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Abstract—The memory footprint of modern applications like
large language models (LLMs) far exceeds the memory capacity
of accelerators they run on and often spills over to host memory.
As model sizes continue to grow, DRAM-based memory is no
longer sufficient to contain these models, resulting in further
spill-over to storage and necessitating the use of technologies
like Intel Optane and CXL-enabled memory expansion. While
such technologies provide more capacity, their higher latency
and lower bandwidth has given rise to heterogeneous mem-
ory configurations that attempt to strike a balance between
capacity and performance. This paper evaluates the impact
of such memory configurations on a GPU running out-of-core
LLMs. Starting with basic host/device bandwidth measurements
using an Optane and Nvidia A100 equipped NUMA system, we
present a comprehensive performance analysis of serving OPT-
30B and OPT-175B models using FlexGen, a state-of-the-art
serving framework.

Our characterization shows that FlexGen’s weight placement
algorithm is a key bottleneck limiting performance. Based on
this observation, we evaluate two alternate weight placement
strategies, one each optimizing for inference latency and through-
put. When combined with model quantization, our strategies
improve latency and throughput by 27% and 5x, respectively.
These figures are within 9% and 6% of an all-DRAM system,
demonstrating how careful data placement can effectively enable
the substitution of DRAM with high-capacity but slower memory,
improving overall system energy efficiency.

Index Terms—Compute express link, heterogeneous memory,
GPU inference, large language models, non-volatile memory.

I. INTRODUCTION

The memory footprint of modern applications like large
language models (LLMs) continues to grow at a staggering
rate, with model parameter size increasing by 410x every two
years [1]. This growth in size and complexity has enabled
the wide proliferation of Al-enabled applications, from chat
bots [2] and coding assistants [3] to impacting “literature and
medicine” [4].

While massively parallel processors like GPUs continue to
underpin the development of LLMs, their compute capacity
remains underutilized [1], [5], [6] with memory capacity
emerging as the key bottleneck. The challenge of accommo-
dating these models in memory brings a long known problem
to the forefront, that of DRAM capacity scaling [7]. Emerging
memory technologies like phase change memory (PCM) [8],
resistive RAM (ReRAM) [9], and spin-transfer torque RAM

Sandhya Dwarkadas
Department of Computer Science
University of Virginia
Charlottesville, VA, USA
sandhya@virginia.edu

(STT-RAM) [10]-[13] improve density compared to traditional
DRAM while achieving varying degrees of performance parity.
Concurrently, interconnect technologies like compute express
link (CXL) [14] allow for technology-agnostic expansion of
main memory capacity and direct access from accelerators like
GPUs [15], [16]. The performance impact of these technolo-
gies on accelerator performance is of considerable importance
but heavily understudied. This work aims to fill that gap,
contributing to a broad category of solutions that attempt to
transparently expand GPU memory capacity while hiding the
associated performance costs.

In this paper, we characterize the performance impact
of heterogeneous host memory on accelerator performance
using an Intel Optane and Nvidia A100 equipped system.
We first present basic bandwidth measurements when moving
data between host and GPU under different host memory
configurations, showing how host to GPU and GPU to host
bandwidth drop by up to 41% and 92%, respectively, compared
to traditional DRAM memory. Prior work has shown that
CXL-expanded memory only achieves up to 47% and 30% of
the theoretical maximum bandwidth of the underlying DRAM
memory [17], while highlighting significant performance vari-
ations across CXL controller architectures and the underlying
memory technology.

To understand the real world impact of this performance
deficit, we evaluate the inference performance of the open pre-
trained transformer (OPT) family of LLMs [18] under various
memory configurations using FlexGen [19], a state-of-the-art
LLM serving framework that supports distribution of model
weights across GPU memory, host memory, and permanent
storage. Our results show an average 33% increase in per-
layer processing time for OPT-175B with Optane as main
memory compared to DRAM main memory, a direct result of
the lower Optane bandwidth and the memory bound nature of
LLM inference. While compression helps reduce this memory
bottleneck, a deeper analysis of FlexGen’s compute schedule
reveals an imbalance in the compute/communication pipeline
as the root cause. This imbalance is a byproduct of its weight
placement scheme.

We address the imbalance with two alternate weight place-
ment schemes, one each optimizing for latency and through-
put. The first scheme, called HeLM, allocates weights for



each layer in a compute time-aware fashion to improve the
overlap of compute time of layer i with the weight transfer
time of layer i+]. This allows HeLM to achieve a more
balanced compute/communication pipeline, improving average
time between tokens (TBT) by 27%. The second scheme,
called All-CPU, offloads all weights to host memory and
leaves GPU memory for key/value caches and hidden state.
This boosts the maximum possible batch size from 8 to 44 and
brings about a 5x improvement in throughput. HeLM’s TBT
and All-CPU’s throughput come within 9% and 6% of an all-
DRAM system, highlighting how careful data placement can
help hide the performance deficiencies of emerging memory
technologies.

In summary, this paper makes the following contributions:

1) Quantification of host/device data movement perfor-
mance with Intel Optane, a high capacity but low
performance byte-addressable memory, as host memory,
showing significantly lower bandwidth compared to tra-
ditional DRAM.

2) Characterization of LLM performance on a real system
when using such memory, pointing at inefficient weight
placement as a performance bottleneck.

3) Evaluation of two model weight placement schemes that
optimize for latency and throughput, performing within
9% and 6% of an all-DRAM system, respectively.

4) Performance projections on to CXL-enabled memory,
highlighting efficacy of the proposed policies across a
range of memory performance characteristics.

II. BACKGROUND

A. Large Language Models

The advent of modern LLMs is largely attributable to the
Transformer [20], a machine learning network architecture that
is able to extract word meanings and contextualize them as
part of the broader prompt. Figure 1 shows the architecture
of a decoder-only transformer model and the auto-regressive
nature of LLM inference. At the heart of a decoder block is
the multi-head attention (MHA) layer. The symbols Q, K, and
V represent the query, key, and value vector representation
of each token, obtained by multiplying the embedding vector
of each token with the respective weight matrices. Each self
attention block, called an attention head, extracts different
semantic meaning from each token based on its weights. The
decoder concatenates the output of each head with the original
vector representation of each token to update its meaning and
then passes it through a feed forward network (FFN) layer,
often implemented as a multi-layer perceptron. FFN layer
further refines the meaning of each token based on learned
weights, producing another delta vector that is used to update
each token.

Figure 1 also highlights two distinct inference phases: prefill
and decode. During prefill, the entire input sequence is parsed
by the model in a series of GEMM computations to produce
the first token and store the key/value (KV) representations in
a KV cache. In successive iterations, the decode stages utilize
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Fig. 1: Architecture of a decoder-only LLM. Prefill and de-
code perform GEMM and GEMV operations, rendering them
compute and memory bound, respectively.

the KV cache and parse only the previously generated token
in a series of GEMV computations to predict the next token.

Because of differences in the operational intensity of
GEMM and GEMYV, prefill is usually compute-bound while
decode is memory-bound. Since most generative Al appli-
cations produce thousands of output tokens (e.g., LLaMa 4
has a context window size of 10 million tokens [21]), LLM
inference is largely memory bound. A common technique to
improve data reuse is batching of multiple requests, effectively
turning the GEMV computations in decode phase to GEMM
computations. The size of each batch is, however, limited by
the storage requirements of the KV cache for each prompt.

Memory performance is not the only limiting factor, how-
ever. Model sizes since the introduction of transformers have
exploded in size, from 175 billion in GPT-3 in 2020 [22] to 2
trillion in LLaMa 4 in 2025 [21]. Larger models incorporate
more attention heads and larger weight matrices, allowing
for semantically richer understanding of text and improved
model performance. This exponential growth, however, has
far outpaced the growth in AI hardware memory capacity as
well [1], demanding solutions that offer both high bandwidth
and capacity.

B. LLM Servers

Given the exponential growth in LLM model sizes, storing
all model weights on accelerator memory has been increas-
ingly challenging [1]. In response, several LLM frameworks
have been proposed that enable offloading parts of the model
to host memory or a backing store like disks. FlexGen [19] is
one such framework that distributes model weights, KV cache,
and hidden state between GPU memory, host main memory,
and storage, and employs a “zig-zag” compute schedule on
the GPU that optimizes for throughput and weight reuse.
The compute schedule overlaps the computation of a batch
of requests on layer j (e.g., MHA) with the loading of
layer j+1 (e.g., FFN) and its associated KV cache onto the
GPU. Listing 1 shows FlexGen’s computation schedule. Our
characterization focuses on the overlap of compute with weight
transfer given that the model weights are often at least an order
of magnitude larger than both the KV cache and the hidden
state.



Some LLM serving frameworks like llama.cpp [23],
Powerlnfer [24], and Powerlnfer-2 [25] support concurrent
CPU/GPU computation to avoid weight transfer bottlenecks.
Among these servers, only Powerlnfer-2 supports offioad-
ing to GPU memory, host memory, and storage. However,
PowerlInfer-2 is not open source. We therefore use FlexGen
running on GPUs for our evaluation.

Listing 1: FlexGen computation schedule

for i in range (execute_gen_len):
for j in range (num_layers):
load weight (1, 3j+1)
compute_layer (i, 3j)
sync ()

C. Intel Optane

Intel introduced Optane Data Center Persistent Memory
Module (DCPMM, simply referred to as Optane in this
paper) in 2019, a PCM-based 3D Xpoint memory technol-
ogy that is significantly more dense than traditional DRAM
technology [26], [27]. Packaged in a DIMM form factor,
Optane is byte-addressable and fits into regular DDR4 slots,
communicating using a custom DDR4-based protocol called
DDR-T [28], [29]. While extremely high capacity and energy
efficient, Optane suffers from worse performance and limited
write endurance, all properties of the underlying material.
Prior work has shown that Optane achieves nearly 2.5x lower
sequential read bandwidth compared to DRAM and about 6x
lower write bandwidth [30]-[32]. These evaluations show a
non-linear relationship between increasing concurrency and
write bandwidth. Being PCM-based also limits the life of each
memory module in terms of its write endurance [26].

Optane can be configured in two modes: App Direct and
Memory. App Direct mode exposes Optane as a fast storage
device with an optimized file system that bypasses the Linux
page cache, enabled by its byte-addressable capabilities [33],
[34]. Memory mode, meanwhile, exposes it as large main
memory with DRAM serving as a direct-mapped cache to
hide its performance deficiencies. Within App Direct mode,
it is also possible to interface with the memory directly
without any file system. This allows libraries like Memkind to
expose Optane as a memory-only NUMA node, creating a flat
memory hierarchy between DRAM and Optane and enabling
direct use of the large memory pool by applications [35]. We
use this support to compare DRAM and Optane performance.

In its Q2 2022 financial report, Intel announced that it is
closing its SSD business, including Optane [36]. While no
longer in production, Optane continues to serve as an effective
evaluation platform for high capacity byte addressable memory
technologies [37], [38]. Furthermore, CXL-expanded memory
(see Section II-D) can be backed by Optane [39], ensuring
broader applicability of findings related to Optane.

D. Compute Express Link

Compute express link (CXL) [14] was announced in
2019 [40] as an industry-standard interconnect technology
to connect processors, devices, and memory expanders over

the PCI Express bus interface. The CXL standard de-
fines three protocols: CXL.io for /O devices, CXL.cache
for cache-coherent devices (e.g., caching accelerators), and
CXL.memory for memory-enabled devices (e.g., memory ex-
panders). The CXL 1.1 specification [41] defines three types
of devices and what combination of the three protocols each
would use.

Of the three types of CXL devices, Type-3 is of particular
note. Defined for memory expanders, Type-3 devices use
CXL.io and CXL.memory protocols to allow for coherent
expansion of main memory capacity over PCle. By providing
load/store semantics similar to traditional main memory, Type-
3 devices (simply referred to as CXL memory in this paper)
provide transparent expansion of main memory without the
limitations of traditional DDR interfaces. Compared to DDR,
PCle offers higher per-pin bandwidth and lower per-bit transfer
energy [17]. Moreover, the memory technology across the
interconnect is not bound to be DRAM, allowing for use of
high density media like SSDs [39], [42]-[45] and Optane [39],
as shown in Figure 2.
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Fig. 2: CXL Type 3 devices enable transparent, coherent, and
technology agnostic expansion of main memory.

Like Optane, CXL memory capacity comes at a perfor-
mance cost. While performance varies with the design of the
CXL controller itself [17], CXL adds at least 70 nanoseconds
to round-trip memory access latency [46], not accounting for
contention or memory technology variations at the expander.
The achievable bandwidth is also limited by the underlying
PCle technology standard, which is 64 GB/s for the latest PCle
5.0 x16 link [47]. In comparison, our DDR4-based evaluation
system (Section III-A) achieves 157 GB/s across 8 memory
channels. While PCle 6.0 nearly doubles this bandwidth to
121 GB/s, it has not yet entered production at the time of
writing.

III. EVALUATION METHODOLOGY
A. Platform

We perform our evaluation on an Intel Optane-equipped
dual-socket machine. The configuration is listed in Table L
Each socket has 4 memory controllers with 32 GB DDR4-2933
DRAM and 128 GB Optane DCPMM per channel/controller,
providing a total of 256 GB DRAM and 1 TB Optane across
the system. The system is paired with a Nvidia Ampere-based
A100 GPU using 16 PCle Gen 4 links that provide a maximum
theoretical bandwidth of 32.0 GB/s. The GPU has 40 GB of
HBM2 memory, organized as 5 stacks with 8 memory dies
per stack [48].



TABLE I: System configuration

CPU
Model Dual socket Intel Xeon Gold 6330 (Ice Lake)
Frequency Base: 2.0 GHz, turbo: 3.1 GHz
Cores (per socket) | 28 (56 threads)
Memory 4 memory controllers

16 GB DDR4-2933 DRAM x2 (per controller)

(per socket) 128 GB Optane (200 series) x1 (per controller)

GPU
Model Nvidia A100
Memory 40GB HBM2 (1215 MHz, 1555 GB/s)
Interface PCle Gen 4 x16 (32.0 GB/s)

Our evaluation considers all available configurations of
Optane/DRAM. This includes Optane as storage with ext4-
DAX file system [33], Optane Memory Mode (Optane main
memory with DRAM cache), and Optane + DRAM main
memory which is enabled by the Memkind library [35]. The
last configuration exposes Optane memory as memory-only
NUMA nodes.

B. Benchmarks

We use NVIDIA nvbandwidth [49] for basic bandwidth
measurements between host and GPU. Our characterization
presents results for both the NUMA nodes and with all
combinations of Optane/DRAM host memory. To quantify real
world performance impact of Optane on GPU performance,
we use FlexGen [19] to run two variants of OPT models [18],
OPT-30B and OPT-175B. OPT-30B models the scenario where
model size surpasses GPU memory but fits in host DRAM.
OPT-175B pushes further and surpasses host DRAM memory
but fits in Optane memory, allowing us to compare the
performance of heterogeneous main memory to traditional
disk offloading. OPT-30B and OPT-175B contain 48 and 96
decoder blocks, resulting in 96 and 192 hidden layers (MHA +
FFN), respectively. Along with one input embedding layer and
one output embedding layer, the models have a total of 98 and
194 layers. Table II lists the various memory configurations
we evaluate for each model. The input and output sequence
lengths are limited to 128 and 21 tokens, respectively. We use
prompts from the C4 dataset [50] and repeat each prompt 10
times.

TABLE II: LLM model/memory configuration

Model (# of Memory Configuration Label
Decoders) 55D Optane DEAM
N/A Memory | DRAM
OP:E_;)OB N/A Memoey N/A NVDRAM
Cache MemoryMode
Storage | N/A Memory | SSD
OPT-175B Storage | Memory | FSDAX
(96) N/A Memo N/A NVDRAM
"Y' "Cache MemoryMode
C. Metrics

We evaluate LLM performance using three key metrics:

time to first token (TTFT), time between tokens (TBT), and
throughput in terms of tokens per second. TTFT measures
prefill latency, the inference stage that processes the entire

input prompt. TBT measures decode latency, the successive
stages of inference that utilize the KV cache from the prefill
stage alongside the previously generated token to generate
the next token. Finally, throughput measures the overall token
generation rate across the entire process. For each metric, we
present the arithmetic mean across all its values except the
first, which we discard to account for cold start effects.

IV. GPU/HOST DATA MOVEMENT CHARACTERIZATION
A. Basic Bandwidth Measurements

Figure 3 presents host to GPU (3a) and GPU to host
(3b) bandwidth for buffer sizes between 256 MB and 32
GB. The figure presents the bandwidth when copying to/from

DRAM, Optane DRAM (NVDRAM), and Optane Memory
Mode (MM) for both the NUMA nodes.
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Fig. 3: Host/GPU memory copy bandwidth. The numbers O
and 1 represent the two NUMA nodes.

Figure 3a shows how host to GPU bandwidth suffers a near
constant loss of 20% with NVDRAM compared to DRAM
up to a buffer size of 4 GB, with NVDRAM bandwidth
dropping from 19.91 GB/s at 4 GB to 15.52 GB/s at 32 GB
and increasing the performance deficit to 37%. We attribute
this drop in performance to potentially non-consecutive data
placement on NVM media due to wear-leveling and to misses
in the Address Indirection Table (AIT) buffer that translates
physical addresses to NVM media addresses [29], [32], [51].
MM is able to completely hide this performance gap, however,
because the buffer size fits within the DRAM cache capacity
(note that the MM and DRAM lines in Figure 3a overlap each
other).

The performance gap between DRAM and NVDRAM is
even wider when it comes to Optane’s write performance. GPU
to host bandwidth (Figure 3b) is 88% lower with NVDRAM
compared to DRAM across all buffer sizes, maxing out at 3.26
GB/s with a buffer size of 1 GB. This bandwidth is consistent
with prior observations [30]. We also notice how bandwidth for
Optane is higher on NUMA node 1 compared to NUMA node



0. This is because the GPU is connected to PCle ports local to
node 1, meaning that accesses to node 0 need to go over the
on-chip interconnect. Prior work has shown how Optane write
performance worsens when accessed remotely [31]. Our own
results using Intel Memory Latency Checker [52] also confirm
this, including remote MM’s inability to reach remote DRAM
bandwidth.

B. LLM Performance

Figure 4 shows the performance of OPT-30B and OPT-175B
models in terms of average TTFT, TBT, and throughput. The
three metrics are presented for a batch size of 1 along with the
maximum permissible size based on available GPU memory
to avoid the KV cache impacting communication overheads
(32 for OPT-30B and 8 for OPT-175B).
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Fig. 4: Time to first token (TTFT), time between tokens (TBT),
and throughput (tokens/s).

SSD and FSDAX configurations are, unsurprisingly,
the slowest performing configurations. While FSDAX im-
proves TTFT/TBT/throughput by 33.46%/33.48%/35.31% and
33.449%/33.58%/46.68% for OPT-175B with batch sizes 1
and 8, respectively, it falls short of reaching NVDRAM’s
performance. This is largely a result of Optane being exposed
through the file system interface in FSDAX, requiring the use
of a bounce buffer in DRAM when copying weights from
Optane to GPU.

NVDRAM’s lower bandwidth compared to DRAM impacts
both TTFT and TBT significantly, hurting overall through-
put. OPT-30B’s TTFT increases by 33.03% and 15.05%
with batch sizes 1 and 32, respectively, under NVDRAM
compared to DRAM. Similarly, TBT goes up by 33.03%
and 30.55% under the two batch sizes. This leads to a
reduction in throughput by 18.96% and 22.68%, respectively.
MemoryMode matches DRAM performance because the host-
side model weights fit within DRAM cache. While there
is no DRAM optima to compare against for OPT-175B,
MemoryMode improves TTFT/TBT/throughput compared to
NVDRAM by 7.67%/7.69%/0.60% and 8.90%/8.92%/7.98%
for batch sizes 1 and 8, respectively. Keeping in mind that the
model size outgrows the DRAM cache size here, an all-DRAM
system likely performs even better than this.

Increasing batch sizes improves throughput almost linearly,
as seen in Figures 4e and 4f. Ordinarily, prefill is compute
bound because of its high operational intensity. As a con-
sequence, TTFT tends to increase with an increase in batch
size. We see this with OPT-30B where TTFT increases by
32.41%, 14.51%, and 31.50% under DRAM, NVDRAM, and
MemoryMode configurations, respectively, when going from
a batch size of 1 to 32 (Figure 4a). OPT-175B does not
experience an increase in TTFT (Figure 4b) with increasing
batch size because its large weight size makes its prefill stage
memory bound. Decode, on the other hand, is memory bound
because it consists of a series of GEMV computations which
have low operational intensity. While increasing the batch size
helps convert the GEMV computation in the feed forward
network (FFN) stage (Section II-A) into GEMM, each prompt
must still perform a series of GEMV operations in the multi-
head attention (MHA) stage (Section II-A) with its own local
KV cache. This limits the scaling of TBT with increasing batch
sizes, as seen in Figures 4c and 4d.

In order to better understand prefill and decode performance,
we use FlexGen’s built-in timers to get a breakdown of the
time spent on compute and communication in each phase.
Recall that FlexGen overlaps compute in layer j with the
loading of weights for layer j+I (Section II-B). Figure 5
presents this overlap on a per-layer basis for each model
with different batch sizes, separate for both prefill and decode
stages. Since both OPT-30B and OPT-175B consist of several
decoder blocks (Table II), the longer running operation within
this pipeline affects the overall inference latency. For OPT-
175B, we also measure and show the ideal average weight
transfer time in an all-DRAM system by running the model
with 8 decoder blocks instead of the default 96.

Figure 5 shows how the average weight transfer time under
each memory configuration affects its TTFT and TBT per-
formance (Figure 4), highlighting the memory-bound nature
of LLM inference. Looking at OPT-30B’s prefill stage (Fig-
ure 5a), we observe that the average compute time increases
by about 15x for all three configurations when the batch size is
increased from 1 to 32. This is the reason behind the increase
in TTFT we observed earlier (Figure 4a) since many layers
become compute-bound (even though the average compute
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in (b) and (d).

time is below the average weight transfer time). The decode
stage stays largely memory-bound, however, even with the
large batch size (Figure 5c). Batching has been known to
have minimal impact on the arithmetic intensity of the decode
stage [6]. OPT-175B, meanwhile, is memory-bound in both
prefill and decode stages because of its significantly larger
weight sizes (hidden layer size of 12,288 versus OPT-30B’s
7,168). While an all-DRAM system would improve the aver-
age weight transfer time in both stages by 32.78% and 22.41%
compared to NVDRAM and MemoryMode, respectively, it
will still be orders-of-magnitude higher than the compute time.
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Compression/quantization is a well-known strategy to de-
crease model size, reducing both the model footprint and
weight transfer time at the cost of increased computation, due

to on-the-fly decompression, and potential accuracy loss. Flex-
Gen supports compressing model weights down from FP16
to a 4-bit representation using group-wise quantization [53],
reducing the model size to nearly a quarter with a negligible
loss in accuracy [19]. This allows the model to fit entirely
on host memory, even with traditional DRAM, obviating the
need to offload to storage. Figure 6 highlights the com-
pute/communication tradeoff of compression for OPT-175B
for NVDRAM, MemoryMode, and DRAM configurations.
Compared to the baseline, compression reduces weight transfer
time by 72% and 74% for NVDRAM and MemoryMode,
respectively, bringing it within 25% and 6% of DRAM ideal.
The compute time, meanwhile, increases by anywhere between
2.5x-13x for both NVDRAM and MemoryMode configura-
tions. Compression allows OPT-30B to fit fully into GPU
memory, which we do not present.

V. IMPACT OF WEIGHT PLACEMENT

Given the memory-bound nature of LLM inference, we
take a closer look at the cost of transferring each weight
to the GPU. We focus on model weight placement since
the weight size dominates the total memory footprint. For
instance, for a single OPT-175B self-attention block, the model
weights occupy 3.38 GB of memory while the KV cache,
the second highest contributor to the total memory footprint,
occupies 47.98 MB for a batch size of 1 at the maximum
context length of 2048 (72x smaller than weights). The total
memory footprint of the model weights is 324.48 GB while
that of the KV cache is 4.5 GB. For context, the GPU
we use for our evaluation has 40 GB of onboard memory,
which can hold the entire KV cache (4.5 GB), but not model
weights (324.48 GB). Given this, we first evaluate the cost of
transferring weights under FlexGen’s existing weight strategy,
highlighting an imbalance in compute and communication
overlap. Based on our analysis, we propose two alternate
weight placement schemes, both of which utilize compression
to minimize data movement. The goal of the first scheme
is to optimize for latency by mitigating the imbalance in
compute and communication. The second scheme, meanwhile,
optimizes for throughput by maximizing the batch size. We
present these optimizations for NVDRAM and MemoryMode
configurations only using OPT-175B, making a case for such
memory technologies as an effective DRAM replacement for
LLM inference.

A. FlexGen's Weight Transfer Costs

Figure 7a plots the latency of loading each layer of OPT-
175B up to layer 70 of 194 for all memory configurations
with compression. The plot has a striking sawtooth pattern that
continues all the way until layer 194 (not shown). This is a re-
sult of FlexGen’s weight placement scheme, presented in List-
ing 2. Given a list of weights (weight_specs) and a user-
specified percentage distribution across storage, host, and GPU
(described in policy), the allocator, init_weight_list,
distributes each layer’s weights across the hierarchy to meet
this goal. To achieve this, the function iterates over all the



weights of the layer (line 17) and calculates the percentage
contribution of the weights preceding weight i to the total
layer size (lines 18-20). Based on this percentage and the input
percentage distribution, get_choice () returns the device to
allocate weight i on.
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Fig. 7: Per-layer weight load latency for a subset of OPT-
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attention (MHA) and feed forward network (FFN) layers in "
SSD/FSDAX (b) and NVDRAM/MemoryMode (c) configura-

tions.

Our experiments show that this allocation scheme is imper- ,,
fect and struggles to achieve the desired percentage distribu- =
tion because differences in weight sizes do not lend themselves ™'
well to such a fine-grained distribution. For instance, for ..
(storage, host, GPU) ratios of (65, 15, 20) under SSD/FSDAX »

configurations, the achieved overall weight distribution is
(58.6, 33.1, 8.3). Similarly, the input and achieved distribution
for NVDRAM/MemoryMode is (0, 80, 20) and (0, 91.7, 8.3),
respectively. Furthermore, the weight distribution scheme is
unaware of the relative size of each layer, which leads to
the imbalanced weight transfer times across layers we see
in Figure 7a. In particular, the dips and ridges in the figure
correspond to multi-head attention (MHA) and feed forward
network (FFN) layers, respectively. Figures 7b and 7c¢ show
the weight distribution of these two layers under SSD/FSDAX
and NVDRAM/MemoryMode configurations, respectively. In
both cases, we see how the larger FFN layer gets no allocation
on the GPU while the smaller MHA layer does.

A direct consequence of this asymmetric weight distribution
is that weigh transfer cannot be hidden effectively behind
computation. Figure 8 shows the time spent in loading weights
for FFN/MHA layers and how it overlaps with computing
MHA/FFEN for the prefill stage. MHA has a lower computation
time than FFN, yet it is overlapped with the transfer of a larger
set of weights because of FlexGen’s weight distribution.

5 def
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Fig. 8: Overlap of MHA/FFN compute with the transfer of
FFN/MHA weights in the prefill stage of OPT-175B with
compression enabled. The bars represent average weight trans-
fer time while the line represents average compute time.
The overlap in decode stage with both batch sizes is nearly
identical to prefill with batch size 1.

Listing 2: FlexGen weight allocation algorithm

def get_device (cur_percent, percents, choices):
percents = numpy.cumsum(percents)
for i1 in range (len(percents)):
if cur_percent < percents[i]:
return choices[i]
return choices[-1]

init_weight_list (weight_specs, policy, env):
dev_percents = [policy.disk_percent,
policy.cpu _percent,
policy.gpu _percent]
dev_choices = [env.disk, env.cpu, env.gpu]
[spec.size for spec in weight_specs]
numpy . cumsum (sizes)

sizes =
sizes_cumsum =

for i1 in range (len(weight_specs)):
mid percent = (sizes_cumsum[i] - \
sizes[i] / 2) / \
sizes_cumsum[—1]
dev = get_choice (mid_percent = 100,
dev_percents,
dev_choices)
dev.allocate (weight_specs[i])

B. HelLM: Latency Optimizing Weight Placement

In order to balance the compute/communication pipeline,
we introduce Heterogeneous Layerwise Mapping (HeLM), a
modified weight placement algorithm that attempts to equalize
computation of layer i with weight transfer time of layer i+1.
The key idea behind HeLM is to allocate more GPU space
for layers whose transfer time will be overlapped with shorter
computing layers. HeLM accomplishes this by allocating the
weights of the first fully connected (FC) layer of FEN on the
GPU, along with the weights of all the bias and normalization
layers for both MHA and FFN. The rest of the MHA and FFN
weights are offloaded on to the host memory. The algorithm
is presented in Listing 3 and illustrated in Figure 9.

Listing 3 shows how HeLLM uses a custom weight distribu-
tion for MHA (lines 2-3) and FFN (lines 4-5) layers, along
with sorting the weights in increasing order by size (line 13).
Note that HeLM specifies device percentages in the order
(GPU, host, storage), instead of the default (storage, host,
GPU.



Listing 3: HeLM weight allocation algorithm. The algorithm
follows the default allocation algorithm line 16 onwards (List-
ing 2, line 14).

def init_weight_list (weight_specs, policy, env):
if is_mha (weight_specs):

dev_percents = [10, 90, 0]

elif is ffn(weight_specs):
dev_percents = [30, 70, 0]

else:
dev_percents = [policy.gpu_percent,

policy.cpu_percent,
policy.disk_percent]
dev_choices = [env.gpu, env.cpu, env.disk]

list (sorted(weight_specs,
key=lambda x: x.size)

weight_ specs =

sizes = [spec.size for spec in weight_specs]
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™y s ™y
Query Key Value Output Nom. WFeci‘Iht w',:cz t MNorm.
Weight || Weight || Weight | Weight | Weight b 52251 " :z":w Weight
2BEMB/81MEB 24KBI24KB
. AN vy AN AN azeme )\ 3semB ) )

el
(" Query Key | Value || Output | MNom. " FC1 FC2 | MNom. |

Bias Bias Bias Bias Bias Bias Bias Bias
=y =) s b = -

Multi Head Attention (MHA) Feed Forward Network (FFN)

n

Fig. 9: Breakdown of HeLM’s weight distribution across host
and GPU. The number under each weight is the uncom-
pressed/compressed size of the weight.

Figure 10 shows the weight dis-
tribution of MHA and FFN layers
achieved by HeLLM. This distribu-
tion reduces the time to transfer
FFN weights by 49.33% while in- 20
creasing it by 32.55% for MHA ; -~ -

I Host

= GPU

layers, as seen in Figure 1la. Layer
However, the increase in MHA Fig. 10: HeLM’s weight
load time is easily overlapped with distribution

FFN computation, leading to an
overall reduction in layer processing time.

The balanced compute/communication pipeline directly re-
sults in improvements to inference latency. Figure 11b shows
how HeLM improves TTFT and TBT on NVDRAM by
27.20% and 27.44% compared to the baseline scheme (Sec-
tion V-A). These numbers are within 8.75% and 8.91% of
DRAM. MemoryMode, meanwhile, experiences an improve-
ment of 31.90% and 32.28%, both of which are within 1.73%
and 1.64% of DRAM. These results highlicht how careful
data placement can enable the use of Optane-like emerging
memory technologies, and the heterogeneous configurations
they enable, in latency-sensitive LLM serving scenarios.

C. All-CPU: Throughput Optimizing Weight Placement

We study a second optimization called All-CPU where all
weights are placed on host memory, leaving GPU memory for
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Fig. 11: Impact of HeLM on (a) compute/communication
overlap during decode and (b) time to first token (TTFT) and
time between tokens (TBT). This is evaluated using OPT-175B
with a batch size of 1. In Figure (a), the bars represent average
weight transfer time while the line represents average compute
time.

KV cache and hidden state. This makes sense because even
with HeLM, only 33% of the total weights are held in the
GPU memory. By pushing all of them out to host memory,
we can trade weight transfer time for improved weight reuse
enabled by a higher batch size. While this optimization has
been explored before [19], we present it in the context of
heterogeneous memory and evaluate how it fares compared to
traditional DRAM.

Figures 12a, 12b, and 12c compare the TTFT, TBT, and
throughput of All-CPU to the baseline scheme (Section V-A)
for batch sizes 1, 8, and 44, the latter of which is only possible
with All-CPU. With all three batch sizes, the KV cache
continues to fit inside GPU memory. All-CPU does not have
a significant impact on either TTFT or TBT (1% degradation)
or throughput (5% gain) with NVDRAM compared to the
baseline at batch sizes 1 and 8. This highlights the minimal
performance advantage of keeping model weights on GPU at
all when optimizing for throughput. All-CPU makes better use
of that space by allocating it to the KV cache instead and
expanding the batch size. A key result here is the 5x increase
in throughput when going from baseline NVDRAM at batch
size 8 to All-CPU NVDRAM at batch size 44 (Figure 12c). In
fact, the throughput at batch size 44 with All-CPU NVDRAM
is within 6% of All-CPU DRAM.

Figures 12d and 12e show how the compute/communication
overlap varies between the baseline scheme with a batch size
of 8 and All-CPU with a batch size of 44. While MHA weight
transfer time increases significantly with All-CPU relative
to FlexGen’s baseline weight allocation (Figure 7c, which
allocates some MHA weights on the GPU), it is completely
hidden behind computation in both prefill and decode stages.
Interestingly, compute time in the decode stage does not
increase when the batch size is increased from 8 to 44
(Figure 12e), indicating potential compute under-utilization
at a lower batch size. By maximizing the batch size, All-
CPU improves compute utilization, which leads to an overall
increase in throughput (Figure 12c).

All-CPU MemoryMode reduces TTFT/TBT compared to
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All-CPU NVDRAM by 5.83%/5.77% with batch size 1, by
6.86%/9.46% with batch size 8, and by 0.24%/8.39% with
batch size 44. It impacts the throughput the most at batch size
44, however, improving it by 7.57% and performing at-par
with DRAM (1.15% better). This is evidence that optimized
data placement on heterogeneous memory can not only achieve
latency close to an all-DRAM system, but also throughput.

D. CXL Performance Projections

Like Intel Optane, CXL memory provides high capacity
at the cost of performance. This cost varies based on both
the CXL controller architecture as well as the underlying
memory technology [17]. In order to evaluate the impact of
our proposed optimizations on CXL memory, we borrow the
bandwidth of two different CXL configurations from prior
work and project the performance of each. These configu-
rations are presented in Table III. CXL-FPGA is based on
evaluation presented by Sun et al. [17] (called CXL-C in their
paper) and uses an FPGA-based CXL controller backed by
single channel DDR4-3200 memory. CXL-ASIC, meanwhile,
is borrowed from Wang et al. [54] (called System A in their
paper) and is based on an undisclosed commercial ASIC im-
plementation backed by single channel DDR5-4800 memory.
We utilize the bandwidth numbers for each configuration from
the respective paper to project weight transfer times for each
layer and calculate the achievable compute/communication
overlap (Table IV), TTFI/TBT (Figure 13a), and throughput
(Figure 13b), comparing it to NVDRAM.

TABLE III: CXL configurations

Name | Memory Technology = Bandwidth (GB/s)
CXL-FPGA [17] | DDR4-3200 x1 5.12
CXL-ASIC [54] DDR5-4800 x1 28

Table IV shows the compute/communication overlap for
each CXL configuration under all three weight allocation
policies: baseline (Section V-A), HeLM (Section V-B), and
All-CPU (Section V-C). CXL-FPGA and CXL-ASIC cover
a wide performance spectrum owing to differences in their
CXL controller design. CXL-FPGA achieves considerably

lower memory bandwidth than both NVDRAM and CXL-
ASIC. The lower bandwidth means that CXL-FPGA stays
largely memory bound across all weight allocation policies and
inference stages, except All-CPU prefill with a batch size of
44. CXL-ASIC significantly outperforms both NVDRAM and
CXL-FPGA, being the only configuration that achieves FFN
load latency lower than MHA compute latency with HeLM.
These results highlight how HeLLM and All-CPU are able to
improve the compute/communication overlap across a wide
variety of CXL memory implementations.
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Fig. 13: Projected performance improvements offered by
HeLM (batch size=1) (a) and All-CPU (b) on CXL-based
systems using OPT-175B.

The improved compute/communication overlap with HeLM
directly translates to lower inference latency, as shown in
Figure 13a. HeLM improves TTFI/TBT by 27% and 21% for
CXL-FPGA and CXL-ASIC, respectively. The improvements
for CXL-ASIC come from reducing FFN weight transfer time
and increasing MHA weight transfer time, thereby balancing
compute with communication. CXL-FPGA, on the other hand,
performs better simply because HeLM is able to store more
weights on the GPU compared to the baseline scheme.

The gains from All-CPU are more varied. While NVDRAM
and CXL-ASIC experience nearly the same performance with
both baseline and All-CPU at batch size 8, CXL-FPGA
suffers an 8.35% drop in throughput due to its poor memory
performance. Nonetheless, both CXL-ASIC and CXL-FPGA



TABLE IV: Overlap of compute and communication with different weight allocation policies under NVDRAM configuration
and the three different CXL configurations. A ratio of 1 indicates perfect overlap, while lower and higher values indicate

memory-boundedness and compute-boundedness, respectively.

Allocation  Batch

MHA compute/FFN Load (ratio)

FFN Compute/MHA Load (ratio)

Policy  Size “° ["NVDRAM(c) CXLFPGA (© CXL-ASIC(©) | NVDRAM (@ CXLFPGA (@ CXLASIC©

1 Prefll | 0.36 01 056 186 053 70

Baseline Decode | 0.36 0.1 0.55 1.85 0.53 288
3 Prefill | 0.52 0.14 070 307 087 aTT

Decode | 0.36 0.1 0.55 1.85 0.53 288

Prefill | 0.72 02 12 4 04 718

HeLM 1 Decode | 0.71 0.2 11 1.4 0.4 216
1 Prefill | 0.37 01 056 141 04 718

Decode | 0.36 0.1 0.55 1.39 0.39 216

Prefill | 051 018 079 73 065 357

ALLCPU 8 Decode | 0.36 0.1 0.55 1.39 039 216
% PeAl [ 133 037 701 187 143 T%a

Decode | 0.35 0.1 057 1.33 0.4 216

achieve 4.74x and 5.04x higher throughput when going from
the baseline scheme at batch size 8 to AIl-CPU at batch
size 44, highlighting the efficacy of the placement scheme
regardless of memory performance.

VI. RELATED WORK

LLM memory optimizations: Two of the most well-
known solutions to reduce model size include pruning/spar-
sification [55]-[58] and quantization [59]-[62]. FlexGen uses
group-wise quantization (GWQ) [53] to compress weights
down to four bits. This has shown to preserve accuracy for both
encoder-only models like BERT [53] and decoder-only models
like OPT [19]. KV cache is the second highest contributor
to the memory footprint during inference, accounting for as
much as 30% of the total size [63]. Optimizations to mini-
mize KV cache size include quantization [64], [65], virtual
memory-like block granular management [63], prediction of
per-prompt cache size [66], and temporal locality prediction-
based dynamic offloading to storage [67]. These approaches
can be combined with our work to further increase batch sizes.

Tiered memory: Use of technologies like Intel Optane
and CXL memory is of particular interest to the HPC and
ML communities given the large memory footprint of their
applications. Prior work has extensively characterized the per-
formance impact of Optane memory on HPC applications [68],
[69], with some exploring application-specific optimizations
for applications like materials simulation [70], weather fore-
casting [70], plasma simulation [71], and ML training [72].
When it comes to CXL memory, recent work has looked at
both application-agnostic transparent page management across
local memory and CXL memory [73], as well as application
latency tolerance-aware allocation of virtual machines in data-
centers [74]. Our work demonstrates how careful application-
aware placement of data between heterogeneous host memory
and GPU memory can compensate for the former’s perfor-
mance deficit compared to traditional DRAM.

GPU memory expansion: Our work very closely matches
that of Choi et al. [75], where the authors evaluate the
LLM serving performance of Nvidia Grace Hopper Superchip
(GHS) [76], using VLLM framework [63] to serve LLaMa

3.1 8B, 70B, and 405B models [77]. There are two key
differences between our work and theirs. First, GHS pairs only
traditional DRAM with the CPU, while we evaluate the impact
of emerging memory technologies and the heterogeneous
configurations they enable. Second, unlike FlexGen, vLLM
considers GPU memory as an inclusive cache. While this is
similar to the All-CPU layout we evaluate, our work also
evaluates a flat memory hierarchy where weights can be placed
across GPU and host memories. Keeping these differences in
mind, we consider the two works to be complementary to each
other.

Other ways of exposing host memory as expanded GPU
memory include Nvidia’s Unified Virtual Addressing [78] that
allows for shared pointers between the host and GPU. Nvidia’s
Unified Memory (UM) [79] supports on-demand transpar-
ent movement of pages from host to GPU memory. Such
movement comes with significant overheads, spawning a large
body of work optimizing the prefetch/eviction policies [80]-
[84], software hint-driven placement and prefetching [85],
GPU throttling and compression [84], and hardware-assisted
memory management [86]. Beyond host memory, several
software frameworks allow direct access to storage from the
GPU, both for direct file access [87]-[90] as well as to provide
crash consistency [91], [92]. Gouk et al. [16] developed and
synthesized a CXL controller for GPUs to directly access CXL
memory expanders. Prior work has also looked at expanding
on-chip GPU memory itself with storage class memory for
both capacity [93], [94] and persistence [95]-[97].

VII. CONCLUSION

As large language models continue to evolve, the growth
in model sizes will continue to stress the memory subsystem
for performance and capacity. This paper shows how replacing
DRAM with emerging technologies like Intel Optane can en-
able larger model sizes that fit in main memory, but not without
a performance penalty. Diving deeper into the performance
characteristics of running inference on OPT-30B and OPT-
175B models with FlexGen, a LLM serving framework, we
show how this performance degradation is largely a function
of data placement and balancing computation with commu-



nication. We evaluate two alternate data placement schemes,
one each optimizing for latency and throughput. The latency
optimizing scheme, called HeLM, performs compute-time
aware data placement that attempts to equalize the compute
time of layer i and the weight transfer time of layer i+1].
HeLM improves compute/communication pipeline balance and
achieves token generation latency on Optane main memory
within 9% of an all-DRAM system. The throughput optimizing
scheme, called All-CPU, offloads all weights to the host
memory, bumping the maximum possible batch size up from
8 to 44. The increased batch size helps All-CPU Optane net
a throughput increase of 5x compared to baseline DRAM at
a batch size of 8, while maintaining the same time between
tokens. All-CPU Optane is within 6% of All-CPU DRAM,
paving the way for models that exceed the capacity of DRAM.
Our projections on CXL-enabled memory indicate that these
findings remain valid for a broad spectrum of CXL devices.
The presented techniques may be generalized to other models
and frameworks by adapting to their compute schedule and
data movement costs. We hope that the insights presented in
this paper inform the design of improved weight placement
algorithms that can automatically make latency/throughput
tradeoffs based on desired quality of service requirements.
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APPENDIX
A. Abstract

This artifact appendix describes how to reproduce key re-
sults from the paper. The artifact includes a modified version of
FlexGen that implements the two proposed weight allocation
schemes, along with the author collected data and helper
scripts to plot the figures described in the paper.

B. Artifact check-list (meta-information)

« Algorithm: HelLM and All-CPU.
¢ Program: FlexGen.

o Model: OPT-30B and OPT-175B.
« Data set: c4/realnewslike.

« Hardware: Modern x86-64 based CPU with at least 100 GB
DRAM-+Optane memory and a CUDA-compatible GPU with at
least 4 GB memory.

e Metrics: Time to first token (TTFT), time between tokens
(TBT), throughput (tokens/second), compute/communication la-
tency overlap.

« How much disk space required (approximately)?: 450 GB.

« How much time is needed to prepare workflow (approxi-
mately)?: 2-4 hours.

« How much time is needed to complete experiments (approx-
imately)?: 4 days.

« Publicly available?: Yes.

¢ Code licenses (if publicly available)?: Apache-2.0.

« Data licenses (if publicly available)?: OPT-175B license
(model) and Apache-2.0 (data set).

o Archived (provide DOI)?: https://doi.org/10.5281/zenodo.
16905746.

1) How to access: The artifact is available on both GitHub

and Zenodo at the following links..

« Zenodo: https://zenodo.org/records/16905746

« GitHub: https://github.com/Sacusa/FlexLLMGen

2) Hardware dependencies: Recent x86-64 based CPU
with at least 100 GB of heterogeneous memory. Our system,
for instance, combines DRAM and Intel Optane. A CUDA-
compatible GPU with at least 4 GB of onboard memory.

3) Software dependencies: PyTorch >= 1.12.

4) Data sets: c4/realnewslike: https://huggingface.co/
datasets/allenai/c4.

5) Models: FlexGen automatically downloads most model
weights. The weights for OPT-175B can be obtained at https://
huggingface.co/Neko-Institute-of-Science/OPT-175B-NumPy

C. Installation

1) Download the input data set and models from the links
above using HuggingFace CLL

2) Follow the instructions in README .md to set up Flex-
Gen.

D. Evaluation and expected results

The raw data used for the figures in this paper can be found
in output / directory. The scripts in output/scripts can
be used the generate the figures in PDF format.

E. Methodology

Submission, reviewing and badging methodology:

« https://www.acm.org/publications/policies/
artifact-review-and-badging-current

« https://cTuning.org/ae
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