and height of the fabricated power module are 105,
55, and 18 mm, which are similar to commercial half-bridge
power modules [14], [15], [16] listed in Table I.

D. Characterization

DPTs were carried out on the high-temperature SiC power
module from 25 °C to 200 °C to characterize its switching

Terminal attachment

14
"

Housing 3D print
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TABLE IV

SOLDER AND ADHESIVE FOR POWER MODULE FABRICATION
Parts Materials Maximum | Fabrication

temperature process
H9890-6A Ag 260 °C DBC & die
attachment

SAC305 Sn/Ag/Cu 218 °C Terminal
attachment
CW2400 Conductive 343 °C Gate driver
epoxy attachment

RTV106 Epoxy 260 °C Housing
attachment

performance. Fig. 15(a) shows the experimental setup of the
DPTs. A 90-uH inductance was used as the load, and a
function generator (Rigol DG1022) was used to generate a
double pulse signal with a 9-us pulsewidth and a 15-us
period. The DPT results were captured by an oscilloscope (i.e.,
MOD4034 by Tektronix). A high-voltage differential probe
(i.e., Tektronix P5200A) and a Rogowski coil (i.e., PEM CWT)
were implemented to measure the drain—source voltage and
drain current, respectively. In addition, the power module was
heated by a Corning PC-600D hot plate, and thermal grease
was applied between the hot plate and the power module to
improve the thermal distribution. After the hot plate reached
the testing temperature, the power module was heated for
10 min to achieve a uniform heat distribution. The temperature
was monitored by a thermal camera. The thermal map of the
DPT at 200 °C is shown in Fig. 15(b).

Both the high side and low side of the half-bridge power
module were characterized. Since the results are very similar,
only high-side device switching behaviors are presented in this
article. In order to fully characterize the switching speed of
the proposed power module, DPTs with varying gate resistors,
R,, were carried out at 25 °C. The results are shown in
Fig. 16(a), and Fig. 16(b) and (c) shows turn-on and turn-off
waveforms with a 600-V drain voltage and 120-A maximum
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Fig. 15. (a) Experimental setup and (b) thermal map at 200 °C of the DPTs.

drain current, respectively. The proposed power module shows
good switching performance when R, is higher than 5 Q2. Very
little voltage and current oscillations were observed during the
device switching. The overshoot voltage, AVpg, during turn
off, is ~102 V, and the voltage turn-on and turn-off time are
60.48 and 36.08 ns with R, = 5 £, respectively. It should
be noted that the power module shows a false trigger when
R, is 3 Q. dv/dt of the proposed power module is limited
at ~16 V/ns due to the low EMI noise immunity of the
LTCC-based gate driver.

DPTs were also conducted from 25 °C to 200 °C to
characterize the high-temperature performance of the proposed
power module. An 8-Q2 gate resistor was utilized, and the
results are shown in Fig. 17(a)—(c). The power module shows
reliable switching performance from 25 °C to 200 °C. The
turn-on pulsewidth decreases from 9 to ~8.7 us at 200 °C due
to the degradation of the high-temperature optocoupler output
current at elevated temperatures. dv/dt of the power module
is extracted in Fig. 18. The turn-on and turn-off dv/dt of the
proposed power module is from 10 to 15 V/ns and shows
little degradation with the temperature varying from 25 °C
to 200 °C. During the turn-on and turn-off periods, very few
voltage oscillations were observed from 25 °C to 200 °C due to
the low-power loop inductance of the proposed power module.

The current overshoot at the device turn-on period increases
from ~26 to ~34 A with the temperature varying from 25 °C
to 200 °C. This is mainly contributed by the charging and
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Fig. 16. DPT results of the high-temperature SiC half-bridge power module
with varying gate resistors (a) overview waveforms, (b) turn-on waveforms,
and (c) turn-off waveforms.

reverse recovery current of the power MOSFETSs’ body diodes.
When the high-side power MOSFETs turn on, they operate as
a current source and charge the power loop parasitic induc-
tance and the body diodes of the low-side power MOSFETs.
This generates a current overshooting, Alpg, that is given
by [46]

di
Alps=~—2"/2CpLio ™

where Cp is the junction capacitance of the body diodes.
During the turn-on period
8rsVer — Vru)

diy _ ®)
dt (Rg + Rg,im)Cg + gsts

where grs, Vry, Cg, and L, are the transconductance, thresh-
old voltage, gate parasitic capacitance, and source parasitic
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Fig. 17. DPT results of the high-temperature SiC half-bridge power module
from 25 °C to 200 °C (a) overview waveforms, (b) turn-on waveforms, and
(¢) turn-off waveforms.

inductance of the power MOSFETs, respectively; Vgy is the
maximum gate voltage (i.e., 15 V); and Ry iy is the internal
gate resistance [47], [48]. According to the datasheet of the
power MOSFETs [49], Vr 5 decreases with the increase in the
temperature, and g s shows little change with the temperature.
Therefore, di;g/dt increases due to the decrease in Vyp, which
increases the current overshoot.

Moreover, the reverse recovery current of the low-side body
diodes may also contribute to the overshoot current. During a
body diode turn-on period, minority carriers are stored at the
depletion region. When the body diode switches off, a reverse
recovery current is generated by the stored minority carriers.
The reverse recovery current, /g, can be expressed as [50]

ert(t) n Q. (1)

Ir() = 4 .

€))
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Fig. 18. Switching speed of the proposed power module with temperatures.

where Q, is the minority carrier charge and t is the minority
carrier lifetime. When t = 0
Ir

0,0 =7-=

where I is the forward current and A is the junction area.
Since the minority carrier lifetime increases with the increase
in the temperature, the minority carrier charge increases when
the temperature increases. This may lead to an increase in the
reverse recovery current and current overshooting.

(10)

IV. CONCLUSION

This article proposes a high-temperature SiC-based half-
bridge power module with built-in gate drivers, which makes
SiC power modules compact and increases the density of
power electronic systems. The integrated gate drivers were
fabricated on LTCC substrates to achieve better thermal reli-
ability, such as CTE fit, operating temperature, and thermal
conductivity, than PCB substrates. High-temperature optocou-
plers, which were developed in previous work, were utilized
as the galvanic isolators to compact the LTCC-based gate
drivers. The design considerations and fabrication process of
the LTCC-based gate driver are discussed. LTSPICE simula-
tions were carried out to optimize the circuit performance.
In addition, DPTs were carried out on the LTCC-based
gate driver with a commercial power module to characterize
the driving capability. The output waveforms and isolation
voltage of the gate driver with varying temperatures were
also characterized. After the fabrication and characterization
of the LTCC-based gate driver, the design, simulation, and
fabrication of the high-temperature SiC power module with
integrated gate drivers are discussed. The extracted gate loop
and power loop inductance values are ~9.5 and ~7.5 nH
according to ANSYS Q3D simulations, and the maximum
operating current with varying temperatures was simulated by
ANSYS Workbench. DPT was carried out to characterize the
power module. The turn-on and turn-off times of the power
module showed little degradation from 25 °C to 200 °C, and
little voltage overshoot was observed. The turn-on current
overshoot increases from 26 to 34 A with the temperature
varying from 25 °C to 200 °C. This is mainly due to the
charging and reverse recovery current of the power MOSFETSs’
body diodes.
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In general, although the proposed high-temperature power
module with integrated gate drivers shows a relatively low
switching speed, it achieves low loop inductance, a high
operating temperature, and a compact size. In future work,

the

layout, metal routing, and the utilized components of

the LTCC-based gate driver will be improved to enhance the
switching speed of the power module. Since the gate driver IC

(i.e.

, IXD614) was not designed for high-temperature applica-

tions, a high-temperature gate driver IC will be designed and
integrated into the power module in future work to improve
thermal reliability. Besides, the terminal attachment process
will be improved by replacing the solder (i.e., SAC305) to
further increase the operating temperature.
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