OUR Journal: ODU Undergraduate Research Journal

Volume 11 Article 2

October 2024

Asymptotic Expansion of a Maier-Saupe Type Potential Near the
Nematic-Isotropic Transition Point in Liquid Crystals

Ryan P. ONeill
Old Dominion University

Giangvuthanh Nguyen
Old Dominion University

Xiang Xu
OIld Dominion University

Follow this and additional works at: https://digitalcommons.odu.edu/our]

Cf Part of the Other Applied Mathematics Commons, and the Partial Differential Equations Commons

Recommended Citation

ONeill, Ryan P; Nguyen, Giangvuthanh; and Xu, Xiang (2024) "Asymptotic Expansion of a Maier-Saupe
Type Potential Near the Nematic-Isotropic Transition Point in Liquid Crystals,"” OUR Journal: ODU
Undergraduate Research Journal: Vol. 11, Article 2.

DOI: https://doi.org/10.25778/2e2t-ng92

Available at: https://digitalcommons.odu.edu/ourj/vol11/iss1/2

This Article is brought to you for free and open access by ODU Digital Commons. It has been accepted for inclusion
in OUR Journal: ODU Undergraduate Research Journal by an authorized editor of ODU Digital Commons. For more
information, please contact digitalcommons@odu.edu.



Asymptotic Expansion of a Maier-Saupe Type Potential Near the Nematic-
Isotropic Transition Point in Liquid Crystals

Cover Page Footnote

R. Oneill would like to thank G. Nguyen and X. Xu for their summer mentoring work. G. Nguyen’s work is
partially supported by the NSF grant DMS-2307525. X. Xu's work is partially supported by the NSF grant
DMS-2307525 and PURS fund from Old Dominion University.

This article is available in OUR Journal: ODU Undergraduate Research Journal: https://digitalcommons.odu.edu/ourj/
vol11/iss1/2



ONeill et al.: Asymptotic expansion of a Maier-Saupe type potential in liquid crystals

Asymptotic Expansion of a Maier-Saupe Type Potential
Near the Nematic-Isotropic Transition Point in Liquid

Crystals

Giangvuthanh Nguyen!!, Ryan Oneill*2, and Xiang Xu'!

1Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529.

2Department of Physics,0ld Dominion University, Norfolk, VA 23529.

Abstract

In this paper we study a Maier-Saupe type bulk potential (Maier & Saupe, 1959) in the
Landau-de Gennes free energy in the ()-tensor theory modeling nematic liquid crystal config-
urations. This potential was originally introduced in Katriel et al. (1986), which is considered
as a natural enforcement of a physical constraint on the eigenvalues of symmetric, traceless
Q-tensors. More specifically, we present a rigorous derivation of the asymptotic expansion of

this singular potential near the nematic-isotropic transition point up to the 4-th order.

1 Introduction

Liquid crystals are a typical type of soft matters that are intermediate between crystalline solids and
isotropic fluids. Their anisotropic properties lead to various mechanical, optical and rheological
properties that have induced a wide range of commercial applications (De Gennes & Prost, 1993).
The simplest phase of liquid crystals is called the nematic phase, where there is a long-range

orientational order that makes the molecules almost align parallel to each other, but no correlation
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to the molecular center of mass positions. Generally speaking, there are two types of models to
describe the nematic liquid phase, i.e., the mean field model and the continuum model. In the mean
field theory, the local alignment of molecules is described by a probability distribution function on
the unit sphere (De Gennes & Prost, 1993; Maier & Saupe, 1959; Virga, 1994). Let n be a unit
vector in R? that represents the orientation of a single liquid crystal molecule, and p(z;n) be the
density distribution function of molecular orientations at a point 2 € 2 C R3. The de Gennes Q-
tensor, which is defined to be the deviation of associated second moment of p from its isotropic

value, reads

Q:/S2 <n®n—;]13>p(n)d5. (1.1)

Since the de Gennes ()-tensor vanishes in the isotropic phase, it is regarded as an order parame-
ter. Meanwhile, it is easy to check from (1.1) that any de Gennes ()-tensor is symmetric, traceless,
and all its eigenvalues satisfy the constraint —1/3 < \;(Q) <2/3,1 <14 < 3. Note that if the small-
est eigenvalue of the ()-tensor reaches —1/3, then it implies all molecules are pointing on a great
circle perpendicular to the associated eigenvector (Virga, 1994), which is physically unrealistic.

Therefore, the effective domain of the de Gennes ()-tensor is

1 2
—§<)\i(Q)<§, 1< <3. (1.2)
Alternatively, in the continuum model a phenomenological Landau-de Gennes theory is pro-
posed (Ball, 2012; De Gennes & Prost, 1993; Mottram & Newton, 2014). In this theory the basic
element is a symmetric, traceless 3 X 3 matrix in the so called ()-tensor space (Mottram & Newton,

2014)
@d:ef{MeR?)X?"tr(M):O, MT:M}. (1.3)

without any eigenvalue constraints. This basic element is at times referred to as the mathematical

@-tensor. In this framework the relevant free energy functional is derived as a nonlinear integral

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
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functional of the ()-tensor and its spatial derivatives (Ball, 2012):

£Q] = [ F(Q))dx. (1.4)

The free energy density functional F in (1.4) is the sum of the elastic part F,; and the bulk part
Fuuik that depends only on (). One typical form of F,; reads (Ball, 2012; Ball & Majumdar, 2010;
Longa et al., 1987)

Fo = L1|VQ* + L20;Qix0kQij + L30;Q;j0rQir + LaQuOr Qi 01Qi;- (1.5)

Here, 0,,();; represents the k-th spatial derivative of the ij-th component of (), L1,--- L4 are ma-
terial dependent constants, and Einstein summation convention over repeated indices is used. The
retention of the L4 cubic term is that it allows complete reduction to the classical Oseen-Frank
energy (Hardt et al., 1986) with four elastic terms. This cubic L4 term nevertheless makes the free
energy £[Q] unbounded from below (Ball & Majumdar, 2010).

To address this issue, a Maier-Saupe type singular bulk potential ¢)p originally introduced in
Katriel et al. (1986), was adopted in Ball and Majumdar (2010) to replace the regular potential

Fuuik- Specifically, the potential f is defined by

o inf 2,o(n)lmp(n)dS, —;<)\i(Q)<§, 1<i<3
f(@Q =L reAels (1.6)

+00, otherwise,

where the admissible set A is

Ag = {p € 7’(82)’/)(11) = p(—n), /S2 <n®n— ;]I:),)p(n) ds = Q} . (1.7)

In other words, we minimize the Boltzmann entropy over all probability density functions p
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with a given normalized second moment (). Correspondingly,

bus(@ =@~ 3lQP  r>0 (18)

is used to replace the bulk potential Fp,;x. Note that the very last term is added to ensure the
existence of multiple local energy minimizers. In this way, ¢35 imposes a natural enforcement of
a physical constraint on the eigenvalues of the mathematical ()-tensor, and henceforth the elastic
energy part J,; is bounded from below. We refer interested readers to Xu (2022) and Zarnescu
(2021) for a comprehensive list of the existing literature on the analytic study of this singular
potential.

On the other hand, the regular bulk part 3, in the free energy (1.4) is typically a truncated

expansion in the scalar invariants of the tensor () (Paicu & Zarnescu, 2011, 2012)

Foutk = gm@?) _ gtr(Qg) + S22, (1.9)

where in the simplest case a, b, c are assumed to be material-dependent constants. Therefore, it is
of natural interest to ask what values of a,b, c match with the asymptotic expansion of the singular

potential ¥ 5(Q) (Ball, 2012) up to the 4-th order, which is the aim of this paper.

The main result of the paper is stated as follows.

Theorem 1.1. As () — 0, the Maier-Saupe type bulk potential 1) y;g has the expansion

15 &

Oars(@) = —Inam) + (=5 ) (@) - D (@) +

3825

4
20y (@) ++ (1.10)

The rest of the paper is organized as follows. In Section 2, we provide some prelimaries and
the main idea on how to prove the main result Theorem 1.1. In Section 3, we perform all detailed

derivations to complete its proof.

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
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2 Preliminaries and strategy of the proof

As proved in Feireisl et al. (2014), f is smooth in the domain of the ()-tensor space where ()
satisfies (1.2). Since f is rotation invariant, here and after, we always assume that any considered

physical ()-tensor is diagonal:

A 00
1 2
Q=0 X% 0| —g<hshsh<g hthtrs=0 2.1)
0 0 A3

Correspondingly the optimal density function p* € A that satisfies f(Q) = [s2 p*Inp*dS is

given by (Schimming et al., 2021)

) _exp(na® + poy? + paz?)
P ($7y,2) -
Z(Mhﬂ%ﬂ?w)

, (2,9,2)€S* pmitpetps=0. (2.2

Here in (2.7), Z(p1, p2, 43) is given by

Z(p, p2, p3) = /S2 oxp(pna® + poy® + pzz*) S, (2.3)
which satisfies
107 1
— =\ + = 1<4<3. 2.4

The first key ingredient in the proof of Theorem 1.1 is as follows. As the ()-tensor gets suffi-

ciently close to 0, it can be represented by

e 0 0
Qs,n = 0 n 0 ) |€|v |77| <L (2.5)
0 0 —(s+n)

Thus the asymptotic expansion of f near () = 0 is reformulated as the Taylor’s expansion of the

Published by ODU Digital Commons, 2024
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multi-variable smooth function f(Q.,,) that depends on €,7. We shall compute the Taylor’s ex-
pansion of f(Q:,,) at e =7 = 0 up to the 4-th order.

Meanwhile, we denote p; , € A_ , the optimal density function that satisfies

f(Qe) = /S2 peylnpz ,ds, (2.6)
which is given by
p* (.1' Y Z) _ eXp(Nle,nxQ +N25,7792 +N35,n22) ($ y Z) e S2 2.7
S Z(Nk,n;ﬂ?z—:,mﬂiﬁs,n) ’ e ’
Miem + H2emn + U3en = 0. (2.8)
Here Z is given by
Z(,uls,r]a H2e ), M3€,n) = /82 eXp(Mls,nx2 + ,UZE,T]ZUQ + M36,n22) ds, (2.9)
which satisfies
1 07 1
Zam_/ 701 (0, 2)dS = e+, (2.10)
107 ) 1
— 7 * ds = - 2.11
ZOHQ SQy pE,’I](xvy7Z) 7]"'37 ( )
Ty Jer® Peal®¥:2)dS = =(etn)+ 5. (2.12)

The second key ingredient in the proof of Theorem 1.1 is the following reformulation of f. By

virtue of (2.6)-(2.11), we see that

f(Qs,n) = le,n(25 + 77) + H2e (5 + 277) —In Z(Mle,ny H2em, MSe,n)- (2.13)

Hence computation of derivatives of the function f depends on the computation of derivatives of

the Lagrange multiplier functions (i1 ), f12¢ 5, as well as the renormalization function Z. Here and

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
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after, unless pointing out explicitly, we abbreviate ji1¢ p, j12c by g1, 12, respectively.
The third key ingredient in the proof of Theorem 1.1 relies on the following derivations. We

infer from (2.7)-(2.11) that

oz 197 0 . B .
— _ﬂé P (.Q?Q—Zz)ds—i‘ﬂ SQPE,n(y2_22)dS

de  Z e O Js2'EN Oe
0 0
:%(2€+n)+£(8+2n), (2.14)
olnzZ 10Z 0w « .9 9 O « (2 9
0 0
= G 2=+ TR (et 2m), (2.15)
which together with (2.13) implies
0
0
8{71 = 1+ 2us. 2.17)

Therefore, it suffices to compute the derivatives of the Lagrange multiplier functions 1, pi2 up

to order 3.

3 Proof of the main result

In the next four subsections, we compute the 1-st to the 4-th order derivatives of f one by one. It
is relatively straightforward to achieve lower order derivatives of f. However, to obtain the higher

order derivatives of f, we need to make a full exploitation of equations (2.7)-(2.11).

3.1 Step 1: zero and first order derivatives of f

To begin with, at () = 0 where € = 1 = 0, it follows from Lu et al. (2022) that p; = ps = us3 = 0.

Hence pfj o = 1/4m and

f(Qop) = /S2 P05, dS = —In(4r). 3.1)

Published by ODU Digital Commons, 2024
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And by (2.16) and (2.17) we see

of
Oe

=0. (3.2)

e=0 B 0777 n=0

3.2 Step 2: second order derivatives of f

Let us differentiate both sides of (2.10) and (2.11) w.r.t. €. By (2.7), (2.14), and (2.15) we get

1 2 a:ul
R A e b =
1 2 8,MZ
—{—{—(8—{—3)(6—}-277)4—/ x )pands} Oe =1, (3.3)
1 O
[ (n+3)(26+77 +/ (@ _Z)’Oends] Oe
1 2 8/1“2
+—ﬂ—(n4—3)&>+2n)+1é2y (v* )pgndSL95 =0.. (34
Hence after we introduce the following functions (that depend on ¢, 1)
Gri=— (4 D)@ 4+ [ 22~ )01, a8 (35)
1:= 3 T e Pen @O '
1 *
Gai=—(n+5) e +20)+ [ (7 =Dt S, (3:6)
1 *
Gg = _<T)+§>(25+77)+/52 y2(x2_22)p€ﬂ7d57 3.7
1 *
Gy := —<8+§)(5+2n)+/82 mz(yz—zz)ﬁs,nd& (3.8)
it yields from (3.3) and (3.4) that
O - Go
D~ G1Ga— GGy o
Ope  —Gs (3.10)

Oe N G1G2 — G3G4'

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
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Analogously, after differentiating equations (2.10) and (2.11) w.r.t. ), we obtain that

O —Gy

= 3.11
877 GlGQ — G3G4 ’ ( )
0 G
H2 ! . (3.12)
877 G1G2 — G3G4
Evaluating at ¢ = 1 = 0, we have p* = 1/47 and henceforth
G =G _ 2 G = =0 3.13
Yoo = O2) ey = 157 8lecymo = G4y =0 (3.13)
1
O _ O _ 15 9m _ O 0. (3.14)
Oe e=n=0 877 e=n=0 2 a77 e=n=0 Oe e=n=0
Thus we conclude from (2.16)-(2.17) that
0? 0? ok 15
on o oy 2 _ (3.15)
85 e=n=0 877 e=n=0 8587’] e=n=0 2

In all, we collect all 2-nd order terms in the Taylor expansion and obtain

0 f
N+ 55
e=n=0 g 8772

82
249 f

e=n=0 00

1(82f
21\ e

15 15
nﬁ=(8+ﬁ+mﬁzwwﬁ (3.16)
e=n=0 2 4

3.3 Step 3: third order derivatives of f

By (2.7)-(2.8), p;“m can be reformulated as

exp {Ml(»’UZ — 2 4 pa(y? — 22)}

Pen = 7 ; (3.17)
which together with (2.14) gives
opt o O Opy 2] «
% = | =@t —(e+2m) 5=+ (2% — 22)5 +(y* - zz)g P (3.18)

Published by ODU Digital Commons, 2024
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Y

aail - %f/sz 2?(2® = 2%)(2® — 2% — 2 —n)pL ,dS
—I—aau;/SQxQ(xQ—ZQ)(yQ—22—5—2n)p:’nd8—45—n—2
86?52 - 88/? /gz vy =) (2® = 2% = 2e —n)pZ, dS
%’f/82y2(y2—z2)(y2—22—6—277)0277(15—77—;
+ B2 [P ) 2 et A5 2
88%1 B %“; /s2 2 (y* = 2%)(a® = 2% = 2e — )l , dS

Opia

1
20,2 2y, 2 .2 x
+7/S2:c (y*—2°)(y"—=2 —5—277)p57,7d5—2€—2n—§.

Oe

§7

Evaluating at e =7 = 0, we see pjj g = 1/4m and by (3.14) we have

1 2 4
oG —5/ (2% —2%)%dS — = = —,
Oe e OTJS? 3 21
72 - - _ A4S - - = ——
O |, 8n I
1 2
9Gs :5/ yz(xz—z2)2d5——:—§,
O |._,—g B8m/s? 3 21
— = — - —29)dS — - =——.
O |._,_ 8n for =) s - g ==

As a consequence, together with (3.9),

32#1
0e?

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
DOI: https://doi.org/10.25778/2e2t-ng92
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oG
— o e
€5 — 7
oG
_ 5 _ 150
Gi1Ga|_yy 7

37

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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Thus we infer from (2.16) that

o3 0? 0?
€ e=n=0 € e=n=0 € e=n=0
At the same time, we infer from (2.15) that
Pz 0! Op2 o 901 | 9 9 02
o _ 2 - 2 R — — _— _— —_— * . 3.30
e b B e U R M CX
Together with (3.5)-(3.8), we obtain
0G1 _ dm 20,2 2y(,.2 .2 *
ol e _ 2 9.
n on /82:1: (x*—=2%) (2" — 2 e—n)pe,dS
8,u2 * 1
+(977/§2 w?(2® — 2% (y* — 2° —e—2n)p;,dS —e— 3 (3.31)
oGy  Om 2,9 9\ 2 2 .
877_(977/82y (y" = 2")(@” — 2" =2e —n)p,dS
Op2 20,2 2\ 2 2 * 2
+8n/§2y (1 = )P~ 22— = 2)plt S e —dn (3.32)
oGz dm 20,2  2v(.2 2 *
(977:877/82y (2% —=2%) (2" — 2" —2e —n)p; , dS
Ip2 2,2 202 .2 * 1
+877/82y(x -2 (y*—=2 —5—277)p87,7d5—25—2n—§, (3.33)
0Gy  Om 20,2 2\(,2 2 *
o4 L _ 2 9.
o~ o /SQ:L’ (y° —2°) (2" — 2" = 2e —n)p; , S
p2 20,2 2\, 2 2 2
+a77/82:c (y"—2")(y"— = —5—277)p:7,7d5—2€—§. (3.34)
Evaluating at e = = 0, then pj o = 1 /4m and (3.14) implies
o1 _ 2 _ —2AdS - =—— 3.35
N |oepo 87T/S2x (@ =)y - =)dS 3 21 (3.35)
il =— | y*(y*—29)dS—=-=—, (3.360)
on emyeo OT /82 3 21
o3 _ 2 _ —2dS - =—— 3.37
., o [y = - dS -2 = - (3.37)
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1 1
0G4 :5/ xz(yz—z2)2d5—f:—§. (3.38)
on e OTJS? 3 21
As a consequence, we get from (3.9)-(3.13) that
0G.
82[“ _ _87774 _ @ (3.39)
| _pmg G1Gal g 7
oG
% — _37772 __n (3.40)
— 5 = , )
8772 e=n=0 G2 e=n=0 7
oG
Gl - _?’71 _D (3.41)
Oedn e=n=0 G1 e=n=0 7
0G
Ul iy _D (3.42)
38877 e=n=0 G1G2 e=n=0 7
Therefore we infer from (2.16)-(2.17) that
Fr o _Pm Ppa|  _ (3.43)
0P |ecymo O amyeg O ’
& f _ P 02 1o 225 (3.44)
0con?|__,_o 0e0n Ocon| g T '
3 2 29
82f 28 H1 0 H2 _ 75 (3.45)
0e20n|._y—g  020n|._ Oedn| .,y 7

To sum up, all the 3-rd order terms (3.29), (3.43)-(3.45) in the Taylor’s expansion together

contribute to

1 /03f 3 3 f 9 3 f 3 f 3
= =] I =7 G| . )
75 B s g 5 75
14(35 n+3en?) = 14[—5 —n°+(e+n) } —tr( ) (3.46)

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
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3.4 Step 4: fourth order derivatives of f

By (2.16)-(2.17) and (3.9)-(3.12), it suffices to compute the second order derivatives of G1,---,G4

w.r.t. €,7). To begin with, it follows from (3.19) that

8;31 =—4- {2%’?+%‘f+(2e+n)a;§+(s+2n)8;£;] /SQ$2($2—Z2)p*
et 2w ron2) [ a0 T [ ey
+3all€1/g2x2(x2 _22)288P;+ 882;2 /Szx2(x2_22>(y2 22
+8a,u€2/82 x2(x2—z2)(y2—22)68'0;. (3.47)

Since (3.14) gives %‘aﬂro = 0, together with (3.18) we see that the evaluation of (3.47) at

e =1 = 01s reduced to

952G
Oe?

o1 2, 9 2y s, OPm 2,2 _2\2 &
g_n_o{_4_28€/s2x (% —2%)p" + 9e2 /SQZ‘ (x*=2%)*p

8/112 2/, 2 2\3 * 82ﬂ2/22 9 2 2*}
+<88) /SQZE (:l? _Z)p+a€2 SQZE ({E —Z)(y —z)p

e=n=0
(3.48)
Evaluating (3.48) at ¢ = 1 = 0, together with (3.14), (3.27), (3.28) we have
0*G 15 75
1 :_4_7/ x2(x2_22>_7/ (a2 — 2)?
022 le=p=0 4 Js? 28 Js?
225 2, 2 23, [D 2,2 2,2 .2
+ﬁ/82x (7 —27) er 2T (7 =27)(y" —2%)
B L581 75 167r+225 327T+ 75 8i
N 4w 15 287 35 16w 105 147 105
124
—_ = 3.49
19 (3.49)
Similarly, we find
0*G 12 0%G 0*G 68
2 = I =0, —* -, (3.50)
852 e=n=0 49 852 e=n=0 852 e=n=0 49

Published by ODU Digital Commons, 2024
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Next, for the sake of convenience, we introduce the function (that depends on €,7)

F=G1Gy— GGy, (3.51)

Then it is ready to check from (3.13), (3.35)-(3.38), (3.49)-(3.50) that

4  OF O0’F 128
e=n=0 225’ 85 e=n=0 ’ 852 e=n=0 245 ( )
As consequence, together with (3.9)-(3.10), (3.13), and (3.49)-(3.50) we have
ok 1 /0°G O*F 2 OF 10G OF 11475
4 G- A -0
663 5:77:0 F2 882 882 5:77:0 F3 88 85 85 5:77:0 49
(3.53)
03 12 1 /0%°Gs 0’F 2 OF [0G} or
L (PG, 2 (Sp_a,2E)
@53 5:7]:0 F2 ( 852 3 852 5:7]:0 F3 85 85 3 36 5:7]:0
(3.54)
Analogously, we get
ok ok 11475
rL —0, 2 - (3.55)
on e=n=0 on e=n=0 49
0! _ P _ P _ P 3825 (3.56)
87]882 5:77:0 N 858772 5:77:0 - 877862 g:n:() - 658772 5:17:0 o 49 ' '
Thus in view of (2.16), (2.17), and (3.53)-(3.56), we obtain
4 4
aif _ ﬂ _ 22950, (3.57)
854 5:77:0 8774 g:n:() 49
ot o4 ot 11475
f = / = / =—. (3.58)
00 le=p=0  0220n?le=p=0  ONO=3|c=y=0 49

In all, we collect all 4-th order terms in (3.57)-(3.58) in the Taylor expansion and obtain

5)4f
3

v+ —
" 87]4

ot f
Deon?

otf
0e20n?

otf
onoe?

1 /0%
1 (5 =y +4

e=n=0

e +6
e=n=0

54+4

774)
0

e=n=0 e=n=0 e=n=

https://digitalcommons.odu.edu/ourj/vol11/iss1/2
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3825 3825
2 4 4 2
392(€+67]+66 +5n+7}) 307

{5 +nt+ (e +n) } 3389225 r(Qﬁm).

(3.59)

Therefore, the proof of Theorem 1.1 is complete after we put together (3.1), (3.2), (3.16),
(3.46), and (3.59).

Remark 3.1. A prediction regarding the asymptotic expansion of the very singular potential near

the nematic-transition point is given in Ball (2012), which reads

15 «

Uars(Q) = — () + (5 = 5 ) (@) — 1 (@) +

225

4
112 tr(Q%) + (3.60)

which is consistent with Theorem 1.1 up to the 3rd order.

4 Conclusion

We focus on a singular bulk potential within the framework of Q-tensor theory for modeling ne-
matic liquid crystals. This theory provides a thermodynamically consistent framework that accu-
rately describes free energy and phase transitions, and it is essential for practical applications such
as optimizing liquid crystal displays and sensors. Additionally, it offers a rich mathematical struc-
ture for studying partial differential equations and multi-physics interactions. The main purpose
of this paper is to calculate the asymptotic expansion of this potential near the nematic-isotropic
transition point up to the 4-th order, which helps identify universal behavior in phase transition and
contributes to broader theoretical frameworks in statistical mechanics. The refined expansion also
opens avenues for extending this framework to other types of phase transitions in complex sys-
tems. Asymptotic expansions can provide manageable approximations that reveal leading-order
behaviors in specific limits. This study enhances our understanding of system behavior near criti-
cal points and guides the development of numerical methods, further optimizing the performance

of liquid crystal-based material with tailored transition behavior.
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