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Abstract

In this paper we study a Maier-Saupe type bulk potential (Maier & Saupe, 1959) in the

Landau-de Gennes free energy in the Q-tensor theory modeling nematic liquid crystal config-

urations. This potential was originally introduced in Katriel et al. (1986), which is considered

as a natural enforcement of a physical constraint on the eigenvalues of symmetric, traceless

Q-tensors. More specifically, we present a rigorous derivation of the asymptotic expansion of

this singular potential near the nematic-isotropic transition point up to the 4-th order.

1 Introduction

Liquid crystals are a typical type of soft matters that are intermediate between crystalline solids and

isotropic fluids. Their anisotropic properties lead to various mechanical, optical and rheological

properties that have induced a wide range of commercial applications (De Gennes & Prost, 1993).

The simplest phase of liquid crystals is called the nematic phase, where there is a long-range

orientational order that makes the molecules almost align parallel to each other, but no correlation
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to the molecular center of mass positions. Generally speaking, there are two types of models to

describe the nematic liquid phase, i.e., the mean field model and the continuum model. In the mean

field theory, the local alignment of molecules is described by a probability distribution function on

the unit sphere (De Gennes & Prost, 1993; Maier & Saupe, 1959; Virga, 1994). Let n be a unit

vector in R3 that represents the orientation of a single liquid crystal molecule, and ρ(x;n) be the

density distribution function of molecular orientations at a point x ∈ Ω ⊂ R3. The de Gennes Q-

tensor, which is defined to be the deviation of associated second moment of ρ from its isotropic

value, reads

Q=
∫

S2

(

n ⊗n −
1

3
I3

)

ρ(n)dS. (1.1)

Since the de GennesQ-tensor vanishes in the isotropic phase, it is regarded as an order parame-

ter. Meanwhile, it is easy to check from (1.1) that any de Gennes Q-tensor is symmetric, traceless,

and all its eigenvalues satisfy the constraint −1/3 ≤ λi(Q) ≤ 2/3, 1 ≤ i≤ 3. Note that if the small-

est eigenvalue of the Q-tensor reaches −1/3, then it implies all molecules are pointing on a great

circle perpendicular to the associated eigenvector (Virga, 1994), which is physically unrealistic.

Therefore, the effective domain of the de Gennes Q-tensor is

−
1

3
< λi(Q)<

2

3
, 1 ≤ i≤ 3. (1.2)

Alternatively, in the continuum model a phenomenological Landau-de Gennes theory is pro-

posed (Ball, 2012; De Gennes & Prost, 1993; Mottram & Newton, 2014). In this theory the basic

element is a symmetric, traceless 3×3 matrix in the so calledQ-tensor space (Mottram & Newton,

2014)

Q
def
=

{

M ∈ R3×3

∣

∣

∣

∣

tr(M) = 0, MT =M
}

. (1.3)

without any eigenvalue constraints. This basic element is at times referred to as the mathematical

Q-tensor. In this framework the relevant free energy functional is derived as a nonlinear integral
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functional of the Q-tensor and its spatial derivatives (Ball, 2012):

E [Q] =
∫

Ω

F(Q(x))dx. (1.4)

The free energy density functional F in (1.4) is the sum of the elastic part Fel and the bulk part

Fbulk that depends only on Q. One typical form of Fel reads (Ball, 2012; Ball & Majumdar, 2010;

Longa et al., 1987)

Fel = L1|∇Q|2 +L2∂jQik∂kQij +L3∂jQij∂kQik +L4Qlk∂kQij∂lQij . (1.5)

Here, ∂kQij represents the k-th spatial derivative of the ij-th component of Q, L1, · · ·L4 are ma-

terial dependent constants, and Einstein summation convention over repeated indices is used. The

retention of the L4 cubic term is that it allows complete reduction to the classical Oseen-Frank

energy (Hardt et al., 1986) with four elastic terms. This cubic L4 term nevertheless makes the free

energy E [Q] unbounded from below (Ball & Majumdar, 2010).

To address this issue, a Maier-Saupe type singular bulk potential ψB originally introduced in

Katriel et al. (1986), was adopted in Ball and Majumdar (2010) to replace the regular potential

Fbulk. Specifically, the potential f is defined by

f(Q)
def
=























inf
ρ∈AQ

∫

S2
ρ(n) lnρ(n)dS, −

1

3
< λi(Q)<

2

3
, 1 ≤ i≤ 3

+∞, otherwise,

(1.6)

where the admissible set AQ is

AQ =
{

ρ ∈ P(S2)
∣

∣

∣

∣

ρ(n) = ρ(−n),
∫

S2

(

n ⊗n −
1

3
I3

)

ρ(n)dS =Q
}

. (1.7)

In other words, we minimize the Boltzmann entropy over all probability density functions ρ

3

ONeill et al.: Asymptotic expansion of a Maier-Saupe type potential in liquid crystals

Published by ODU Digital Commons, 2024



with a given normalized second moment Q. Correspondingly,

ψMS(Q) = f(Q)−
κ

2
|Q|2, κ > 0 (1.8)

is used to replace the bulk potential Fbulk. Note that the very last term is added to ensure the

existence of multiple local energy minimizers. In this way, ψMS imposes a natural enforcement of

a physical constraint on the eigenvalues of the mathematical Q-tensor, and henceforth the elastic

energy part Fel is bounded from below. We refer interested readers to Xu (2022) and Zarnescu

(2021) for a comprehensive list of the existing literature on the analytic study of this singular

potential.

On the other hand, the regular bulk part Fbulk in the free energy (1.4) is typically a truncated

expansion in the scalar invariants of the tensor Q (Paicu & Zarnescu, 2011, 2012)

Fbulk =
a

2
tr(Q2)−

b

3
tr(Q3)+

c

4
tr2(Q2), (1.9)

where in the simplest case a,b,c are assumed to be material-dependent constants. Therefore, it is

of natural interest to ask what values of a,b,c match with the asymptotic expansion of the singular

potential ψB(Q) (Ball, 2012) up to the 4-th order, which is the aim of this paper.

The main result of the paper is stated as follows.

Theorem 1.1. As Q→ 0, the Maier-Saupe type bulk potential ψMS has the expansion

ψMS(Q) = − ln(4π)+
(

15

4
−
κ

2

)

tr(Q2)−
75

14
tr(Q3)+

3825

392
tr(Q4)+ · · · (1.10)

The rest of the paper is organized as follows. In Section 2, we provide some prelimaries and

the main idea on how to prove the main result Theorem 1.1. In Section 3, we perform all detailed

derivations to complete its proof.
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2 Preliminaries and strategy of the proof

As proved in Feireisl et al. (2014), f is smooth in the domain of the Q-tensor space where Q

satisfies (1.2). Since f is rotation invariant, here and after, we always assume that any considered

physical Q-tensor is diagonal:

Q=

















λ1 0 0

0 λ2 0

0 0 λ3

















, −
1

3
< λ1 ≤ λ2 ≤ λ3 <

2

3
, λ1 +λ2 +λ3 = 0. (2.1)

Correspondingly the optimal density function ρ∗ ∈ AQ that satisfies f(Q) =
∫

S2 ρ∗ lnρ∗ dS is

given by (Schimming et al., 2021)

ρ∗(x,y,z) =
exp(µ1x

2 +µ2y
2 +µ3z

2)

Z(µ1,µ2,µ3)
, (x,y,z) ∈ S2, µ1 +µ2 +µ3 = 0. (2.2)

Here in (2.7), Z(µ1,µ2,µ3) is given by

Z(µ1,µ2,µ3) =
∫

S2
exp(µ1x

2 +µ2y
2 +µ3z

2)dS, (2.3)

which satisfies

1

Z

∂Z

∂µi
= λi +

1

3
, 1 ≤ i≤ 3. (2.4)

The first key ingredient in the proof of Theorem 1.1 is as follows. As the Q-tensor gets suffi-

ciently close to 0, it can be represented by

Qε,η =

















ε 0 0

0 η 0

0 0 −(ε+η)

















, |ε|, |η| ≪ 1. (2.5)

Thus the asymptotic expansion of f near Q = 0 is reformulated as the Taylor’s expansion of the
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multi-variable smooth function f(Qε,η) that depends on ε,η. We shall compute the Taylor’s ex-

pansion of f(Qε,η) at ε= η = 0 up to the 4-th order.

Meanwhile, we denote ρ∗
ε,η ∈ AQε,η the optimal density function that satisfies

f(Qε,η) =
∫

S2
ρ∗

ε,η lnρ∗
ε,ηdS, (2.6)

which is given by

ρ∗
ε,η(x,y,z) =

exp(µ1ε,ηx
2 +µ2ε,ηy

2 +µ3ε,ηz
2)

Z(µ1ε,η,µ2ε,η,µ3ε,η)
, (x,y,z) ∈ S2, (2.7)

µ1ε,η +µ2ε,η +µ3ε,η = 0. (2.8)

Here Z is given by

Z(µ1ε,η,µ2ε,η,µ3ε,η) =
∫

S2
exp(µ1ε,ηx

2 +µ2ε,ηy
2 +µ3ε,ηz

2)dS, (2.9)

which satisfies

1

Z

∂Z

∂µ1

=
∫

S2
x2ρ∗

ε,η(x,y,z)dS = ε+
1

3
, (2.10)

1

Z

∂Z

∂µ2

=
∫

S2
y2ρ∗

ε,η(x,y,z)dS = η+
1

3
, (2.11)

1

Z

∂Z

∂µ3

=
∫

S2
z2ρ∗

ε,η(x,y,z)dS = −(ε+η)+
1

3
. (2.12)

The second key ingredient in the proof of Theorem 1.1 is the following reformulation of f . By

virtue of (2.6)-(2.11), we see that

f(Qε,η) = µ1ε,η(2ε+η)+µ2ε,η(ε+2η)− lnZ(µ1ε,η,µ2ε,η,µ3ε,η). (2.13)

Hence computation of derivatives of the function f depends on the computation of derivatives of

the Lagrange multiplier functions µ1ε,η,µ2ε,η, as well as the renormalization function Z. Here and
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after, unless pointing out explicitly, we abbreviate µ1ε,η,µ2ε,η by µ1,µ2, respectively.

The third key ingredient in the proof of Theorem 1.1 relies on the following derivations. We

infer from (2.7)-(2.11) that

∂ lnZ

∂ε
=

1

Z

∂Z

∂ε
=
∂µ1

∂ε

∫

S2
ρ∗

ε,η(x2 − z2)dS+
∂µ2

∂ε

∫

S2
ρ∗

ε,η(y2 − z2)dS

=
∂µ1

∂ε
(2ε+η)+

∂µ2

∂ε
(ε+2η), (2.14)

∂ lnZ

∂η
=

1

Z

∂Z

∂η
=
∂µ1

∂η

∫

S2
ρ∗

ε,η(x2 − z2)dS+
∂µ2

∂η

∫

S2
ρ∗

ε,η(y2 − z2)dS

=
∂µ1

∂η
(2ε+η)+

∂µ2

∂η
(ε+2η), (2.15)

which together with (2.13) implies

∂f

∂ε
= 2µ1 +µ2, (2.16)

∂f

∂η
= µ1 +2µ2. (2.17)

Therefore, it suffices to compute the derivatives of the Lagrange multiplier functions µ1,µ2 up

to order 3.

3 Proof of the main result

In the next four subsections, we compute the 1-st to the 4-th order derivatives of f one by one. It

is relatively straightforward to achieve lower order derivatives of f . However, to obtain the higher

order derivatives of f , we need to make a full exploitation of equations (2.7)-(2.11).

3.1 Step 1: zero and first order derivatives of f

To begin with, at Q = 0 where ε = η = 0, it follows from Lu et al. (2022) that µ1 = µ2 = µ3 = 0.

Hence ρ∗
0,0 = 1/4π and

f(Q0,0) =
∫

S2
ρ∗

0,0 lnρ∗
0,0 dS = − ln(4π). (3.1)
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And by (2.16) and (2.17) we see

∂f

∂ε

∣

∣

∣

∣

ε=0

=
∂f

∂η

∣

∣

∣

∣

η=0

= 0. (3.2)

3.2 Step 2: second order derivatives of f

Let us differentiate both sides of (2.10) and (2.11) w.r.t. ε. By (2.7), (2.14), and (2.15) we get

[

−
(

ε+
1

3

)

(2ε+η)+
∫

S2
x2(x2 − z2)ρ∗

ε,η dS
]

∂µ1

∂ε

+
[

−
(

ε+
1

3

)

(ε+2η)+
∫

S2
x2(y2 − z2)ρ∗

ε,η dS
]

∂µ2

∂ε
= 1, (3.3)

[

−
(

η+
1

3

)

(2ε+η)+
∫

S2
y2(x2 − z2)ρ∗

ε,η dS
]

∂µ1

∂ε

+
[

−
(

η+
1

3

)

(ε+2η)+
∫

S2
y2(y2 − z2)ρ∗

ε,η dS
]

∂µ2

∂ε
= 0.. (3.4)

Hence after we introduce the following functions (that depend on ε,η)

G1 := −
(

ε+
1

3

)

(2ε+η)+
∫

S2
x2(x2 − z2)ρ∗

ε,η dS, (3.5)

G2 := −
(

η+
1

3

)

(ε+2η)+
∫

S2
y2(y2 − z2)ρ∗

ε,η dS, (3.6)

G3 := −
(

η+
1

3

)

(2ε+η)+
∫

S2
y2(x2 − z2)ρ∗

ε,η dS, (3.7)

G4 := −
(

ε+
1

3

)

(ε+2η)+
∫

S2
x2(y2 − z2)ρ∗

ε,η dS, (3.8)

it yields from (3.3) and (3.4) that

∂µ1

∂ε
=

G2

G1G2 −G3G4

, (3.9)

∂µ2

∂ε
=

−G3

G1G2 −G3G4

. (3.10)
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Analogously, after differentiating equations (2.10) and (2.11) w.r.t. η, we obtain that

∂µ1

∂η
=

−G4

G1G2 −G3G4

, (3.11)

∂µ2

∂η
=

G1

G1G2 −G3G4

. (3.12)

Evaluating at ε= η = 0, we have ρ∗ = 1/4π and henceforth

G1

∣

∣

∣

ε=η=0
=G2

∣

∣

∣

ε=η=0
=

2

15
, G3

∣

∣

∣

ε=η=0
=G4

∣

∣

∣

ε=η=0
= 0, (3.13)

∂µ1

∂ε

∣

∣

∣

∣

ε=η=0

=
∂µ2

∂η

∣

∣

∣

∣

ε=η=0

=
15

2
,

∂µ1

∂η

∣

∣

∣

∣

ε=η=0

=
∂µ2

∂ε

∣

∣

∣

∣

ε=η=0

= 0. (3.14)

Thus we conclude from (2.16)-(2.17) that

∂2f

∂ε2

∣

∣

∣

∣

ε=η=0

=
∂2f

∂η2

∣

∣

∣

∣

ε=η=0

= 15,
∂2f

∂ε∂η

∣

∣

∣

∣

ε=η=0

=
15

2
. (3.15)

In all, we collect all 2-nd order terms in the Taylor expansion and obtain

1

2!

(

∂2f

∂ε2

∣

∣

∣

∣

ε=η=0

ε2 +2
∂2f

∂ε∂η

∣

∣

∣

∣

ε=η=0

εη+
∂2f

∂η2

∣

∣

∣

∣

ε=η=0

η2

)

=
15

2
(ε2 +η2 + εη) =

15

4
|Qε,η|2. (3.16)

3.3 Step 3: third order derivatives of f

By (2.7)-(2.8), ρ∗
ε,η can be reformulated as

ρ∗
ε,η =

exp
{

µ1(x2 − z2)+µ2(y2 − z2)
}

Z
, (3.17)

which together with (2.14) gives

∂ρ∗
ε,η

∂ε
=

[

− (2ε+η)
∂µ1

∂ε
− (ε+2η)

∂µ2

∂ε
+(x2 − z2)

∂µ1

∂ε
+(y2 − z2)

∂µ2

∂ε

]

ρ∗
ε,η. (3.18)
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Thus we obtain from (3.5)-(3.8) and (2.14) that

∂G1

∂ε
=
∂µ1

∂ε

∫

S2
x2(x2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂ε

∫

S2
x2(x2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS−4ε−η−
2

3
, (3.19)

∂G2

∂ε
=
∂µ1

∂ε

∫

S2
y2(y2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂ε

∫

S2
y2(y2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS−η−
1

3
, (3.20)

∂G3

∂ε
=
∂µ1

∂ε

∫

S2
y2(x2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂ε

∫

S2
y2(x2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS−2η−
2

3
, (3.21)

∂G4

∂ε
=
∂µ1

∂ε

∫

S2
x2(y2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂ε

∫

S2
x2(y2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS−2ε−2η−
1

3
. (3.22)

Evaluating at ε= η = 0, we see ρ∗
0,0 = 1/4π and by (3.14) we have

∂G1

∂ε

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
x2(x2 − z2)2 dS−

2

3
=

4

21
, (3.23)

∂G2

∂ε

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
y2(y2 − z2)(x2 − z2)dS−

1

3
= −

4

21
, (3.24)

∂G3

∂ε

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
y2(x2 − z2)2 dS−

2

3
= −

8

21
, (3.25)

∂G4

∂ε

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
x2(x2 − z2)(y2 − z2)dS−

1

3
= −

4

21
. (3.26)

As a consequence, together with (3.9), (3.10) and (3.13) we conclude that

∂2µ1

∂ε2

∣

∣

∣

∣

∣

ε=η=0

=
−∂G1

∂ε

G2
1

∣

∣

∣

∣

∣

ε=η=0

= −
75

7
, (3.27)

∂2µ2

∂ε2

∣

∣

∣

∣

∣

ε=η=0

=
−∂G3

∂ε

G1G2

∣

∣

∣

∣

∣

ε=η=0

=
150

7
. (3.28)
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Thus we infer from (2.16) that

∂3f

∂ε3

∣

∣

∣

∣

∣

ε=η=0

= 2
∂2µ1

∂ε2

∣

∣

∣

∣

∣

ε=η=0

+
∂2µ2

∂ε2

∣

∣

∣

∣

∣

ε=η=0

= 0. (3.29)

At the same time, we infer from (2.15) that

∂ρ∗
ε,η

∂η
=

[

− (2ε+η)
∂µ1

∂η
− (ε+2η)

∂µ2

∂η
+(x2 − z2)

∂µ1

∂η
+(y2 − z2)

∂µ2

∂η

]

ρ∗
ε,η. (3.30)

Together with (3.5)-(3.8), we obtain

∂G1

∂η
=
∂µ1

∂η

∫

S2
x2(x2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂η

∫

S2
x2(x2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS− ε−
1

3
, (3.31)

∂G2

∂η
=
∂µ1

∂η

∫

S2
y2(y2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂η

∫

S2
y2(y2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS− ε−4η−
2

3
, (3.32)

∂G3

∂η
=
∂µ1

∂η

∫

S2
y2(x2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂η

∫

S2
y2(x2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS−2ε−2η−
1

3
, (3.33)

∂G4

∂η
=
∂µ1

∂η

∫

S2
x2(y2 − z2)(x2 − z2 −2ε−η)ρ∗

ε,η dS

+
∂µ2

∂η

∫

S2
x2(y2 − z2)(y2 − z2 − ε−2η)ρ∗

ε,η dS−2ε−
2

3
. (3.34)

Evaluating at ε= η = 0, then ρ∗
0,0 = 1/4π and (3.14) implies

∂G1

∂η

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
x2(x2 − z2)(y2 − z2)dS−

1

3
= −

4

21
, (3.35)

∂G2

∂η

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
y2(y2 − z2)2 dS−

2

3
=

4

21
, (3.36)

∂G3

∂η

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
y2(x2 − z2)(y2 − z2)dS−

1

3
= −

4

21
, (3.37)
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∂G4

∂η

∣

∣

∣

∣

∣

ε=η=0

=
15

8π

∫

S2
x2(y2 − z2)2 dS−

1

3
= −

8

21
. (3.38)

As a consequence, we get from (3.9)-(3.13) that

∂2µ1

∂η2

∣

∣

∣

∣

∣

ε=η=0

=
−∂G4

∂η

G1G2

∣

∣

∣

∣

∣

ε=η=0

=
150

7
, (3.39)

∂2µ2

∂η2

∣

∣

∣

∣

∣

ε=η=0

=
−∂G2

∂η

G2
2

∣

∣

∣

∣

∣

ε=η=0

= −
75

7
, (3.40)

∂2µ1

∂ε∂η

∣

∣

∣

∣

∣

ε=η=0

=
−∂G1

∂η

G2
1

∣

∣

∣

∣

∣

ε=η=0

=
75

7
, (3.41)

∂2µ2

∂ε∂η

∣

∣

∣

∣

∣

ε=η=0

=
−∂G3

∂η

G1G2

∣

∣

∣

∣

∣

ε=η=0

=
75

7
(3.42)

Therefore we infer from (2.16)-(2.17) that

∂3f

∂η3

∣

∣

∣

∣

∣

ε=η=0

=
∂2µ1

∂η2

∣

∣

∣

∣

∣

ε=η=0

+2
∂2µ2

∂η2

∣

∣

∣

∣

∣

ε=η=0

= 0, (3.43)

∂3f

∂ε∂η2

∣

∣

∣

∣

∣

ε=η=0

=
∂2µ1

∂ε∂η

∣

∣

∣

∣

∣

ε=η=0

+2
∂2µ2

∂ε∂η

∣

∣

∣

∣

∣

ε=η=0

=
225

7
, (3.44)

∂3f

∂ε2∂η

∣

∣

∣

∣

∣

ε=η=0

= 2
∂2µ1

∂ε∂η

∣

∣

∣

∣

∣

ε=η=0

+
∂2µ2

∂ε∂η

∣

∣

∣

∣

∣

ε=η=0

=
225

7
. (3.45)

To sum up, all the 3-rd order terms (3.29), (3.43)-(3.45) in the Taylor’s expansion together

contribute to

1

3!

(

∂3f

∂ε3

∣

∣

∣

∣

∣

ε=η=0

ε3 +3
∂3f

∂ε∂η2

∣

∣

∣

∣

∣

ε=η=0

εη2 +3
∂3f

∂ε2∂η

∣

∣

∣

∣

∣

ε=η=0

ε2η+
∂3f

∂η3

∣

∣

∣

∣

∣

ε=η=0

η3

)

=
75

14
(3ε2η+3εη2) =

75

14

[

− ε3 −η3 +(ε+η)3
]

=
75

14
tr

(

Q3
ε,η

)

. (3.46)

12

OUR Journal: ODU Undergraduate Research Journal, Vol. 11 [2024], Art. 2

https://digitalcommons.odu.edu/ourj/vol11/iss1/2

DOI: https://doi.org/10.25778/2e2t-ng92



3.4 Step 4: fourth order derivatives of f

By (2.16)-(2.17) and (3.9)-(3.12), it suffices to compute the second order derivatives of G1, · · · ,G4

w.r.t. ε,η. To begin with, it follows from (3.19) that

∂2G1

∂ε2
= −4−

[

2
∂µ1

∂ε
+
∂µ2

∂ε
+(2ε+η)

∂2µ1

∂ε2
+(ε+2η)

∂2µ2

∂ε2

]∫

S2
x2(x2 − z2)ρ∗

−
[

(2ε+η)
∂µ1

∂ε
+(ε+2η)

∂µ2

∂ε

]∫

S2
x2(x2 − z2)

∂ρ∗

∂ε
+
∂2µ1

∂ε2

∫

S2
x2(x2 − z2)2ρ∗

+
∂µ1

∂ε

∫

S2
x2(x2 − z2)2∂ρ

∗

∂ε
+
∂2µ2

∂ε2

∫

S2
x2(x2 − z2)(y2 − z2)ρ∗

+
∂µ2

∂ε

∫

S2
x2(x2 − z2)(y2 − z2)

∂ρ∗

∂ε
. (3.47)

Since (3.14) gives ∂µ2

∂ε

∣

∣

∣

ε=η=0
= 0, together with (3.18) we see that the evaluation of (3.47) at

ε= η = 0 is reduced to

∂2G1

∂ε2

∣

∣

∣

∣

ε=η=0

=
{

−4−2
∂µ1

∂ε

∫

S2
x2(x2 − z2)ρ∗ +

∂2µ1

∂ε2

∫

S2
x2(x2 − z2)2ρ∗

+
(

∂µ1

∂ε

)2 ∫

S2
x2(x2 − z2)3ρ∗ +

∂2µ2

∂ε2

∫

S2
x2(x2 − z2)(y2 − z2)ρ∗

}∣

∣

∣

∣

ε=η=0

(3.48)

Evaluating (3.48) at ε= η = 0, together with (3.14), (3.27), (3.28) we have

∂2G1

∂ε2

∣

∣

∣

∣

ε=η=0

= −4−
15

4π

∫

S2
x2(x2 − z2)−

75

28π

∫

S2
x2(x2 − z2)2

+
225

16π

∫

S2
x2(x2 − z2)3 +

75

14π

∫

S2
x2(x2 − z2)(y2 − z2)

= −4−
15

4π

8π

15
−

75

28π

16π

35
+

225

16π

32π

105
+

75

14π

8π

105

= −
124

49
(3.49)

Similarly, we find

∂2G2

∂ε2

∣

∣

∣

∣

ε=η=0

=
12

49
,

∂2G3

∂ε2

∣

∣

∣

∣

ε=η=0

= 0,
∂2G4

∂ε2

∣

∣

∣

∣

ε=η=0

= −
68

49
. (3.50)
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Next, for the sake of convenience, we introduce the function (that depends on ε,η)

F =G1G2 −G3G4. (3.51)

Then it is ready to check from (3.13), (3.35)-(3.38), (3.49)-(3.50) that

F
∣

∣

∣

∣

ε=η=0

=
4

225
,

∂F

∂ε

∣

∣

∣

∣

ε=η=0

= 0,
∂2F

∂ε2

∣

∣

∣

∣

ε=η=0

= −
128

245
(3.52)

As consequence, together with (3.9)-(3.10), (3.13), and (3.49)-(3.50) we have

∂3µ1

∂ε3

∣

∣

∣

∣

ε=η=0

=
1

F 2

(

∂2G2

∂ε2
F −G2

∂2F

∂ε2

)∣

∣

∣

∣

ε=η=0

−
2

F 3

∂F

∂ε

(

∂G2

∂ε
F −G2

∂F

∂ε

)∣

∣

∣

∣

ε=η=0

=
11475

49
,

(3.53)

∂3µ2

∂ε3

∣

∣

∣

∣

ε=η=0

= −
1

F 2

(

∂2G3

∂ε2
F −G3

∂2F

∂ε2

)∣

∣

∣

∣

ε=η=0

+
2

F 3

∂F

∂ε

(

∂G3

∂ε
F −G3

∂F

∂ε

)∣

∣

∣

∣

ε=η=0

= 0.

(3.54)

Analogously, we get

∂3µ1

∂η3

∣

∣

∣

∣

ε=η=0

= 0,
∂3µ2

∂η3

∣

∣

∣

∣

ε=η=0

=
11475

49
, (3.55)

∂3µ1

∂η∂ε2

∣

∣

∣

∣

ε=η=0

=
∂3µ1

∂ε∂η2

∣

∣

∣

∣

ε=η=0

=
∂3µ2

∂η∂ε2

∣

∣

∣

∣

ε=η=0

=
∂3µ2

∂ε∂η2

∣

∣

∣

∣

ε=η=0

=
3825

49
. (3.56)

Thus in view of (2.16), (2.17), and (3.53)-(3.56), we obtain

∂4f

∂ε4

∣

∣

∣

∣

ε=η=0

=
∂4f

∂η4

∣

∣

∣

∣

ε=η=0

=
22950

49
, (3.57)

∂4f

∂ε∂η3

∣

∣

∣

∣

ε=η=0

=
∂4f

∂ε2∂η2

∣

∣

∣

∣

ε=η=0

=
∂4f

∂η∂ε3

∣

∣

∣

∣

ε=η=0

=
11475

49
. (3.58)

In all, we collect all 4-th order terms in (3.57)-(3.58) in the Taylor expansion and obtain

1

4!

(

∂4f

∂ε4

∣

∣

∣

∣

∣

ε=η=0

ε4 +4
∂4f

∂ε∂η3

∣

∣

∣

∣

∣

ε=η=0

εη3 +6
∂4f

∂ε2∂η2

∣

∣

∣

∣

∣

ε=η=0

ε2η2 +4
∂4f

∂η∂ε3

∣

∣

∣

∣

∣

ε=η=0

ηε3 +
∂4f

∂η4

∣

∣

∣

∣

∣

ε=η=0

η4

)
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=
3825

392
(2ε4 +4εη3 +6ε2η2 +4ε3η+2η4) =

3825

392

[

ε4 +η4 +(ε+η)4
]

=
3825

392
tr

(

Q4
ε,η

)

.

(3.59)

Therefore, the proof of Theorem 1.1 is complete after we put together (3.1), (3.2), (3.16),

(3.46), and (3.59).

Remark 3.1. A prediction regarding the asymptotic expansion of the very singular potential near

the nematic-transition point is given in Ball (2012), which reads

ψMS(Q) = − ln(4π)+
(

15

4
−
κ

2

)

tr(Q2)−
75

14
tr(Q3)+

225

112
tr(Q4)+ · · · (3.60)

which is consistent with Theorem 1.1 up to the 3rd order.

4 Conclusion

We focus on a singular bulk potential within the framework of Q-tensor theory for modeling ne-

matic liquid crystals. This theory provides a thermodynamically consistent framework that accu-

rately describes free energy and phase transitions, and it is essential for practical applications such

as optimizing liquid crystal displays and sensors. Additionally, it offers a rich mathematical struc-

ture for studying partial differential equations and multi-physics interactions. The main purpose

of this paper is to calculate the asymptotic expansion of this potential near the nematic-isotropic

transition point up to the 4-th order, which helps identify universal behavior in phase transition and

contributes to broader theoretical frameworks in statistical mechanics. The refined expansion also

opens avenues for extending this framework to other types of phase transitions in complex sys-

tems. Asymptotic expansions can provide manageable approximations that reveal leading-order

behaviors in specific limits. This study enhances our understanding of system behavior near criti-

cal points and guides the development of numerical methods, further optimizing the performance

of liquid crystal-based material with tailored transition behavior.
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