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Abstract. In this paper, we study some basic analytic properties of a sequence of func-

tions {S
µ,σ
n } that is directly derived in an adaptive algorithm originating from the clas-

sical score-based secretary problem. More specifically, we show that: 1. the uniqueness

of maximum points of the function sequence {S
µ,σ
n }; 2. the maximum point sequence

of {S
µ,σ
n } monotone increases to infinity as n tends to infinity. All of the proofs are

elementary but nontrivial.
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1 Introduction

In the classical score-based secretary problem where a decision maker is tasked with
interviewing a series of candidates for a position, the goal for the decision maker is to
identify and select the most qualified candidate among all the applicants. The selection
process is in a sequential manner, where each candidate is interviewed one after the other.
During these interviews, the decision maker assesses each candidate and assigns them
a numerical score. This score represents the candidate’s “value” or suitability for the
position, based on factors such as qualifications, experience, and overall impression.

Upon completing an interview, the decision maker faces a critical decision for each
candidate: to either accept or reject them. This decision is pivotal because of two key
constraints: (1) Irreversibility of rejection: once a candidate is rejected, the decision is
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final. The candidate cannot be recalled or reconsidered at a later stage, regardless of
the quality of subsequent candidates. This feature adds a significant level of risk and
complexity to the decision-making process. (2) Termination upon acceptance: conversely,
if the decision maker chooses to accept a candidate, the interview process is immediately
terminated. The selected candidate is deemed the best choice, and no further candidates
are considered. These rules create a challenging dilemma for the decision maker. They
must strategically balance the risk of rejecting potentially suitable candidates early in
the process against the possibility of encountering even better candidates later on. The
decision maker must thus employ a judicious combination of evaluation, forecasting, and
risk assessment skills to optimize the chances of selecting the best candidate out of the
entire pool.

The classical score-based secretary problem is a well-explored area in decision theory
with numerous significant results. In [1], the authors discuss many cases and variations.
Notably, they highlight that as the number of candidates n approach infinity, the opti-
mal strategy is to skip the first n

e candidates. This approach yields a probability of 1
e

for selecting the top candidate, focusing solely on the candidates’ ranks to maximize the
probability of hiring the best one. In [2], the authors provide a comprehensive overview
of the secretary problem’s origins, tracing its conceptual evolution. Meanwhile, Freij and
Wastlund [3] make a significant advancement by demonstrating the existence of a univer-
sal algorithm applicable to any poset, guaranteeing success with a probability of at least
1
e . Preater introduces in [4] an intriguing generalization of the problem, proposing an
algorithm effective across all poset sets of a given size with a positive success probability.
This expansion of the problem scope adds depth to its applicability in decision-making
scenarios. In an interesting twist, Bearden [5] examines the scenario where the candidate
data set follows a uniform distribution. In such cases, if the decision maker prioritizes
the expected value of the selected candidate, an optimal policy emerges. This strategy in-
volves skipping the first

√
n−1 candidates, then selecting the next candidate who ranks

highest. Most recently, Sarkar [13] considers a variant of the secretary problem, in which
the employer also learns the scores of the already interviewed candidates, when making
the decision after the n-th interview is over.

The field has seen other notable contributions as well. Kozik [9] introduces a dynamic
threshold strategy, establishing its success probability at a minimum of n/4. Kleinberg [8]
examines a unique variation where the algorithm permits selecting multiple candidates,
aiming to maximize expected profit. Additionally, Korula and Pál [10] explore the prob-
lem in the context of selecting elements from specially designed graphs or hypergraphs,
expanding the problem’s application to more complex structures.

As a well-known best-choice problem in decision theory, the secretary problem has
seen a wide range of applications to real-world situations. These applications extend
to various domains, such as the house-selling problem [6, 11], dynamic and stochastic
knapsack problems [7], online auction strategies [8], and online matching problems, par-
ticularly in the context of internet advertising reservation systems [10].

A recent study by Zhou et al. (2021) [12] explores a novel variation of the secretary
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problem, where the aim is to maximize the expected value of the chosen candidate. This
variant introduces a significant change in the candidate evaluation process. Unlike the
traditional approach, which relies on ranking candidates, this method involves assigning
a numerical score during the candidate’s evaluation or ”interview”. This scoring system
provides a more quantitative assessment of each candidate’s suitability. One of the key
contributions of Zhou et al.’s work is the development of an “adaptive algorithm”. To the
best of our knowledge, this is the first algorithm that allows a decision maker to set an
expected score for the selected candidate based on the total number of candidates. This
feature of the algorithm makes it uniquely adaptable and responsive to varying candidate
pools.

The practical implications of the adaptive algorithm are significant, particularly for
organizations. With this tool, companies can better strategize their recruitment processes,
especially when they have a reasonable estimate of the number of applicants they expect
for a job position over time. The algorithm’s ability to adjust expectations and strategies
based on applicant volume offers a more dynamic and effective approach to candidate
selection, aligning with the evolving needs of modern hiring practices.

1.1 Statement of score-based secretary problem

We assume a decision maker interviews n candidates whose values are independent
and identically distributed (I.I.D.) random variables X1,X2,··· ,Xn, obeying normal distri-
bution with known mean µ and variance σ. The decision maker has two choices for each
candidate: accept or reject. Once the decision maker accepts one candidate, the interview
terminates. The score-based secretary problem aims to help the decision maker obtain
the expected value of the candidate selected as high as possible. Assume x is a bench-
mark score, then we denote by S

µ,σ
n (x) the expected score given the decision-making

rule. It is important to note that our score-based secretary problem differs from the origi-
nal secretary problem as presented in [1]. In the original problem, there is no predefined
benchmark score x. Instead, their theory treats the expected score from interviewing n−1
candidates as the benchmark score for deciding the expected score from interviewing n
candidates. As a result, [1] established a recursive relation between the expected scores
for interviewing n−1 and n candidates. In contrast, our model presents a simpler form
for the expected score, as detailed in Lemma 1.1 below.

Let p(s) be the normal density function with mean µ≥0 and variance σ≥0:

p(s)=
1√
2πσ

e
(s−µ)2

2σ2 . (1.1)

We further denote

F(x)=
∫ x

−∞
p(s)ds, E(x)=

∫ x

−∞
sp(s)ds. (1.2)

We stress that the assumption of each candidate’s score being satisfied by normal distri-
bution is reasonable, then the expected score S

µ,σ
n (x) is given in the following lemma.
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Lemma 1.1. Given the decision-making rule above for the n candidates, the expected score S
µ,σ
n (x)

is given as follows [12],

S
µ,σ
n (x)=

[
1−F(x)n−1

]µ−E(x)

1−F(x)
+F(x)n−1

µ. (1.3)

Proof. By applying the decision-making rule for n candidates, we consider two scenarios.
In the first scenario, the scores of the first n−1 candidates are all lower than x. Given that
the probability of a candidate’s score being less than the benchmark score x is F(x), and
assuming that all candidates are I.I.D., the probability that the scores of the first n−1
candidates are all less than x is F(x)n−1. In this scenario, the first n−1 candidates will
be rejected, and the n-th candidate will be selected. Consequently, the expected score
is the mean µ of the normal random variable Xn, conditioned on the scores of the first
n−1 candidates being less than x. In the second scenario, at least one of the first n−1
candidates has a score greater than x. The probability of this event is 1−F(x)n−1. The
expected score in this case should be the average value of a normal random variable Xi,
for some i= 1,··· ,n−1, conditioned on at least one of the first n−1 candidates having a
score greater than x. More specifically, the expected score in the second scenario is the
average score conditioned on the i-th candidate’s score being greater than x, which is
given as

∫ ∞

x sp(s)ds
∫ ∞

x p(s)ds
=

µ−E(x)

1−F(x)
.

These two expected scores for the two cases must be weighted by their probabilities
F(x)n−1 and 1−F(x)n−1, respectively, to give the expected score S

µ,σ
n (x) [12]:

S
µ,σ
n (x)=

[
1−F(x)n−1

]µ−E(x)

1−F(x)
+F(x)n−1

µ, (1.4)

which leads to the desired result.

Therefore, the object of finding an optimal strategy for the score-based secretary prob-
lem is to maximize the expected score:

max
x

S
µ,σ
n (x). (1.5)

In [12], the authors show that S
µ,σ
n has the following simple properties:

• S
µ,σ
n has an alternative form which is equivalent to (1.4):

S
µ,σ
n (x)=µ+σp(x)+

n−2

∑
j=0

F(x)j. (1.6)

• S
µ,σ
n is nonnegative and has asymptotic limits

lim
x→±∞

S
µ,σ
n (x)=µ. (1.7)



Nguyen G, Xu X and Zhao Y / J. Math. Study, 57 (2024), pp. 477-486 481

• There is a one-to-one correspondence between the maximizers of S
µ,σ
n and those of

S0,1
n :

(x
µ,σ
n )∗=µ+σ(x0,1

n )∗, (1.8)

where (x
µ,σ
n )∗ is a maximizer of S

µ,σ
n , and (x0,1

n )∗ is the maximizer of S0,1
n that corre-

sponds to (x
µ,σ
n )∗.

1.2 Main result

In [12], the authors propose an adaptive algorithm for finding the optimal stopping rule
to maximize the expected score of the chosen candidate. However, the implementation
of this algorithm depends on a critical assumption: for each n ∈ N, the function S

µ,σ
n

possesses a unique maximizer. While this assumption appears valid based on numerical
verification, it notably lacks a formal mathematical proof.

The goal of this paper is to validate the aforementioned assumption. Specifically, we
aim to provide a formal proof of the uniqueness of the minimizers for the function S

µ,σ
n for

each n∈N. Our approach to this proof is elementary, yet highly nontrival. We summarize
it in the following theorem:

Theorem 1.1. For x∈R, let

p(x)=
1√
2π

e−
x2

2 , f (x)=
∫ x

−∞
p(t)dt. (1.9)

Then for any n∈N, the function

Fn(x)= p(x)
[
1+ f (x)+ f 2(x)+···+ f n(x)

]
(1.10)

has a unique maximum point in R.

Remark 1.1. It is noted that in this theorem we simply consider the case where (µ,σ)=
(0,1). The extension to general case is trivial due to (1.8).

Remark 1.2. While the scores of candidates can be influenced by various factors such as
diverse skills, knowledge areas, and question types, etc, we assume that the interview
questions are designed and structured to differentiate among candidates of varying abil-
ity levels, leading to a spread of scores that can resemble a normal distribution. Therefore,
in this paper, we fix the assumption of normal distribution for each candidate’s score. On
the other hand, the expected score formulation (1.4) and existence and uniqueness of the
maximizer of the expected score still hold for some other distribution such as uniform
distribution. The proof of the main result for case of uniform distribution is rather trivial
since p( f ), f (x),Fn(x) al have simple expressions. It is the normal distribution case that
make the main result highly challenging.

In the rest of the paper, we will prove Theorem 1.1 in Section 2. Besides, as a byprod-
uct of Theorem 1.1, we show that the sequence of unique maximizers, denoted by {x∗n}n>0

in the rest of the paper for simplicity, monotone increases to ∞.
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2 Proof of the main result

We first introduce two technical lemmas, which are the essence of the proof of the
main result.

Lemma 2.1. For any x≥0 and n∈N, it holds

2
[

f (x)+ f 2(x)+···+ f n(x)
]
−n f n+1(x)<n. (2.1)

Proof. Let us define

Hn(x)
def
=2

[
f (x)+ f 2(x)+···+ f n(x)

]
−n f n+1(x)−n, x≥0.

Then the following facts hold

Hn(0)=−1

4
<0, for n=1,

Hn(0)=2
(1

2
+

1

22
+···+ 1

2n

)

− n

2n+1
−n<2− n

2n+1
−n<0, for n≥2,

lim
x→+∞

Hn(x)=2n−n−n=0.

Meanwhile, note that for any x>0,

H′
n(x)=2p(x)

[
1+2 f (x)+···+n f n−1(x)

]
−n(n+1)p(x) f n(x)

= p(x)
[
2(1+2 f +···+n f n−1)−n(n+1) f n

]

> p(x)
[
2( f n+2 f n+···+n f n)−n(n+1) f n

]

= p(x) f n(x)
[
2(1+2+···+n)−n(n+1)

]

=0,

which implies that Hn(x) is strictly monotone increasing on (0,+∞). Therefore, inequal-
ity (2.1) is verified.

Lemma 2.2. For any n∈N, there exists a unique yn >0, such that

p(yn)=
2yn f (yn)

n
. (2.2)

Further, it holds

p(x)>
2x f (x)

n
, ∀0< x<yn, (2.3)

p(x)<
2x f (x)

n
, ∀x>yn. (2.4)
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Proof. Let

Kn(x)
def
= p(x)− 2x f (x)

n
, for x≥0.

Then it is easy to see that

Kn(0)=
1√
2π

>0, lim
x→+∞

Kn(x)=−∞,

K′
n(x)=−xp(x)− 2 f (x)

n
− 2xp(x)

n
<0, ∀x>0.

Hence Kn(x) is strictly monotone decreasing on (0,+∞). In all, for each n∈N, there exists
a unique yn >0 satisfying (2.2), (2.3), (2.4).

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Firstly, since p(x) and 1+ f (x)+···+ f n(x) are positive and strictly
monotone increasing on (−∞,0), there will be no critical point on this interval. Next we
calculate

F′
n(x)=−xp(x)

[
1+ f (x)+··· f n(x)

]
+p2(x)

[
1+2 f (x)+···n f n−1(x)

]

=−xp(x)
[1− f n+1(x)

1− f (x)

]

+p2(x)
[
(1+ f +···+ f n−1)+···+( f n−2+ f n−1)+ f n−1

]

=−xp(x)
[1− f n+1(x)

1− f (x)

]

+
p2(x)

1− f

[
(1− f n)+ f (1− f n−1)+···+ f n−1(1− f )

]

=−xp(x)
[1− f n+1(x)

1− f (x)

]

+
p2(x)

1− f

(
1+ f +···+ f n−1−n f n

)

=−xp(x)
[1− f n+1(x)

1− f (x)

]

+
p2(x)

(1− f )2

[
1− f n−n(1− f ) f n

]

=
p(x)

(1− f )2

{

−x(1− f )(1− f n+1)+p(x)
[
1− f n−n(1− f ) f n

]}

.

Our goal is to show that F′
n(x) has a unique zero over (0,+∞) such that Fn(x) has a unique

maximum point over (0,∞). To this end, we define

gn(x)
def
=−x

[
1− f (x)

][
1− f n+1(x)

]
+p(x)

{

1− f n(x)−n
[
1− f (x)

]
f n(x)

}

, x≥0.

Then,

gn(0)=
1√
2π

(

1− 2+n

2n+1

)

>0.
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Meanwhile, given yn defined in Lemma 2.2 and ∀x≥yn, we have

gn(x)=(1− f )
[

−x
(
1− f n+1

)
+p(x)

(
1+ f +···+ f n−1−n f n

︸ ︷︷ ︸

>0

)]

≤ (1− f )
[

−x
(
1− f n+1

)
+

2x f

n

(
1+ f +···+ f n−1−n f n

)]

by inequality (2.4)

=(1− f )x
[

−1+
2

n

(
f + f 2+···+ f n

)
− f n+1

]

<0, by inequality (2.1).

It remains to prove gn(x) is strictly monotone decreasing on (0,yn). To this end we check

g′n(x)=−(1− f )(1− f n+1)+xp(x)(1− f n+1)+(n+1)xp(x) f n(1− f )

−xp(x)
[
1− f n−n(1− f ) f n

]
−p2(x)

[
n(n+1) f n−1−n(n+1) f n

]

=(1− f )
{

−(1− f n+1)+xp(x)(1+ f +···+ f n)+(n+1)xp(x) f n

−xp(x)
[
(1+ f +···+ f n−1)−n f n

]
−n(n+1)p2(x) f n−1

}

=(1− f )
[
−(1− f n+1)
︸ ︷︷ ︸

<0

+2(n+1)xp(x) f n−n(n+1)p2(x) f n−1
]

< (1− f )n(n+1)p(x) f n−1
[2x f (x)

n
−p(x)

]

<0, ∀x∈ (0,yn),

where we use inequality (2.3) to obtain the last inequality. Therefore, for any n∈N, gn(x)
has a unique zero, denoted by x∗n ∈ (0,+∞), so does F′

n(x). Note that

lim
x→−∞

Fn(x)= lim
x→+∞

Fn(x)=0,

hence x∗n is the unique maximum point of Fn(x). The proof is complete.

For the maximizing sequence {x∗n} established in the proof of Theorem 1.1 above, we
can further reveal that it is a sequence monotone increasing to ∞, which is summarized
in the following theorem.

Theorem 2.1. For each n∈N, we denote x∗n the unique maximum point of the function Fn(x)
defined in (1.10). Then

x∗n < x∗n+1, lim
n→∞

x∗n =+∞. (2.5)

Proof. To begin with, we show that the sequence {x∗n} is strictly monotone increasing.
Since gn(x∗n) = 0, 0< x∗n < yn for each n ∈N, together with Lemma 2.2, one can further
derive

gn+1(x∗n)=
[
1− f (x∗n)

]{

gn(x∗n)−x∗n f n+1(x∗n)
[
1− f (x∗n)

]
+(n+1)p(x∗n) f n(x∗n)

[
1− f (x∗n)

]}

= f n(x∗n)
[
1− f (x∗n)

]2[
(n+1)p(x∗n)−x∗n f (x∗n)

]
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≥ f n(x∗n)
[
1− f (x∗n)

]2
[2(n+1)

n
x∗n f (x∗n)−x∗n f (x∗n)

]

>0.

Meanwhile, it follows from the proof of Theorem 1.1 that

{

gn+1(x)>0, ∀0< x< x∗n+1,

gn+1(x)<0, ∀x> x∗n+1.

Therefore, we conclude x∗n < x∗n+1 for each n∈N.
Now we prove the unboundedness of {x∗n}. Suppose the sequence {x∗n} is bounded

above, that is, ∃M>0 such that

x∗n ≤M, ∀n∈N.

Since x∗n is the maximum point for Fn(·), we have that

Fn(x)≤Fn(x∗n)= p(x∗n)
1− f n+1(x∗n)

1− f (x∗n)
<

p(0)

1− f (M)
=

1√
2π

[
1− f (M)

]
.
=L, ∀x∈R, ∀n∈N.

(2.6)

On the other hand, note that

lim
x→∞

lim
n→∞

Fn(x)= lim
x→∞

p(x)

1− f (x)
= lim

x→∞

−xp(x)

−p(x)
=+∞,

hence there exists x̃>0, such that

lim
n→∞

Fn(x̃)>2L,

which is in contradiction with (2.6). Therefore, {x∗n} is monotone increasing but un-
bounded. The proof is complete.

Remark 2.1. It remains to be a challenging problem to estimate the growth rate of {x∗n}
as n→∞.
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