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multiplicity µ(G). Vizing and Gupta, independently, proved in the
1960s that the chromatic index of G is at most ∆(G) + µ(G).
The distance between two edges e and f in G is the length of a
shortest path connecting an endvertex of e and an endvertex of f .
A distance-t matching is a set of edges having pairwise distance
at least t . Albertson and Moore conjectured that if G is a simple
graph, using the palette {1, . . . ,∆(G)+ 1}, any precoloring on a
distance-3 matching can be extended to a proper edge coloring
of G. Edwards et al. proposed the following stronger conjecture:
For any graph G, using the palette {1, . . . ,∆(G) + µ(G)}, any
precoloring on a distance-2 matching can be extended to a
proper edge coloring of G. Girão and Kang verified the conjecture
of Edwards et al. for distance-9 matchings. In this paper, we
improve the required distance from 9 to 3 for multigraphs G with
µ(G) ≥ 2.
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. Introduction

In this paper, we follow the book [1] of Stiebitz et al. for notation and terminologies. Graphs in
his paper are finite, undirected, without loops, but may have multiple edges. Let G = (V (G), E(G))
e a graph, where V (G) and E(G) are respectively the vertex set and the edge set of G. Let ∆(G) and
(G) be respectively the maximum degree and the maximum multiplicity of G. Let [k] := {1, . . . , k}

be a palette of k available colors. A k-edge-coloring of G is a map that assigns to every edge of
G a color from the palette [k] such that no two adjacent edges receive the same color (the edge
coloring is also called proper). Denote by Ck(G) the set of all k-edge-colorings of G. The chromatic
index χ ′(G) is the least integer k such that Ck(G) ̸= ∅. The distance between two edges e and f in
G is the length of a shortest path connecting an endvertex of e and an endvertex of f . A distance-t
matching is a set of edges having pairwise distance at least t . Following this definition, a matching
is a distance-1 matching and an induced matching is a distance-2 matching. For a matching M , we
use V (M) to denote the set of vertices saturated by M .

In the 1960s, Vizing [2] and, independently, Gupta [3] proved that ∆(G) ≤ χ ′(G) ≤ ∆(G)+µ(G),
hich is commonly called Vizing’s Theorem. Vizing’s Theorem plays an important role in graph edge
oloring. Using the palette [∆(G) + µ(G)], when can we extend a precoloring on a given edge set
⊆ E(G) to a proper edge coloring of G? Albertson and Moore [4] conjectured that if G is a simple
raph, using the palette [∆(G) + 1], any precoloring on a distance-3 matching can be extended
o a proper edge coloring of G. Edwards et al. [5] proposed a stronger conjecture: For any graph
, using the palette [∆(G) + µ(G)], any precoloring on a distance-2 matching can be extended
o a proper edge coloring of G. Girão and Kang [6] verified the conjecture of Edwards et al. for
istance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs
ith the maximum multiplicity at least 2 as follows.

heorem 1.1. Let G be a multigraph with µ(G) ≥ 2. Using the palette [∆(G)+µ(G)], any precoloring
n a distance-3 matching M in G can be extended to a proper edge coloring of G.

The density of a graph G, denoted Γ (G), is defined as

Γ (G) = max
{

2|E(H)|
|V (H)| − 1

: H ⊆ G, |V (H)| ≥ 3 and |V (H)| is odd
}

if |V (G)| ≥ 3 and Γ (G) = 0 otherwise. Note that for any X ⊆ V (G) with odd |X | ≥ 3, we have
χ ′(G[X]) ≥ 2|E(G[X])|

|X |−1 , where G[X] is the subgraph of G induced by X . Therefore, χ ′(G) ≥ ⌈Γ (G)⌉. So,
esides the maximum degree, the density provides another lower bound on the chromatic index
f a graph. In the 1970s, Goldberg [7] and Seymour [8] independently conjectured that actually
′(G) = ⌈Γ (G)⌉ provided χ ′(G) ≥ ∆(G)+2. The conjecture was commonly referred to as one of the
ost challenging problems in graph chromatic theory [1]. In joint work with Zang, two authors of

his paper, Chen and Jing gave a proof of the Goldberg–Seymour Conjecture recently [9]. We assume
hat the Goldberg–Seymour Conjecture is true in this paper.

We will prove Theorem 1.1 in Section 4. In Section 2 we introduce some new structural proper-
ies of dense subgraphs. In Section 3 we define a general multi-fan and obtain some generalizations
f Vizing’s Theorem.

. Dense subgraphs

Throughout the rest of this paper, we reserve the notation ∆ and µ for the maximum degree and
he maximum multiplicity of the graph G, respectively. For u ∈ V (G), let dG(u) denote the degree of
in G. For a vertex set N ⊆ V (G), let G−N be the graph obtained from G by deleting all the vertices

n N and edges incident with them. For an edge set F ⊆ E(G), let G− F be the graph obtained from
by deleting all the edges in F but keeping their endvertices. If F = {e}, we simply write G − e.

imilarly, we let G + e be the graph obtained from G by adding the edge e to E(G). For disjoint
, Y ⊆ V (G), EG(X, Y ) is the set of edges of G with one endvertex in X and the other in Y . If X = {x},
e simply write EG(x, Y ). For X ⊆ V (G), the edge set ∂G(X) := EG(X, V (G)\X) is called the boundary
f X in G. For a subgraph H of G, we simply write ∂ (H) for ∂ (V (H)).
G G

2



Y. Cao, G. Chen, G. Jing et al. European Journal of Combinatorics 122 (2024) 104037

f

s

s
a
c

i
s
χ
T
(
o
s

L
G

P
C
s

⌈

T
k

L
W

o

Let G be a graph, v ∈ V (G) and ϕ ∈ Ck(G) for some positive integer k. We define ϕ(v) = {ϕ(f ) :
∈ E(G) and f is incident with v} ϕ(v) = [k] \ ϕ(v).We call ϕ(v) the set of colors present at v and

ϕ(v) the set of colors missing at v. For a vertex set X ⊆ V (G), define ϕ(X) =
⋃
v∈X ϕ(v). A vertex

et X ⊆ V (G) is called ϕ-elementary if ϕ(u)∩ϕ(v) = ∅ for every two distinct vertices u, v ∈ X . The
set X is called ϕ-closed if each color on edges from ∂G(X) is present at each vertex of X . Moreover,
the set X is called strongly ϕ-closed if X is ϕ-closed and colors on edges from ∂G(X) are pairwise
distinct. For a subgraph H of G, let ϕH or (ϕ)H be the edge coloring of G restricted on H . We say a
ubgraph H of G is ϕ-elementary, ϕ-closed and strongly ϕ-closed, if V (H) is ϕ-elementary, ϕ-closed
nd strongly ϕ-closed, respectively. Clearly, if H is ϕH-elementary then H is ϕ-elementary, but the
onverse is not true as the edges in ∂G(H) are removed when we consider ϕH .
A subgraph H of G is k-dense if |V (H)| is odd and |E(H)| = (|V (H)| − 1)k/2. Moreover, H is a

maximal k-dense subgraph if there does not exist a k-dense subgraph H ′ containing H as a proper
subgraph. An edge e of a graph G is called a k-critical edge if k = χ ′(G − e) < χ ′(G) = k + 1. A
graph G is called k-critical if χ ′(H) < χ ′(G) = k+ 1 for each proper subgraph H of G. It is easy to
see that a connected graph G is k-critical if and only if every edge of G is k-critical. For e ∈ E(G), let
V (e) denote the set of the two endvertices of e. The diameter of a graph G, denoted diam(G), is the
greatest distance between any pair of vertices in V (G). An i-edge is an edge colored with the color
i.

Lemma 2.1 ([10]). Given a graph G, if χ ′(G) = k ≥ ∆(G)+1, then distinct maximal k-dense subgraphs
of G are pairwise vertex-disjoint.

Lemma 2.2. Let G be a graph with χ ′(G) = k and H be a k-dense subgraph of G. Then H is an induced
subgraph of G with χ ′(H) = Γ (H) = k. Furthermore, for any coloring ϕ ∈ Ck(G) and ψ ∈ Ck(H), H is
strongly ϕ-closed and ψ-elementary.

Proof. Since H is k-dense, by the definition, |E(H)| = |V (H)|−1
2 k. Thus k ≤ Γ (H) ≤ χ ′(H) ≤ χ ′(G) = k

mplying χ ′(H) = Γ (H) = k. Thus H is an induced subgraph of G, since otherwise there exists a
ubgraph H ′ of G with V (H ′) = V (H) such that χ ′(H ′) ≥ Γ (H ′) > k, a contradiction to χ ′(H ′) ≤
′(G) = k. Since H has odd order, a maximum matching in H has size at most (|V (H)| − 1)/2.
herefore, under any k-edge-coloring ϕ of G, each color class in H is a matching of size exactly
|V (H)| − 1)/2. Thus every color in [k] is missing at exactly one vertex of H or it appears exactly
nce in ∂G(H). Consequently, H is strongly ϕ-closed. For any ψ ∈ Ck(H), the same argument as above
hows that H is ψ-elementary. □

The following lemma is a consequence of the Goldberg–Seymour Conjecture.

emma 2.3. Let G be a multigraph and e ∈ E(G). If e is a k-critical edge of G and k ≥ ∆(G)+ 1, then
− e has a k-dense subgraph H containing V (e) such that e is also a k-critical edge of H + e.

roof. Clearly, χ ′(G) = k + 1 and χ ′(G − e) = k. By the assumption of the Goldberg–Seymour
onjecture, χ ′(G) = ⌈Γ (G)⌉ = k + 1. As ⌈Γ (G)⌉ = k + 1, by the definition of density, G has a
ubgraph H∗ of odd order such that |E(H∗)| > (|V (H∗)|−1)k/2. Thus χ ′(G) ≥ χ ′(H∗) > 2|E(H∗)|

|V (H∗)|−1 = k.
Since χ ′(G − e) = k, it follows that e ∈ E(H∗). On the other hand, we have 2|E(H∗

−e)|
|V (H∗−e)|−1 ≤

Γ (H∗
− e)⌉ ≤ χ ′(H∗

− e) ≤ χ ′(G − e) = k, which in turn gives |E(H∗
− e)| ≤ (|V (H∗)| − 1)k/2.

hus |E(H∗
− e)| = (|V (H∗)| − 1)k/2. Then k ≤ ⌈Γ (H∗

− e)⌉ ≤ χ ′(H∗
− e) ≤ χ ′(G − e) = k and

+ 1 ≤ ⌈Γ (H∗)⌉ ≤ χ ′(H∗) ≤ χ ′(G) = k+ 1, which implies that k = χ ′(H∗
− e) < χ ′(H∗) = k+ 1.

Thus H := H∗
− e is a k-dense subgraph containing V (e), and e is also a k-critical edge of H + e. □

emma 2.4. Let G be a multigraph with χ ′(G) = k + 1 ≥ ∆(G) + 2 and e be a k-critical edge of G.
e have the following statements.
(a) G− e has a unique maximal k-dense subgraph H containing V (e), and e is also a k-critical edge

f H + e.
(b) For any ϕ ∈ Ck(G− e), H is ϕH-elementary and strongly ϕ-closed.

′
(c) If χ (G) = ∆(G)+µ(G), then∆(H+e) = ∆(G), µ(H+e) = µ(G) and diam(H+e) ≤ diam(H) ≤ 2.

3
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roof. By Lemma 2.3, G− e contains a k-dense subgraph H containing V (e) and e is also a k-critical
dge of H+ e. We may assume that H is a maximal k-dense subgraph, and the uniqueness of H is a
irect consequence of Lemma 2.1. This proves (a). By applying Lemma 2.2 on G−e, we immediately
ave statement (b).
For (c), by (a) and Vizing’s Theorem, ∆(G)+µ(G) = χ ′(G) = χ ′(H+ e) ≤ ∆(H+ e)+µ(H+ e) ≤

(G)+µ(G) implying that ∆(H + e) = ∆(G) = ∆ and µ(H + e) = µ(G) = µ. For any ϕ ∈ Ck(G− e),
H is ϕH-elementary by (b). For any x ∈ V (H), with respect to ϕH , all the colors missing at other
vertices of H present at x. Note that k = ∆ + µ − 1. For each vertex v ∈ V (H), we have that
|ϕH (v)| = k−dH (v) ≥ k−∆ = µ−1 if v /∈ V (e), and |ϕH (v)| = k−dH (v)+1 ≥ k−∆+1 ≥ (µ−1)+1
f v ∈ V (e). Denote |V (H)| by n. We then have dH (x) ≥ |

⋃
v∈V (H),v ̸=x ϕH (v)| ≥ (k−∆)(n− 1)+ 1 =

µ− 1)(n− 1)+ 1.
Since µ(H) ≤ µ(G) = µ, we get |NH (x)| ≥

dH (x)
µ

≥
(µ−1)(n−1)+1

µ
, where NH (x) is the neighbor set

f x in H . Since µ ≥ 2, we have (µ−1)(n−1)+1
µ

≥
n
2 . Hence, every vertex in H is adjacent to at least

alf vertices in H . Consequently, every two vertices of H share a common neighbor, which in turn
ives diam(H) ≤ 2. This proves (c). □

The following technical lemma will be used several times in our proof.

Lemma 2.5. Let G be a graph with χ ′(G) = k and H be a k-dense subgraph of G. Let ψ and ϕ
espectively be k-edge-colorings of H and G − E(H) such that colors on edges in ∂G(H) are pairwise
distinct under ϕ. Then the following two statements hold.

(a) If k ≥ ∆(G), then by renaming color classes of ψ on E(H), we can obtain a (proper)
k-edge-coloring of G by combining ϕ and the modified coloring based on ψ .

(b) For any fixed color i ∈ [k], if k ≥ ∆(G)+1, then by renaming other color classes of ψ on E(H) we
can obtain a coloring of G such that all color classes are matchings except the i-edges. The only exception
is as follows: exactly one i-edge from E(H) and exactly one i-edge from ∂G(H) share an endvertex.

Proof. Since χ ′(G) = k and H is k-dense, χ ′(H) = k and H is ψ-elementary by Lemma 2.2. We first
show that statement (b) is a consequence of statement (a). Let Mi be the set of edges of G colored
by i. Then we know that |Mi ∩ E(H)| = 1

2 (|V (H)| − 1) by H being ψ-elementary. Thus H − Mi is
k − 1)-dense. Now the first part of statement (b) is a consequence of statement (a) by having
− Mi in the place of G. The second part of statement (b) follows easily by the assumption that

edges in ∂G(H) are pairwise distinct under ϕ. Thus we only show statement (a) below.
We permute some color names of ψ step by step to get a k-edge-coloring ψ∗ of H such that

(v) ⊆ ψ∗(v) for any v ∈ V (H). Then the combination of ψ∗ and ψ gives a desired k-edge-
oloring of G. Let w ∈ V (H) and i ∈ ψ(w) ∩ ϕ(w). By the assumptions of statement (a) and H
being ψ-elementary, we have the following properties:

|ψ(w)| = k− dH (w) ≥ ∆(G)− dH (w) ≥ dG−E(H)(w) = |ϕ(w)|, (1)

i ̸∈ ψ(u) ∪ ϕ(u) for any u ∈ V (H) \ {w}. (2)

Let v ∈ V (H) such that ϕ(v) \ ψ(v) ̸= ∅. Let s = |ϕ(v) \ ψ(v)|, and ϕ(v) \ ψ(v) = {i1, . . . , is}.
y (1), ψ(v) \ ϕ(v) has a subset {j1, . . . , jt} of t distinct elements with t ≥ s. We now modify ψ as
ψ1 by exchanging the color names ip and jp for each p ∈ [s]. The graph H is still ψ1-elementary by
Lemma 2.2 and now we have ϕ(v) ⊆ ψ1(v). By (2), we know that |ψ1(u) ∩ ϕ(u)| ≥ |ψ(u) ∩ ϕ(u)|
or any u ∈ V (H) \ {v}. Repeating this process at most another |V (H)| − 1 times gives us a desired
oloring ψ∗ of H . □

. Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminologies. Let ϕ be a k-edge-coloring of G using
he palette [k]. Given two distinct colors α, β , an (α, β)-chain is a component of the subgraph
nduced by edges assigned color α or β in G, which is either an even cycle or a path. We call the
operation that swaps the colors α and β on an (α, β)-chain the Kempe change. Clearly, the resulting
4
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Fig. 1. (a) The Kempe change on one (α, β)-chain Pu(α, β) or Pv(α, β); (b) The Kempe change on one subchain P[a,b](α, β).
The dashed lines represent missing colors at vertices).

oloring after a Kempe change is still a (proper) k-edge-coloring. Furthermore, we say that a chain
as endvertices u and v if the chain is a path connecting vertices u and v. For a vertex v ∈ V (G), we
enote by Pv(α, β) the unique (α, β)-chain containing the vertex v. For two vertices u, v ∈ V (G), the

two chains Pu(α, β) and Pv(α, β) are either identical or disjoint. (See Fig. 1(a).) More generally, for
n (α, β)-chain, if it is a path and it contains two vertices a and b, we let P[a,b](α, β) be its subchain
ith endvertices a and b. The operation of swapping colors α and β on the subchain P[a,b](α, β) is
till called a Kempe change, but the resulting coloring may no longer be a proper edge coloring.
See Fig. 1(b).)

Let G be a graph with an edge e ∈ EG(x, y), and ϕ be a proper edge coloring of G or G − e. A
sequence F = (x, e0, y0, e1, y1, . . . , ep, yp) with integer p ≥ 0 consisting of vertices and distinct
edges is called a (general) multi-fan at x with respect to e and ϕ if e0 = e, y0 = y, for each i ∈ [p],
ei ∈ EG(x, yi) and there is a vertex yj with 0 ≤ j ≤ i−1 such that ϕ(ei) ∈ ϕ(yj). Note that yi = yj can
appen for distinct i and j in F , and that the definition of a multi-fan in this paper is slightly general
han the one in [1] since the edge e may be colored in G. We say a multi-fan F is maximal if there
s no multi-fan containing F as a proper subsequence. Similarly, we say a multi-fan F is maximal
without any i-edge if F does not contain any i-edge and there is no multi-fan without any i-edge
containing F as a proper subsequence. The set of vertices and edges contained in F are denoted by
V (F ) and E(F ), respectively. Let eG(x, y) = |EG(x, y)| for x, y ∈ V (G). Note that a multi-fan may have
repeated vertices. By eF (x, yi) for some yi ∈ V (F ) we mean the number of edges joining x and yi in
F .

Let s ≥ 0 be an integer. A linear sequence S = (y0, e1, y1, . . . , es, ys) at x from y0 to ys in G is
a sequence consisting of distinct vertices and distinct edges such that ei ∈ EG(x, yi) for i ∈ [s] and
ϕ(ei) ∈ ϕ(yi−1) for i ∈ [s]. Clearly for any yj ∈ V (F ), the multi-fan F contains a linear sequence
t x from y0 to yj (take a shortest sequence (y0, e1, y1, . . . , ej, yj) of vertices and edges with the
roperty that ei ∈ EG(x, yi) ∩ E(F ) for i ∈ [j] and ϕ(ei) ∈ ϕ(yi−1) for i ∈ [j]). The following local

edge recoloring operation will be used in our proof. A shifting from yi to yj in the linear sequence
is an operation that replaces the current color of et by the color of et+1 for each i ≤ t ≤ j − 1
ith 1 ≤ i < j ≤ s. Note that the shifting does not change the color of ej, where ej joins x and yj,
o the resulting coloring after a shifting is not a proper coloring. In our proof we will uncolor or
ecolor the edge ej to make the resulting coloring proper. We also denote by V (S) and E(S) the set
f vertices and the set of edges contained in the linear sequence S, respectively. A ∆-vertex in G is
vertex with degree exactly ∆ in G. A ∆-neighbor of a vertex v in G is a neighbor of v that is a
-vertex in G.

emma 3.1 ([1,11]). Let G be a graph, e ∈ EG(x, y) be a k-critical edge and ϕ ∈ Ck(G−e) with k ≥ ∆(G).
et F = (x, e, y0, e1, y1, . . . , ep, yp) be a multi-fan at x with respect to e and ϕ, where y0 = y. Then the
ollowing statements hold.

(a) V (F ) is ϕ-elementary, and each edge in E(F ) is a k-critical edge of G.
(b) If α ∈ ϕ(x) and β ∈ ϕ(y ) for 0 ≤ i ≤ p, then P (α, β) = P (α, β).
i x yi

5
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(c) If F is a maximal multi-fan at x with respect to e and ϕ, then x is adjacent in G to at least
′(G)− dG(y)− eG(x, y)+ 1 vertices z in V (F )\{x, y} such that dG(z)+ eG(x, z) = χ ′(G).

Lemma 3.2. Let G be a multigraph with maximum degree ∆ and maximum multiplicity µ ≥ 1. Let
e ∈ EG(x, y) and k = ∆+ µ− 1.

Assume that χ ′(G) = k+ 1, e is k-critical and ϕ ∈ Ck(G− e). Let F = (x, e, y0, e1, y1, . . . ,
ep, yp) be a multi-fan at x with respect to e and ϕ, where y0 = y. Then the following statements hold.

(a) If F is maximal, then x is adjacent in G to at least ∆ + µ − dG(y) − eG(x, y) + 1 vertices z in
V (F )\{x, y} such that dG(z) = ∆ and eG(x, z) = µ.

(b) If F is maximal, dG(y) = ∆ and x has only one ∆-neighbor z ′ in G from V (F )\{x, y}, then
eF (x, z) = eG(x, z) = µ for all z ∈ V (F )\{x} and dG(z) = ∆− 1 for all z ∈ V (F )\{x, y, z ′}.

(c) For i ∈ [k] and i /∈ ϕ(y), if F is maximal without any i-edge, then F not containing any ∆-vertex
f G from V (F )\{x, y} implies that dG(y) = ∆, and there exists a vertex z∗ ∈ V (F )\{x, y} with i ∈ ϕ(z∗)
uch that dG(z∗) = ∆− 1.

Assume that χ ′(G) = k, ϕ ∈ Ck(G) and V (G) is ϕ-elementary. Then the following statement holds.
(d) If a multi-fan F ′ is maximal at x with respect to e and ϕ in G, then x having no ∆-neighbor in G

from V (F ′) implies that dG(z) = ∆−1 for all z ∈ V (F ′)\{x} and every edge in F ′ is colored by a missing
color at some vertex in V (F ′). Furthermore, for i ∈ [k] and ϕ(e) /∈ ϕ(V (F ′)), if F ′ is maximal without
ny i-edge, then F ′ not containing any ∆-vertex in G from V (F ′)\{x} implies that there exists a vertex
∗
∈ V (F ′)\{x} with i ∈ ϕ(z∗) such that dG(z∗) = ∆− 1.

roof. For statements (a), (b) and (c), V (F ) is ϕ-elementary by Lemma 3.1(a). As F is maximal, for
ny α ∈ ϕ(V (F )), we know that there exists z ∈ V (F ) such that ϕ(xz) = α. As a consequence, we
now that

∑
z∈V (F )\{x} eF (x, z) = 1+

∑
z∈V (F )\{x} |ϕ(z)|, where the term 1 counts the uncolored edge

e. Statement (a) holds easily by Lemma 3.1(c). Assume that there are q distinct vertices in V (F )\{x}.
For (b), we have

qµ ≥

∑
z∈V (F )\{x}

eG(x, z) ≥
∑

z∈V (F )\{x}

eF (x, z) = 1+
∑

z∈V (F )\{x}

|ϕ(z)|

≥ 1+ (k−∆+ 1)+ (k−∆)+ (q− 2)(k−∆+ 1) = q(k−∆+ 1) = qµ,

s |ϕ(y)| = k − ∆ + 1, |ϕ(z ′)| = k − ∆ and |ϕ(z)| ≥ k − ∆ + 1 for z ∈ V (F )\{x, y, z ′}. Therefore,
F (x, z) = eG(x, z) = µ for each z ∈ V (F )\{x} and dG(z) = ∆ − 1 for each z ∈ V (F )\{x, y, z ′}. This
roves (b).
Next for (c), suppose first that i ̸∈ ϕ(z∗) for any z∗ ∈ V (F )\{x}. Then F is maximal without any

-edge implies that F is maximal. By (a), x has at least one ∆-neighbor in F from V (F )\{x, y}. This
ives a contradiction to the assumption that F does not contain any ∆-vertex of G from V (F )\{x, y}.
hus we have i ∈ ϕ(z∗) for some z∗ ∈ V (F )\{x}. As i ̸∈ ϕ(y) by the assumption in the statement, we
now that z∗ ̸= y. Since V (F ) is ϕ-elementary, x must be incident with an i-edge. Since now there
s no i-edge in F and i ∈ ϕ(z∗), we have

qµ ≥

∑
z∈V (F )\{x}

eG(x, z) ≥
∑

z∈V (F )\{x}

eF (x, z) = 1+ (|ϕ(z∗)| − 1)+
∑

z∈V (F )\{x,z∗}

|ϕ(z)|

=

∑
z∈V (F )\{x}

|ϕ(z)| ≥ 1+ k−∆+ (q− 1)(k−∆+ 1) = q(k−∆+ 1) = qµ.

herefore, dG(y) = ∆ and dG(z) = ∆− 1 for each z ∈ V (F )\{x, y}. This proves (c).
Now for the first part of (d), as ϕ(e) may be contained in ϕ(V (F ′)), we have

qµ ≥

∑
z∈V (F ′)\{x}

eG(x, z) ≥
∑

z∈V (F ′)\{x}

eF ′ (x, z) ≥
∑

z∈V (F ′)\{x}

|ϕ(z)|

≥ q(k−∆+ 1) = qµ,

s |ϕ(z)| ≥ k − ∆ + 1 for z ∈ V (F ′)\{x}. Therefore, eF ′ (x, z) = eG(x, z) = µ and dG(z) = ∆ − 1 for
all z ∈ V (F ′)\{x}, and every edge in F ′ is colored by a missing color at some vertex in V (F ′). For
6
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he furthermore part of (d), we also have that there exists a vertex z∗ ∈ V (F ′)\{x} with i ∈ ϕ(z∗),
ince otherwise, x has at least one ∆-neighbor in F ′ from V (F ′)\{x, y}, a contradiction. Since now
(e) /∈ ϕ(V (F ′)) and there is no i-edge in F ′ with i ∈ ϕ(z∗), we have

qµ ≥

∑
z∈V (F ′)\{x}

eG(x, z) ≥
∑

z∈V (F ′)\{x}

eF ′ (x, z) = 1+ (|ϕ(z∗)| − 1)+
∑

z∈V (F ′)\{x,z∗}

|ϕ(z)|

=

∑
z∈V (F ′)\{x}

|ϕ(z)| ≥ q(k−∆+ 1) = qµ.

herefore, dG(z) = ∆− 1 for each z ∈ V (F ′)\{x}. This proves (d). □

Let G be a graph with maximum degree ∆ and maximum multiplicity µ. Berge and Fournier [12]
trengthened the classical Vizing’s Theorem by showing that if M∗ is a maximal matching of G, then
′(G − M∗) ≤ ∆ + µ − 1. An edge e ∈ EG(x, y) is fully G-saturated if dG(x) = dG(y) = ∆ and

eG(x, y) = µ. For every graph G with χ ′(G) = ∆+µ, observe that G contains a (∆+µ− 1)-critical
subgraph H with χ ′(H) = ∆+µ and ∆(H) = ∆ by Lemma 2.4(c), and G contains at least two fully
G-saturated edges by Lemma 3.2(a).

Lemma 3.3. For a fixed matching M of a graph G, if µ(G) ≥ 2 and χ ′(G−M) = ∆(G)+ µ(G), then
there exists a matching M∗ of G−V (M) such that χ ′(G− (M ∪M∗)) = ∆(G)+µ(G)−1 =: k and every
edge e ∈ M∗ is k-critical and fully G-saturated in the graph He + e, where He is the unique maximal
k-dense subgraph of G− (M ∪M∗) containing V (e).

Proof. Let M∗ be a matching of G− V (M) consisting of fully G-saturated edges. We further choose
M∗ such that M∗ is maximal. Then G− (M∪M∗) has no fully G-saturated edge by the maximality of
M∗. We claim that χ ′(G− (M∪M∗)) = k. For otherwise, we have χ ′(G− (M∪M∗)) = k+1 = ∆+µ.
We let G′ be a (∆+µ− 1)-critical subgraph of G. Clearly, we have ∆(G′) = ∆. Let e ∈ EG′ (x, y) such
that dG′ (x) = ∆. By considering a maximal multi-fan at x with respect to a coloring ϕ ∈ Ck(G′

− e)
and e, Lemma 3.2(a) implies that x has a ∆-neighbor z in G′ for which eG′ (x, z) = µ. Thus any edge
in EG′ (x, z) is a fully G-saturated edge, a contradiction to the choice of M∗.

Thus χ ′(G− (M∪M∗)) = k. If there exists e ∈ M∗ such that χ ′(G− (M∪M∗
\{e})) = k, we remove

e out of M∗. Thus we may assume that for each e ∈ M∗, χ ′(G− (M ∪M∗
\{e})) = k+ 1, i.e., each e

is a k-critical edge of G − (M ∪ M∗
\{e}). By Lemma 2.4(a), there exists a unique maximal k-dense

subgraph He of G− (M ∪M∗) such that V (e) ⊆ V (He) and e is also a k-critical edge of He + e. Notice
hat ∆(He + e) = ∆ and µ(He + e) = µ by Lemma 2.4(c). It is now only left to show that each
∈ M∗ is full G-saturated in the graph He + e. Suppose on the contrary that there exists e ∈ M∗

uch that e is not fully G-saturated in He + e.
Since e is a k-critical edge of G − (M ∪ M∗

\{e}), we let ϕ ∈ Ck(G − (M ∪ M∗)). By Lemma 2.2,
e is ϕHe-elementary and strongly ϕ-closed. Let V (e) = {x, y} and Fx be a maximal multi-fan at x
ith respect to e and ϕHe . By Lemma 3.2(a), x has a ∆-neighbor, say x1, in He from V (Fx)\{x, y}. By
emma 3.1(a), the edge exx1 ∈ EG(x, x1) in Fx is also a k-critical edge of He + e. By Lemma 3.2(a)
gain, in a maximal multi-fan Fx1 at x1 with respect to exx1 there exists a fully G-saturated edge e′.
et M ′

= (M∗
\{e})∪ {e′}. Since every vertex of V (M ∪M∗) has degree less than ∆ in G− (M ∪M∗),

t follows that M ∪M ′ is a matching of G. Let He′ = He + e− e′. Clearly, He′ is also k-dense. Applying
emma 3.1(a) with respect to the multi-fan Fx1 , we see that e′ is also a k-critical edge of He + e.
hus χ ′(He′ ) = k and He′ is also an induced subgraph of G− (M ∪M ′) by Lemma 2.2. Moreover, He′

s a maximal k-dense subgraph of G − (M ∪ M ′), since otherwise there exists a k-dense subgraph
′ containing He′ as a proper subgraph which implies that the k-dense subgraph H ′

+ e′ − e is also
k-dense subgraph containing He as a proper subgraph in G − (M ∪ M∗), a contradiction to the
aximality of He. As He is strongly ϕ-closed, colors on edges of ∂G−(M∪M ′)(He′ ) = ∂G−(M∪M∗)(He) are
airwise distinct. Applying Lemma 2.5(a) on any k-edge-coloring of He′ and the k-edge-coloring of
− (M ∪M ′

∪ E(He′ )), we have χ ′(G− (M ∪M ′)) = k. In order to claim that we can replace e by e′
n M∗, and so repeat the same process for every edge f of M∗ that is not fully G-saturated in Hf + f ,
here Hf is the maximal k-dense subgraph of G− (M ∪M∗) with V (f ) ⊆ V (Hf ), we discuss that this

∗
eplacement will not affect the properties of other edges in M as follows.

7
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By Lemmas 2.1 and 2.2, maximal k-dense subgraphs of G − (M ∪ M∗) are induced and vertex-
isjoint. Thus for any f ∈ M∗

\{e}, either V (Hf ) ∩ V (He) = ∅ or Hf = He. If V (Hf ) ∩ V (He) = ∅, then
f is still the induced maximal k-dense subgraph of G− (M ∪M ′) containing V (f ) and f is k-critical
n Hf + f . If Hf = He, then as He′ is an induced maximal k-dense subgraph of G − (M ∪ M ′) with
(He) = V (He′ ), it follows that Hf + e− e′ = He′ is the maximal k-dense subgraph of G− (M ∪M ′)
ontaining V (f ) and f is k-critical in Hf + e − e′ + f by Lemma 2.4(a). As V (f ) ∩ V (e) = ∅ and
(f ) ∩ V (e′) = ∅, the property that whether or not f is fully G-saturated in Hf + f is not changed
fter replacing e by e′ in M∗. Therefore, by repeating the replacement process as for the edge e
bove for every edge f of M∗ that is not fully G-saturated in Hf + f , we may assume that each edge
∈ M∗ is fully G-saturated in He + e. The proof is completed. □

. Proof of Theorem 1.1

roof. Let k = ∆ + µ − 1 and Φ : M → [∆ + µ] be a given precoloring on M . Note that
′(G−M) ≤ k+1 by Vizing’s Theorem. The conclusion of Theorem 1.1 holds easily if χ ′(G−M) ≤ k
ith the reason as follows. For any k-edge-coloring ψ of G−M , if there exists e ∈ E(G−M) such
hat e is adjacent in G to an edge f ∈ M (maybe V (e) = V (f )) and ψ(e) = Φ(f ), we recolor each
uch e with the color ∆ + µ and get a new coloring ψ ′ of G − M . Under ψ ′, the edges colored by
+µ form a matching in G since M is a distance-3 matching. Thus the combination of Φ and ψ ′ is
(k+1)-edge-coloring of G. Therefore, in the remainder of the proof, we assume χ ′(G−M) = k+1.
Let M∆+µ be the set of edges precolored with ∆+µ in M under Φ . For any uncolored matching

∗
⊆ G−V (M) and any (k+1)-edge-coloring or k-edge-coloring ϕ of G−(M∪M∗), denote the∆+µ

olor class of ϕ by EϕM∗ . In particular, EϕM∗ = ∅ if ϕ is a k-edge-coloring. We introduce the following
otation. For f ∈ EG(u, v) ∩ M , if there exists f1 ∈ E(G − (M ∪ M∗)) such that ϕ(f1) = Φ(f ) and
(f1) ∩ V (f ) = {u} (V (f1) = V (f ) = {u, v}, respectively), we call f T1-improper (Type 1 improper)
t u (at u and v, respectively) if V (f1) ∩ V (M∗) = ∅, and T2-improper (Type 2 improper) at u if
(f1) ∩ V (M∗) ̸= ∅. If f is T1-improper or T2-improper at u, we say that f is improper at u. Define

E1(M∗, ϕ) = {f1 ∈ E(G− (M ∪M∗)) : f1 is adjacent in G to a T1-improper edge},
E2(M∗, ϕ) = {f1 ∈ E(G− (M ∪M∗)) : f1 is adjacent in G to a T2-improper edge}.

bserve that E1(M∗, ϕ)∪E2(M∗, ϕ) is a matching since M is a distance-3 matching in G. We call the
riple (M∗, EϕM∗ , ϕ) prefeasible if the following conditions are satisfied:

(a) M∆+µ ∪M∗
∪ EϕM∗ is a matching;

(b) for each e ∈ M∗ such that e is adjacent in G to an edge of E2(M∗, ϕ), e is k-critical and
fully G-saturated in the graph He + e, where He is the unique maximal k-dense subgraph
of G− (M ∪M∗) containing V (e);

(c) the colors on edges of ∂G−(M∪M∗)(He) are all distinct under ϕ.

Let (M∗, EϕM∗ , ϕ) be a prefeasible triple. Since M ∪ M∗ is a matching in G, if (M∗, EϕM∗ , ϕ) also
atisfies Condition (d): |E1(M∗, ϕ)| = |E2(M∗, ϕ)| = 0, then by assigning the color ∆ + µ to all
dges of M∗, we obtain a (proper) (k+1)-edge-coloring of G, where the (k+1)-edge-coloring is the
ombination of the precoloring Φ on M , the coloring using the color ∆+µ on M∗, and the coloring
of G − (M ∪ M∗). Thus we define a feasible triple (M∗, EϕM∗ , ϕ) as one that satisfies Conditions

a)-(d).
The rest of the proof is devoted to showing the existence of a feasible triple (M∗, EϕM∗ , ϕ) of

. Our main strategy is to first fix a particular prefeasible triple (M∗

0 , E
ϕ0
M∗

0
, ϕ0), then modify it

tep by step into a feasible triple (M∗, EϕM∗ , ϕ). In particular, we will choose M∗

0 and ϕ0 such that
ϕ0
M∗

0
= ∅. At the end, when we modify ϕ0 into ϕ, we will ensure that the ∆+ µ color class of G is

∆+µ ∪M∗
∪ E1(M∗

0 , ϕ0)∪ E2(M∗

0 , ϕ0). The process is first to modify M∗

0 and ϕ0 at the same time to
educe the number of T2-improper edges.
By Lemma 3.3, there exists a matching M∗

0 of G−V (M) such that χ ′(G− (M ∪M∗

0 )) = k and each
dge e ∈ M∗

0 is k-critical and fully G-saturated in He + e, where He is the unique maximal k-dense
ubgraph of G−(M∪M∗) containing V (e). By Lemmas 2.1 and 2.2, H is induced in G−(M∪M∗) with
0 e 0

8
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Fig. 2. Operations I, II and III in Case 1. (The edges of the dashed line represent uncolored edges).

χ ′(He) = k, and He and He′ are either identical or vertex-disjoint for any e′ ∈ M∗

0 \ {e}. Moreover,
y Lemma 2.4, diam(He+ e) ≤ diam(He) ≤ 2, and He is (ϕ0)He-elementary and strongly ϕ0-closed in
− (M ∪M∗

0 ). As χ
′(G−M) = k+1, we have |M∗

0 | ≥ 1. Let ϕ0 be a k-edge-coloring of G− (M ∪M∗

0 ).
hus Eϕ0M∗

0
= ∅. Obviously, the triple (M∗

0 ,∅, ϕ0) is prefeasible, which we take as our initial triple.
For (M∗

0 ,∅, ϕ0), if |E1(M
∗

0 , ϕ0)| = |E2(M∗

0 , ϕ0)| = 0, then we are done. If |E1(M∗

0 , ϕ0)| ≥ 1 and
E2(M∗

0 , ϕ0)| = 0, then we recolor each edge in E1(M∗

0 , ϕ0) with the color ∆ + µ to produce a
k + 1)-edge-coloring ϕ1 of G − (M ∪ M∗

0 ), since Eϕ0M∗
0
= ∅ and E1(M∗

0 , ϕ0) is a matching. Then as
E1(M∗

0 , ϕ1)| = |E2(M∗

0 , ϕ1)| = 0 and M∆+µ ∪M∗

0 ∪ Eϕ1M∗
0
is a matching, it follows that the new triple

M∗

0 , E1(M
∗

0 , ϕ0), ϕ1) is feasible. Then we are also done.
Therefore, we assume that |E1(M∗

0 , ϕ0)| ≥ 0 and |E2(M∗

0 , ϕ0)| ≥ 1. Recall that for each e ∈ M∗

0 ,
is fully G-saturated in He + e. Thus we have the following observation: for an edge fuv ∈ M with
(fuv) = {u, v}, if {u, v} ∩ V (He) = ∅ for any e ∈ M∗

0 , then fuv cannot be a T2-improper edge.
Since |E2(M∗

0 , ϕ0)| ≥ 1, we consider one T2-improper edge in M , say fuv with V (fuv) = {u, v}.
uppose that fuv is T2-improper at u and Φ(fuv) = i ∈ [k] (as ϕ0 is a k-edge-coloring, i ̸= k + 1 =

+ µ). Then there exist exy ∈ EG(x, y) ∩ M∗

0 and a maximal k-dense subgraph H of G − (M ∪ M∗

0 )
uch that V (exy) ⊆ V (H) and fuv and exy are both adjacent in G to an i-edge eyu ∈ EH (y, u). Since M
s a distance-3 matching and diam(H) ≤ 2, we have V (H) ∩ V (M \ {fuv}) = ∅. We will modify ϕ0
nto a new coloring such that fuv is not T2-improper at u under this new coloring and that no other
dge of M∗

0 is changed into a new T2-improper edge. We consider the three cases below regarding
he location of fuv with respect to H .

Case 1: fuv is not improper at v, or fuv is T1-improper at v but v /∈ V (H).
Let Fx be a maximal multi-fan at x with respect to exy and (ϕ0)H in H + exy. There exist at least

one ∆-vertex in V (Fx) \ {x, y} by Lemma 3.2(a) and a linear sequence at x from y to this ∆-vertex
in Fx. We consider two subcases as follows.

Subcase 1.1: V (Fx) \ {x, y} has a ∆-vertex x1 and there is a linear sequence S at x from y to x1
such that S contains no i-edge or S contains no vertex w such that w is incident with an i-edge of
∂G−(M∪M∗

0 )
(H).

Let S = (y, exy′ , y′, . . . , exx1 , x1) be the linear sequence (where y′ = x1 is possible). We apply
Operation I as follows: apply a shifting in S from y to x1, color exy with ϕ0(exy′ ), uncolor exx1 ,
and replace exy by exx1 in M∗

0 . See Fig. 2(a). Since x1 is not incident with any edge in M ∪ M∗

0 ,
M∗

1 := (M∗

0\{exy})∪{exx1} is a matching. Denote H1 := H+exy−exx1 . Let ψ be the k-edge coloring of H1
after Operation I. Note that for any vertex z ∈ V (H1) that is incident with an edge of ∂G−(M∪M∗

1 )
(H1),

if ψ(z) ̸= (ϕ0)H (z), then z ∈ V (S). By the condition of Subcase 1.1 and Operation I, there is no
such vertex w such that w is incident with both an i-edge of E(S) and an i-edge of ∂G−(M∪M∗

1 )
(H1).

hus we can rename some color classes of ψ but keep the color i unchanged to match all colors
n edges of ∂G−(M∪M∗

1 )
(H1). In this way we obtain a (proper) k-edge-coloring ϕ1 of G− (M ∪M∗

1 ) by
Lemma 2.5(b).
9
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We claim that (M∗

1 ,∅, ϕ1) is a prefeasible triple. As M∆+µ ∪ M∗

1 is a matching, we verify that
∗

1 and ϕ1 satisfy the corresponding conditions. Clearly H1 is k-dense with V (H1) = V (H) and
∂G−(M∪M∗

1 )
(H1) = ∂G−(M∪M∗

0 )
(H) and χ ′(H1) = χ ′(H) = k, and exx1 is k-critical and fully G-saturated

in H1 + exx1 . Furthermore, as distinct maximal k-dense subgraphs are vertex-disjoint we know that
each edge e ∈ M∗

1 \ {exx1} is still contained in a k-dense subgraph of G − (M ∪ M∗

1 ) such that e is
k-critical and fully G-saturated in the graph He + e if e is adjacent in G to an edge of E2(M∗

1 , ϕ1),
where He is the unique maximal k-dense subgraph of G− (M ∪M∗

0 ) containing V (e) if He and H1 are
vertex-disjoint, and He = H1 otherwise. Since ϕ1 is a k-edge-coloring of G− (M∪M∗

1 ), He is strongly
ϕ1-closed for each e ∈ M∗

1 . Therefore, (M
∗

1 ,∅, ϕ1) is a prefeasible triple.
Next, we claim that |E2(M∗

1 , ϕ1)| = |E2(M∗

0 , ϕ0)|−1. Note that under ϕ1, we still have ϕ1(eyu) = i.
Since exy, eyu ∈ E(H1), exx1 ∈ M∗

1 and exx1 is not adjacent to eyu in G − (M ∪ M∗

1 ), we see that now
fuv is no longer T2-improper at u but T1-improper at u with respect to M∗

1 and ϕ1. For any edge
f ∈ M \ {fuv}, since both x and x1 are ∆-vertices of H + exy and V (H1) ∩ V (M \ {fuv}) = ∅, we see
that the distance between f and exx1 in G − (M ∪ M∗

1 ) is at least 2. Thus the property of f being
T1-improper or T2-improper is not changed under M∗

1 and ϕ1. Thus the new triple (M∗

1 ,∅, ϕ1) is
prefeasible with |E1(M∗

1 , ϕ1)| = |E1(M∗

0 , ϕ0)| + 1 and |E2(M∗

1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1, and so we can
consider (M∗

1 ,∅, ϕ1) instead.
Subcase 1.2: For any ∆-vertex in V (Fx) \ {x, y}, any linear sequence from y to this ∆-vertex

contains both an i-edge hi and a vertex w such that w is incident with an i-edge h of ∂G−(M∪M∗
0 )
(H).

Let F ⊆ Fx be the maximal multi-fan at x without any i-edge with respect to exy and (ϕ0)H . By the
condition of Subcase 1.2, F does not contain any ∆-vertex from V (F )\{x, y} in H . By Lemma 3.2(c),
there exists a vertex z∗ ∈ V (F )\{x, y} with i ∈ (ϕ0)H (z∗) and dH (z∗) = ∆ − 1. Since V (Fx) is (ϕ0)H-
lementary by Lemma 3.1(a) and every color on edges of ∂G−(M∪M∗

0 )
(H) under ϕ0 is a missing color

t some vertex of H under (ϕ0)H , it follows that z∗ = w, i.e., dH (w) = ∆− 1 and dG−(M∪M∗
0 )
(w) = ∆.

hus the i-edge h is the only edge incident with w from ∂G−(M∪M∗
0 )
(H), and w is not adjacent in G to

any edge from M∪M∗

0 . Let S = (y, exy′ , y′, . . . , exx1 , x1) be a linear sequence at x from y to x1, where
x1 is a ∆-vertex. Notice that w is in S by the condition of Subcase 1.2. We consider the following
two subcases according whether the boundary i-edge h belongs to E1(M∗

0 , ϕ0).
Subcase 1.2.1: h /∈ E1(M∗

0 , ϕ0), i.e., h is not adjacent in G to any precolored i-edge in M .
Let exw ∈ EH (x, w) be an edge in S. We apply Operation II as follows: apply a shifting in S

from y to w, color exy with ϕ0(exy′ ), uncolor exw , and replace exy by exw in M∗

0 . See Fig. 2(b). Since
dG−(M∪M∗

0 )
(w) = ∆, M∗

1 := (M∗

0\{exy})∪{exw} is a matching. Denote H1 := H+exy−exw . Let ψ be the
k-edge coloring of H1 after Operation II. Note that for any vertex z ∈ V (H1) that is incident with an
edge of ∂G−(M∪M∗

1 )
(H1), if ψ(z) ̸= (ϕ0)H (z), then z is contained in the subsequence of S from y to w.

ince h is the only i-edge of ∂G−(M∪M∗
1 )
(H1), there is no such vertex w such that w is incident with

both an i-edge contained in the subsequence of S from y to w and an i-edge of ∂G−(M∪M∗
1 )
(H1) after

peration II. Thus we can rename some color classes of ψ but keep the color i unchanged to match
all colors on boundary edges of ∂G−(M∪M∗

1 )
(H1). In this way we obtain a (proper) k-edge-coloring ϕ1

of G− (M ∪M∗

1 ) by Lemma 2.5(b).
By the similar argument in the proof of Subcase 1.1, it can be verified that (M∗

1 ,∅, ϕ1) is
prefeasible, and that fuv is no longer T2-improper at u but T1-improper at u with respect to M∗

1
and ϕ1. For any edge f ∈ M \ {fuv}, we see that the distance between f and exw is at least 2 or
just 1 when h is adjacent in G to f with Φ(f ) ̸= i. Thus the property of f being T1-improper
or T2-improper is not changed under M∗

1 and ϕ1. Thus the new triple (M∗

1 ,∅, ϕ1) is prefeasible
with |E1(M∗

1 , ϕ1)| = |E1(M∗

0 , ϕ0)| + 1 and |E2(M∗

1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1, and so we can consider
(M∗

1 ,∅, ϕ1) instead.
Subcase 1.2.2: h ∈ E1(M∗

0 , ϕ0), i.e., h is adjacent in G to some precolored i-edge fi in M .
We apply Operation III as follows: recolor the i-edge h with the color ∆ + µ, apply a shifting

in S from y to x1, color exy with ϕ0(exy′ ), uncolor exx1 , and replace exy by exx1 in M∗

0 . See Fig. 2(c).
By the same argument as in the proof of Subcase 1.1, we know that M∗

1 := (M∗

0\{exy}) ∪ {exx1} is a
matching. Denote H1 := H + exy − exx1 . Let ψ be the k-edge coloring of H1 after Operation III. Note
that there is no i-edge in ∂G−(M∪M∗

1 )
(H1) after Operation III. By the similar argument as in the proof

of Subcase 1.1, we can rename some color classes of ψ but keep the color i unchanged to match
10



Y. Cao, G. Chen, G. Jing et al. European Journal of Combinatorics 122 (2024) 104037

a
G

a
M

i
d
t
f
a
a
t
∆

i

ll colors on edges of ∂G−(M∪M∗
1 )
(H1). In this way we obtain a (proper) (k + 1)-edge-coloring ϕ1 of

− (M ∪M∗

1 ) by Lemma 2.5(b).
We claim that (M∗

1 , h, ϕ1) is a prefeasible triple. As M ∪M∗

1 is a matching and h is adjacent to fi
nd Φ(fi) = i ∈ [k], it follows that h is not adjacent to any edge from M∆+µ∪M∗

1 , which implies that
∆+µ∪M∗

1 ∪{h} is a matching. By the same argument as in the proof of Subcase 1.1, we know that
exx1 is k-critical and fully G-saturated in H1 + exx1 , and each edge e ∈ M∗

1 \ {exx1} is still contained in
a k-dense subgraph of G− (M∪M∗

1 ) such that e is k-critical and fully G-saturated in the graph He+e
if e is adjacent in G to an edge of E2(M∗

1 , ϕ1), where He is the unique maximal k-dense subgraph of
G− (M ∪M∗

0 ) containing V (e) if He and H1 are vertex-disjoint, and He = H1 otherwise. If the color
∆+µ is not used on edges of ∂G−(M∪M∗

1 )
(He), then colors on edges of ∂G−(M∪M∗

1 )
(He) are all distinct by

the fact that He is strongly ϕ1-closed. If the color∆+µ is used on edges of ∂G−(M∪M∗
1 )
(He), then it was

used on exactly one edge of ∂G−(M∪M∗
1 )
(He). This, together with the fact that He is (ϕ1)He-elementary,

implies that colors on edges of ∂G−(M∪M∗
1 )
(He) are all distinct. Therefore, (M∗

1 , h, ϕ1) is a prefeasible
triple.

By the same argument as in the proof of Subcase 1.1, we know that now fuv is no longer T2-
mproper at u but T1-improper at uwith respect toM∗

1 and ϕ1, and that for any edge f ∈ M\{fuv}, the
istance between f and exx1 in G−(M∪M∗

1 ) is at least 2. Except the i-edge fi of M that is adjacent in G
o h, the property of f being T1-improper or T2-improper is not changed under M∗

1 and ϕ1. The edge
i is originally T1-improper at wi, and now is no longer improper at wi with respect to ϕ1, where we
ssume h ∈ EG(w,wi). Thus |E1(M∗

1 , ϕ1)| = |E1(M∗

0 , ϕ0)| + 1− 1 and |E2(M∗

1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1,
nd so we can consider (M∗

1 , {h}, ϕ1) instead. Note that assigning the color ∆+µ to h will not affect
he modification of ϕ0 into ϕ and M∗

0 into M∗, since h ∈ E1(M∗

0 , ϕ0) and we will assign the color
+ µ to all edges in E1(M∗

0 , ϕ0) in the final process.
Case 2: fuv is T2-improper at v with v ∈ V (H ′) for a maximal k-dense subgraph H ′ other than H .
For this case, we apply the same operations as we did in Case 1 first with respect to the vertex u

n H and then with respect to the vertex v in H ′. Recall that V (H) ∩ V (H ′) = ∅ and E1(M∗

0 , ϕ0)
is a matching. By Case 1, the operations applied within G[V (H)] or G[V (H)] + hu do not affect
the operations applied within G[V (H ′)] or G[V (H ′)] + hv , where hu and hv are the two possible
i-edges with hu ∈ ∂G−(M∪M∗

0 )
(H) ∩ E1(M∗

0 , ϕ0) and hv ∈ ∂G−(M∪M∗
0 )
(H ′) ∩ E1(M∗

0 , ϕ0). Furthermore,
if hu and hv exist at the same time, then V (hu) ∩ V (hv) = ∅ and there is no maximal k-dense
subgraph H ′′ other than H and H ′ such that V (H ′′) ∩ V (hu) ̸= ∅ and V (H ′′) ∩ V (hv) ̸= ∅. Denote
the matching resulting from M∗

0 by M∗

1 , and the coloring resulting from ϕ0 by ϕ1. By Case 1,
Eϕ1M∗

1
⊆ {hu, hv}, M∆+µ ∪ M∗

1 ∪ {hu, hv} is a matching, and (M∗

1 , E
ϕ1
M∗

1
, ϕ1) also satisfies Conditions

(b) and (c). Thus (M∗

1 , E
ϕ1
M∗

1
, ϕ1) is a prefeasible triple. With respect to M∗

1 and ϕ1, fuv is no longer
T2-improper but is T1-improper at both u and v. Furthermore, we have |E1(M∗

1 , ϕ1)| ≥ |E1(M∗

0 , ϕ0)|
and |E2(M∗

1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗

1 , E
ϕ1
M∗

1
, ϕ1) instead.

Case 3: fuv is T1-improper or T2-improper at v with v ∈ V (H).
Let ebv ∈ EH (b, v) with ϕ0(ebv) = i. Assume first that dH (b) < ∆. If fuv is T1-improper at v, then

we apply the same operations with respect to u as we did in Case 1. Denote the new matching
resulting from M∗

0 by M∗

1 , and the new coloring resulting from ϕ0 by ϕ1. Then the vertex b is not
incident in G with any edge of M∗

1 by Operations I-III in Case 1. Thus fuv is no longer T2-improper at
u but T1-improper at u with respect to M∗

1 and ϕ1. Furthermore, we have |E1(M∗

1 , ϕ1)| ≥ |E1(M∗

0 , ϕ0)|
and |E2(M∗

1 , ϕ1)| = |E2(M∗

0 , ϕ0)| − 1. Thus we can consider (M∗

1 , E
ϕ1
M∗

1
, ϕ1) instead.

If fuv is T2-improper at v, let eab ∈ M∗

0 with V (eab) = {a, b}. We apply the same operations
with respect to u as we did in Case 1. Denote the resulting matching by M∗

1 , and the resulting
coloring by ϕ1. With respect to M∗

1 and ϕ1, the edge fuv is still T2-improper at v as dH (a) < ∆ and
dH (b) < ∆. By Case 1, now fuv is no longer T2-improper at u but T1-improper at u with respect
to the prefeasible triple (M∗

1 , E
ϕ1
M∗

1
, ϕ1), where Eϕ1M∗

1
= ∅ or {h} with some vertex w and its incident

i-edge h ∈ ∂G−(M∪M∗
0 )
(H)∩ E1(M∗

0 , ϕ0). Denote by H1 the new k-dense subgraph after the operations
with respect to u in H+ exy. In particular, the situation under (M∗

1 ,∅, ϕ1) is actually the same as the
case dH (b) = ∆ in the previous paragraph since now dH1 (y) = ∆.

Thus we consider only the case that fuv is T2-improper at v, T1-improper at u and dH1 (y) = ∆.
Consider a maximal multi-fan F at a with respect to e and (ϕ ) in H + e . Clearly we can
a ab 1 H1 1 ab

11



Y. Cao, G. Chen, G. Jing et al. European Journal of Combinatorics 122 (2024) 104037

t
e

f

i

s
{

c
i
ϕ

r
o
i
i
s
t
e
k
t
a

h

Fig. 3. Operation in Subcase 3.1. (The edges of the dashed line represent uncolored edges).

apply the same operations in Case 1 for v so that fuv is no longer T2-improper at v with respect
o the resulting matching M∗

2 and coloring ϕ2, unless these operations would have to put one edge
ay ∈ EH1 (a, y) into M∗

2 . Then fuv would become T2-improper at u again with respect to M∗

2 and ϕ2.
The only operations that have to uncolor an edge of H1 incident with y are Operations I and III.
Therefore, we make the following two assumptions on Fa in the rest of our proof.

(1) y is the only ∆-vertex in V (Fa)\{a, b}.
(2) If a linear sequence in Fa at a from b to y contains a vertex w′ such that dH1 (w

′) = ∆− 1 and
w′ is incident with an i-edge h′ ∈ ∂G−(M∪M∗

1 )
(H1), then h′ ∈ E1(M∗

1 , ϕ1).

Let Fb be a maximal multi-fan at b with respect to eab and (ϕ1)H1 in H1 + eab. We consider the
ollowing three subcases.

Subcase 3.1: Fb contains a linear sequence S at b from a to y such that S does not contain any
-edge.

Let S = (a, eba′ , a′, . . . , eby, y) be the linear sequence (where a′ = y is possible). We apply a
hifting in S from a to y, color eab with ϕ1(eba′ ), uncolor eby. See Fig. 3(a)–(b). Note that M∗

2 := (M∗

1 \

eab})∪{eby} is a matching, and H2 := H1+eab−eby is a k-dense subgraph of G−(M∪M∗

2 ). As S does not
ontain any i-edge, by Lemma 2.5(b), we obtain a k-edge-coloring ϕ2 of G− (M ∪M∗

2 ). Note that fuv
s T2-improper at both u and v with respect to M∗

2 and ϕ2. However, we have Φ(fuv) = i, ϕ2(ebv) =
2(eyu) = i, and eby ∈ M∗

2 (bvuyb is a cycle with length 4 in G). By assigning the color i to eby and
ecoloring ebv and eyu with the color ∆+µ, we obtain a new matching M∗

3 := M∗

2\{eby} = M∗

1\{eab}
f G−V (M) and a new (k+1)-edge-coloring ϕ3 of G−(M∪M∗

3 ). See Fig. 3(c). The edge fuv is now not
mproper at neither of its endvertices. Note that Eϕ3M∗

3
= {ebv, eyu} if E

ϕ1
M∗

1
= ∅ and Eϕ3M∗

3
= {h, ebv, eyu}

f Eϕ1M∗
1
= {h}. Since Eϕ3M∗

3
⊆ (E1(M∗

0 , ϕ0) ∪ E2(M∗

0 , ϕ0)) is a matching, and those edges in Eϕ3M∗
3
do not

hare any endvertex with edges in M∆+µ∪M∗

3 , it follows that M∆+µ∪M∗

3 ∪Eϕ3M∗
3
is a matching. Note

hat V (H2)∩V (M \ {fuv}) = ∅. For each e ∈ M∗

3 such that e is adjacent in G to an edge of E2(M∗

3 , ϕ3),
is still k-critical and fully G-saturated in the graph He + e, where He is still the unique maximal
-dense subgraph of G− (M ∪M∗

0 ) containing V (e) and He is also strongly ϕ3-closed. Thus the new
riple (M∗

3 , E
ϕ3
M∗

3
, ϕ3) is prefeasible. Furthermore, |E1(M∗

3 , ϕ3)| = |E1(M∗

1 , ϕ1)| − 1 ≥ |E1(M∗

0 , ϕ0)| − 1
nd |E2(M∗

3 , ϕ3)| = |E2(M∗

1 , ϕ1)| − 1 = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗

3 , E
ϕ3
M∗

3
, ϕ3) instead.

Subcase 3.2: Fb contains a vertex w′′ with dH1 (w
′′) = ∆− 1 and i ∈ (ϕ1)H1

(w′′).
The i-edge ebv is in Fb by the maximality of Fb. Let S = (a, eba′ , a′, . . . , ebw′′ , w′′, ebv, v) be a linear

sequence at b from a to v in Fb (where a = a′ and a′ = w′′ are possible). Since i ∈ (ϕ1)H1
(w′′), we

ave that either i ∈ ϕ1(w′′) or w′′ is incident with an i-edge h′′ ∈ ∂G−(M∪M∗
1 )
(H1).

Assume first that i ∈ ϕ1(w′′) or w′′ is incident with an i-edge h′′ ∈ ∂G−(M∪M∗
1 )
(H1) such that

h′′ ∈ E1(M∗

1 , ϕ1). We apply a shifting in S from a to v, color eab with ϕ1(eba′ ), and uncolor ebv .
Note that ebw′′ was recolored by the color i in the shifting operation. We then recolor the i-edge
h′′ with the color ∆ + µ if h′′ exists, and rename some color classes of H2 := H1 + eab − ebv but
keep the color i unchanged without producing any improper i-edge by Lemma 2.5(b). Finally we
assign the color ∆ + µ to ebv . Note that h ̸= h′′ since ϕ1(h) = ∆ + µ ̸= i = ϕ1(h′′), and h
and h′′ cannot both exist in ∂ ∗ (H) = ∂ ∗ (H ) since otherwise ϕ (h) = ϕ (h′′) = i
G−(M∪M0 ) G−(M∪M1 ) 1 0 0

12
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ontradicting that H is strongly ϕ0-closed. Now we obtain a new matching M∗

2 := M∗

1\{eab} of
G − V (M) and a new (proper) (k + 1)-edge-coloring ϕ2 of G − (M ∪ M∗

2 ) such that fuv is no longer
T2-improper at v or even T1-improper at v with respect to a new triple (M∗

2 , E
ϕ2
M∗

2
, ϕ2), where

Eϕ2M∗
2

= {ebv} if Eϕ1M∗
1

= ∅ but h′′ does not exist, Eϕ2M∗
2

= {ebv, h′′} if Eϕ1M∗
1

= ∅ and h′′ exists, and
ϕ2
M∗

2
= {ebv, h} if Eϕ1M∗

1
= {h}. Since Eϕ2M∗

2
⊆ (E1(M∗

0 , ϕ0) ∪ E2(M∗

0 , ϕ0)) is a matching, and those edges
n Eϕ2M∗

2
do not share any endvertex with edges in M∆+µ ∪ M∗

2 , it follows that M∆+µ ∪ M∗

2 ∪ Eϕ2M∗
2

s a matching. Note that V (H2) ∩ V (M \ {fuv}) = ∅. By the similar argument as in the proof of
ubcase 3.1, the new triple (M∗

2 , E
ϕ2
M∗

2
, ϕ2) is prefeasible. Furthermore, |E1(M∗

2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)|
nd |E2(M∗

2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗

2 , E
ϕ2
M∗

2
, ϕ2) instead.

Now we may assume that the i-edge h′′ ̸∈ E1(M∗

1 , ϕ1). Since h and h′′ cannot both exist, we have
ϕ1
M∗

1
= ∅. Note that the vertex w′′ /∈ V (Fa) by Assumption (2) prior to Subcase 3.1. Moreover, w′′ is

ot incident with any edge in M ∪M∗

1 and w′′ is only incident with the i-edge h′′ in ∂G−(M∪M∗
1 )
(H1).

ince dG−(M∪M∗
1 )
(w′′) = ∆ and ϕ1 is a k-edge-coloring of G− (M ∪M∗

1 ) with k ≥ ∆+ 1, there exists
color α ∈ ϕ1(w′′) with α ̸= i. Since V (H1) is (ϕ1)H1-elementary, there exists an α-edge e1 incident
ith the vertex a. Thus we can define a maximal multi-fan at a, denoted by F ′a, with respect to e1 and
ϕ1)H1 in H1+e1. (Notice that e1 is colored by the color α in F ′a.) Moreover, V (F ′a) is (ϕ1)H1-elementary
ince V (H1) is (ϕ1)H1-elementary. By Lemma 3.2(b) and Assumption (1) prior to Subcase 3.1, we have
Fa (a, b

′) = eH1+eab (a, b
′) = µ for any vertex b′ in V (Fa)\{a}. Therefore, V (F ′a)\{a} and V (Fa)\{a} are

disjoint, since otherwise we have V (F ′a) ⊆ V (Fa) and α ∈ (ϕ1)H1
(b′) for some b′ ∈ V (Fa) implying

b′ = w′′
∈ V (Fa), a contradiction. Note that if w′′ /∈ V (F ′a), then V (F ′a)\{a} must contain a ∆-vertex

n H1, since otherwise Lemma 3.2(d) and the fact (ϕ1)H1 (e1) = α ∈ ϕ1(w′′) imply that w′′
∈ V (F ′a), a

ontradiction. Thus F ′a contains a linear sequence S ′ = (b1, e2, b2, . . . , et , bt ) at a, where b1 ∈ V (e1),
bt (with t ≥ 1) is a ∆-vertex if w′′ /∈ V (F ′a), and bt is w′′ if w′′

∈ V (F ′a). Notice that bt is not incident
with any edge in M ∪ M∗

1 by our choice of bt . Moreover, bt ̸= y since V (F ′a)\{a} and V (Fa)\{a} are
disjoint. Let β (β ̸= i) be a color in ϕ1(b). By Lemma 3.1(b), we have Pb(β, α) = Pw′′ (β, α). We then
onsider the following two subcases according the set (V (S ′)\{a}) ∩ (V (S)\{a}).
We first assume that (V (S ′)\{a}) ∩ (V (S)\{a}) ⊆ {bt}. If e1 /∈ Pb(β, α), then we apply a Kempe

hange on P[b,w′′](β, α), uncolor e1 and color eab with α. If e1 ∈ Pb(β, α) and Pb(β, α) meets b1 before
, then we apply a Kempe change on P[b,b1](β, α), uncolor e1 and color eab with α. If e1 ∈ Pb(β, α)
nd Pw′′ (β, α) meets b1 before a, then we uncolor e1, apply a Kempe change on P[w′′,b1](β, α), apply
shifting in S from a to w′′, color eab with ϕ1(eba′ ), and recolor ebw′′ with β . In all three cases above,
ab is colored with a color in [k] and e1 is uncolored. Finally we apply a shifting in S ′ from b1 to bt ,
olor e1 with ϕ1(e2), and uncolor et . Notice that the above shifting in S ′ does nothing if t = 1. Denote
H2 := H1 + eab − et . Since H2 is also k-dense and χ ′(H2) = k, we can rename some color classes
of E(H2) but keep the color i unchanged to match all colors on boundary edges without producing
any improper i-edge by Lemma 2.5(b). Now we obtain a new matching M∗

2 := (M∗

1\{eab}) ∪ {et}
and a new (proper) k-edge-coloring ϕ2 of G − (M ∪ M∗

2 ) such that fuv is no longer T2-improper
at v but T1-improper at v with respect to the new prefeasible triple (M∗

2 ,∅, ϕ2). Furthermore,
|E1(M∗

2 , ϕ2)| = |E1(M∗

0 , ϕ0)|+2 and |E2(M∗

2 , ϕ2)| = |E2(M∗

0 , ϕ0)|−2. Thus we can consider (M∗

2 ,∅, ϕ2)
instead.

Then we assume that there exists bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S)\{a}) for some j ∈ [t − 1] and
a∗ ∈ V (S). See Fig. 4 for a depiction when b1 = bj = a∗ = a′. In this case we assume a∗ is the
losest vertex to the vertex a along S. Note that bj ̸= b as V (F ′a)\{a} and V (Fa)\{a} are disjoint. Let
j = ϕ1(ej+1) ∈ (ϕ1)H1

(bj). By Lemma 3.1(b), we have Pb(β, αj) = Pbj (β, αj). If ej+1 /∈ Pb(β, αj), then
e apply a Kempe change on P[b,bj](β, αj), uncolor ej+1 and color eab with αj. If ej+1 ∈ Pb(β, αj)
nd Pb(β, αj) meets bj+1 before a, then we apply a Kempe change on P[b,bj+1](β, αj), uncolor ej+1
nd color eab with αj. If ej+1 ∈ Pb(β, αj) and Pbj (β, αj) meets bj+1 before a, then we uncolor ej+1,
pply a Kempe change on P[bi,bj+1](β, αj), apply a shifting in S from a to bj (i.e., a∗), color eab with
1(eba′ ), and recolor the edge ebbj ∈ EH1 (b, bj) with β . (See Fig. 4(a)–(c).) In all three cases above,
ab is colored with a color in [k] and ej+1 is uncolored. Finally we apply a shifting in S ′ from bj+1 to
t , color ej+1 with ϕ1(ej+2), and uncolor et . (See Fig. 4(d).) Notice that the above shifting in S ′ does

′
othing if bj+1 = bt . Denote H2 := H1 + eab − et . Since H2 is also k-dense and χ (H2) = k, we can

13
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Fig. 4. One possible operation for bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S)\{a}) in Subcase 3.2, where b1 = bj = a∗ = a′ . (The edges
of the dashed line represent uncolored edges).

rename some color classes of E(H2) but keep the color i unchanged to match all colors on boundary
edges without producing any improper i-edge by Lemma 2.5(b). Now we obtain a new matching
M∗

2 := (M∗

1\{eab}) ∪ {et} of G− V (M) and a new (proper) k-edge-coloring ϕ2 of G− (M ∪M∗

2 ) such
that fuv is no longer T2-improper at v but T1-improper at v with respect to the new prefeasible
triple (M∗

2 ,∅, ϕ2). Furthermore, |E1(M∗

2 , ϕ2)| = |E1(M∗

0 , ϕ0)| + 2 and E2(M∗

2 , ϕ2) = |E2(M∗

0 , ϕ0)| − 2.
hus we can consider (M∗

2 ,∅, ϕ2) instead.
Subcase 3.3: Fb does not contain a linear sequence at b from a to y without i-edge, and Fb does

ot contain a vertex w′′ with dH1 (w
′′) = ∆− 1 and i ∈ (ϕ1)H1

(w′′).
We claim that Fb contains a linear sequence S∗ at b from a to a ∆-vertex y∗ such that y∗ ̸= y

nd there is no i-edge in S∗. By Lemma 3.2(a), the multi-fan Fb contains at least one ∆-vertex in H1.
ow if Fb does not contain any linear sequence without i-edges from a to any ∆-vertex in H1, then
y Lemma 3.2(c), the multi-fan Fb contains a vertex w′′ with dH1 (w

′′) = ∆− 1 and i ∈ (ϕ1)H1
(w′′),

ontradicting the condition of Subcase 3.3. So Fb contains a linear sequence S∗ from a to a vertex y∗

uch that dH1 (y
∗) = ∆ and there is no i-edge in S∗. Note that y∗ ̸= y, since otherwise we also have

contradiction to the condition of Subcase 3.3. Thus the claim is proved.
Assume that S∗ = (a, eba′ , a′, . . . , eby∗ , y∗) at b from a to y∗ (where a′ = y∗ is possible), and S∗

ontains no i-edge. Let θ ∈ ϕ1(y∗).
Subcase 3.3.1: θ = i.
14
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Since S∗ contains no i-edge, we apply a shifting in S∗ from a to y∗, color eab with ϕ1(eba′ ), uncolor
eby∗ , and rename some color classes of E(H1 + eab − eby∗ ) but keep the color i unchanged to match
all colors on boundary edges without producing any improper i-edge by Lemma 2.5(b). By coloring
eby∗ with i and recoloring ebv from i to ∆ + µ, we obtain a new matching M∗

2 := M∗

1\{eab} of
G − V (M) and a new (proper) (k + 1)-edge-coloring ϕ2 of G − (M ∪ M∗

2 ). Then fuv is no longer
T2-improper at v or even T1-improper at v with respect to the new prefeasible triple (M∗

2 , E
ϕ2
M∗

2
, ϕ2)

with Eϕ2M∗
2
= {ebv} if E

ϕ1
M∗

1
= ∅, and Eϕ2M∗

2
= {ebv, h} if E

ϕ1
M∗

1
= {h} (when y∗ ∈ V (Fx)∩V (Fb)). Furthermore,

Eϕ2M∗
2
⊆ (E1(M∗

0 , ϕ0) ∪ E2(M∗

0 , ϕ0)), |E1(M
∗

2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)| and |E2(M∗

2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2.
Thus we can consider (M∗

2 , E
ϕ2
M∗

2
, ϕ2) instead.

Subcase 3.3.2: θ ̸= i.
Since V (H1) is (ϕ1)H1-elementary, there exists a θ-edge e1 incident with the vertex a. Thus by the

similar argument as in the proof of Subcase 3.2, we define a maximal multi-fan at a, denoted by F ′a,
with respect to e1 and (ϕ1)H1 in H1+e1, and we have eFa (a, b

′) = eH1+eab (a, b
′) = µ for any vertex b′

in V (Fa)\{a}. Therefore, V (F ′a)\{a} and V (Fa)\{a} are disjoint, since otherwise we have V (F ′a) ⊆ V (Fa)
and ϕ1(e1) = θ ∈ (ϕ1)H1

(b′) for some b′ ∈ V (Fa) implying y∗ = b′ ∈ V (Fa), which contradicts
ssumption (1). Note that V (F ′a)\{a} must contain a ∆-vertex in H1, since otherwise Lemma 3.2(d)
nd the fact (ϕ1)H1 (e1) = θ ∈ ϕ1(y∗) imply that y∗ ∈ V (F ′a), which contradicts dH1 (y

∗) = ∆. If F ′a
ontains a vertex of V (H1) that is incident with an i-edge of ∂G−(M∪M∗

1 )
(H1) in G − (M ∪ M∗

1 ), then
e denote the vertex by w∗ and the i-edge by h∗. If F ′a does not contain any linear sequence to
∆-vertex in H1 without i-edge and boundary vertex w∗, then by Lemma 3.2(d), the multi-fan F ′a
ontains a vertex z∗ with i ∈ (ϕ1)H1

(z∗) and dH (z∗) = ∆ − 1. Since H1 is (ϕ1)H1-elementary, we
ave z∗ = w∗ and dH1 (w

∗) = ∆− 1. Thus F ′a contains a linear sequence S ′ = (b1, e2, b2, . . . , et , bt )
at a, where b1 ∈ V (e1), bt (with t ≥ 1) is w∗ if there exists w∗ with dH1 (w

∗) = ∆ − 1 such
that h∗ ∈ ∂G−(M∪M∗

1 )
(H1) but h∗ /∈ E1(M∗

0 , ϕ0), and bt is a ∆-vertex in H1 otherwise. Notice that bt
is not incident with any edge in M ∪ M∗

1 by our choice of bt . Moreover, if bt = w∗ as defined
above, then bt = w∗ is not a vertex in V (Fb) by the condition of Subcase 3.3. And bt ̸= y
since V (F ′a)\{a} and V (Fa)\{a} are disjoint. Let β (β ̸= i) be a color in ϕ1(b). By Lemma 3.1(b),
e have Pb(β, θ ) = Py∗ (β, θ ). We then consider the following two subcases according the set
V (S ′)\{a}) ∩ (V (S∗)\{a}).

We first assume that (V (S ′)\{a}) ∩ (V (S∗)\{a}) ⊆ {bt}. If e1 /∈ Pb(β, θ ), then we apply a Kempe
hange on P[b,y∗](β, θ ), uncolor e1 and color eab with θ . If e1 ∈ Pb(β, θ ) and Pb(β, θ ) meets b1 before
a, then we apply a Kempe change on P[b,b1](β, θ ), uncolor e1 and color eab with θ . If e1 ∈ Pb(β, θ )
and Py∗ (β, θ ) meets b1 before a, then we uncolor e1, apply a Kempe change on P[y∗,b1](β, θ ), apply a
shifting in S∗ from a to y∗, color eab with ϕ1(eba′ ), and recolor eby∗ with β . In all three cases above,
eab is colored with a color in [k] and e1 is uncolored. Then we apply a shifting in S ′ from b1 to
bt , color e1 with ϕ1(e2), and uncolor et . Denote H2 := H1 + eab − et . Since H2 is also k-dense and
′(H2) = k, we can rename some color classes of E(H2) but keep the color i unchanged to match

colors on boundary edges except i-edges by Lemma 2.5(b). Finally recolor h∗ with the color ∆+ µ
if h∗ ∈ ∂G−(M∪M∗

0 )
(H) ∩ E1(M∗

0 , ϕ0). Now we obtain a new matching M∗

2 := (M∗

1\{eab}) ∪ {et} of
G − V (M) and a new (proper) (k + 1)-edge-coloring ϕ2 of G − (M ∪ M∗

2 ) such that fuv is no longer
T2-improper at v but T1-improper at v with respect to the new prefeasible triple (M∗

2 , E
ϕ2
M∗

2
, ϕ2),

where ∅ or {h} or {h∗} = Eϕ2M∗
2

⊆ E1(M∗

0 , ϕ0). Furthermore, |E1(M∗

2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)| and
|E2(M∗

2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗

2 , E
ϕ2
M∗

2
, ϕ2) instead.

Then we assume that there exists bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S∗)\{a}) for some j ∈ [t − 1]
and a∗ ∈ V (S∗). See Fig. 5 for a depiction when b1 = bj = a∗ = a′. In this case we assume a∗
is the closest vertex to a along S∗. Note that bj ̸= b as V (F ′a)\{a} and V (Fa)\{a} are disjoint. Let
θj = ϕ1(ej+1) ∈ (ϕ1)H1

(bj). By Lemma 3.1(b), Pb(β, θj) = Pbj (β, θj). If ej+1 /∈ Pb(β, θj), then we apply
Kempe change on P[b,bj](β, θj), uncolor ej+1 and color eab with θj. If ej+1 ∈ Pb(β, θj) and Pb(β, θj)
eets bj+1 before a, then we apply a Kempe change on P[b,bj+1](β, θj), uncolor ej+1 and color eab with

j. If ej+1 ∈ Pb(β, θj) and Pbj (β, θj) meets bj+1 before a, then we uncolor ej+1, apply a Kempe change
n P[bj,bj+1](β, θj), apply a shifting in S∗ from a to bj (i.e., a∗), color eab with ϕ1(eba′ ), and recolor the
dge e ∈ E (b, b ) with β . (See Fig. 5(a)–(c).) In all three cases above, e is colored with a color
bbj H1 j ab

15
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Fig. 5. One possible operation for bj = a∗ ∈ (V (S ′)\{a}) ∩ (V (S)\{a}) in Subcase 3.3, where b1 = bj = a∗ = a′ . (The edges
of the dashed line represent uncolored edges).

in [k] and ej+1 is uncolored. Denote H2 := H1 + eab − et . Then we apply a shifting in S ′ from bj+1
to bt , color ej+1 with ϕ1(ej+2), and uncolor the edge et , and rename some color classes of E(H2) but
keep the color i unchanged to match all colors on boundary edges except i-edges by Lemma 2.5(b).
Finally recolor h∗ with ∆ + µ if h∗ ∈ ∂G−(M∪M∗

0 )
(H) ∩ E1(M∗

0 , ϕ0). (See Fig. 5(d).) Now we obtain a
new matching M∗

2 = (M∗

1\{eab}) ∪ {et} of G − V (M) and a new (proper) (k + 1)-edge-coloring ϕ2
of G − (M ∪ M∗

2 ) such that fuv is no longer T2-improper at v but T1-improper at v with respect to
the new prefeasible triple (M∗

2 , E
ϕ2
M∗

2
, ϕ2), where ∅ or {h} or {h∗} = Eϕ2M∗

2
⊆ E1(M∗

0 , ϕ0). Furthermore,
|E1(M∗

2 , ϕ2)| ≥ |E1(M∗

0 , ϕ0)| and |E2(M∗

2 , ϕ2)| = |E2(M∗

0 , ϕ0)| − 2. Thus we can consider (M∗

2 , E
ϕ2
M∗

2
, ϕ2)

instead. The proof is now finished. □
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