

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: <https://www.sciencedirect.com/journal/european-journal-of-combinatorics>

Precoloring extension of Vizing's Theorem for multigraphs

Yan Cao ^{a,1}, Guantao Chen ^{b,2}, Guangming Jing ^{c,3}, Xuli Qi ^{d,4},
Songling Shan ^{e,5}^a School of Mathematical Sciences, Dalian University of Technology, Dalian, Liaoning, PR China^b Department of Mathematics and Statistics, Georgia State University, Atlanta, GA, USA^c School of Mathematical and Data Sciences, West Virginia University, Morgantown, WV, USA^d Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang, Hebei, PR China^e Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA

ARTICLE INFO

Article history:

Received 15 May 2022

Accepted 4 July 2024

Available online 27 July 2024

ABSTRACT

Let G be a graph with maximum degree $\Delta(G)$ and maximum multiplicity $\mu(G)$. Vizing and Gupta, independently, proved in the 1960s that the chromatic index of G is at most $\Delta(G) + \mu(G)$. The distance between two edges e and f in G is the length of a shortest path connecting an endvertex of e and an endvertex of f . A distance- t matching is a set of edges having pairwise distance at least t . Albertson and Moore conjectured that if G is a simple graph, using the palette $\{1, \dots, \Delta(G) + 1\}$, any precoloring on a distance-3 matching can be extended to a proper edge coloring of G . Edwards et al. proposed the following stronger conjecture: For any graph G , using the palette $\{1, \dots, \Delta(G) + \mu(G)\}$, any precoloring on a distance-2 matching can be extended to a proper edge coloring of G . Girão and Kang verified the conjecture of Edwards et al. for distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs G with $\mu(G) \geq 2$.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

E-mail addresses: ycao@dlut.edu.cn (Y. Cao), gchen@gsu.edu (G. Chen), gujing@mail.wvu.edu (G. Jing), qixuli-1212@163.com (X. Qi), szs0398@auburn.edu (S. Shan).

¹ Partially supported by National Natural Science Foundation of China grant 12301433.² Partially supported by National Science Foundation grants DMS-1855716 and DMS-2154331.³ Partially supported by National Science Foundation grant DMS-2246292.⁴ Corresponding author. Partially supported by Hebei Natural Science Foundation A2023208006, Hebei Fund for Introducing Overseas Returnees C20230357, and National Natural Science Foundation of China grant 11801135.⁵ Partially supported by National Science Foundation grant DMS-2345869.

1. Introduction

In this paper, we follow the book [1] of Stiebitz et al. for notation and terminologies. Graphs in this paper are finite, undirected, without loops, but may have multiple edges. Let $G = (V(G), E(G))$ be a graph, where $V(G)$ and $E(G)$ are respectively the vertex set and the edge set of G . Let $\Delta(G)$ and $\mu(G)$ be respectively the maximum degree and the maximum multiplicity of G . Let $[k] := \{1, \dots, k\}$ be a **palette** of k available colors. A **k -edge-coloring** of G is a map that assigns to every edge of G a color from the palette $[k]$ such that no two adjacent edges receive the same color (the edge coloring is also called **proper**). Denote by $\mathcal{C}^k(G)$ the set of all k -edge-colorings of G . The **chromatic index** $\chi'(G)$ is the least integer k such that $\mathcal{C}^k(G) \neq \emptyset$. The distance between two edges e and f in G is the length of a shortest path connecting an endvertex of e and an endvertex of f . A **distance- t matching** is a set of edges having pairwise distance at least t . Following this definition, a matching is a distance-1 matching and an induced matching is a distance-2 matching. For a matching M , we use $V(M)$ to denote the set of vertices saturated by M .

In the 1960s, Vizing [2] and, independently, Gupta [3] proved that $\Delta(G) \leq \chi'(G) \leq \Delta(G) + \mu(G)$, which is commonly called Vizing's Theorem. Vizing's Theorem plays an important role in graph edge coloring. Using the palette $[\Delta(G) + \mu(G)]$, when can we extend a precoloring on a given edge set $F \subseteq E(G)$ to a proper edge coloring of G ? Albertson and Moore [4] conjectured that if G is a simple graph, using the palette $[\Delta(G) + 1]$, any precoloring on a distance-3 matching can be extended to a proper edge coloring of G . Edwards et al. [5] proposed a stronger conjecture: **For any graph G , using the palette $[\Delta(G) + \mu(G)]$, any precoloring on a distance-2 matching can be extended to a proper edge coloring of G .** Girão and Kang [6] verified the conjecture of Edwards et al. for distance-9 matchings. In this paper, we improve the required distance from 9 to 3 for multigraphs with the maximum multiplicity at least 2 as follows.

Theorem 1.1. *Let G be a multigraph with $\mu(G) \geq 2$. Using the palette $[\Delta(G) + \mu(G)]$, any precoloring on a distance-3 matching M in G can be extended to a proper edge coloring of G .*

The **density** of a graph G , denoted $\Gamma(G)$, is defined as

$$\Gamma(G) = \max \left\{ \frac{2|E(H)|}{|V(H)| - 1} : H \subseteq G, |V(H)| \geq 3 \text{ and } |V(H)| \text{ is odd} \right\}$$

if $|V(G)| \geq 3$ and $\Gamma(G) = 0$ otherwise. Note that for any $X \subseteq V(G)$ with odd $|X| \geq 3$, we have $\chi'(G[X]) \geq \frac{2|E(G[X])|}{|X|-1}$, where $G[X]$ is the subgraph of G induced by X . Therefore, $\chi'(G) \geq \lceil \Gamma(G) \rceil$. So, besides the maximum degree, the density provides another lower bound on the chromatic index of a graph. In the 1970s, Goldberg [7] and Seymour [8] independently conjectured that actually $\chi'(G) = \lceil \Gamma(G) \rceil$ provided $\chi'(G) \geq \Delta(G) + 2$. The conjecture was commonly referred to as one of the most challenging problems in graph chromatic theory [1]. In joint work with Zang, two authors of this paper, Chen and Jing gave a proof of the Goldberg–Seymour Conjecture recently [9]. We assume that the Goldberg–Seymour Conjecture is true in this paper.

We will prove **Theorem 1.1** in Section 4. In Section 2 we introduce some new structural properties of dense subgraphs. In Section 3 we define a general multi-fan and obtain some generalizations of Vizing's Theorem.

2. Dense subgraphs

Throughout the rest of this paper, we reserve the notation Δ and μ for the maximum degree and the maximum multiplicity of the graph G , respectively. For $u \in V(G)$, let $d_G(u)$ denote the **degree** of u in G . For a vertex set $N \subseteq V(G)$, let $G - N$ be the graph obtained from G by deleting all the vertices in N and edges incident with them. For an edge set $F \subseteq E(G)$, let $G - F$ be the graph obtained from G by deleting all the edges in F but keeping their endvertices. If $F = \{e\}$, we simply write $G - e$. Similarly, we let $G + e$ be the graph obtained from G by adding the edge e to $E(G)$. For disjoint $X, Y \subseteq V(G)$, $E_G(X, Y)$ is the set of edges of G with one endvertex in X and the other in Y . If $X = \{x\}$, we simply write $E_G(x, Y)$. For $X \subseteq V(G)$, the edge set $\partial_G(X) := E_G(X, V(G) \setminus X)$ is called the **boundary** of X in G . For a subgraph H of G , we simply write $\partial_G(H)$ for $\partial_G(V(H))$.

Let G be a graph, $v \in V(G)$ and $\varphi \in \mathcal{C}^k(G)$ for some positive integer k . We define $\varphi(v) = \{\varphi(f) : f \in E(G)$ and f is incident with $v\}$, $\overline{\varphi}(v) = [k] \setminus \varphi(v)$. We call $\varphi(v)$ the set of colors **present** at v and $\overline{\varphi}(v)$ the set of colors **missing** at v . For a vertex set $X \subseteq V(G)$, define $\overline{\varphi}(X) = \bigcup_{v \in X} \overline{\varphi}(v)$. A vertex set $X \subseteq V(G)$ is called φ -**elementary** if $\overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset$ for every two distinct vertices $u, v \in X$. The set X is called φ -**closed** if each color on edges from $\partial_G(X)$ is present at each vertex of X . Moreover, the set X is called **strongly φ -closed** if X is φ -closed and colors on edges from $\partial_G(X)$ are pairwise distinct. For a subgraph H of G , let φ_H or $(\varphi)_H$ be the edge coloring of G restricted on H . We say a subgraph H of G is φ -elementary, φ -closed and strongly φ -closed, if $V(H)$ is φ -elementary, φ -closed and strongly φ -closed, respectively. Clearly, if H is φ_H -elementary then H is φ -elementary, but the converse is not true as the edges in $\partial_G(H)$ are removed when we consider φ_H .

A subgraph H of G is **k -dense** if $|V(H)|$ is odd and $|E(H)| = (|V(H)| - 1)k/2$. Moreover, H is a **maximal k -dense subgraph** if there does not exist a k -dense subgraph H' containing H as a proper subgraph. An edge e of a graph G is called a **k -critical edge** if $k = \chi'(G - e) < \chi'(G) = k + 1$. A graph G is called **k -critical** if $\chi'(H) < \chi'(G) = k + 1$ for each proper subgraph H of G . It is easy to see that a connected graph G is k -critical if and only if every edge of G is k -critical. For $e \in E(G)$, let $V(e)$ denote the set of the two endvertices of e . The **diameter** of a graph G , denoted $\text{diam}(G)$, is the greatest distance between any pair of vertices in $V(G)$. An **i -edge** is an edge colored with the color i .

Lemma 2.1 ([10]). *Given a graph G , if $\chi'(G) = k \geq \Delta(G) + 1$, then distinct maximal k -dense subgraphs of G are pairwise vertex-disjoint.*

Lemma 2.2. *Let G be a graph with $\chi'(G) = k$ and H be a k -dense subgraph of G . Then H is an induced subgraph of G with $\chi'(H) = \Gamma(H) = k$. Furthermore, for any coloring $\varphi \in \mathcal{C}^k(G)$ and $\psi \in \mathcal{C}^k(H)$, H is strongly φ -closed and ψ -elementary.*

Proof. Since H is k -dense, by the definition, $|E(H)| = \frac{|V(H)|-1}{2}k$. Thus $k \leq \Gamma(H) \leq \chi'(H) \leq \chi'(G) = k$ implying $\chi'(H) = \Gamma(H) = k$. Thus H is an induced subgraph of G , since otherwise there exists a subgraph H' of G with $V(H') = V(H)$ such that $\chi'(H') \geq \Gamma(H') > k$, a contradiction to $\chi'(H') \leq \chi'(G) = k$. Since H has odd order, a maximum matching in H has size at most $(|V(H)| - 1)/2$. Therefore, under any k -edge-coloring φ of G , each color class in H is a matching of size exactly $(|V(H)| - 1)/2$. Thus every color in $[k]$ is missing at exactly one vertex of H or it appears exactly once in $\partial_G(H)$. Consequently, H is strongly φ -closed. For any $\psi \in \mathcal{C}^k(H)$, the same argument as above shows that H is ψ -elementary. \square

The following lemma is a consequence of the Goldberg–Seymour Conjecture.

Lemma 2.3. *Let G be a multigraph and $e \in E(G)$. If e is a k -critical edge of G and $k \geq \Delta(G) + 1$, then $G - e$ has a k -dense subgraph H containing $V(e)$ such that e is also a k -critical edge of $H + e$.*

Proof. Clearly, $\chi'(G) = k + 1$ and $\chi'(G - e) = k$. By the assumption of the Goldberg–Seymour Conjecture, $\chi'(G) = \lceil \Gamma(G) \rceil = k + 1$. As $\lceil \Gamma(G) \rceil = k + 1$, by the definition of density, G has a subgraph H^* of odd order such that $|E(H^*)| > (|V(H^*)| - 1)k/2$. Thus $\chi'(G) \geq \chi'(H^*) > \frac{2|E(H^*)|}{|V(H^*)|-1} = k$. Since $\chi'(G - e) = k$, it follows that $e \in E(H^*)$. On the other hand, we have $\frac{2|E(H^*-e)|}{|V(H^*-e)|-1} \leq \lceil \Gamma(H^*-e) \rceil \leq \chi'(H^*-e) \leq \chi'(G-e) = k$, which in turn gives $|E(H^*-e)| \leq (|V(H^*)| - 1)k/2$. Thus $|E(H^*-e)| = (|V(H^*)| - 1)k/2$. Then $k \leq \lceil \Gamma(H^*-e) \rceil \leq \chi'(H^*-e) \leq \chi'(G-e) = k$ and $k + 1 \leq \lceil \Gamma(H^*) \rceil \leq \chi'(H^*) \leq \chi'(G) = k + 1$, which implies that $k = \chi'(H^*-e) < \chi'(H^*) = k + 1$. Thus $H := H^* - e$ is a k -dense subgraph containing $V(e)$, and e is also a k -critical edge of $H + e$. \square

Lemma 2.4. *Let G be a multigraph with $\chi'(G) = k + 1 \geq \Delta(G) + 2$ and e be a k -critical edge of G . We have the following statements.*

(a) *$G - e$ has a unique maximal k -dense subgraph H containing $V(e)$, and e is also a k -critical edge of $H + e$.*

(b) *For any $\varphi \in \mathcal{C}^k(G - e)$, H is φ_H -elementary and strongly φ -closed.*

(c) *If $\chi'(G) = \Delta(G) + \mu(G)$, then $\Delta(H + e) = \Delta(G)$, $\mu(H + e) = \mu(G)$ and $\text{diam}(H + e) \leq \text{diam}(H) \leq 2$.*

Proof. By Lemma 2.3, $G - e$ contains a k -dense subgraph H containing $V(e)$ and e is also a k -critical edge of $H + e$. We may assume that H is a maximal k -dense subgraph, and the uniqueness of H is a direct consequence of Lemma 2.1. This proves (a). By applying Lemma 2.2 on $G - e$, we immediately have statement (b).

For (c), by (a) and Vizing's Theorem, $\Delta(G) + \mu(G) = \chi'(G) = \chi'(H + e) \leq \Delta(H + e) + \mu(H + e) \leq \Delta(G) + \mu(G)$ implying that $\Delta(H + e) = \Delta(G) = \Delta$ and $\mu(H + e) = \mu(G) = \mu$. For any $\varphi \in \mathcal{C}^k(G - e)$, H is φ_H -elementary by (b). For any $x \in V(H)$, with respect to φ_H , all the colors missing at other vertices of H present at x . Note that $k = \Delta + \mu - 1$. For each vertex $v \in V(H)$, we have that $|\overline{\varphi}_H(v)| = k - d_H(v) \geq k - \Delta = \mu - 1$ if $v \notin V(e)$, and $|\overline{\varphi}_H(v)| = k - d_H(v) + 1 \geq k - \Delta + 1 \geq (\mu - 1) + 1$ if $v \in V(e)$. Denote $|V(H)|$ by n . We then have $d_H(x) \geq |\bigcup_{v \in V(H), v \neq x} \overline{\varphi}_H(v)| \geq (k - \Delta)(n - 1) + 1 = (\mu - 1)(n - 1) + 1$.

Since $\mu(H) \leq \mu(G) = \mu$, we get $|N_H(x)| \geq \frac{d_H(x)}{\mu} \geq \frac{(\mu - 1)(n - 1) + 1}{\mu}$, where $N_H(x)$ is the neighbor set of x in H . Since $\mu \geq 2$, we have $\frac{(\mu - 1)(n - 1) + 1}{\mu} \geq \frac{n}{2}$. Hence, every vertex in H is adjacent to at least half vertices in H . Consequently, every two vertices of H share a common neighbor, which in turn gives $\text{diam}(H) \leq 2$. This proves (c). \square

The following technical lemma will be used several times in our proof.

Lemma 2.5. *Let G be a graph with $\chi'(G) = k$ and H be a k -dense subgraph of G . Let ψ and φ respectively be k -edge-colorings of H and $G - E(H)$ such that colors on edges in $\partial_G(H)$ are pairwise distinct under φ . Then the following two statements hold.*

(a) *If $k \geq \Delta(G)$, then by renaming color classes of ψ on $E(H)$, we can obtain a (proper) k -edge-coloring of G by combining φ and the modified coloring based on ψ .*

(b) *For any fixed color $i \in [k]$, if $k \geq \Delta(G) + 1$, then by renaming other color classes of ψ on $E(H)$ we can obtain a coloring of G such that all color classes are matchings except the i -edges. The only exception is as follows: exactly one i -edge from $E(H)$ and exactly one i -edge from $\partial_G(H)$ share an endvertex.*

Proof. Since $\chi'(G) = k$ and H is k -dense, $\chi'(H) = k$ and H is ψ -elementary by Lemma 2.2. We first show that statement (b) is a consequence of statement (a). Let M_i be the set of edges of G colored by i . Then we know that $|M_i \cap E(H)| = \frac{1}{2}(|V(H)| - 1)$ by H being ψ -elementary. Thus $H - M_i$ is $(k - 1)$ -dense. Now the first part of statement (b) is a consequence of statement (a) by having $G - M_i$ in the place of G . The second part of statement (b) follows easily by the assumption that edges in $\partial_G(H)$ are pairwise distinct under φ . Thus we only show statement (a) below.

We permute some color names of ψ step by step to get a k -edge-coloring ψ^* of H such that $\varphi(v) \subseteq \overline{\psi}^*(v)$ for any $v \in V(H)$. Then the combination of ψ^* and ψ gives a desired k -edge-coloring of G . Let $w \in V(H)$ and $i \in \overline{\psi}(w) \cap \varphi(w)$. By the assumptions of statement (a) and H being ψ -elementary, we have the following properties:

$$|\overline{\psi}(w)| = k - d_H(w) \geq \Delta(G) - d_H(w) \geq d_{G - E(H)}(w) = |\varphi(w)|, \quad (1)$$

$$i \notin \overline{\psi}(u) \cup \varphi(u) \quad \text{for any } u \in V(H) \setminus \{w\}. \quad (2)$$

Let $v \in V(H)$ such that $\varphi(v) \setminus \overline{\psi}(v) \neq \emptyset$. Let $s = |\varphi(v) \setminus \overline{\psi}(v)|$, and $\varphi(v) \setminus \overline{\psi}(v) = \{i_1, \dots, i_s\}$. By (1), $\overline{\psi}(v) \setminus \varphi(v)$ has a subset $\{j_1, \dots, j_t\}$ of t distinct elements with $t \geq s$. We now modify ψ as ψ_1 by exchanging the color names i_p and j_p for each $p \in [s]$. The graph H is still ψ_1 -elementary by Lemma 2.2 and now we have $\varphi(v) \subseteq \overline{\psi}_1(v)$. By (2), we know that $|\overline{\psi}_1(u) \cap \varphi(u)| \geq |\overline{\psi}(u) \cap \varphi(u)|$ for any $u \in V(H) \setminus \{v\}$. Repeating this process at most another $|V(H)| - 1$ times gives us a desired coloring ψ^* of H . \square

3. Refinements of multi-fans and some consequences

We first recall Kempe-chains and related terminologies. Let φ be a k -edge-coloring of G using the palette $[k]$. Given two distinct colors α, β , an (α, β) -chain is a component of the subgraph induced by edges assigned color α or β in G , which is either an even cycle or a path. We call the operation that swaps the colors α and β on an (α, β) -chain the **Kempe change**. Clearly, the resulting

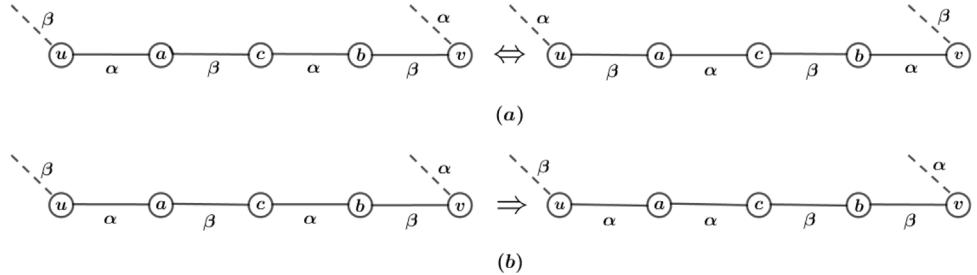


Fig. 1. (a) The Kempe change on one (α, β) -chain $P_u(\alpha, \beta)$ or $P_v(\alpha, \beta)$; (b) The Kempe change on one subchain $P_{[a,b]}(\alpha, \beta)$. (The dashed lines represent missing colors at vertices).

coloring after a Kempe change is still a (proper) k -edge-coloring. Furthermore, we say that a chain has **endvertices** u and v if the chain is a path connecting vertices u and v . For a vertex $v \in V(G)$, we denote by $P_v(\alpha, \beta)$ the unique (α, β) -chain containing the vertex v . For two vertices $u, v \in V(G)$, the two chains $P_u(\alpha, \beta)$ and $P_v(\alpha, \beta)$ are either identical or disjoint. (See Fig. 1(a).) More generally, for an (α, β) -chain, if it is a path and it contains two vertices a and b , we let $P_{[a,b]}(\alpha, \beta)$ be its subchain with endvertices a and b . The operation of swapping colors α and β on the subchain $P_{[a,b]}(\alpha, \beta)$ is still called a Kempe change, but the resulting coloring may no longer be a proper edge coloring. (See Fig. 1(b).)

Let G be a graph with an edge $e \in E_G(x, y)$, and φ be a proper edge coloring of G or $G - e$. A sequence $F = (x, e_0, y_0, e_1, y_1, \dots, e_p, y_p)$ with integer $p \geq 0$ consisting of vertices and distinct edges is called a (general) **multi-fan** at x with respect to e and φ if $e_0 = e$, $y_0 = y$, for each $i \in [p]$, $e_i \in E_G(x, y_i)$ and there is a vertex y_j with $0 \leq j \leq i - 1$ such that $\varphi(e_i) \in \overline{\varphi}(y_j)$. Note that $y_i = y_j$ can happen for distinct i and j in F , and that the definition of a multi-fan in this paper is slightly general than the one in [1] since the edge e may be colored in G . We say a multi-fan F is **maximal** if there is no multi-fan containing F as a proper subsequence. Similarly, we say a multi-fan F is **maximal without any i -edge** if F does not contain any i -edge and there is no multi-fan without any i -edge containing F as a proper subsequence. The set of vertices and edges contained in F are denoted by $V(F)$ and $E(F)$, respectively. Let $e_G(x, y) = |E_G(x, y)|$ for $x, y \in V(G)$. Note that a multi-fan may have repeated vertices. By $e_F(x, y_i)$ for some $y_i \in V(F)$ we mean the number of edges joining x and y_i in F .

Let $s \geq 0$ be an integer. A **linear sequence** $S = (y_0, e_1, y_1, \dots, e_s, y_s)$ at x from y_0 to y_s in G is a sequence consisting of distinct vertices and distinct edges such that $e_i \in E_G(x, y_i)$ for $i \in [s]$ and $\varphi(e_i) \in \overline{\varphi}(y_{i-1})$ for $i \in [s]$. Clearly for any $y_j \in V(F)$, the multi-fan F contains a linear sequence at x from y_0 to y_j (take a shortest sequence $(y_0, e_1, y_1, \dots, e_j, y_j)$ of vertices and edges with the property that $e_i \in E_G(x, y_i) \cap E(F)$ for $i \in [j]$ and $\varphi(e_i) \in \overline{\varphi}(y_{i-1})$ for $i \in [j]$). The following local edge recoloring operation will be used in our proof. A **shifting** from y_i to y_j in the linear sequence S is an operation that replaces the current color of e_t by the color of e_{t+1} for each $i \leq t \leq j - 1$ with $1 \leq i < j \leq s$. Note that the shifting does not change the color of e_j , where e_j joins x and y_j , so the resulting coloring after a shifting is not a proper coloring. In our proof we will uncolor or recolor the edge e_j to make the resulting coloring proper. We also denote by $V(S)$ and $E(S)$ the set of vertices and the set of edges contained in the linear sequence S , respectively. A **Δ -vertex** in G is a vertex with degree exactly Δ in G . A **Δ -neighbor** of a vertex v in G is a neighbor of v that is a Δ -vertex in G .

Lemma 3.1 ([1, 11]). *Let G be a graph, $e \in E_G(x, y)$ be a k -critical edge and $\varphi \in \mathcal{C}^k(G - e)$ with $k \geq \Delta(G)$. Let $F = (x, e, y_0, e_1, y_1, \dots, e_p, y_p)$ be a multi-fan at x with respect to e and φ , where $y_0 = y$. Then the following statements hold.*

- (a) $V(F)$ is φ -elementary, and each edge in $E(F)$ is a k -critical edge of G .
- (b) If $\alpha \in \overline{\varphi}(x)$ and $\beta \in \overline{\varphi}(y_i)$ for $0 \leq i \leq p$, then $P_x(\alpha, \beta) = P_{y_i}(\alpha, \beta)$.

(c) If F is a maximal multi-fan at x with respect to e and φ , then x is adjacent in G to at least $\chi'(G) - d_G(y) - e_G(x, y) + 1$ vertices z in $V(F) \setminus \{x, y\}$ such that $d_G(z) + e_G(x, z) = \chi'(G)$.

Lemma 3.2. Let G be a multigraph with maximum degree Δ and maximum multiplicity $\mu \geq 1$. Let $e \in E_G(x, y)$ and $k = \Delta + \mu - 1$.

Assume that $\chi'(G) = k + 1$, e is k -critical and $\varphi \in \mathcal{C}^k(G - e)$. Let $F = (x, e, y_0, e_1, y_1, \dots, e_p, y_p)$ be a multi-fan at x with respect to e and φ , where $y_0 = y$. Then the following statements hold.

(a) If F is maximal, then x is adjacent in G to at least $\Delta + \mu - d_G(y) - e_G(x, y) + 1$ vertices z in $V(F) \setminus \{x, y\}$ such that $d_G(z) = \Delta$ and $e_G(x, z) = \mu$.

(b) If F is maximal, $d_G(y) = \Delta$ and x has only one Δ -neighbor z' in G from $V(F) \setminus \{x, y\}$, then $e_F(x, z) = e_G(x, z) = \mu$ for all $z \in V(F) \setminus \{x\}$ and $d_G(z) = \Delta - 1$ for all $z \in V(F) \setminus \{x, y, z'\}$.

(c) For $i \in [k]$ and $i \notin \overline{\varphi}(y)$, if F is maximal without any i -edge, then F not containing any Δ -vertex of G from $V(F) \setminus \{x, y\}$ implies that $d_G(y) = \Delta$, and there exists a vertex $z^* \in V(F) \setminus \{x, y\}$ with $i \in \overline{\varphi}(z^*)$ such that $d_G(z^*) = \Delta - 1$.

Assume that $\chi'(G) = k$, $\varphi \in \mathcal{C}^k(G)$ and $V(G)$ is φ -elementary. Then the following statement holds.

(d) If a multi-fan F' is maximal at x with respect to e and φ in G , then x having no Δ -neighbor in G from $V(F')$ implies that $d_G(z) = \Delta - 1$ for all $z \in V(F') \setminus \{x\}$ and every edge in F' is colored by a missing color at some vertex in $V(F')$. Furthermore, for $i \in [k]$ and $\varphi(e) \notin \overline{\varphi}(V(F'))$, if F' is maximal without any i -edge, then F' not containing any Δ -vertex in G from $V(F') \setminus \{x\}$ implies that there exists a vertex $z^* \in V(F') \setminus \{x\}$ with $i \in \overline{\varphi}(z^*)$ such that $d_G(z^*) = \Delta - 1$.

Proof. For statements (a), (b) and (c), $V(F)$ is φ -elementary by Lemma 3.1(a). As F is maximal, for any $\alpha \in \overline{\varphi}(V(F))$, we know that there exists $z \in V(F)$ such that $\varphi(xz) = \alpha$. As a consequence, we know that $\sum_{z \in V(F) \setminus \{x\}} e_F(x, z) = 1 + \sum_{z \in V(F) \setminus \{x\}} |\overline{\varphi}(z)|$, where the term 1 counts the uncolored edge e . Statement (a) holds easily by Lemma 3.1(c). Assume that there are q distinct vertices in $V(F) \setminus \{x\}$.

For (b), we have

$$\begin{aligned} q\mu &\geq \sum_{z \in V(F) \setminus \{x\}} e_G(x, z) \geq \sum_{z \in V(F) \setminus \{x\}} e_F(x, z) = 1 + \sum_{z \in V(F) \setminus \{x\}} |\overline{\varphi}(z)| \\ &\geq 1 + (k - \Delta + 1) + (k - \Delta) + (q - 2)(k - \Delta + 1) = q(k - \Delta + 1) = q\mu, \end{aligned}$$

as $|\overline{\varphi}(y)| = k - \Delta + 1$, $|\overline{\varphi}(z')| = k - \Delta$ and $|\overline{\varphi}(z)| \geq k - \Delta + 1$ for $z \in V(F) \setminus \{x, y, z'\}$. Therefore, $e_F(x, z) = e_G(x, z) = \mu$ for each $z \in V(F) \setminus \{x\}$ and $d_G(z) = \Delta - 1$ for each $z \in V(F) \setminus \{x, y, z'\}$. This proves (b).

Next for (c), suppose first that $i \notin \overline{\varphi}(z^*)$ for any $z^* \in V(F) \setminus \{x\}$. Then F is maximal without any i -edge implies that F is maximal. By (a), x has at least one Δ -neighbor in F from $V(F) \setminus \{x, y\}$. This gives a contradiction to the assumption that F does not contain any Δ -vertex of G from $V(F) \setminus \{x, y\}$. Thus we have $i \in \overline{\varphi}(z^*)$ for some $z^* \in V(F) \setminus \{x\}$. As $i \notin \overline{\varphi}(y)$ by the assumption in the statement, we know that $z^* \neq y$. Since $V(F)$ is φ -elementary, x must be incident with an i -edge. Since now there is no i -edge in F and $i \in \overline{\varphi}(z^*)$, we have

$$\begin{aligned} q\mu &\geq \sum_{z \in V(F) \setminus \{x\}} e_G(x, z) \geq \sum_{z \in V(F) \setminus \{x\}} e_F(x, z) = 1 + (|\overline{\varphi}(z^*)| - 1) + \sum_{z \in V(F) \setminus \{x, z^*\}} |\overline{\varphi}(z)| \\ &= \sum_{z \in V(F) \setminus \{x\}} |\overline{\varphi}(z)| \geq 1 + k - \Delta + (q - 1)(k - \Delta + 1) = q(k - \Delta + 1) = q\mu. \end{aligned}$$

Therefore, $d_G(y) = \Delta$ and $d_G(z) = \Delta - 1$ for each $z \in V(F) \setminus \{x, y\}$. This proves (c).

Now for the first part of (d), as $\varphi(e)$ may be contained in $\overline{\varphi}(V(F'))$, we have

$$\begin{aligned} q\mu &\geq \sum_{z \in V(F') \setminus \{x\}} e_G(x, z) \geq \sum_{z \in V(F') \setminus \{x\}} e_F(x, z) \geq \sum_{z \in V(F') \setminus \{x\}} |\overline{\varphi}(z)| \\ &\geq q(k - \Delta + 1) = q\mu, \end{aligned}$$

as $|\overline{\varphi}(z)| \geq k - \Delta + 1$ for $z \in V(F') \setminus \{x\}$. Therefore, $e_F(x, z) = e_G(x, z) = \mu$ and $d_G(z) = \Delta - 1$ for all $z \in V(F') \setminus \{x\}$, and every edge in F' is colored by a missing color at some vertex in $V(F')$. For

the furthermore part of (d), we also have that there exists a vertex $z^* \in V(F') \setminus \{x\}$ with $i \in \overline{\varphi}(z^*)$, since otherwise, x has at least one Δ -neighbor in F' from $V(F') \setminus \{x, y\}$, a contradiction. Since now $\varphi(e) \notin \overline{\varphi}(V(F'))$ and there is no i -edge in F' with $i \in \overline{\varphi}(z^*)$, we have

$$\begin{aligned} q\mu &\geq \sum_{z \in V(F') \setminus \{x\}} e_G(x, z) \geq \sum_{z \in V(F') \setminus \{x\}} e_{F'}(x, z) = 1 + (|\overline{\varphi}(z^*)| - 1) + \sum_{z \in V(F') \setminus \{x, z^*\}} |\overline{\varphi}(z)| \\ &= \sum_{z \in V(F') \setminus \{x\}} |\overline{\varphi}(z)| \geq q(k - \Delta + 1) = q\mu. \end{aligned}$$

Therefore, $d_G(z) = \Delta - 1$ for each $z \in V(F') \setminus \{x\}$. This proves (d). \square

Let G be a graph with maximum degree Δ and maximum multiplicity μ . Berge and Fournier [12] strengthened the classical Vizing's Theorem by showing that if M^* is a maximal matching of G , then $\chi'(G - M^*) \leq \Delta + \mu - 1$. An edge $e \in E_G(x, y)$ is **fully G -saturated** if $d_G(x) = d_G(y) = \Delta$ and $e_G(x, y) = \mu$. For every graph G with $\chi'(G) = \Delta + \mu$, observe that G contains a $(\Delta + \mu - 1)$ -critical subgraph H with $\chi'(H) = \Delta + \mu$ and $\Delta(H) = \Delta$ by Lemma 2.4(c), and G contains at least two fully G -saturated edges by Lemma 3.2(a).

Lemma 3.3. *For a fixed matching M of a graph G , if $\mu(G) \geq 2$ and $\chi'(G - M) = \Delta(G) + \mu(G)$, then there exists a matching M^* of $G - V(M)$ such that $\chi'(G - (M \cup M^*)) = \Delta(G) + \mu(G) - 1 =: k$ and every edge $e \in M^*$ is k -critical and fully G -saturated in the graph $H_e + e$, where H_e is the unique maximal k -dense subgraph of $G - (M \cup M^*)$ containing $V(e)$.*

Proof. Let M^* be a matching of $G - V(M)$ consisting of fully G -saturated edges. We further choose M^* such that M^* is maximal. Then $G - (M \cup M^*)$ has no fully G -saturated edge by the maximality of M^* . We claim that $\chi'(G - (M \cup M^*)) = k$. For otherwise, we have $\chi'(G - (M \cup M^*)) = k + 1 = \Delta + \mu$. We let G' be a $(\Delta + \mu - 1)$ -critical subgraph of G . Clearly, we have $\Delta(G') = \Delta$. Let $e \in E_{G'}(x, y)$ such that $d_{G'}(x) = \Delta$. By considering a maximal multi-fan at x with respect to a coloring $\varphi \in \mathcal{C}^k(G' - e)$ and e , Lemma 3.2(a) implies that x has a Δ -neighbor z in G' for which $e_{G'}(x, z) = \mu$. Thus any edge in $E_{G'}(x, z)$ is a fully G -saturated edge, a contradiction to the choice of M^* .

Thus $\chi'(G - (M \cup M^*)) = k$. If there exists $e \in M^*$ such that $\chi'(G - (M \cup M^* \setminus \{e\})) = k$, we remove e out of M^* . Thus we may assume that for each $e \in M^*$, $\chi'(G - (M \cup M^* \setminus \{e\})) = k + 1$, i.e., each e is a k -critical edge of $G - (M \cup M^* \setminus \{e\})$. By Lemma 2.4(a), there exists a unique maximal k -dense subgraph H_e of $G - (M \cup M^*)$ such that $V(e) \subseteq V(H_e)$ and e is also a k -critical edge of $H_e + e$. Notice that $\Delta(H_e + e) = \Delta$ and $\mu(H_e + e) = \mu$ by Lemma 2.4(c). It is now only left to show that each $e \in M^*$ is full G -saturated in the graph $H_e + e$. Suppose on the contrary that there exists $e \in M^*$ such that e is not fully G -saturated in $H_e + e$.

Since e is a k -critical edge of $G - (M \cup M^* \setminus \{e\})$, we let $\varphi \in \mathcal{C}^k(G - (M \cup M^*))$. By Lemma 2.2, H_e is φ_{H_e} -elementary and strongly φ -closed. Let $V(e) = \{x, y\}$ and F_x be a maximal multi-fan at x with respect to e and φ_{H_e} . By Lemma 3.2(a), x has a Δ -neighbor, say x_1 , in H_e from $V(F_x) \setminus \{x, y\}$. By Lemma 3.1(a), the edge $e_{xx_1} \in E_G(x, x_1)$ in F_x is also a k -critical edge of $H_e + e$. By Lemma 3.2(a) again, in a maximal multi-fan F_{x_1} at x_1 with respect to e_{xx_1} there exists a fully G -saturated edge e' . Let $M' = (M^* \setminus \{e\}) \cup \{e'\}$. Since every vertex of $V(M \cup M^*)$ has degree less than Δ in $G - (M \cup M^*)$, it follows that $M \cup M'$ is a matching of G . Let $H_{e'} = H_e + e - e'$. Clearly, $H_{e'}$ is also k -dense. Applying Lemma 3.1(a) with respect to the multi-fan F_{x_1} , we see that e' is also a k -critical edge of $H_e + e$. Thus $\chi'(H_{e'}) = k$ and $H_{e'}$ is also an induced subgraph of $G - (M \cup M')$ by Lemma 2.2. Moreover, $H_{e'}$ is a maximal k -dense subgraph of $G - (M \cup M')$, since otherwise there exists a k -dense subgraph H' containing $H_{e'}$ as a proper subgraph which implies that the k -dense subgraph $H' + e' - e$ is also a k -dense subgraph containing H_e as a proper subgraph in $G - (M \cup M')$, a contradiction to the maximality of H_e . As H_e is strongly φ -closed, colors on edges of $\partial_{G - (M \cup M')}(H_{e'}) = \partial_{G - (M \cup M')}(H_e)$ are pairwise distinct. Applying Lemma 2.5(a) on any k -edge-coloring of $H_{e'}$ and the k -edge-coloring of $G - (M \cup M' \cup E(H_{e'}))$, we have $\chi'(G - (M \cup M')) = k$. In order to claim that we can replace e by e' in M^* , and so repeat the same process for every edge f of M^* that is not fully G -saturated in $H_f + f$, where H_f is the maximal k -dense subgraph of $G - (M \cup M^*)$ with $V(f) \subseteq V(H_f)$, we discuss that this replacement will not affect the properties of other edges in M^* as follows.

By [Lemmas 2.1](#) and [2.2](#), maximal k -dense subgraphs of $G - (M \cup M^*)$ are induced and vertex-disjoint. Thus for any $f \in M^* \setminus \{e\}$, either $V(H_f) \cap V(H_e) = \emptyset$ or $H_f = H_e$. If $V(H_f) \cap V(H_e) = \emptyset$, then H_f is still the induced maximal k -dense subgraph of $G - (M \cup M')$ containing $V(f)$ and f is k -critical in $H_f + f$. If $H_f = H_e$, then as H_e' is an induced maximal k -dense subgraph of $G - (M \cup M')$ with $V(H_e) = V(H_e')$, it follows that $H_f + e - e' = H_e'$ is the maximal k -dense subgraph of $G - (M \cup M')$ containing $V(f)$ and f is k -critical in $H_f + e - e' + f$ by [Lemma 2.4\(a\)](#). As $V(f) \cap V(e) = \emptyset$ and $V(f) \cap V(e') = \emptyset$, the property that whether or not f is fully G -saturated in $H_f + f$ is not changed after replacing e by e' in M^* . Therefore, by repeating the replacement process as for the edge e above for every edge f of M^* that is not fully G -saturated in $H_f + f$, we may assume that each edge $e \in M^*$ is fully G -saturated in $H_e + e$. The proof is completed. \square

4. Proof of Theorem 1.1

Proof. Let $k = \Delta + \mu - 1$ and $\Phi : M \rightarrow [\Delta + \mu]$ be a given precoloring on M . Note that $\chi'(G - M) \leq k + 1$ by Vizing's Theorem. The conclusion of [Theorem 1.1](#) holds easily if $\chi'(G - M) \leq k$ with the reason as follows. For any k -edge-coloring ψ of $G - M$, if there exists $e \in E(G - M)$ such that e is adjacent in G to an edge $f \in M$ (maybe $V(e) = V(f)$) and $\psi(e) = \Phi(f)$, we recolor each such e with the color $\Delta + \mu$ and get a new coloring ψ' of $G - M$. Under ψ' , the edges colored by $\Delta + \mu$ form a matching in G since M is a distance-3 matching. Thus the combination of Φ and ψ' is a $(k + 1)$ -edge-coloring of G . Therefore, in the remainder of the proof, we assume $\chi'(G - M) = k + 1$.

Let $M_{\Delta+\mu}$ be the set of edges precolored with $\Delta + \mu$ in M under Φ . For any uncolored matching $M^* \subseteq G - V(M)$ and any $(k + 1)$ -edge-coloring or k -edge-coloring φ of $G - (M \cup M^*)$, denote the $\Delta + \mu$ color class of φ by $E_{M^*}^\varphi$. In particular, $E_{M^*}^\varphi = \emptyset$ if φ is a k -edge-coloring. We introduce the following notation. For $f \in E_G(u, v) \cap M$, if there exists $f_1 \in E(G - (M \cup M^*))$ such that $\varphi(f_1) = \Phi(f)$ and $V(f_1) \cap V(f) = \{u\}$ ($V(f_1) = V(f) = \{u, v\}$, respectively), we call f **T1-improper** (Type 1 improper) at u (at u and v , respectively) if $V(f_1) \cap V(M^*) = \emptyset$, and **T2-improper** (Type 2 improper) at u if $V(f_1) \cap V(M^*) \neq \emptyset$. If f is T1-improper or T2-improper at u , we say that f is **improper** at u . Define

$$E_1(M^*, \varphi) = \{f_1 \in E(G - (M \cup M^*)) : f_1 \text{ is adjacent in } G \text{ to a T1-improper edge}\},$$

$$E_2(M^*, \varphi) = \{f_1 \in E(G - (M \cup M^*)) : f_1 \text{ is adjacent in } G \text{ to a T2-improper edge}\}.$$

Observe that $E_1(M^*, \varphi) \cup E_2(M^*, \varphi)$ is a matching since M is a distance-3 matching in G . We call the triple $(M^*, E_{M^*}^\varphi, \varphi)$ **prefeasible** if the following conditions are satisfied:

- (a) $M_{\Delta+\mu} \cup M^* \cup E_{M^*}^\varphi$ is a matching;
- (b) for each $e \in M^*$ such that e is adjacent in G to an edge of $E_2(M^*, \varphi)$, e is k -critical and fully G -saturated in the graph $H_e + e$, where H_e is the unique maximal k -dense subgraph of $G - (M \cup M^*)$ containing $V(e)$;
- (c) the colors on edges of $\partial_{G - (M \cup M^*)}(H_e)$ are all distinct under φ .

Let $(M^*, E_{M^*}^\varphi, \varphi)$ be a prefeasible triple. Since $M \cup M^*$ is a matching in G , if $(M^*, E_{M^*}^\varphi, \varphi)$ also satisfies **Condition (d)**: $|E_1(M^*, \varphi)| = |E_2(M^*, \varphi)| = 0$, then by assigning the color $\Delta + \mu$ to all edges of M^* , we obtain a (proper) $(k + 1)$ -edge-coloring of G , where the $(k + 1)$ -edge-coloring is the combination of the precoloring Φ on M , the coloring using the color $\Delta + \mu$ on M^* , and the coloring φ of $G - (M \cup M^*)$. Thus we define a **feasible** triple $(M^*, E_{M^*}^\varphi, \varphi)$ as one that satisfies Conditions (a)-(d).

The rest of the proof is devoted to showing the existence of a feasible triple $(M^*, E_{M^*}^\varphi, \varphi)$ of G . Our main strategy is to first fix a particular prefeasible triple $(M_0^*, E_{M_0^*}^{\varphi_0}, \varphi_0)$, then modify it step by step into a feasible triple $(M^*, E_{M^*}^\varphi, \varphi)$. In particular, we will choose M_0^* and φ_0 such that $E_{M_0^*}^{\varphi_0} = \emptyset$. At the end, when we modify φ_0 into φ , we will ensure that the $\Delta + \mu$ color class of G is $M_{\Delta+\mu} \cup M^* \cup E_1(M_0^*, \varphi_0) \cup E_2(M_0^*, \varphi_0)$. The process is first to modify M_0^* and φ_0 at the same time to deduce the number of T2-improper edges.

By [Lemma 3.3](#), there exists a matching M_0^* of $G - V(M)$ such that $\chi'(G - (M \cup M_0^*)) = k$ and each edge $e \in M_0^*$ is k -critical and fully G -saturated in $H_e + e$, where H_e is the unique maximal k -dense subgraph of $G - (M \cup M_0^*)$ containing $V(e)$. By [Lemmas 2.1](#) and [2.2](#), H_e is induced in $G - (M \cup M_0^*)$ with

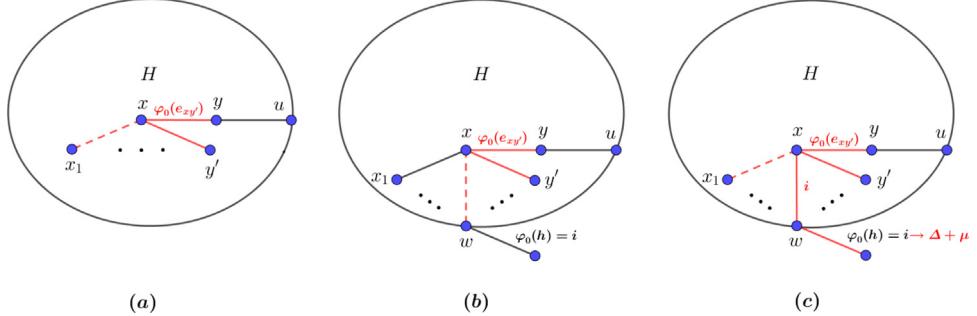


Fig. 2. Operations I, II and III in Case 1. (The edges of the dashed line represent uncolored edges).

$\chi'(H_e) = k$, and H_e and $H_{e'}$ are either identical or vertex-disjoint for any $e' \in M_0^* \setminus \{e\}$. Moreover, by Lemma 2.4, $\text{diam}(H_e + e) \leq \text{diam}(H_e) \leq 2$, and H_e is $(\varphi_0)_{H_e}$ -elementary and strongly φ_0 -closed in $G - (M \cup M_0^*)$. As $\chi'(G - M) = k + 1$, we have $|M_0^*| \geq 1$. Let φ_0 be a k -edge-coloring of $G - (M \cup M_0^*)$. Thus $E_{M_0^*}^{\varphi_0} = \emptyset$. Obviously, the triple $(M_0^*, \emptyset, \varphi_0)$ is prefeasible, which we take as our initial triple.

For $(M_0^*, \emptyset, \varphi_0)$, if $|E_1(M_0^*, \varphi_0)| = |E_2(M_0^*, \varphi_0)| = 0$, then we are done. If $|E_1(M_0^*, \varphi_0)| \geq 1$ and $|E_2(M_0^*, \varphi_0)| = 0$, then we recolor each edge in $E_1(M_0^*, \varphi_0)$ with the color $\Delta + \mu$ to produce a $(k + 1)$ -edge-coloring φ_1 of $G - (M \cup M_0^*)$, since $E_{M_0^*}^{\varphi_0} = \emptyset$ and $E_1(M_0^*, \varphi_0)$ is a matching. Then as $|E_1(M_0^*, \varphi_1)| = |E_2(M_0^*, \varphi_1)| = 0$ and $M_{\Delta+\mu} \cup M_0^* \cup E_{M_0^*}^{\varphi_1}$ is a matching, it follows that the new triple $(M_0^*, E_1(M_0^*, \varphi_0), \varphi_1)$ is feasible. Then we are also done.

Therefore, we assume that $|E_1(M_0^*, \varphi_0)| \geq 0$ and $|E_2(M_0^*, \varphi_0)| \geq 1$. Recall that for each $e \in M_0^*$, e is fully G -saturated in $H_e + e$. Thus we have the following observation: for an edge $f_{uv} \in M$ with $V(f_{uv}) = \{u, v\}$, if $\{u, v\} \cap V(H_e) = \emptyset$ for any $e \in M_0^*$, then f_{uv} cannot be a T2-improper edge.

Since $|E_2(M_0^*, \varphi_0)| \geq 1$, we consider one T2-improper edge in M , say f_{uv} with $V(f_{uv}) = \{u, v\}$. Suppose that f_{uv} is T2-improper at u and $\varphi(f_{uv}) = i \in [k]$ (as φ_0 is a k -edge-coloring, $i \neq k + 1 = \Delta + \mu$). Then there exist $e_{xy} \in E_G(x, y) \cap M_0^*$ and a maximal k -dense subgraph H of $G - (M \cup M_0^*)$ such that $V(e_{xy}) \subseteq V(H)$ and f_{uv} and e_{xy} are both adjacent in G to an i -edge $e_{yu} \in E_H(y, u)$. Since M is a distance-3 matching and $\text{diam}(H) \leq 2$, we have $V(H) \cap V(M \setminus \{f_{uv}\}) = \emptyset$. We will modify φ_0 into a new coloring such that f_{uv} is not T2-improper at u under this new coloring and that no other edge of M_0^* is changed into a new T2-improper edge. We consider the three cases below regarding the location of f_{uv} with respect to H .

Case 1: f_{uv} is not improper at v , or f_{uv} is T1-improper at v but $v \notin V(H)$.

Let F_x be a maximal multi-fan at x with respect to e_{xy} and $(\varphi_0)_H$ in $H + e_{xy}$. There exist at least one Δ -vertex in $V(F_x) \setminus \{x, y\}$ by Lemma 3.2(a) and a linear sequence at x from y to this Δ -vertex in F_x . We consider two subcases as follows.

Subcase 1.1: $V(F_x) \setminus \{x, y\}$ has a Δ -vertex x_1 and there is a linear sequence S at x from y to x_1 such that S contains no i -edge or S contains no vertex w such that w is incident with an i -edge of $\partial_{G - (M \cup M_0^*)}(H)$.

Let $S = (y, e_{xy}, y', \dots, e_{xx_1}, x_1)$ be the linear sequence (where $y' = x_1$ is possible). We apply Operation I as follows: apply a shifting in S from y to x_1 , color e_{xy} with $\varphi_0(e_{xy})$, uncolor e_{xx_1} , and replace e_{xy} by e_{xx_1} in M_0^* . See Fig. 2(a). Since x_1 is not incident with any edge in $M \cup M_0^*$, $M_1^* := (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xx_1}\}$ is a matching. Denote $H_1 := H + e_{xy} - e_{xx_1}$. Let ψ be the k -edge coloring of H_1 after Operation I. Note that for any vertex $z \in V(H_1)$ that is incident with an edge of $\partial_{G - (M \cup M_0^*)}(H_1)$, if $\overline{\psi}(z) \neq (\varphi_0)_H(z)$, then $z \in V(S)$. By the condition of Subcase 1.1 and Operation I, there is no such vertex w such that w is incident with both an i -edge of $E(S)$ and an i -edge of $\partial_{G - (M \cup M_0^*)}(H_1)$. Thus we can rename some color classes of ψ but keep the color i unchanged to match all colors on edges of $\partial_{G - (M \cup M_0^*)}(H_1)$. In this way we obtain a (proper) k -edge-coloring φ_1 of $G - (M \cup M_1^*)$ by Lemma 2.5(b).

We claim that $(M_1^*, \emptyset, \varphi_1)$ is a prefeasible triple. As $M_{\Delta+\mu} \cup M_1^*$ is a matching, we verify that M_1^* and φ_1 satisfy the corresponding conditions. Clearly H_1 is k -dense with $V(H_1) = V(H)$ and $\partial_{G-(M \cup M_1^*)}(H_1) = \partial_{G-(M \cup M_0^*)}(H)$ and $\chi'(H_1) = \chi'(H) = k$, and e_{xx_1} is k -critical and fully G -saturated in $H_1 + e_{xx_1}$. Furthermore, as distinct maximal k -dense subgraphs are vertex-disjoint we know that each edge $e \in M_1^* \setminus \{e_{xx_1}\}$ is still contained in a k -dense subgraph of $G - (M \cup M_1^*)$ such that e is k -critical and fully G -saturated in the graph $H_e + e$ if e is adjacent in G to an edge of $E_2(M_1^*, \varphi_1)$, where H_e is the unique maximal k -dense subgraph of $G - (M \cup M_0^*)$ containing $V(e)$ if H_e and H_1 are vertex-disjoint, and $H_e = H_1$ otherwise. Since φ_1 is a k -edge-coloring of $G - (M \cup M_1^*)$, H_e is strongly φ_1 -closed for each $e \in M_1^*$. Therefore, $(M_1^*, \emptyset, \varphi_1)$ is a prefeasible triple.

Next, we claim that $|E_2(M_1^*, \varphi_1)| = |E_2(M_0^*, \varphi_0)| - 1$. Note that under φ_1 , we still have $\varphi_1(e_{yu}) = i$. Since $e_{xy}, e_{yu} \in E(H_1)$, $e_{xx_1} \in M_1^*$ and e_{xx_1} is not adjacent to e_{yu} in $G - (M \cup M_1^*)$, we see that now f_{uv} is no longer T2-improper at u but T1-improper at u with respect to M_1^* and φ_1 . For any edge $f \in M \setminus \{f_{uv}\}$, since both x and x_1 are Δ -vertices of $H + e_{xy}$ and $V(H_1) \cap V(M \setminus \{f_{uv}\}) = \emptyset$, we see that the distance between f and e_{xx_1} in $G - (M \cup M_1^*)$ is at least 2. Thus the property of f being T1-improper or T2-improper is not changed under M_1^* and φ_1 . Thus the new triple $(M_1^*, \emptyset, \varphi_1)$ is prefeasible with $|E_1(M_1^*, \varphi_1)| = |E_1(M_0^*, \varphi_0)| + 1$ and $|E_2(M_1^*, \varphi_1)| = |E_2(M_0^*, \varphi_0)| - 1$, and so we can consider $(M_1^*, \emptyset, \varphi_1)$ instead.

Subcase 1.2: For any Δ -vertex in $V(F_x) \setminus \{x, y\}$, any linear sequence from y to this Δ -vertex contains both an i -edge h_i and a vertex w such that w is incident with an i -edge h of $\partial_{G-(M \cup M_0^*)}(H)$.

Let $F \subseteq F_x$ be the maximal multi-fan at x without any i -edge with respect to e_{xy} and $(\varphi_0)_H$. By the condition of Subcase 1.2, F does not contain any Δ -vertex from $V(F) \setminus \{x, y\}$ in H . By Lemma 3.2(c), there exists a vertex $z^* \in V(F) \setminus \{x, y\}$ with $i \in (\varphi_0)_H(z^*)$ and $d_H(z^*) = \Delta - 1$. Since $V(F_x)$ is $(\varphi_0)_H$ -elementary by Lemma 3.1(a) and every color on edges of $\partial_{G-(M \cup M_0^*)}(H)$ under φ_0 is a missing color at some vertex of H under $(\varphi_0)_H$, it follows that $z^* = w$, i.e., $d_H(w) = \Delta - 1$ and $d_{G-(M \cup M_0^*)}(w) = \Delta$. Thus the i -edge h is the only edge incident with w from $\partial_{G-(M \cup M_0^*)}(H)$, and w is not adjacent in G to any edge from $M \cup M_0^*$. Let $S = (y, e_{xy}, y', \dots, e_{xx_1}, x_1)$ be a linear sequence at x from y to x_1 , where x_1 is a Δ -vertex. Notice that w is in S by the condition of Subcase 1.2. We consider the following two subcases according whether the boundary i -edge h belongs to $E_1(M_0^*, \varphi_0)$.

Subcase 1.2.1: $h \notin E_1(M_0^*, \varphi_0)$, i.e., h is not adjacent in G to any precolored i -edge in M .

Let $e_{xw} \in E_H(x, w)$ be an edge in S . We apply Operation II as follows: apply a shifting in S from y to w , color e_{xy} with $\varphi_0(e_{xy'})$, uncolor e_{xw} , and replace e_{xy} by e_{xw} in M_0^* . See Fig. 2(b). Since $d_{G-(M \cup M_0^*)}(w) = \Delta$, $M_1^* := (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xw}\}$ is a matching. Denote $H_1 := H + e_{xy} - e_{xw}$. Let ψ be the k -edge coloring of H_1 after Operation II. Note that for any vertex $z \in V(H_1)$ that is incident with an edge of $\partial_{G-(M \cup M_1^*)}(H_1)$, if $\overline{\psi}(z) \neq \overline{(\varphi_0)_H}(z)$, then z is contained in the subsequence of S from y to w . Since h is the only i -edge of $\partial_{G-(M \cup M_1^*)}(H_1)$, there is no such vertex w such that w is incident with both an i -edge contained in the subsequence of S from y to w and an i -edge of $\partial_{G-(M \cup M_1^*)}(H_1)$ after Operation II. Thus we can rename some color classes of ψ but keep the color i unchanged to match all colors on boundary edges of $\partial_{G-(M \cup M_1^*)}(H_1)$. In this way we obtain a (proper) k -edge-coloring φ_1 of $G - (M \cup M_1^*)$ by Lemma 2.5(b).

By the similar argument in the proof of Subcase 1.1, it can be verified that $(M_1^*, \emptyset, \varphi_1)$ is prefeasible, and that f_{uv} is no longer T2-improper at u but T1-improper at u with respect to M_1^* and φ_1 . For any edge $f \in M \setminus \{f_{uv}\}$, we see that the distance between f and e_{xw} is at least 2 or just 1 when h is adjacent in G to f with $\Phi(f) \neq i$. Thus the property of f being T1-improper or T2-improper is not changed under M_1^* and φ_1 . Thus the new triple $(M_1^*, \emptyset, \varphi_1)$ is prefeasible with $|E_1(M_1^*, \varphi_1)| = |E_1(M_0^*, \varphi_0)| + 1$ and $|E_2(M_1^*, \varphi_1)| = |E_2(M_0^*, \varphi_0)| - 1$, and so we can consider $(M_1^*, \emptyset, \varphi_1)$ instead.

Subcase 1.2.2: $h \in E_1(M_0^*, \varphi_0)$, i.e., h is adjacent in G to some precolored i -edge f_i in M .

We apply Operation III as follows: recolor the i -edge h with the color $\Delta + \mu$, apply a shifting in S from y to x_1 , color e_{xy} with $\varphi_0(e_{xy'})$, uncolor e_{xx_1} , and replace e_{xy} by e_{xx_1} in M_0^* . See Fig. 2(c). By the same argument as in the proof of Subcase 1.1, we know that $M_1^* := (M_0^* \setminus \{e_{xy}\}) \cup \{e_{xx_1}\}$ is a matching. Denote $H_1 := H + e_{xy} - e_{xx_1}$. Let ψ be the k -edge coloring of H_1 after Operation III. Note that there is no i -edge in $\partial_{G-(M \cup M_1^*)}(H_1)$ after Operation III. By the similar argument as in the proof of Subcase 1.1, we can rename some color classes of ψ but keep the color i unchanged to match

all colors on edges of $\partial_{G-(M \cup M_1^*)}(H_1)$. In this way we obtain a (proper) $(k+1)$ -edge-coloring φ_1 of $G - (M \cup M_1^*)$ by [Lemma 2.5\(b\)](#).

We claim that (M_1^*, h, φ_1) is a prefeasible triple. As $M \cup M_1^*$ is a matching and h is adjacent to f_i and $\Phi(f_i) = i \in [k]$, it follows that h is not adjacent to any edge from $M_{\Delta+\mu} \cup M_1^*$, which implies that $M_{\Delta+\mu} \cup M_1^* \cup \{h\}$ is a matching. By the same argument as in the proof of Subcase 1.1, we know that e_{xx_1} is k -critical and fully G -saturated in $H_1 + e_{xx_1}$, and each edge $e \in M_1^* \setminus \{e_{xx_1}\}$ is still contained in a k -dense subgraph of $G - (M \cup M_1^*)$ such that e is k -critical and fully G -saturated in the graph $H_e + e$ if e is adjacent in G to an edge of $E_2(M_1^*, \varphi_1)$, where H_e is the unique maximal k -dense subgraph of $G - (M \cup M_1^*)$ containing $V(e)$ if H_e and H_1 are vertex-disjoint, and $H_e = H_1$ otherwise. If the color $\Delta + \mu$ is not used on edges of $\partial_{G-(M \cup M_1^*)}(H_e)$, then colors on edges of $\partial_{G-(M \cup M_1^*)}(H_e)$ are all distinct by the fact that H_e is strongly φ_1 -closed. If the color $\Delta + \mu$ is used on edges of $\partial_{G-(M \cup M_1^*)}(H_e)$, then it was used on exactly one edge of $\partial_{G-(M \cup M_1^*)}(H_e)$. This, together with the fact that H_e is $(\varphi_1)_{H_e}$ -elementary, implies that colors on edges of $\partial_{G-(M \cup M_1^*)}(H_e)$ are all distinct. Therefore, (M_1^*, h, φ_1) is a prefeasible triple.

By the same argument as in the proof of Subcase 1.1, we know that now f_{uv} is no longer T2-improper at u but T1-improper at u with respect to M_1^* and φ_1 , and that for any edge $f \in M \setminus \{f_{uv}\}$, the distance between f and e_{xx_1} in $G - (M \cup M_1^*)$ is at least 2. Except the i -edge f_i of M that is adjacent in G to h , the property of f being T1-improper or T2-improper is not changed under M_1^* and φ_1 . The edge f_i is originally T1-improper at w_i , and now is no longer improper at w_i with respect to φ_1 , where we assume $h \in E_G(w, w_i)$. Thus $|E_1(M_1^*, \varphi_1)| = |E_1(M_0^*, \varphi_0)| + 1 - 1$ and $|E_2(M_1^*, \varphi_1)| = |E_2(M_0^*, \varphi_0)| - 1$, and so we can consider $(M_1^*, \{h\}, \varphi_1)$ instead. Note that assigning the color $\Delta + \mu$ to h will not affect the modification of φ_0 into φ and M_0^* into M^* , since $h \in E_1(M_0^*, \varphi_0)$ and we will assign the color $\Delta + \mu$ to all edges in $E_1(M_0^*, \varphi_0)$ in the final process.

Case 2: f_{uv} is T2-improper at v with $v \in V(H')$ for a maximal k -dense subgraph H' other than H .

For this case, we apply the same operations as we did in Case 1 first with respect to the vertex u in H and then with respect to the vertex v in H' . Recall that $V(H) \cap V(H') = \emptyset$ and $E_1(M_0^*, \varphi_0)$ is a matching. By Case 1, the operations applied within $G[V(H)]$ or $G[V(H)] + h_u$ do not affect the operations applied within $G[V(H')]$ or $G[V(H')] + h_v$, where h_u and h_v are the two possible i -edges with $h_u \in \partial_{G-(M \cup M_1^*)}(H) \cap E_1(M_0^*, \varphi_0)$ and $h_v \in \partial_{G-(M \cup M_1^*)}(H') \cap E_1(M_0^*, \varphi_0)$. Furthermore, if h_u and h_v exist at the same time, then $V(h_u) \cap V(h_v) = \emptyset$ and there is no maximal k -dense subgraph H'' other than H and H' such that $V(H'') \cap V(h_u) \neq \emptyset$ and $V(H'') \cap V(h_v) \neq \emptyset$. Denote the matching resulting from M_0^* by M_1^* , and the coloring resulting from φ_0 by φ_1 . By Case 1, $E_{M_1^*}^{\varphi_1} \subseteq \{h_u, h_v\}$, $M_{\Delta+\mu} \cup M_1^* \cup \{h_u, h_v\}$ is a matching, and $(M_1^*, E_{M_1^*}^{\varphi_1}, \varphi_1)$ also satisfies Conditions (b) and (c). Thus $(M_1^*, E_{M_1^*}^{\varphi_1}, \varphi_1)$ is a prefeasible triple. With respect to M_1^* and φ_1 , f_{uv} is no longer T2-improper but is T1-improper at both u and v . Furthermore, we have $|E_1(M_1^*, \varphi_1)| \geq |E_1(M_0^*, \varphi_0)|$ and $|E_2(M_1^*, \varphi_1)| = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_1^*, E_{M_1^*}^{\varphi_1}, \varphi_1)$ instead.

Case 3: f_{uv} is T1-improper or T2-improper at v with $v \in V(H)$.

Let $e_{bv} \in E_H(b, v)$ with $\varphi_0(e_{bv}) = i$. Assume first that $d_H(b) < \Delta$. If f_{uv} is T1-improper at v , then we apply the same operations with respect to u as we did in Case 1. Denote the new matching resulting from M_0^* by M_1^* , and the new coloring resulting from φ_0 by φ_1 . Then the vertex b is not incident in G with any edge of M_1^* by Operations I-III in Case 1. Thus f_{uv} is no longer T2-improper at u but T1-improper at u with respect to M_1^* and φ_1 . Furthermore, we have $|E_1(M_1^*, \varphi_1)| \geq |E_1(M_0^*, \varphi_0)|$ and $|E_2(M_1^*, \varphi_1)| = |E_2(M_0^*, \varphi_0)| - 1$. Thus we can consider $(M_1^*, E_{M_1^*}^{\varphi_1}, \varphi_1)$ instead.

If f_{uv} is T2-improper at v , let $e_{ab} \in M_0^*$ with $V(e_{ab}) = \{a, b\}$. We apply the same operations with respect to u as we did in Case 1. Denote the resulting matching by M_1^* , and the resulting coloring by φ_1 . With respect to M_1^* and φ_1 , the edge f_{uv} is still T2-improper at v as $d_H(a) < \Delta$ and $d_H(b) < \Delta$. By Case 1, now f_{uv} is no longer T2-improper at u but T1-improper at u with respect to the prefeasible triple $(M_1^*, E_{M_1^*}^{\varphi_1}, \varphi_1)$, where $E_{M_1^*}^{\varphi_1} = \emptyset$ or $\{h\}$ with some vertex w and its incident i -edge $h \in \partial_{G-(M \cup M_0^*)}(H) \cap E_1(M_0^*, \varphi_0)$. Denote by H_1 the new k -dense subgraph after the operations with respect to u in $H + e_{xy}$. In particular, the situation under $(M_1^*, \emptyset, \varphi_1)$ is actually the same as the case $d_H(b) = \Delta$ in the previous paragraph since now $d_{H_1}(y) = \Delta$.

Thus we consider only the case that f_{uv} is T2-improper at v , T1-improper at u and $d_{H_1}(y) = \Delta$. Consider a maximal multi-fan F_a at a with respect to e_{ab} and $(\varphi_1)_{H_1}$ in $H_1 + e_{ab}$. Clearly we can

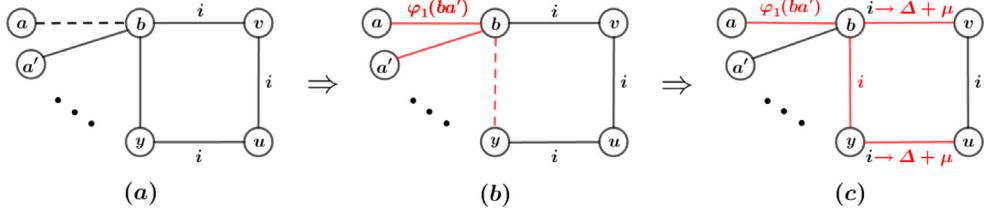


Fig. 3. Operation in Subcase 3.1. (The edges of the dashed line represent uncolored edges).

apply the same operations in Case 1 for v so that f_{uv} is no longer T2-improper at v with respect to the resulting matching M_2^* and coloring φ_2 , unless these operations would have to put one edge $e_{ay} \in E_{H_1}(a, y)$ into M_2^* . Then f_{uv} would become T2-improper at u again with respect to M_2^* and φ_2 . The only operations that have to uncolor an edge of H_1 incident with y are Operations I and III. Therefore, we make the following two assumptions on F_a in the rest of our proof.

- (1) y is the only Δ -vertex in $V(F_a) \setminus \{a, b\}$.
- (2) If a linear sequence in F_a at a from b to y contains a vertex w' such that $d_{H_1}(w') = \Delta - 1$ and w' is incident with an i -edge $h' \in \partial_{G-(M \cup M_1^*)}(H_1)$, then $h' \in E_1(M_1^*, \varphi_1)$.

Let F_b be a maximal multi-fan at b with respect to e_{ab} and $(\varphi_1)_{H_1}$ in $H_1 + e_{ab}$. We consider the following three subcases.

Subcase 3.1: F_b contains a linear sequence S at b from a to y such that S does not contain any i -edge.

Let $S = (a, e_{ba'}, a', \dots, e_{by}, y)$ be the linear sequence (where $a' = y$ is possible). We apply a shifting in S from a to y , color e_{ab} with $\varphi_1(e_{ba'})$, uncolor e_{by} . See Fig. 3(a)–(b). Note that $M_2^* := (M_1^* \setminus \{e_{ab}\}) \cup \{e_{by}\}$ is a matching, and $H_2 := H_1 + e_{ab} - e_{by}$ is a k -dense subgraph of $G - (M \cup M_2^*)$. As S does not contain any i -edge, by Lemma 2.5(b), we obtain a k -edge-coloring φ_2 of $G - (M \cup M_2^*)$. Note that f_{uv} is T2-improper at both u and v with respect to M_2^* and φ_2 . However, we have $\Phi(f_{uv}) = i$, $\varphi_2(e_{bu}) = \varphi_2(e_{yu}) = i$, and $e_{by} \in M_2^*$ ($bvuyb$ is a cycle with length 4 in G). By assigning the color i to e_{by} and recoloring e_{bu} and e_{yu} with the color $\Delta + \mu$, we obtain a new matching $M_3^* := M_2^* \setminus \{e_{by}\} = M_1^* \setminus \{e_{ab}\}$ of $G - V(M)$ and a new $(k+1)$ -edge-coloring φ_3 of $G - (M \cup M_3^*)$. See Fig. 3(c). The edge f_{uv} is now not improper at neither of its endvertices. Note that $E_{M_3^*}^{\varphi_3} = \{e_{bv}, e_{yu}\}$ if $E_{M_1^*}^{\varphi_1} = \emptyset$ and $E_{M_3^*}^{\varphi_3} = \{h, e_{bv}, e_{yu}\}$ if $E_{M_1^*}^{\varphi_1} = \{h\}$. Since $E_{M_3^*}^{\varphi_3} \subseteq (E_1(M_0^*, \varphi_0) \cup E_2(M_0^*, \varphi_0))$ is a matching, and those edges in $E_{M_3^*}^{\varphi_3}$ do not share any endvertex with edges in $M_{\Delta+\mu} \cup M_3^*$, it follows that $M_{\Delta+\mu} \cup M_3^* \cup E_{M_3^*}^{\varphi_3}$ is a matching. Note that $V(H_2) \cap V(M \setminus \{f_{uv}\}) = \emptyset$. For each $e \in M_3^*$ such that e is adjacent in G to an edge of $E_2(M_3^*, \varphi_3)$, e is still k -critical and fully G -saturated in the graph $H_e + e$, where H_e is still the unique maximal k -dense subgraph of $G - (M \cup M_0^*)$ containing $V(e)$ and H_e is also strongly φ_3 -closed. Thus the new triple $(M_3^*, E_{M_3^*}^{\varphi_3}, \varphi_3)$ is prefeasible. Furthermore, $|E_1(M_3^*, \varphi_3)| = |E_1(M_1^*, \varphi_1)| - 1 \geq |E_1(M_0^*, \varphi_0)| - 1$ and $|E_2(M_3^*, \varphi_3)| = |E_2(M_0^*, \varphi_0)| - 1 = |E_2(M_1^*, \varphi_1)| - 2$. Thus we can consider $(M_3^*, E_{M_3^*}^{\varphi_3}, \varphi_3)$ instead.

Subcase 3.2: F_b contains a vertex w'' with $d_{H_1}(w'') = \Delta - 1$ and $i \in \overline{(\varphi_1)_{H_1}}(w'')$.

The i -edge e_{bv} is in F_b by the maximality of F_b . Let $S = (a, e_{ba'}, a', \dots, e_{bw''}, w'', e_{bv}, v)$ be a linear sequence at b from a to v in F_b (where $a = a'$ and $a' = w''$ are possible). Since $i \in \overline{(\varphi_1)_{H_1}}(w'')$, we have that either $i \in \overline{\varphi_1}(w'')$ or w'' is incident with an i -edge $h'' \in \partial_{G-(M \cup M_1^*)}(H_1)$.

Assume first that $i \in \overline{\varphi_1}(w'')$ or w'' is incident with an i -edge $h'' \in \partial_{G-(M \cup M_1^*)}(H_1)$ such that $h'' \in E_1(M_1^*, \varphi_1)$. We apply a shifting in S from a to v , color e_{ab} with $\varphi_1(e_{ba'})$, and uncolor e_{bv} . Note that $e_{bw''}$ was recolored by the color i in the shifting operation. We then recolor the i -edge h'' with the color $\Delta + \mu$ if h'' exists, and rename some color classes of $H_2 := H_1 + e_{ab} - e_{bv}$ but keep the color i unchanged without producing any improper i -edge by Lemma 2.5(b). Finally we assign the color $\Delta + \mu$ to e_{bv} . Note that $h \neq h''$ since $\varphi_1(h) = \Delta + \mu \neq i = \varphi_1(h'')$, and h and h'' cannot both exist in $\partial_{G-(M \cup M_0^*)}(H) = \partial_{G-(M \cup M_1^*)}(H_1)$ since otherwise $\varphi_0(h) = \varphi_0(h'') = i$.

contradicting that H is strongly φ_0 -closed. Now we obtain a new matching $M_2^* := M_1^* \setminus \{e_{ab}\}$ of $G - V(M)$ and a new (proper) $(k+1)$ -edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer T2-improper at v or even T1-improper at v with respect to a new triple $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$, where $E_{M_2^*}^{\varphi_2} = \{e_{bv}\}$ if $E_{M_2^*}^{\varphi_1} = \emptyset$ but h'' does not exist, $E_{M_2^*}^{\varphi_2} = \{e_{bv}, h''\}$ if $E_{M_2^*}^{\varphi_1} = \emptyset$ and h'' exists, and $E_{M_2^*}^{\varphi_2} = \{e_{bv}, h\}$ if $E_{M_2^*}^{\varphi_1} = \{h\}$. Since $E_{M_2^*}^{\varphi_2} \subseteq (E_1(M_0^*, \varphi_0) \cup E_2(M_0^*, \varphi_0))$ is a matching, and those edges in $E_{M_2^*}^{\varphi_2}$ do not share any endvertex with edges in $M_{\Delta+\mu} \cup M_2^*$, it follows that $M_{\Delta+\mu} \cup M_2^* \cup E_{M_2^*}^{\varphi_2}$ is a matching. Note that $V(H_2) \cap V(M \setminus \{f_{uv}\}) = \emptyset$. By the similar argument as in the proof of Subcase 3.1, the new triple $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$ is prefeasible. Furthermore, $|E_1(M_2^*, \varphi_2)| \geq |E_1(M_0^*, \varphi_0)|$ and $|E_2(M_2^*, \varphi_2)| = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$ instead.

Now we may assume that the i -edge $h'' \notin E_1(M_1^*, \varphi_1)$. Since h and h'' cannot both exist, we have $E_{M_1^*}^{\varphi_1} = \emptyset$. Note that the vertex $w'' \notin V(F_a)$ by Assumption (2) prior to Subcase 3.1. Moreover, w'' is not incident with any edge in $M \cup M_1^*$ and w'' is only incident with the i -edge h'' in $\partial_{G-(M \cup M_1^*)}(H_1)$. Since $d_{G-(M \cup M_1^*)}(w'') = \Delta$ and φ_1 is a k -edge-coloring of $G - (M \cup M_1^*)$ with $k \geq \Delta + 1$, there exists a color $\alpha \in \overline{\varphi}_1(w'')$ with $\alpha \neq i$. Since $V(H_1)$ is $(\varphi_1)_{H_1}$ -elementary, there exists an α -edge e_1 incident with the vertex a . Thus we can define a maximal multi-fan at a , denoted by F'_a , with respect to e_1 and $(\varphi_1)_{H_1}$ in $H_1 + e_1$. (Notice that e_1 is colored by the color α in F'_a .) Moreover, $V(F'_a)$ is $(\varphi_1)_{H_1}$ -elementary since $V(H_1)$ is $(\varphi_1)_{H_1}$ -elementary. By Lemma 3.2(b) and Assumption (1) prior to Subcase 3.1, we have $e_{F_a}(a, b') = e_{H_1 + e_{ab}}(a, b') = \mu$ for any vertex b' in $V(F_a) \setminus \{a\}$. Therefore, $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are disjoint, since otherwise we have $V(F'_a) \subseteq V(F_a)$ and $\alpha \in (\overline{\varphi}_1)_{H_1}(b')$ for some $b' \in V(F_a)$ implying $b' = w'' \in V(F_a)$, a contradiction. Note that if $w'' \notin V(F'_a)$, then $V(F'_a) \setminus \{a\}$ must contain a Δ -vertex in H_1 , since otherwise Lemma 3.2(d) and the fact $(\varphi_1)_{H_1}(e_1) = \alpha \in \overline{\varphi}_1(w'')$ imply that $w'' \in V(F'_a)$, a contradiction. Thus F'_a contains a linear sequence $S' = (b_1, e_2, b_2, \dots, e_t, b_t)$ at a , where $b_1 \in V(e_1)$, b_t (with $t \geq 1$) is a Δ -vertex if $w'' \notin V(F'_a)$, and b_t is w'' if $w'' \in V(F'_a)$. Notice that b_t is not incident with any edge in $M \cup M_1^*$ by our choice of b_t . Moreover, $b_t \neq y$ since $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are disjoint. Let β ($\beta \neq i$) be a color in $\overline{\varphi}_1(b)$. By Lemma 3.1(b), we have $P_b(\beta, \alpha) = P_{w''}(\beta, \alpha)$. We then consider the following two subcases according the set $(V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\})$.

We first assume that $(V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\}) \subseteq \{b_t\}$. If $e_1 \notin P_b(\beta, \alpha)$, then we apply a Kempe change on $P_{[b, w'']}(b, \alpha)$, uncolor e_1 and color e_{ab} with α . If $e_1 \in P_b(\beta, \alpha)$ and $P_b(\beta, \alpha)$ meets b_1 before a , then we apply a Kempe change on $P_{[b, b_1]}(b, \alpha)$, uncolor e_1 and color e_{ab} with α . If $e_1 \in P_b(\beta, \alpha)$ and $P_{w''}(b, \alpha)$ meets b_1 before a , then we uncolor e_1 , apply a Kempe change on $P_{[w'', b_1]}(b, \alpha)$, apply a shifting in S from a to w'' , color e_{ab} with $\varphi_1(e_{ba'})$, and recolor $e_{bw''}$ with β . In all three cases above, e_{ab} is colored with a color in $[k]$ and e_1 is uncolored. Finally we apply a shifting in S' from b_1 to b_t , color e_1 with $\varphi_1(e_2)$, and uncolor e_t . Notice that the above shifting in S' does nothing if $t = 1$. Denote $H_2 := H_1 + e_{ab} - e_t$. Since H_2 is also k -dense and $\chi'(H_2) = k$, we can rename some color classes of $E(H_2)$ but keep the color i unchanged to match all colors on boundary edges without producing any improper i -edge by Lemma 2.5(b). Now we obtain a new matching $M_2^* := (M_1^* \setminus \{e_{ab}\}) \cup \{e_t\}$ and a new (proper) k -edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer T2-improper at v but T1-improper at v with respect to the new prefeasible triple $(M_2^*, \emptyset, \varphi_2)$. Furthermore, $|E_1(M_2^*, \varphi_2)| = |E_1(M_0^*, \varphi_0)| + 2$ and $|E_2(M_2^*, \varphi_2)| = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_2^*, \emptyset, \varphi_2)$ instead.

Then we assume that there exists $b_j = a^* \in (V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\})$ for some $j \in [t-1]$ and $a^* \in V(S)$. See Fig. 4 for a depiction when $b_1 = b_j = a^* = a'$. In this case we assume a^* is the closest vertex to the vertex a along S . Note that $b_j \neq b$ as $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are disjoint. Let $\alpha_j = \varphi_1(e_{j+1}) \in (\overline{\varphi}_1)_{H_1}(b_j)$. By Lemma 3.1(b), we have $P_b(\beta, \alpha_j) = P_{b_j}(\beta, \alpha_j)$. If $e_{j+1} \notin P_b(\beta, \alpha_j)$, then we apply a Kempe change on $P_{[b, b_j]}(b, \alpha_j)$, uncolor e_{j+1} and color e_{ab} with α_j . If $e_{j+1} \in P_b(\beta, \alpha_j)$ and $P_b(\beta, \alpha_j)$ meets b_{j+1} before a , then we apply a Kempe change on $P_{[b, b_{j+1}]}(b, \alpha_j)$, uncolor e_{j+1} and color e_{ab} with α_j . If $e_{j+1} \in P_b(\beta, \alpha_j)$ and $P_{b_j}(\beta, \alpha_j)$ meets b_{j+1} before a , then we uncolor e_{j+1} , apply a Kempe change on $P_{[b_j, b_{j+1}]}(b, \alpha_j)$, apply a shifting in S from a to b_j (i.e., a^*), color e_{ab} with $\varphi_1(e_{ba'})$, and recolor the edge $e_{bb_j} \in E_{H_1}(b, b_j)$ with β . (See Fig. 4(a)-(c).) In all three cases above, e_{ab} is colored with a color in $[k]$ and e_{j+1} is uncolored. Finally we apply a shifting in S' from b_{j+1} to b_t , color e_{j+1} with $\varphi_1(e_{j+2})$, and uncolor e_t . (See Fig. 4(d).) Notice that the above shifting in S' does nothing if $b_{j+1} = b_t$. Denote $H_2 := H_1 + e_{ab} - e_t$. Since H_2 is also k -dense and $\chi'(H_2) = k$, we can

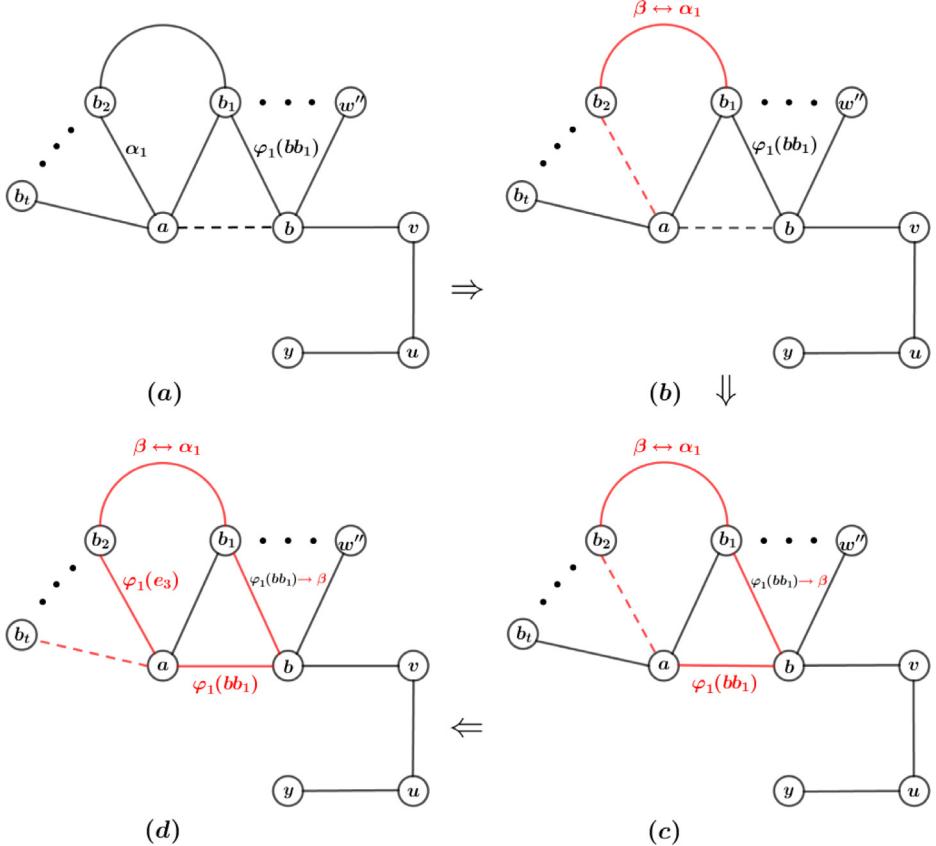


Fig. 4. One possible operation for $b_j = a^* \in (V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\})$ in Subcase 3.2, where $b_1 = b_j = a^* = a'$. (The edges of the dashed line represent uncolored edges).

rename some color classes of $E(H_2)$ but keep the color i unchanged to match all colors on boundary edges without producing any improper i -edge by Lemma 2.5(b). Now we obtain a new matching $M_2^* := (M_1^* \setminus \{e_{ab}\}) \cup \{e_i\}$ of $G - V(M)$ and a new (proper) k -edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer T2-improper at v but T1-improper at v with respect to the new prefeasible triple $(M_2^*, \emptyset, \varphi_2)$. Furthermore, $|E_1(M_2^*, \varphi_2)| = |E_1(M_0^*, \varphi_0)| + 2$ and $E_2(M_2^*, \varphi_2) = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_2^*, \emptyset, \varphi_2)$ instead.

Subcase 3.3: F_b does not contain a linear sequence at b from a to y without i -edge, and F_b does not contain a vertex w'' with $d_{H_1}(w'') = \Delta - 1$ and $i \in \overline{(\varphi_1)_{H_1}}(w'')$.

We claim that F_b contains a linear sequence S^* at b from a to a Δ -vertex y^* such that $y^* \neq y$ and there is no i -edge in S^* . By Lemma 3.2(a), the multi-fan F_b contains at least one Δ -vertex in H_1 . Now if F_b does not contain any linear sequence without i -edges from a to any Δ -vertex in H_1 , then by Lemma 3.2(c), the multi-fan F_b contains a vertex w'' with $d_{H_1}(w'') = \Delta - 1$ and $i \in \overline{(\varphi_1)_{H_1}}(w'')$, contradicting the condition of Subcase 3.3. So F_b contains a linear sequence S^* from a to a vertex y^* such that $d_{H_1}(y^*) = \Delta$ and there is no i -edge in S^* . Note that $y^* \neq y$, since otherwise we also have a contradiction to the condition of Subcase 3.3. Thus the claim is proved.

Assume that $S^* = (a, e_{ba'}, a', \dots, e_{by^*}, y^*)$ at b from a to y^* (where $a' = y^*$ is possible), and S^* contains no i -edge. Let $\theta \in \overline{\varphi_1}(y^*)$.

Subcase 3.3.1: $\theta = i$.

Since S^* contains no i -edge, we apply a shifting in S^* from a to y^* , color e_{ab} with $\varphi_1(e_{ba'})$, uncolor e_{by^*} , and rename some color classes of $E(H_1 + e_{ab} - e_{by^*})$ but keep the color i unchanged to match all colors on boundary edges without producing any improper i -edge by Lemma 2.5(b). By coloring e_{by^*} with i and recoloring e_{bv} from i to $\Delta + \mu$, we obtain a new matching $M_2^* := M_1^* \setminus \{e_{ab}\}$ of $G - V(M)$ and a new (proper) $(k + 1)$ -edge-coloring φ_2 of $G - (M \cup M_2^*)$. Then f_{uv} is no longer T2-improper at v or even T1-improper at v with respect to the new prefeasible triple $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$ with $E_{M_2^*}^{\varphi_2} = \{e_{bv}\}$ if $E_{M_1^*}^{\varphi_1} = \emptyset$, and $E_{M_2^*}^{\varphi_2} = \{e_{bv}, h\}$ if $E_{M_1^*}^{\varphi_1} = \{h\}$ (when $y^* \in V(F_x) \cap V(F_b)$). Furthermore, $E_{M_2^*}^{\varphi_2} \subseteq (E_1(M_0^*, \varphi_0) \cup E_2(M_0^*, \varphi_0))$, $|E_1(M_2^*, \varphi_2)| \geq |E_1(M_0^*, \varphi_0)|$ and $|E_2(M_2^*, \varphi_2)| = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$ instead.

Subcase 3.3.2: $\theta \neq i$.

Since $V(H_1)$ is $(\varphi_1)_{H_1}$ -elementary, there exists a θ -edge e_1 incident with the vertex a . Thus by the similar argument as in the proof of Subcase 3.2, we define a maximal multi-fan at a , denoted by F'_a , with respect to e_1 and $(\varphi_1)_{H_1}$ in $H_1 + e_1$, and we have $e_{F'_a}(a, b') = e_{H_1 + e_{ab}}(a, b') = \mu$ for any vertex b' in $V(F'_a) \setminus \{a\}$. Therefore, $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are disjoint, since otherwise we have $V(F'_a) \subseteq V(F_a)$ and $\varphi_1(e_1) = \theta \in (\varphi_1)_{H_1}(b')$ for some $b' \in V(F_a)$ implying $y^* = b' \in V(F_a)$, which contradicts Assumption (1). Note that $V(F'_a) \setminus \{a\}$ must contain a Δ -vertex in H_1 , since otherwise Lemma 3.2(d) and the fact $(\varphi_1)_{H_1}(e_1) = \theta \in \bar{\varphi}_1(y^*)$ imply that $y^* \in V(F'_a)$, which contradicts $d_{H_1}(y^*) = \Delta$. If F'_a contains a vertex of $V(H_1)$ that is incident with an i -edge of $\partial_{G - (M \cup M_1^*)}(H_1)$ in $G - (M \cup M_1^*)$, then we denote the vertex by w^* and the i -edge by h^* . If F'_a does not contain any linear sequence to a Δ -vertex in H_1 without i -edge and boundary vertex w^* , then by Lemma 3.2(d), the multi-fan F'_a contains a vertex z^* with $i \in (\varphi_1)_{H_1}(z^*)$ and $d_H(z^*) = \Delta - 1$. Since H_1 is $(\varphi_1)_{H_1}$ -elementary, we have $z^* = w^*$ and $d_{H_1}(w^*) = \Delta - 1$. Thus F'_a contains a linear sequence $S' = (b_1, e_2, b_2, \dots, e_t, b_t)$ at a , where $b_1 \in V(e_1)$, b_t (with $t \geq 1$) is w^* if there exists w^* with $d_{H_1}(w^*) = \Delta - 1$ such that $h^* \in \partial_{G - (M \cup M_1^*)}(H_1)$ but $h^* \notin E_1(M_0^*, \varphi_0)$, and b_t is a Δ -vertex in H_1 otherwise. Notice that b_t is not incident with any edge in $M \cup M_1^*$ by our choice of b_t . Moreover, if $b_t = w^*$ as defined above, then $b_t = w^*$ is not a vertex in $V(F_b)$ by the condition of Subcase 3.3. And $b_t \neq y$ since $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are disjoint. Let β ($\beta \neq i$) be a color in $\bar{\varphi}_1(b)$. By Lemma 3.1(b), we have $P_b(\beta, \theta) = P_{y^*}(\beta, \theta)$. We then consider the following two subcases according the set $(V(S') \setminus \{a\}) \cap (V(S^*) \setminus \{a\})$.

We first assume that $(V(S') \setminus \{a\}) \cap (V(S^*) \setminus \{a\}) \subseteq \{b_t\}$. If $e_1 \notin P_b(\beta, \theta)$, then we apply a Kempe change on $P_{[b, y^*]}(\beta, \theta)$, uncolor e_1 and color e_{ab} with θ . If $e_1 \in P_b(\beta, \theta)$ and $P_b(\beta, \theta)$ meets b_1 before a , then we apply a Kempe change on $P_{[b, b_1]}(\beta, \theta)$, uncolor e_1 and color e_{ab} with θ . If $e_1 \in P_b(\beta, \theta)$ and $P_{y^*}(\beta, \theta)$ meets b_1 before a , then we uncolor e_1 , apply a Kempe change on $P_{[y^*, b_1]}(\beta, \theta)$, apply a shifting in S^* from a to y^* , color e_{ab} with $\varphi_1(e_{ba'})$, and recolor e_{by^*} with β . In all three cases above, e_{ab} is colored with a color in $[k]$ and e_1 is uncolored. Then we apply a shifting in S' from b_1 to b_t , color e_1 with $\varphi_1(e_2)$, and uncolor e_t . Denote $H_2 := H_1 + e_{ab} - e_t$. Since H_2 is also k -dense and $\chi'(H_2) = k$, we can rename some color classes of $E(H_2)$ but keep the color i unchanged to match colors on boundary edges except i -edges by Lemma 2.5(b). Finally recolor h^* with the color $\Delta + \mu$ if $h^* \in \partial_{G - (M \cup M_0^*)}(H) \cap E_1(M_0^*, \varphi_0)$. Now we obtain a new matching $M_2^* := (M_1^* \setminus \{e_{ab}\}) \cup \{e_t\}$ of $G - V(M)$ and a new (proper) $(k + 1)$ -edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer T2-improper at v but T1-improper at v with respect to the new prefeasible triple $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$, where \emptyset or $\{h\}$ or $\{h^*\} = E_{M_2^*}^{\varphi_2} \subseteq E_1(M_0^*, \varphi_0)$. Furthermore, $|E_1(M_2^*, \varphi_2)| \geq |E_1(M_0^*, \varphi_0)|$ and $|E_2(M_2^*, \varphi_2)| = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$ instead.

Then we assume that there exists $b_j = a^* \in (V(S') \setminus \{a\}) \cap (V(S^*) \setminus \{a\})$ for some $j \in [t - 1]$ and $a^* \in V(S^*)$. See Fig. 5 for a depiction when $b_1 = b_j = a^* = a'$. In this case we assume a^* is the closest vertex to a along S^* . Note that $b_j \neq b$ as $V(F'_a) \setminus \{a\}$ and $V(F_a) \setminus \{a\}$ are disjoint. Let $\theta_j = \varphi_1(e_{j+1}) \in (\varphi_1)_{H_1}(b_j)$. By Lemma 3.1(b), $P_b(\beta, \theta_j) = P_{b_j}(\beta, \theta_j)$. If $e_{j+1} \notin P_b(\beta, \theta_j)$, then we apply a Kempe change on $P_{[b, b_j]}(\beta, \theta_j)$, uncolor e_{j+1} and color e_{ab} with θ_j . If $e_{j+1} \in P_b(\beta, \theta_j)$ and $P_b(\beta, \theta_j)$ meets b_{j+1} before a , then we apply a Kempe change on $P_{[b, b_{j+1}]}(\beta, \theta_j)$, uncolor e_{j+1} and color e_{ab} with θ_j . If $e_{j+1} \in P_b(\beta, \theta_j)$ and $P_{b_j}(\beta, \theta_j)$ meets b_{j+1} before a , then we uncolor e_{j+1} , apply a Kempe change on $P_{[b_j, b_{j+1}]}(\beta, \theta_j)$, apply a shifting in S^* from a to b_j (i.e., a^*), color e_{ab} with $\varphi_1(e_{ba'})$, and recolor the edge $e_{bb_j} \in E_{H_1}(b, b_j)$ with β . (See Fig. 5(a)-(c).) In all three cases above, e_{ab} is colored with a color

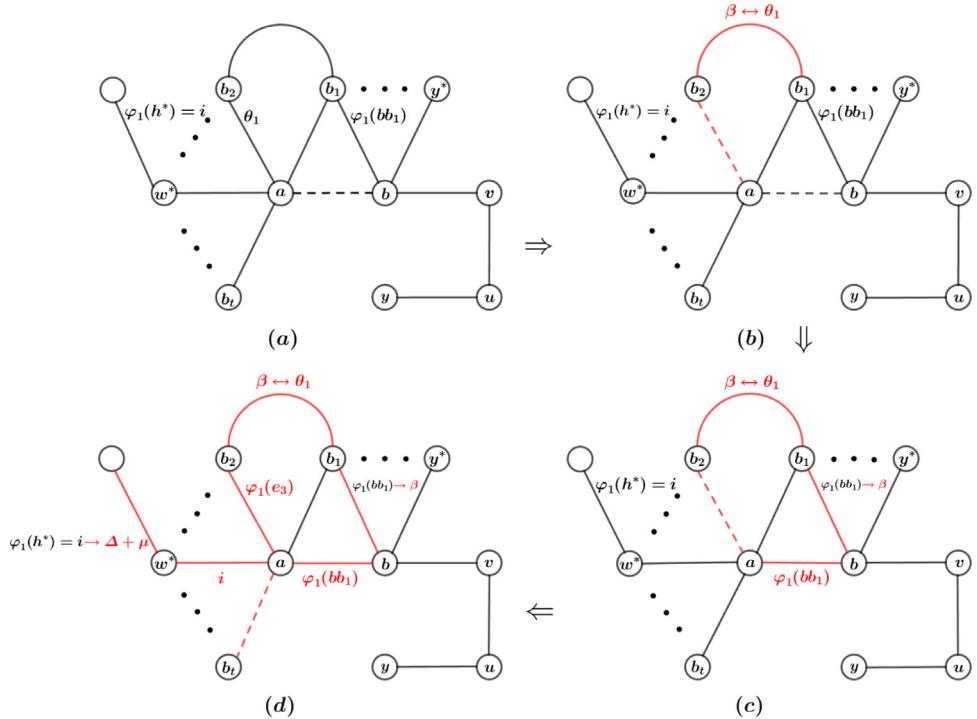


Fig. 5. One possible operation for $b_j = a^* \in (V(S') \setminus \{a\}) \cap (V(S) \setminus \{a\})$ in Subcase 3.3, where $b_1 = b_j = a^* = a'$. (The edges of the dashed line represent uncolored edges).

in $[k]$ and e_{j+1} is uncolored. Denote $H_2 := H_1 + e_{ab} - e_t$. Then we apply a shifting in S' from b_{j+1} to b_t , color e_{j+1} with $\varphi_1(e_{j+2})$, and uncolor the edge e_t , and rename some color classes of $E(H_2)$ but keep the color i unchanged to match all colors on boundary edges except i -edges by Lemma 2.5(b). Finally recolor h^* with $\Delta + \mu$ if $h^* \in \partial_{G-(M \cup M_0^*)}(H) \cap E_1(M_0^*, \varphi_0)$. (See Fig. 5(d).) Now we obtain a new matching $M_2^* = (M_1^* \setminus \{e_{ab}\}) \cup \{e_t\}$ of $G - V(M)$ and a new (proper) $(k+1)$ -edge-coloring φ_2 of $G - (M \cup M_2^*)$ such that f_{uv} is no longer T2-improper at v but T1-improper at v with respect to the new prefeasible triple $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$, where \emptyset or $\{h\}$ or $\{h^*\} = E_{M_2^*}^{\varphi_2} \subseteq E_1(M_0^*, \varphi_0)$. Furthermore, $|E_1(M_2^*, \varphi_2)| \geq |E_1(M_0^*, \varphi_0)|$ and $|E_2(M_2^*, \varphi_2)| = |E_2(M_0^*, \varphi_0)| - 2$. Thus we can consider $(M_2^*, E_{M_2^*}^{\varphi_2}, \varphi_2)$ instead. The proof is now finished. \square

References

- [1] M. Stiebitz, D. Scheide, B. Toft, L.M. Favrholdt, *Graph Edge Coloring* Wiley Series, in: *Discrete Mathematics and Optimization*, John Wiley & Sons Inc., Hoboken, NJ, Vizing's theorem and Goldberg's conjecture, With a preface by Stiebitz and Toft.
- [2] V.G. Vizing, On an estimate of the chromatic class of a p -graph, *Diskret. Analiz* 3 (1964) 25–30.
- [3] R.G. Gupta, Studies in the theory of graphs, (PhD dissertation), Tata Institute of Fundamental Research, Bombay, 1967.
- [4] M.O. Albertson, E.H. Moore, Extending graph colorings using no extra colors, *Discrete Math.* 234 (2001) 125–132.
- [5] K. Edwards, A. Girão, J. Heuvel, R.J. Kang, G.J. Puleo, J.S. Sereni, Extension from precoloured sets of edges, *Electron. J. Combin.* 25 (2018) P3.1.
- [6] A. Girão, R.J. Kang, A precolouring extension of Vizing's theorem, *J. Graph Theory* 92 (2019) 255–260.
- [7] M.K. Goldberg, On multigraphs of almost maximal chromatic class, *Diskret. Analiz* 23 (1973) 3–7.
- [8] P. Seymour, On multi-colourings of cubic graphs and conjectures of Fulkerson and Tutte, *Proc. Lond. Math. Soc.* 38 (1979) 423–460.

- [9] G. Chen, G. Jing, W. Zang, Proof of the Goldberg-Seymour Conjecture on edge-colorings of multigraphs, submitted, available on <https://arxiv.org/abs/1901.10316> and <https://math.gsu.edu/gchen/research.html>,
- [10] Y. Cao, G. Chen, G. Jing, A note on Goldberg's conjecture on total chromatic numbers, *J. Graph Theory* (2021) 1–7.
- [11] M.K. Goldberg, A remark on the chromatic class of a multigraph, *Vyčisl. Mat. i. Vyčisl. Tehn. (Kharkow)* 5 (1974) 128–130.
- [12] C. Berge, J.C. Fournier, A short proof for a generalization of Vizing's theorem, *J. Graph Theory* 15 (1991) 333–336.