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1. Introduction

In this paper, we follow the book [1] of Stiebitz et al. for notation and terminologies. Graphs in
this paper are finite, undirected, without loops, but may have multiple edges. Let G = (V(G), E(G))
be a graph, where V(G) and E(G) are respectively the vertex set and the edge set of G. Let A(G) and
1(G) be respectively the maximum degree and the maximum multiplicity of G. Let [k] .= {1, ..., k}
be a palette of k available colors. A k-edge-coloring of G is a map that assigns to every edge of
G a color from the palette [k] such that no two adjacent edges receive the same color (the edge
coloring is also called proper). Denote by c¥(G) the set of all k-edge-colorings of G. The chromatic
index x/(G) is the least integer k such that c¥(G) # . The distance between two edges e and f in
G is the length of a shortest path connecting an endvertex of e and an endvertex of f. A distance-t
matching is a set of edges having pairwise distance at least t. Following this definition, a matching
is a distance-1 matching and an induced matching is a distance-2 matching. For a matching M, we
use V(M) to denote the set of vertices saturated by M.

In the 1960s, Vizing [2] and, independently, Gupta [3] proved that A(G) < x/(G) < A(G) + u(G),
which is commonly called Vizing’s Theorem. Vizing's Theorem plays an important role in graph edge
coloring. Using the palette [A(G) + u(G)], when can we extend a precoloring on a given edge set
F C E(G) to a proper edge coloring of G? Albertson and Moore [4] conjectured that if G is a simple
graph, using the palette [A(G) + 1], any precoloring on a distance-3 matching can be extended
to a proper edge coloring of G. Edwards et al. [5] proposed a stronger conjecture: For any graph
G, using the palette [A(G) + 1(G)], any precoloring on a distance-2 matching can be extended
to a proper edge coloring of G. Girdo and Kang [6] verified the conjecture of Edwards et al. for
distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs
with the maximum multiplicity at least 2 as follows.

Theorem 1.1. Let G be a multigraph with (G) > 2. Using the palette [ A(G) + u(G)], any precoloring
on a distance-3 matching M in G can be extended to a proper edge coloring of G.

The density of a graph G, denoted I'(G), is defined as

I'(G) = max {M :H C G, |V(H)| > 3 and |V(H)| is odd}
[V(H) -1

if [V(G)] = 3 and I'(G) = 0 otherwise. Note that for any X C V(G) with odd |X| > 3, we have
x'(GIX]) > % where G[X] is the subgraph of G induced by X. Therefore, x'(G) > [I"(G)]. So,
besides the maximum degree, the density provides another lower bound on the chromatic index
of a graph. In the 1970s, Goldberg [7] and Seymour [8] independently conjectured that actually
x'(G) = [I'(G)] provided x'(G) > A(G)+ 2. The conjecture was commonly referred to as one of the
most challenging problems in graph chromatic theory [1]. In joint work with Zang, two authors of
this paper, Chen and Jing gave a proof of the Goldberg-Seymour Conjecture recently [9]. We assume
that the Goldberg-Seymour Conjecture is true in this paper.

We will prove Theorem 1.1 in Section 4. In Section 2 we introduce some new structural proper-
ties of dense subgraphs. In Section 3 we define a general multi-fan and obtain some generalizations
of Vizing’s Theorem.

2. Dense subgraphs

Throughout the rest of this paper, we reserve the notation A and u for the maximum degree and
the maximum multiplicity of the graph G, respectively. For u € V(G), let dg(u) denote the degree of
u in G. For a vertex set N C V(G), let G—N be the graph obtained from G by deleting all the vertices
in N and edges incident with them. For an edge set F C E(G), let G — F be the graph obtained from
G by deleting all the edges in F but keeping their endvertices. If F = {e}, we simply write G — e.
Similarly, we let G 4+ e be the graph obtained from G by adding the edge e to E(G). For disjoint
X,Y C V(G), Eg(X, Y) is the set of edges of G with one endvertex in X and the other in Y. If X = {x},
we simply write Eg(x, Y). For X C V(G), the edge set d¢(X) := Eg(X, V(G)\X) is called the boundary
of X in G. For a subgraph H of G, we simply write dc(H) for dag(V(H)).

2



Y. Cao, G. Chen, G. Jing et al. European Journal of Combinatorics 122 (2024) 104037

Let G be a graph, v € V(G) and ¢ € CX(G) for some positive integer k. We define ¢(v) = {¢(f) :
f € E(G) and f is incident with v} @(v) = [k] \ ¢(v). We call ¢(v) the set of colors present at v and
@(v) the set of colors missing at v. For a vertex set X C V(G), define @(X) = |, @(v). A vertex
set X C V(G) is called p-elementary if p(u) Np(v) = @ for every two distinct vertices u, v € X. The
set X is called ¢-closed if each color on edges from d5(X) is present at each vertex of X. Moreover,
the set X is called strongly ¢-closed if X is ¢-closed and colors on edges from 9(X) are pairwise
distinct. For a subgraph H of G, let gy or (¢)y be the edge coloring of G restricted on H. We say a
subgraph H of G is gp-elementary, p-closed and strongly ¢-closed, if V(H) is ¢-elementary, ¢-closed
and strongly ¢-closed, respectively. Clearly, if H is ¢y-elementary then H is ¢-elementary, but the
converse is not true as the edges in dg(H) are removed when we consider ¢y.

A subgraph H of G is k-dense if |V(H)| is odd and |E(H)| = (]V(H)| — 1)k/2. Moreover, H is a
maximal k-dense subgraph if there does not exist a k-dense subgraph H’ containing H as a proper
subgraph. An edge e of a graph G is called a k-critical edge if k = x'(G—¢e) < x'(G)=k+ 1. A
graph G is called k-critical if x'(H) < x/(G) = k + 1 for each proper subgraph H of G. It is easy to
see that a connected graph G is k-critical if and only if every edge of G is k-critical. For e € E(G), let
V(e) denote the set of the two endvertices of e. The diameter of a graph G, denoted diam(G), is the
greatest distance between any pair of vertices in V(G). An i-edge is an edge colored with the color
i

Lemma 2.1 ([10]). Given a graph G, if x'(G) = k > A(G)+ 1, then distinct maximal k-dense subgraphs
of G are pairwise vertex-disjoint.

Lemma 2.2. Let G be a graph with x'(G) = k and H be a k-dense subgraph of G. Then H is an induced
subgraph of G with x'(H) = I'(H) = k. Furthermore, for any coloring ¢ € CX(G) and v € cX(H), H is
strongly ¢-closed and -elementary.

Proof. Since H is k-dense, by the definition, [E(H)| = Y=k Thus k < I'(H) < x'(H) < x'(G) = k
implying x'(H) = I'(H) = k. Thus H is an induced subgraph of G, since otherwise there exists a
subgraph H’ of G with V(H’) = V(H) such that x'(H') > I'(H') > k, a contradiction to x'(H') <
x'(G) = k. Since H has odd order, a maximum matching in H has size at most (|V(H)| — 1)/2.
Therefore, under any k-edge-coloring ¢ of G, each color class in H is a matching of size exactly
(JV(H)| — 1)/2. Thus every color in [k] is missing at exactly one vertex of H or it appears exactly
once in 3g(H). Consequently, H is strongly ¢-closed. For any v € CX(H), the same argument as above
shows that H is ¥-elementary. O

The following lemma is a consequence of the Goldberg-Seymour Conjecture.

Lemma 2.3. Let G be a multigraph and e € E(G). If e is a k-critical edge of G and k > A(G) + 1, then
G — e has a k-dense subgraph H containing V(e) such that e is also a k-critical edge of H + e.

Proof. Clearly, x'(G) = k+ 1 and x'(G — e) = k. By the assumption of the Goldberg-Seymour
Conjecture, x'(G) = [I'(G)] = k+ 1. As [I'(G)] = k + 1, by the definition of density, G has a
subgraph H* of odd order such that |E(H*)| > (|V(H*)|—1)k/2. Thus x'(G) > x/(H*) > l;gg:'m] =k
Since x'(G — e) = k, it follows that e € E(H*). On the other hand, we have % <
[C(H* —e)] < x/(H* —e) < x'(G — e) = k, which in turn gives |[E(H* —e)| < (|V(H*)| — 1)k/2.
Thus |[E(H* —e)| = ([V(H*)] — 1)k/2. Then k < ['(H* —e)] < x/(H* —e) < x'(G—e) = k and
k+1<[IrH*) < x'(H*) < x/(G) = k+ 1, which implies that k = y'(H* —e) < x/(H*) =k + 1.
Thus H := H* — e is a k-dense subgraph containing V(e), and e is also a k-critical edge of H+e. O

Lemma 2.4. Let G be a multigraph with x'(G) = k+ 1 > A(G) + 2 and e be a k-critical edge of G.
We have the following statements.

(a) G — e has a unique maximal k-dense subgraph H containing V(e), and e is also a k-critical edge
of H+e.

(b) For any ¢ € (G — e), H is gy-elementary and strongly ¢-closed.

(o) If x'(G) = A(G)+u(G), then A(H+e) = A(G), u(H+e) = u(G) and diam(H+e) < diam(H) < 2.
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Proof. By Lemma 2.3, G — e contains a k-dense subgraph H containing V(e) and e is also a k-critical
edge of H + e. We may assume that H is a maximal k-dense subgraph, and the uniqueness of H is a
direct consequence of Lemma 2.1. This proves (a). By applying Lemma 2.2 on G — e, we immediately
have statement (b).

For (c), by (a) and Vizing's Theorem, A(G)+ w(G) = x'(G) = x'(H+e) < A(H+e)+ u(H +e) <
A(G) + n(G) implying that A(H +e) = A(G) = A and u(H +e) = u(G) = u. For any ¢ € cX(G—e),
H is py-elementary by (b). For any x € V(H), with respect to ¢y, all the colors missing at other
vertices of H present at x. Note that k = A + u — 1. For each vertex v € V(H), we have that
loy(v)] = k—dy(v) = k—A = pu—1ifv ¢ V(e), and [py(v)| = k—dy(v)+1 > k—A+1> (n—1)+1
if v € V(e). Denote |V(H)| by n. We then have dy(x) > | UUEWH)YU#EH(UN >(k—A)n—1)4+1=
(u=T1)(n—-1)+ 1.

Since u(H) < u(G) = u, we get |Ny(x)| > % > W where Ny(x) is the neighbor set
of x in H. Since u > 2, we have (“_U(+_U“ > % Hence, every vertex in H is adjacent to at least
half vertices in H. Consequently, every two vertices of H share a common neighbor, which in turn
gives diam(H) < 2. This proves (c). O

The following technical lemma will be used several times in our proof.

Lemma 2.5. Let G be a graph with x'(G) = k and H be a k-dense subgraph of G. Let ¢ and ¢
respectively be k-edge-colorings of H and G — E(H) such that colors on edges in dc(H) are pairwise
distinct under ¢. Then the following two statements hold.

(a) If k = A(G), then by renaming color classes of { on E(H), we can obtain a (proper)
k-edge-coloring of G by combining ¢ and the modified coloring based on .

(b) For any fixed color i € [k], if k > A(G)+ 1, then by renaming other color classes of i on E(H) we
can obtain a coloring of G such that all color classes are matchings except the i-edges. The only exception
is as follows: exactly one i-edge from E(H) and exactly one i-edge from dc(H) share an endvertex.

Proof. Since x'(G) = k and H is k-dense, x'(H) = k and H is ir-elementary by Lemma 2.2. We first
show that statement (b) is a consequence of statement (a). Let M; be the set of edges of G colored
by i. Then we know that |M; NE(H)| = %(lV(H)| — 1) by H being y-elementary. Thus H — M; is
(k — 1)-dense. Now the first part of statement (b) is a consequence of statement (a) by having
G — M; in the place of G. The second part of statement (b) follows easily by the assumption that
edges in dg(H) are pairwise distinct under ¢. Thus we only show statement (a) below.

We permute some color names of i step by step to get a k-edge-coloring ¥* of H such that
@(v) € Y*(v) for any v € V(H). Then the combination of * and v gives a desired k-edge-
coloring of G. Let w € V(H) and i € ¥(w) N ¢(w). By the assumptions of statement (a) and H
being v -elementary, we have the following properties:

[Y(w)] = k —du(w) = A(G) — du(w) = de—pm)(w) = |p(w)], (1)
i Yyu)Uepu) foranyue V(H)\ {w). (2)

Let v € V(H) such that ¢(v) \ ¥(v) # @. Let s = |p(v)\ ¥(v)|, and (v) \ ¥(v) = (i1, ..., ).
By (1), ¥(v) \ ¢(v) has a subset {ji, ..., j:} of t distinct elements with t > s. We now modify i as
Y1 by exchanging the color names i, and j, for each p € [s]. The graph H is still ¥;-elementary by
Lemma 2.2 and now we have ¢(v) € v1(v). By (2), we know that |vy(u) N e(u)] > [¥(u) N e(u)|
for any u € V(H) \ {v}. Repeating this process at most another |V(H)| — 1 times gives us a desired
coloring ¥* of H. O

3. Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminologies. Let ¢ be a k-edge-coloring of G using
the palette [k]. Given two distinct colors «, 8, an («, B)-chain is a component of the subgraph
induced by edges assigned color « or 8 in G, which is either an even cycle or a path. We call the
operation that swaps the colors @ and 8 on an («, 8)-chain the Kempe change. Clearly, the resulting
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Fig. 1. (a) The Kempe change on one («, B)-chain P,(«, B) or P,(a, B); (b) The Kempe change on one subchain Py p(c, B).
(The dashed lines represent missing colors at vertices).

coloring after a Kempe change is still a (proper) k-edge-coloring. Furthermore, we say that a chain
has endvertices u and v if the chain is a path connecting vertices u and v. For a vertex v € V(G), we
denote by P,(«, ) the unique («, B)-chain containing the vertex v. For two vertices u, v € V(G), the
two chains P,(«, B8) and P,(«, B) are either identical or disjoint. (See Fig. 1(a).) More generally, for
an («, B)-chain, if it is a path and it contains two vertices a and b, we let Py, ;)(e, ) be its subchain
with endvertices a and b. The operation of swapping colors « and 8 on the subchain P pj(c, B) is
still called a Kempe change, but the resulting coloring may no longer be a proper edge coloring.
(See Fig. 1(b).)

Let G be a graph with an edge e € Eg(x,y), and ¢ be a proper edge coloring of G or G —e. A
sequence F = (x, eg, Yo, €1, Y1, - .., €p, ¥p) With integer p > 0 consisting of vertices and distinct
edges is called a (general) multi-fan at x with respect to e and ¢ if eg = e, yo = y, for each i € [p],
e; € Eg(x, y;) and there is a vertex y; with 0 < j <i— 1 such that ¢(e;) € @(y;). Note that y; = y; can
happen for distinct i and j in F, and that the definition of a multi-fan in this paper is slightly general
than the one in [1] since the edge e may be colored in G. We say a multi-fan F is maximal if there
is no multi-fan containing F as a proper subsequence. Similarly, we say a multi-fan F is maximal
without any i-edge if F does not contain any i-edge and there is no multi-fan without any i-edge
containing F as a proper subsequence. The set of vertices and edges contained in F are denoted by
V(F) and E(F), respectively. Let ec(x, y) = |Ec(x, y)| for x, ¥y € V(G). Note that a multi-fan may have
repeated vertices. By er(x, y;) for some y; € V(F) we mean the number of edges joining x and y; in
F.

Let s > 0 be an integer. A linear sequence S = (yo, €1, y1, ..., €5, ys) at x from yg to ys in G is
a sequence consisting of distinct vertices and distinct edges such that e; € Eg(x, y;) for i € [s] and
p(e;) € @(yi—1) for i e [s]. Clearly for any y; € V(F), the multi-fan F contains a linear sequence
at x from yo to y; (take a shortest sequence (yo, €1, Y1, ..., €j,¥;) of vertices and edges with the
property that e; € Eg(x,y;) N E(F) for i € [j] and ¢(e;) € @(yi—1) for i € [j]). The following local
edge recoloring operation will be used in our proof. A shifting from y; to y; in the linear sequence
S is an operation that replaces the current color of e; by the color of e;;1 foreachi <t <j—1
with 1 <i < j < s. Note that the shifting does not change the color of e;, where e; joins x and y;,
so the resulting coloring after a shifting is not a proper coloring. In our proof we will uncolor or
recolor the edge e; to make the resulting coloring proper. We also denote by V(S) and E(S) the set
of vertices and the set of edges contained in the linear sequence S, respectively. A A-vertex in G is
a vertex with degree exactly A in G. A A-neighbor of a vertex v in G is a neighbor of v that is a
A-vertex in G.

Lemma 3.1 ([1,11]). Let G be a graph, e € E¢(x, y) be a k-critical edge and ¢ € c¥(G—e) with k > A(G).
Let F = (x, e, Yo, €1,Y1, ..., €p,¥p) be a multi-fan at x with respect to e and ¢, where y, = y. Then the
following statements hold.

(a) V(F) is p-elementary, and each edge in E(F) is a k-critical edge of G.

(b) If « € 9(x) and B € @(y;) for 0 < i < p, then Py(a, B) = Py,(«, B).

5
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(c) If F is a maximal multi-fan at x with respect to e and ¢, then x is adjacent in G to at least
x'(G) — dg(y) — eg(x,y) + 1 vertices z in V(F)\{x, y} such that dg(z) + eg(x, z) = x'(G).

Lemma 3.2. Let G be a multigraph with maximum degree A and maximum multiplicity u > 1. Let
ecEc(x,y)andk=A+ pu — 1.

Assume that x'(G) = k + 1, e is k-critical and ¢ € CX(G — e). Let F = (x, e, Yo, €1, Y1, - - -
ep, ¥p) be a multi-fan at x with respect to e and ¢, where yo = y. Then the following statements hold.

(a) If F is maximal, then x is adjacent in G to at least A + p — dg(y) — eg(x,y) + 1 vertices z in
V(F)\{x, y} such that ds(z) = A and eg(x,z) = .

(b) If F is maximal, dg(y) = A and x has only one A-neighbor z' in G from V(F)\{x, y}, then
er(x,z) =eg(x,z) = forall z € V(F)\{x} and dg(z) = A — 1 for all z € V(F)\{x, y,Z'}.

(c) Forie [kl and i ¢ @(y), if F is maximal without any i-edge, then F not containing any A-vertex
of G from V(F)\{x, y} implies that ds(y) = A, and there exists a vertex z* € V(F)\{x, y} with i € ¢(z*)
such that dg(z*) = A — 1.

Assume that x'(G) =k, ¢ € c¥(G) and V(G) is p-elementary. Then the following statement holds.

(d) If a multi-fan F’ is maximal at x with respect to e and ¢ in G, then x having no A-neighbor in G
from V(F’") implies that dg(z) = A — 1 for all z € V(F')\{x} and every edge in F’ is colored by a missing
color at some vertex in V(F'). Furthermore, for i € [k] and ¢(e) ¢ @(V(F)), if F' is maximal without
any i-edge, then F’ not containing any A-vertex in G from V(F')\{x} implies that there exists a vertex
z* € V(F')\{x} with i € @(z*) such that dg(z*) = A — 1.

Proof. For statements (a), (b) and (c), V(F) is ¢-elementary by Lemma 3.1(a). As F is maximal, for

any o € ¢(V(F)), we know that there exists z € V(F) such that ¢(xz) = «. As a consequence, we

know that }_,ypy g €F(X, 2) = 1+ 3, yk) ) |#(2)], where the term 1 counts the uncolored edge

e. Statement (a) ho‘ds easily by Lemma 3.1(c). Assume that there are g distinct vertices in V(F)\{x}.
For (b), we have

= Y exz)= Y ekxz)=1+ ) |p@)

zeV(F)\{x} zeV(F)\{x} zeV(F)\{x}
1+k—A+1)+(k—-—A)+@q@—-2)k—A+1)=qlk— A+ 1)=qu,
X

as o)l = k— A+ 1, |p(Z) = k— A and [g(z)] > k— A+ 1 for z € V(F)\{x,y, z'}. Therefore,
er(x,z) = eg(x,z) = u for each z € V(F)\{x} and dg(z) = A — 1 for each z € V(F)\{x, y, z'}. This
proves (b).

Next for (c), suppose first that i & ¢(z*) for any z* € V(F)\{x}. Then F is maximal without any
i-edge implies that F is maximal. By (a), x has at least one A-neighbor in F from V(F)\{x, y}. This
gives a contradiction to the assumption that F does not contain any A-vertex of G from V(F)\{x, y}.
Thus we have i € ¢(z*) for some z* € V(F)\{x}. As i ¢ @(y) by the assumption in the statement, we
know that z* # y. Since V(F) is ¢-elementary, x must be incident with an i-edge. Since now there
is no i-edge in F and i € p(z*), we have

= Y exz)= Y ex2)=1+@E) -+ Y [@)

%

zeV(F)\{x} zeV(F)\{x} zeV(F)\{x,z*}
= ) @Iz 1+k-A+(@-Dk-A+1)=qk—-A+1)=qpu.
zeV(F)\{x}

Therefore, d¢(y) = A and dg(z) = A — 1 for each z € V(F)\{x, y}. This proves (c).
Now for the first part of (d), as ¢(e) may be contained in ¢(V(F')), we have

= Y ez Y exz)= Y. [@)

zeV(F/)\{x} zeV(F)\{x} zeV(F/)\{x}
gk —A+1)=qpu,

as |p(z)] > k— A+ 1 for z € V(F')\{x}. Therefore, er(x,z) = eg(x,z) = u and dg(z) = A — 1 for
all z € V(F')\{x}, and every edge in F’ is colored by a missing color at some vertex in V(F’). For

\%
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the furthermore part of (d), we also have that there exists a vertex z* € V(F')\{x} with i € @(z*),
since otherwise, x has at least one A-neighbor in F’ from V(F')\{x, y}, a contradiction. Since now
o(e) ¢ p(V(F")) and there is no i-edge in F’ with i € @(z*), we have

= Y ex2)= Y epx2)=1+(p) -+ Y [9)

zeV(F")\{x} zeV(F")\{x} zeV(F")\{x,z*}
= Y @@l =qk—A+1)=qu.
zeV(F/)\{x}

Therefore, dg(z) = A — 1 for each z € V(F')\{x}. This proves (d). O

Let G be a graph with maximum degree A and maximum multiplicity . Berge and Fournier [12]
strengthened the classical Vizing's Theorem by showing that if M* is a maximal matching of G, then
x'(G—M*) < A+ u— 1. An edge e € Eg(x,y) is fully G-saturated if dg(x) = dg(y) = A and
ec(x,y) = . For every graph G with x'(G) = A + u, observe that G contains a (A + u — 1)-critical
subgraph H with x'(H) = A+ u and A(H) = A by Lemma 2.4(c), and G contains at least two fully
G-saturated edges by Lemma 3.2(a).

Lemma 3.3. For a fixed matching M of a graph G, if u(G) > 2 and x'(G — M) = A(G) + u(G), then
there exists a matching M* of G— V(M) such that x'(G—(MUM*)) = A(G)+ u(G)— 1 =: k and every
edge e € M* is k-critical and fully G-saturated in the graph H, + e, where H, is the unique maximal
k-dense subgraph of G — (M U M*) containing V(e).

Proof. Let M* be a matching of G — V(M) consisting of fully G-saturated edges. We further choose
M* such that M* is maximal. Then G — (M UM™*) has no fully G-saturated edge by the maximality of
M*. We claim that x'(G—(MUM*)) = k. For otherwise, we have x'(G—(MUM*)) = k+1= A+ u.
We let G’ be a (A +  — 1)-critical subgraph of G. Clearly, we have A(G') = A. Let e € Ez(x, y) such
that dg/(x) = A. By considering a maximal multi-fan at x with respect to a coloring ¢ € c¥(G' — e)
and e, Lemma 3.2(a) implies that x has a A-neighbor z in G’ for which eg/(x, z) = w. Thus any edge
in Eg(x, z) is a fully G-saturated edge, a contradiction to the choice of M*.

Thus x'(G—(MUM?*)) = k. If there exists e € M* such that x'(G—(MUM*\{e})) = k, we remove
e out of M*. Thus we may assume that for each e € M*, x'(G— (M UM*\{e})) =k+ 1, i.e, each e
is a k-critical edge of G — (M U M*\{e}). By Lemma 2.4(a), there exists a unique maximal k-dense
subgraph H, of G — (M U M*) such that V(e) C V(H,) and e is also a k-critical edge of H, + e. Notice
that A(H, + e) = A and u(H, + e) = u by Lemma 2.4(c). It is now only left to show that each
e € M* is full G-saturated in the graph H, + e. Suppose on the contrary that there exists e € M*
such that e is not fully G-saturated in H, + e.

Since e is a k-critical edge of G — (M U M*\{e}), we let ¢ € cX(G — (M U M*)). By Lemma 2.2,
H, is ¢y,-elementary and strongly ¢-closed. Let V(e) = {x, y} and F, be a maximal multi-fan at x
with respect to e and ¢y,. By Lemma 3.2(a), x has a A-neighbor, say x4, in H, from V(Fx)\{x, y}. By
Lemma 3.1(a), the edge ey, € Eg(x, x1) in Fy is also a k-critical edge of H, + e. By Lemma 3.2(a)
again, in a maximal multi-fan F,, at x; with respect to e, there exists a fully G-saturated edge e'.
Let M’ = (M*\{e}) U {€¢'}. Since every vertex of V(M U M*) has degree less than A in G — (M U M*),
it follows that M UM’ is a matching of G. Let Hy = H, +e —¢’. Clearly, H, is also k-dense. Applying
Lemma 3.1(a) with respect to the multi-fan F,,, we see that ¢’ is also a k-critical edge of H, + e.
Thus x'(He) = k and He is also an induced subgraph of G — (M U M’) by Lemma 2.2. Moreover, He
is a maximal k-dense subgraph of G — (M U M’), since otherwise there exists a k-dense subgraph
H’ containing Hy as a proper subgraph which implies that the k-dense subgraph H' + ¢’ — e is also
a k-dense subgraph containing H, as a proper subgraph in G — (M U M*), a contradiction to the
maximality of H,. As H. is strongly ¢-closed, colors on edges of d¢_um)(He') = dg—mum=)(He) are
pairwise distinct. Applying Lemma 2.5(a) on any k-edge-coloring of H, and the k-edge-coloring of
G— (M UM’ UE(He)), we have x'(G— (M UM’)) = k. In order to claim that we can replace e by €’
in M*, and so repeat the same process for every edge f of M* that is not fully G-saturated in Hy +f,
where Hy is the maximal k-dense subgraph of G—(M UM™*) with V(f) € V(Hy), we discuss that this
replacement will not affect the properties of other edges in M* as follows.

7
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By Lemmas 2.1 and 2.2, maximal k-dense subgraphs of G — (M U M*) are induced and vertex-
disjoint. Thus for any f € M*\{e}, either V(Hf) N V(H,) = @ or Hf = H,. If V(Hf) N V(H,) = §, then
Hy is still the induced maximal k-dense subgraph of G — (M UM’) containing V(f) and f is k-critical
in Hf + f. If Hf = He, then as He is an induced maximal k-dense subgraph of G — (M U M’) with
V(H.) = V(He), it follows that H; 4+ e — ¢’ = H, is the maximal k-dense subgraph of G — (M UM’)
containing V(f) and f is k-critical in Hy + e — ¢’ + f by Lemma 2.4(a). As V(f) N V(e) = ¥ and
V(f)NV(e') = B, the property that whether or not f is fully G-saturated in Hy + f is not changed
after replacing e by e’ in M*. Therefore, by repeating the replacement process as for the edge e
above for every edge f of M* that is not fully G-saturated in Hy + f, we may assume that each edge
e € M* is fully G-saturated in H, + e. The proof is completed. O

4. Proof of Theorem 1.1

Proof. etk = A+ pu—1and ® : M — [A + u] be a given precoloring on M. Note that
x'(G—M) < k+1 by Vizing’s Theorem. The conclusion of Theorem 1.1 holds easily if x'(G—M) < k
with the reason as follows. For any k-edge-coloring ¢ of G — M, if there exists e € E(G — M) such
that e is adjacent in G to an edge f € M (maybe V(e) = V(f)) and ¥ (e) = ®(f), we recolor each
such e with the color A + u and get a new coloring v’ of G — M. Under v/, the edges colored by
A+ pu form a matching in G since M is a distance-3 matching. Thus the combination of @ and v/’ is
a (k+ 1)-edge-coloring of G. Therefore, in the remainder of the proof, we assume x’(G—M) = k+ 1.

Let M4, be the set of edges precolored with A + p in M under @. For any uncolored matching
M* € G—V(M) and any (k+ 1)-edge-coloring or k-edge-coloring ¢ of G—(MUM™*), denote the A+
color class of ¢ by E,‘C,*. In particular, E,‘C,* = @ if ¢ is a k-edge-coloring. We introduce the following
notation. For f € Eg(u, v) N M, if there exists f; € E(G — (M U M*)) such that ¢(f;) = &(f) and
V()N V() = {u} (V(fi) = V(f) = {u, v}, respectively), we call f T1-improper (Type 1 improper)
at u (at u and v, respectively) if V(f;) N V(M*) = ¢, and T2-improper (Type 2 improper) at u if
V(fi)NV(M*) # @. If f is T1-improper or T2-improper at u, we say that f is improper at u. Define

Ei(M*, @) = {fi € E(G— (M UM™)): f is adjacent in G to a T1-improper edge},
E;(M*, ¢) = {f; € E(G— (M UM™)): f is adjacent in G to a T2-improper edge}.

Observe that E{(M*, ¢)UE,(M*, ¢) is a matching since M is a distance-3 matching in G. We call the
triple (M*, E,‘@*, ¢) prefeasible if the following conditions are satisfied:

(@) Mat, UM* UE], is a matching;

(b) for each e € M* such that e is adjacent in G to an edge of E;(M*, ¢), e is k-critical and
fully G-saturated in the graph H, + e, where H, is the unique maximal k-dense subgraph
of G — (M U M*) containing V(e);

(c) the colors on edges of dg_(mum=)(He) are all distinct under ¢.

Let (M*, E;+, ) be a prefeasible triple. Since M U M* is a matching in G, if (M*, Ej., ¢) also
satisfies Condition (d): |E{(M*, ¢)| = |E2(M*, ¢)| = 0, then by assigning the color A + p to all
edges of M*, we obtain a (proper) (k+ 1)-edge-coloring of G, where the (k+ 1)-edge-coloring is the
combination of the precoloring @ on M, the coloring using the color A+« on M*, and the coloring
¢ of G — (M U M*). Thus we define a feasible triple (M*, E,‘&*, @) as one that satisfies Conditions
(a)-(d).

The rest of the proof is devoted to showing the existence of a feasible triple (M*, Ey,., ¢) of
G. Our main strategy is to first fix a particular prefeasible triple (Mg,E;CIO*, ¢o), then modify it

step by step into a feasible triple (M*, E;/., ¢). In particular, we will choose Mg and ¢ such that
E;Cﬁ = (). At the end, when we modify ¢ into ¢, we will ensure that the A + u color class of G is
MAOW UM™* U E{(Mg, 9o) U E2(Mg, o). The process is first to modify M and ¢q at the same time to
deduce the number of T2-improper edges.

By Lemma 3.3, there exists a matching M{ of G— V(M) such that x'(G—(MUMg)) = k and each
edge e € M is k-critical and fully G-saturated in H, + e, where H, is the unique maximal k-dense
subgraph of G—(MUM;}) containing V(e). By Lemmas 2.1 and 2.2, H, is induced in G—(MUMjg) with
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olh) =i— A+ p

(a) (b) (©)

Fig. 2. Operations I, Il and IIl in Case 1. (The edges of the dashed line represent uncolored edges).

x'(He) = k, and H, and H, are either identical or vertex-disjoint for any e’ € Mg \ {e}. Moreover,
by Lemma 2.4, diam(H, + e) < diam(H,) < 2, and H. is (¢o)n,-elementary and strongly ¢o-closed in
G—(MUM;). As x'(G—M) = k+ 1, we have |[Mj| > 1. Let ¢y be a k-edge-coloring of G — (M UM;)).
Thus E,‘&O* = (. Obviously, the triple (Mg, @, ¢o) is prefeasible, which we take as our initial triple.

For (?VI*, @, @o), if |[E1(M§, o)l = |E2(M§, o)l = 0O, then we are done. If |E{(Mj, ¢o)| > 1 and
|[E2(Mg, @o)l = 0, then we recolor each edge in E{(Mg, o) with the color A + u to produce a
(k + 1)-edge-coloring ¢; of G — (M U M), since E,‘C,% = ¢ and E{(Mg, ¢o) is a matching. Then as
[E1(M§, ¢1)] = |[E2(M§, ¢1)] = 0 and Ma4,, UM U E,‘C,L is a matching, it follows that the new triple
(Mg, E1(M§, @o), ¢1) is feasible. Then we are also don?e.

Therefore, we assume that |E;(Mj, o)l > 0 and |Ex(M7, o)l > 1. Recall that for each e € M,
e is fully G-saturated in H, + e. Thus we have the following observation: for an edge f,, € M with
V(fu) = {u, v}, if {u, v} N V(H,) = @ for any e € M, then f,, cannot be a T2-improper edge.

Since |Ex(Mg, o)l = 1, we consider one T2-improper edge in M, say f,, with V(f,,) = {u, v}.
Suppose that f,, is T2-improper at u and @(f,,) =i € [k] (as ¢ is a k-edge-coloring, i # k+ 1 =
A + ). Then there exist ey, € Eg(x, y) N M; and a maximal k-dense subgraph H of G — (M U M)
such that V(ey,) € V(H) and f,, and ey, are both adjacent in G to an i-edge ey, € Ey(y, u). Since M
is a distance-3 matching and diam(H) < 2, we have V(H) N V(M \ {fin}) = @. We will modify ¢q
into a new coloring such that f;, is not T2-improper at u under this new coloring and that no other
edge of M is changed into a new T2-improper edge. We consider the three cases below regarding
the location of f,,, with respect to H.

Case 1: f,, is not improper at v, or f,,, is T1-improper at v but v ¢ V(H).

Let F, be a maximal multi-fan at x with respect to e,, and (¢o)y in H + e,,. There exist at least
one A-vertex in V(Fy) \ {x,y} by Lemma 3.2(a) and a linear sequence at x from y to this A-vertex
in F,. We consider two subcases as follows.

Subcase 1.1: V(Fy) \ {x,y} has a A-vertex x; and there is a linear sequence S at x from y to x;
such that S contains no i-edge or S contains no vertex w such that w is incident with an i-edge of
de—mum)(H).

Let S = (¥,exy,Y, ..., exw,X1) be the linear sequence (where y' = x; is possible). We apply
Operation I as follows: apply a shifting in S from y to x4, color ey, with @g(ey/), uncolor ey,
and replace ey, by ey, in M. See Fig. 2(a). Since x; is not incident with any edge in M U Mg,
M7 = (Mj\{ex})U{exx, } is a matching. Denote Hy := H+ey,—ex,. Let  be the k-edge coloring of H;
after Operation 1. Note that for any vertex z € V(H;) that is incident with an edge of BG,(MUM;«)(Hl),

if ¥(z) # (@o)y(z), then z € V(S). By the condition of Subcase 1.1 and Operation I, there is no
such vertex w such that w is incident with both an i-edge of E(S) and an i-edge of BG_(MUMT)(Hl ).
Thus we can rename some color classes of ¥ but keep the color i unchanged to match all colors
on edges of Bc_(MUMT)(Hl )- In this way we obtain a (proper) k-edge-coloring ¢, of G — (M U MJ) by
Lemma 2.5(b).
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We claim that (M7, @, 1) is a prefeasible triple. As M, U M is a matching, we verify that
M; and ¢, satisfy the corresponding conditions. Clearly H; is k-dense with V(H;) = V(H) and
BG,(MUMT)(Hl) = 8(;,(MUM3)(H) and x'(H1) = x'(H) = k, and ey, is k-critical and fully G-saturated
in Hy + ey, . Furthermore, as distinct maximal k-dense subgraphs are vertex-disjoint we know that
each edge e € Mj \ {ey,} is still contained in a k-dense subgraph of G — (M U M) such that e is
k-critical and fully G-saturated in the graph H, + e if e is adjacent in G to an edge of E;(M7, ¢1),
where H, is the unique maximal k-dense subgraph of G — (M UM;) containing V(e) if H. and H; are
vertex-disjoint, and H. = H; otherwise. Since ¢, is a k-edge-coloring of G — (M UM7), H, is strongly
p1-closed for each e € Mj. Therefore, (M7, ¥, ¢1) is a prefeasible triple.

Next, we claim that |E;(MT, ¢1)| = |E2(Mj, ¢o)| — 1. Note that under ¢, we still have ¢;(ey,) = i.
Since eyy, ey, € E(Hy), exx; € M7 and ey, is not adjacent to ey, in G — (M U M7), we see that now
fuv is no longer T2-improper at u but T1-improper at u with respect to Mj and ¢;. For any edge
f € M\ {fw), since both x and x; are A-vertices of H + ey, and V(H{) N V(M \ {fin}) = &, we see
that the distance between f and ey, in G — (M U MY) is at least 2. Thus the property of f being
T1-improper or T2-improper is not changed under M} and ¢;. Thus the new triple (M7, @, ¢1) is
prefeasible with |E;(M7, ¢1)| = |[E1(Mg, @o)|l + 1 and |Ex(M7, ¢1)| = |[E2(Mg, o)l — 1, and so we can
consider (M7, @, ¢1) instead.

Subcase 1.2: For any A-vertex in V(F,) \ {x,y}, any linear sequence from y to this A-vertex
contains both an i-edge h; and a vertex w such that w is incident with an i-edge h of d;_ (MUM*)(H)

Let F C Fy be the maximal multi-fan at x without any i-edge with respect to ey, and (¢o)u. By the
condition of Subcase 1.2, F does not contain any A-vertex from V(F)\{x, y} in H. By Lemma 3.2(c),
there exists a vertex z* € V(F)\{x, y} with i € (¢o)y(z*) and dy(z*) = A — 1. Since V(Fy) is (¢o)u-
elementary by Lemma 3.1(a) and every color on edges of d¢_ (MUM} y(H) under ¢y is a missing color
at some vertex of H under (¢o)y, it follows that z* = w, i.e., dy(w ) A—1anddg_ (MUMZ) (w) = A.
Thus the i-edge h is the only edge incident with w from 3c—(1v1u1v1 y(H), and w is not adjacent inG to
any edge from MUM;. Let S = (y, ey, Y, ..., ex,, X1) be a linear sequence at x from y to x;, where
X1 is a A-vertex. Notice that w is in S by the condition of Subcase 1.2. We consider the following
two subcases according whether the boundary i-edge h belongs to E;(Mg, ¢o).

Subcase 1.2.1: h ¢ E{(Mg, o), i.e., h is not adjacent in G to any precolored i-edge in M.

Let ey, € Ey(x, w) be an edge in S. We apply Operation II as follows: apply a shifting in S
from y to w, color ey, with gg(eyy), uncolor ey,, and replace ey, by ey, in M;. See Fig. 2(b). Since
de_ (MuM*)( w) = A, M = (M§\{ex})U{ex} is a matching. Denote Hy := H + ey, — ey,,. Let ¥ be the
k-edge colormg of Hq after Operation II. Note that for any vertex z € V(Hy) that is incident with an
edge of dg_ (MUMS) (Hy), if ¥(z) # (@o)y(z), then z is contained in the subsequence of S from y to w.
Since h is the only i-edge of dg_ (MUM) (Hy), there is no such vertex w such that w is incident with
both an i-edge contained in the subsequence of S from y to w and an i-edge of 95_ (MUM?) (Hy) after
Operation II. Thus we can rename some color classes of i but keep the color i unchanged to match
all colors on boundary edges of d¢_ (MUM?) y(H1). In this way we obtain a (proper) k-edge-coloring ¢,
of G— (M UM7) by Lemma 2.5(b).

By the similar argument in the proof of Subcase 1.1, it can be verified that (M7, d, ¢1) is
prefeasible, and that f,, is no longer T2-improper at u but T1-improper at u with respect to M7
and ¢,. For any edge f € M \ {f,,}, we see that the distance between f and ey, is at least 2 or
just 1 when h is adjacent in G to f with &(f) # i. Thus the property of f being T1-improper
or T2-improper is not changed under M{ and ¢;. Thus the new triple (M], @, ¢¢) is prefeasible
with [Ei(M7, ¢1)| = |[E1(Mg, wo)l + 1 and |Ex(M7, ¢1)| = |E2(M§, o)l — 1, and so we can consider
(M7, @, ¢1) instead.

Subcase 1.2.2: h € E{(M;, o), i.e,, h is adjacent in G to some precolored i-edge f; in M.

We apply Operation III as follows: recolor the i-edge h with the color A + w, apply a shifting
in S from y to x4, color ey, with go(ey, ), uncolor ey, and replace ey, by ey, in M. See Fig. 2(c).
By the same argument as in the proof of Subcase 1.1, we know that M} := (Mgj\{ex}) U {ex,} is a
matching. Denote H; := H + ey, — ex,. Let ¥ be the k-edge coloring of H; after Operation III. Note
that there is no i-edge in dg_ (MUM?) (Hq) after Operation III. By the similar argument as in the proof
of Subcase 1.1, we can rename some color classes of ¥ but keep the color i unchanged to match
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all colors on edges of dc_mumr)(H1). In this way we obtain a (proper) (k 4 1)-edge-coloring ¢; of
G — (M UM7) by Lemma 2.5(b).

We claim that (M7, h, ¢1) is a prefeasible triple. As M U M is a matching and h is adjacent to f;
and @(f;) =i € [k], it follows that h is not adjacent to any edge from M., UM7, which implies that
M4, UM7 U {h} is a matching. By the same argument as in the proof of Subcase 1.1, we know that
ey, is k-critical and fully G-saturated in H; + ey, , and each edge e € M \ {ex, } is still contained in
a k-dense subgraph of G— (M UM7) such that e is k-critical and fully G-saturated in the graph H. +e
if e is adjacent in G to an edge of E;(M7, ¢1), where H, is the unique maximal k-dense subgraph of
G — (M U Mg) containing V/(e) if H, and H1 are vertex-disjoint, and H, = H; otherwise. If the color
A+ is not used on edges of d;_(mum+)(He), then colors on edges of d¢_ (MUM?) (He) are all distinct by
the fact that H, is strongly ¢1-closed. If the color A+ is used on edges of BG (MUM*)( .), then it was
used on exactly one edge of 9_ (MUMZ) (He). This, together with the fact that H is (§01 )He elementary,
implies that colors on edges of BG (MUM*)(H ) are all distinct. Therefore, (M7, h, ¢1) is a prefeasible
triple.

By the same argument as in the proof of Subcase 1.1, we know that now f,, is no longer T2-
improper at u but T1-improper at u with respect to M7 and ¢, and that for any edge f € M\ {f..}, the
distance between f and ey, in G—(MUMY) is at least 2. Except the i-edge f; of M that is adjacent in G
to h, the property of f being T1-improper or T2-improper is not changed under M; and ¢;. The edge
fi is originally T1-improper at w;, and now is no longer improper at w; with respect to ¢, where we
assume h € Eq(w, w;). Thus [E{(M7, ¢1)| = [E1(Mg, o)l +1— 1 and |E2(M7, ¢1)| = |E2(Mg, o)l — 1,
and so we can consider (M7, {h}, ¢1) instead. Note that assigning the color A+ u to h will not affect
the modification of ¢y into ¢ and Mg into M*, since h € E;(Mj, o) and we will assign the color
A+ p to all edges in Eq(Mg, ¢o) in the final process.

Case 2: f,, is T2-improper at v with v € V(H’) for a maximal k-dense subgraph H’ other than H.

For this case, we apply the same operations as we did in Case 1 first with respect to the vertex u
in H and then with respect to the vertex v in H'. Recall that V(H) N V(H') = @ and E{(M{, ¢o)
is a matching. By Case 1, the operations applied within G[V(H)] or G[V(H)] + h, do not affect
the operations applied within G[V(H')] or G[V(H')] + h,, where h, and h, are the two possible
i—edges with hu (S 86_(MUM3)(H) N E](Mak, g[)o) and hv € 85_(MUM3)(H/) N E](Mg, g[)o) Furthermore,
if h, and h, exist at the same time, then V(h,) N V(h,) = @ and there is no maximal k-dense
subgraph H” other than H and H’ such that V(H") N V(h,) # @ and V(H”) N V(h,) # @. Denote
the matching resulting from M; by Ml, and the coloring resulting from ¢y by ¢;. By Case 1,
E‘p1 C {hy, hy}, May, UM U {hu, h,} is a matching, and (M7, E‘”*, ¢1) also satisfies Conditions

(b) and (c). Thus (M7, E"]*, ¢1) is a prefeasible triple. With respect to Mj and ¢, fy, is no longer
1

T2- 1mproper but is T1- 1mproper at both u and v. Furthermore, we have |E;(M7, ¢1)| > |E1(Mg, ¢o)l
and |E;(M7, ¢1)] = |[E2(M§, @o)| — 2. Thus we can consider (M7, Ew*, ¥1) 1nstead

Case 3: fuv 18 Tl—improper or T2-improper at v with v € V(H). "

Let ey, € Ey(b, v) with ¢o(ep,) = i. Assume first that dy(b) < A. If f,,, is T1-improper at v, then
we apply the same operations with respect to u as we did in Case 1. Denote the new matching
resulting from Mg by Mj, and the new coloring resulting from ¢q by ¢;. Then the vertex b is not
incident in G with any edge of M} by Operations I-IIl in Case 1. Thus f, is no longer T2-improper at
u but T1-improper at u with respect to M} and ¢;. Furthermore, we have |E;(M7, ¢1)| > |E1(M{, ¢o)|
and |Ey(M7, ¢1)] = |E2(M§, @o)l — 1. Thus we can consider (M, E‘”*, @1) instead.

If fin is T2-improper at v, let ey, € Mg with V(eqs) = {a, b}. We apply the same operations
with respect to u as we did in Case 1. Denote the resulting matching by M, and the resulting
coloring by ¢;. With respect to M and ¢4, the edge f,, is still T2-improper at v as dy(a) < A and
dy(b) < A. By Case 1, now f, is no longer T2-improper at u but T1-improper at u with respect
to the prefeasible triple (M7, EA";,‘*, ¢1), where E‘”* = ¢ or {h} with some vertex w and its incident
i-edge h € 36—(MUM3)(H) ﬂEl(Mg‘l, ¢o). Denote by 1I-I1 the new k-dense subgraph after the operations
with respect to u in H + eyy. In particular, the situation under (M7, @, ¢) is actually the same as the
case dy(b) = A in the previous paragraph since now dy, (y) = A.

Thus we consider only the case that f,, is T2-improper at v, T1-improper at u and dy,(y) = A.

Consider a maximal multi-fan F, at a with respect to eq, and (¢1)y, in Hy + egp. Clearly we can
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p1(ba’) i— A+ p

Fig. 3. Operation in Subcase 3.1. (The edges of the dashed line represent uncolored edges).

apply the same operations in Case 1 for v so that f,, is no longer T2-improper at v with respect
to the resulting matching MJ and coloring ¢,, unless these operations would have to put one edge
eqy € Ey,(a,y) into M. Then f,,, would become T2-improper at u again with respect to M5 and ¢,.
The only operations that have to uncolor an edge of H; incident with y are Operations I and III.
Therefore, we make the following two assumptions on F, in the rest of our proof.

(1) y is the only A-vertex in V(F;)\{a, b}.
(2) If a linear sequence in F, at a from b to y contains a vertex w’ such that dy, (w') = A —1 and
w’ is incident with an i-edge h’ 36—(MUM7)(H1), then i’ € E{(MJ, ¢1).

Let F, be a maximal multi-fan at b with respect to eg, and (¢1)y, in Hy + eqy. We consider the
following three subcases.

Subcase 3.1: F, contains a linear sequence S at b from a to y such that S does not contain any
i-edge.

Let S = (a, ey, d, ..., eL,y) be the linear sequence (where a’ = y is possible). We apply a
shifting in S from a to y, color ey, with ¢1(epy ), uncolor eyy. See Fig. 3(a)-(b). Note that M := (M \
{ean})U{eny} is a matching, and H, := Hqi+eq—epy is a k-dense subgraph of G—(MUMS;). As S does not
contain any i-edge, by Lemma 2.5(b), we obtain a k-edge-coloring ¢, of G — (M UM;). Note that f,,
is T2-improper at both u and v with respect to M; and ¢,. However, we have @(f,,) =i, p(ep) =
@o(ey) =1, and ey, € M3 (bvuyb is a cycle with length 4 in G). By assigning the color i to e,y and
recoloring ey, and ey, with the color A + i, we obtain a new matching M3 = MJ\{ep,} = M\ {ew}
of G—V(M) and a new (k+ 1)-edge-coloring @3 of G—(MUM3). See Fig. 3(c). The edge f,, is now not
improper at neither of its endvertices. Note that El‘% = {epy, ey} if E;C’lT = { and EA‘Z?; = {h, epy, eyu}
if E"V;T = {h}. Since E;% C (E1(Mg, ¢o) U Ex(Mg, @o)) is a matching, and those edges in E,‘% do not
share any endvertex with edges in M, UMj, it follows that M, UMj3 UE,‘Cf* is a matching. Note
that V(H)N V(M \ {fuy}) = 0. For each e € M3 such that e is adjacent in G to a3n edge of Ex(Mj, ¢3),
e is still k-critical and fully G-saturated in the graph H. + e, where H, is still the unique maximal
k-dense subgraph of G — (M U M) containing V(e) and H, is also strongly ¢3-closed. Thus the new
triple (M3, E;C%, @3) is prefeasible. Furthermore, |E{(M3, ¢3)| = |E1(M7, ¢1)] — 1 > |E{(Mg, o)l — 1

and |Ex(M3, @3)| = |E2(M7, ¢1)] — 1 = |E2(M§, @)l — 2. Thus we can consider (M3, E,‘Cf*, ¢3) instead.
3

Subcase 3.2: F; contains a vertex w” with dy,(w”) = A — 1 and i € (¢1)y, (w").

The i-edge ey, is in F, by the maximality of F,. Let S = (a, epy, @', . . ., €pyr, W”, epy, v) be a linear
sequence at b from a to v in Fy (where a = @’ and @’ = w" are possible). Since i € (¢1)y, (w"), we
have that either i € p;(w”) or w” is incident with an i-edge h” € aG—(MUMT)(Hl ).

Assume first that i € @;(w”) or w” is incident with an i-edge h” € d6—(mumz)(H1) such that
h" e E{(M7, ¢1). We apply a shifting in S from a to v, color e, with ¢1(ep), and uncolor ep,,.
Note that ep,» was recolored by the color i in the shifting operation. We then recolor the i-edge
h” with the color A + w if h” exists, and rename some color classes of H, := H; + eg, — ey, but
keep the color i unchanged without producing any improper i-edge by Lemma 2.5(b). Finally we
assign the color A 4+ u to ep,. Note that h # h” since ¢1(h) = A+ u # i = ¢1(h"), and h
and h” cannot both exist in ac_(MUMS)(H) = 86_(MUMT)(H1) since otherwise ¢o(h) = @o(h”) = i
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contradicting that H is strongly ¢o-closed. Now we obtain a new matching My = Mj\{ea} of
G — V(M) and a new (proper) (k + 1)-edge-coloring ¢, of G — (M U M) such that f,, is no longer
T2-improper at v or even T1-improper at v with respect to a new triple (M, EA“;IZ*, ¢,), where

EY = {ep) if Ej. = ¢ but h” does not exist, Ef% = {ey,, h"} if Ej. = # and h” exists, and
1
Ey’. = {epy, h} if EA‘)j,‘* = {h}. Since E%. € (E1(M{, ¢o) U E2(M;, ¢)) is a matching, and those edges
2

in Eﬁf* do not share any endvertex with edges in M4, U M;, it follows that My, U M; U En"jf*

is a r%latching. Note that V(H,) N V(M \ {fu»}) = @. By the similar argument as in the proof 02f
Subcase 3.1, the new triple (M3, E,\(/;f*, @) is prefeasible. Furthermore, |E1(M;, ¢2)| > |E1(M§, ¢o)l
2

and |E;(M3, ¢2)| = |E2(Mg, @o)| — 2. Thus we can consider (M3, E;&Z*, ¢,) instead.

Now we may assume that the i-edge h” & E;(M;, ¢1). Since h and h” cannot both exist, we have
EA‘CI} = (). Note that the vertex w” ¢ V(F,) by Assumption (2) prior to Subcase 3.1. Moreover, w” is
not incident with any edge in M U M§ and w” is only incident with the i-edge h” in ac,(MUMT)(Hl ).
Since dG_(MUMT)(w”) = A and ¢; is a k-edge-coloring of G — (M U M7) with k > A 4 1, there exists
a color o € @(w"”) with & # i. Since V(Hy) is (¢1)n, -elementary, there exists an a-edge e; incident
with the vertex a. Thus we can define a maximal multi-fan at a, denoted by F,, with respect to e; and
(¢1)n, in Hy+e4. (Notice that e; is colored by the color « in F;.) Moreover, V(F;) is (1 )u, -elementary
since V(H;) is (¢1)y, -elementary. By Lemma 3.2(b) and Assumption (1) prior to Subcase 3.1, we have
er(a,b') = ey, 4e,(a, b') = p for any vertex b’ in V(F;)\{a}. Therefore, V(F;)\{a} and V(F;)\{a} are
disjoint, since otherwise we have V(F,) € V(F;) and & € (¢1)y,(b’) for some b’ € V(F,) implying
b’ = w” € V(F,), a contradiction. Note that if w” ¢ V(F;), then V(F;)\{a} must contain a A-vertex
in Hy, since otherwise Lemma 3.2(d) and the fact (¢;)n,(e1) = o € ¢(w”) imply that w” € V(F)), a
contradiction. Thus F; contains a linear sequence S’ = (by, ez, by, ..., e, b;) at a, where by € V(eq),
by (with t > 1) is a A-vertex if w” ¢ V(F;), and b; is w” if w” € V(F,). Notice that b; is not incident
with any edge in M U M; by our choice of b;. Moreover, b; # y since V(F;)\{a} and V(F;)\{a} are
disjoint. Let B (B # i) be a color in @;(b). By Lemma 3.1(b), we have Py(8, @) = Py (8, ). We then
consider the following two subcases according the set (V(S")\{a}) N (V(S)\{a}).

We first assume that (V(S)\{a}) N (V(S)\{a}) C {b}. If e1 ¢ Py(B, ), then we apply a Kempe
change on Py, ,,71(8, @), uncolor ey and color eg, with «. If e; € Py(B, o) and Py(8, ) meets b; before
a, then we apply a Kempe change on Py, »,1(8, ), uncolor e; and color eg, with «. If e € Py(B, o)
and P, (B, o) meets by before a, then we uncolor e, apply a Kempe change on Py, p,1(8, @), apply
a shifting in S from a to w”, color ey, with ¢1(e,y ), and recolor ep,,» with B. In all three cases above,
eqp is colored with a color in [k] and e; is uncolored. Finally we apply a shifting in S’ from b; to by,
color e; with ¢1(e;), and uncolor e;. Notice that the above shifting in S’ does nothing if t = 1. Denote
H, := Hy + eq, — €. Since H, is also k-dense and x’(H,) = k, we can rename some color classes
of E(H,) but keep the color i unchanged to match all colors on boundary edges without producing
any improper i-edge by Lemma 2.5(b). Now we obtain a new matching M; = (M7 \{ew}) U {e;}
and a new (proper) k-edge-coloring ¢, of G — (M U M5) such that f,, is no longer T2-improper
at v but T1-improper at v with respect to the new prefeasible triple (M, @, ;). Furthermore,
|[E1(M5, 2)| = |E1(M§, @o)I+2 and |[Ex(M5, ¢2)| = |E2(M, @o)l —2. Thus we can consider (M, ¥, ¢,)
instead.

Then we assume that there exists b; = a* € (V(S")\{a}) N (V(S)\{a}) for some j € [t — 1] and
a* € V(S). See Fig. 4 for a depiction when b; = b; = a* = d'. In this case we assume a* is the
closest vertex to the vertex a along S. Note that b; # b as V(F;)\{a} and V(F,)\{a} are disjoint. Let
o = @1(ej+1) € (¢1)y,(by). By Lemma 3.1(b), we have Py(8, o)) = Py (B, o). If ej11 & Py(B, o), then
we apply a Kempe change on P[b,bjj(ﬂ, «a;), uncolor ej,q and color ey, with «;. If €11 € Pp(B, o)
and Py(B, oj) meets b;;1 before a, then we apply a Kempe change on Py 5, ,1(B, ¢j), uncolor ej4
and color eq, with o. If ej1 € Py(B, ;) and ij(ﬂ, ;) meets bj,, before a, then we uncolor ej1,
apply a Kempe change on P[b,-,bj+1](ﬁ, «;), apply a shifting in S from a to b; (i.e., a*), color eq, with
¢1(epq ), and recolor the edge e € Ey, (b, b;) with B. (See Fig. 4(a)-(c).) In all three cases above,
eqp is colored with a color in [k] and ej;4 is uncolored. Finally we apply a shifting in S’ from bj.; to
by, color e;41 with ¢;(ejy2), and uncolor e;. (See Fig. 4(d).) Notice that the above shifting in S’ does
nothing if bj;1 = b;. Denote H, := H; + eq, — e;. Since H, is also k-dense and x’'(H,) = k, we can
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B3+ oy

B3 — oy

@1(bby)— 3

b
ei(bby)

(d)

Fig. 4. One possible operation for b; = a* € (V(§")\{a}) N (V(S)\{a}) in Subcase 3.2, where by = b; = a* = d'. (The edges
of the dashed line represent uncolored edges).

rename some color classes of E(H,) but keep the color i unchanged to match all colors on boundary
edges without producing any improper i-edge by Lemma 2.5(b). Now we obtain a new matching
M5 = (M7\{ea}) U {e;} of G— V(M) and a new (proper) k-edge-coloring ¢, of G — (M U M5) such
that f,, is no longer T2-improper at v but T1-improper at v with respect to the new prefeasible
triple (M3, ¥, ¢,). Furthermore, |E1(M, ¢2)| = |E1(M{, ¢o)| + 2 and Ex(M;, ¢2) = |E2(Mg, o)l — 2.
Thus we can consider (M3, @, ¢,) instead.

Subcase 3.3: F, does not contain a linear sequence at b from a to y without i-edge, and F, does
not contain a vertex w” with dy,(w”) =A —1andie @H](w”).

We claim that F, contains a linear sequence S* at b from a to a A-vertex y* such that y* # y
and there is no i-edge in S*. By Lemma 3.2(a), the multi-fan F, contains at least one A-vertex in Hy.
Now if F, does not contain any linear sequence without i-edges from a to any A-vertex in Hq, then
by Lemma 3.2(c), the multi-fan Fj, contains a vertex w” with dy,(w”) = A —1andi e @H](w”),
contradicting the condition of Subcase 3.3. So F, contains a linear sequence S* from a to a vertex y*
such that dy, (y*) = A and there is no i-edge in S*. Note that y* # y, since otherwise we also have
a contradiction to the condition of Subcase 3.3. Thus the claim is proved.

Assume that S* = (a, epy, @', ..., epy+, y*) at b from a to y* (where a’ = y* is possible), and S*
contains no i-edge. Let 6 € @,(y*).

Subcase 3.3.1: 6 = i.
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Since S* contains no i-edge, we apply a shifting in S* from a to y*, color ey, with ¢1(epq ), uncolor
epy+, and rename some color classes of E(H; 4 eq, — epy+) but keep the color i unchanged to match
all colors on boundary edges without producing any improper i-edge by Lemma 2.5(b). By coloring
epy+ with i and recoloring ey, from i to A 4+ pu, we obtain a new matching M; = Mj\{ea} of
G — V(M) and a new (proper) (k + 1)-edge-coloring ¢, of G — (M U M). Then f,, is no longer
T2-improper at v or even T1-improper at v with respect to the new prefeasible triple (M3, EM*, ©2)

with E;&i = {epy} 1fE‘/”* = ¢, and EA“;IZ* = {epy, h} ‘fE;Czl* = {h} (when y* € V(F,)NV(F)). Furthermore

sz c (Er(Mg <P0)U52(M0 ©0)), |El(M§‘,<ﬂz)| > |151(1V1E)k @o)| and |Ex(M3, @2)| = |E2(Mg, @o)l — 2.
Thus we can consider (M3, Ew*, ¢,) instead.

Subcase 3.3.2: 60 # 1.

Since V(H,) is (¢1)u, -elementary, there exists a 6-edge e; incident with the vertex a. Thus by the
similar argument as in the proof of Subcase 3.2, we define a maximal multi-fan at a, denoted by F,
with respect to e; and (¢ )H] in H; +e;, and we have eg,(a, b') = ey, 4¢,,(a, b') = u for any vertex b’
in V(F,)\{a}. Therefore, V(F;)\{a} and V(F,)\{a} are disjoint, since otherwise we have V(F,) € V(F,)
and gi(e1) = 0 € (p1)y, (b/) for some b’ € V(F;) implying y* = b’ € V(F,), which contradicts
Assumption (1). Note that V(F))\{a} must contain a A-vertex in H1, since otherwise Lemma 3.2(d)
and the fact (¢1)y,(e1) = 6 € @,(y*) imply that y* € V(F,), which contradicts dy,(y*) = A. If F,
contains a vertex of V(Hy) that is incident with an i-edge of Oc_ (MUMZ) y(H1) in G — (M U MY), then
we denote the vertex by w* and the i-edge by h*. If F, does not contain any linear sequence to
a A-vertex in H; without i-edge and boundary vertex w*, then by Lemma 3.2(d), the multi-fan F,
contains a vertex z* with i € (¢1)y,(z*) and dy(z*) = A — 1. Since H; is (¢1)u,-elementary, we
have z* = w* and dy,(w*) = A — 1. Thus F; contains a linear sequence S’ = (by, e5, by, ..., e, by)
at a, where by € V(ey), by (with t > 1) is w* if there exists w* with dy,(w*) = A — 1 such
that h* € 85_(MUM1*)(H1) but h* ¢ Ei(Mj, ¢o), and b, is a A-vertex in H; otherwise. Notice that b,
is not incident with any edge in M U M} by our choice of b;. Moreover, if by = w* as defined
above, then by = w™ is not a vertex in V(F,) by the condition of Subcase 3.3. And b, # y
since V(F,)\{a} and V(F,)\{a} are disjoint. Let 8 (8 # i) be a color in @,(b). By Lemma 3.1(b),
we have Py(B,0) = Py«(B,60). We then consider the following two subcases according the set
(V(SN\a}) N (V(S*)\{a}).

We first assume that (V(S")\{a}) N (V(S*)\{a}) C {b;}. If e; ¢ Py(B, 0), then we apply a Kempe
change on Py, y<1(B, 6), uncolor e; and color eq, with 6. If eq € Py(B, 0) and Py(B, 6) meets b, before
a, then we apply a Kempe change on Py 5,1(8, 8), uncolor e; and color ey, with 6. If e; € Py(8, )
and Py«(B, 6) meets by before a, then we uncolor e;, apply a Kempe change on Py« 5,1(8, ), apply a
shifting in S* from a to y*, color ey, with ¢1(esy), and recolor ey« with S. In all three cases above,
eq is colored with a color in [k] and e; is uncolored. Then we apply a shifting in S’ from b; to
b;, color e; with ¢q(e;), and uncolor e;. Denote H, := H; + ey, — €;. Since H, is also k-dense and
x'(Hy) = k, we can rename some color classes of E(H;) but keep the color i unchanged to match
colors on boundary edges except i-edges by Lemma 2.5(b). Finally recolor h* with the color A +
if h* € 0g_ (UM y(H) N E1(Mg, o). Now we obtain a new matching M; = (M{\{ew}) U {e;} of
G — V(M) and a new (proper) (k + 1)-edge-coloring ¢, of G — (M U MJ) such that f,, is no longer
T2-improper at v but T1-improper at v with respect to the new prefeasible triple (M3, E,\‘%, ©2),

where ¢ or {h} or {h*} = E“’2 € Ei(M§, @o). Furthermore, |E1(MJ, ¢2)| > |Ei(M§, ¢o)| and
|[E2(M3, @2)| = |E2(Mg, @o)l — 2. Thus we can con51der (M3, E‘p*, goz) instead.

Then we assume that there exists b; = e (V( )\{a}) (V(S*)\{a}) for some j € [t — 1]
and a* € V(S*). See Fig. 5 for a depiction when by = bj = a* = d'. In this case we assume a*
is the closest vertex to a along S*. Note that b; # b as V(F))\{a} and V(F,)\{a} are disjoint. Let
6 = @i(ej1) € (91)u, (by). By Lemma 3.1(b), Py(B. 6) = Py(B. 6)). If e ¢ Py(B. 6), then we apply
a Kempe change on P[b,bﬂ(ﬁ, 6), uncolor e;; and color ey, with 6;. If ;1 € Py(B, 6;) and Py(B, 6;)
meets b;; 1 before a, then we apply a Kempe change on Py 1, ,;1(8, 6;), uncolor ;1 and color eq, with
;. If ej11 € Py(B, 6;) and Py, (B, 6;) meets bj+1 before a, then we uncolor ej;4, apply a Kempe change
on Plbj_bjm(ﬂ, 6;), apply a shifting in S* from a to b; (i.e., a*), color eq, with ¢1(eps ), and recolor the
edge ep; € Ey, (b, bj) with B. (See Fig. 5(a)-(c).) In all three cases above, ey, is colored with a color
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B 6,

ei(ht) =im At

Fig. 5. One possible operation for b; = a* € (V(§")\{a}) N (V(S)\{a}) in Subcase 3.3, where by = b; = a* = d'. (The edges
of the dashed line represent uncolored edges).

in [k] and e;yq is uncolored. Denote H, := H; + eq, — e;. Then we apply a shifting in S’ from b4
to by, color ejyq with ¢q(ej42), and uncolor the edge e;, and rename some color classes of E(H;) but
keep the color i unchanged to match all colors on boundary edges except i-edges by Lemma 2.5(b).
Finally recolor h* with A + p if h* € ac_(MUMS)(H) N E1(Mg, @o). (See Fig. 5(d).) Now we obtain a
new matching MJ = (Mj\{eg}) U {e;} of G — V(M) and a new (proper) (k + 1)-edge-coloring ¢,
of G — (M U M) such that f,, is no longer T2-improper at v but T1-improper at v with respect to
the new prefeasible triple (M3, EI(CIZ;’ ©2), where @ or {h} or {h*} = E"(% C E1(Mg, ¢o). Furthermore,

[E1(M3, @2) = |E1(Mg, ¢o)l and |E2(M3, ¢2)| = |E2(Mg, o)l — 2. Thus we can consider (MQ‘,E,‘%, ¥2)
instead. The proof is now finished. O
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