
Formal Methods in Computer-Aided Design 2024

Toward Exhaustive Sequential Redundancy Removal

Rohit Dureja∗ , Jason Baumgartner∗, Raj Kumar Gajavelly∗ , Robert Kanzelman∗, and Kristin Y. Rozier†

∗IBM Corporation †Iowa State University

Abstract—Hardware designs often contain logical redundan-
cies: pairs of behaviorally-equivalent gates. Sequential redun-
dancy removal is the process of removing gates that are
behaviorally-equivalent within the reachable states of a design. It
has many applications in the hardware design process, including
logic optimization, equivalence checking, accelerating functional
verification, and engineering change-order optimization.

Redundancy removal is an intricate process, orchestrating
various algorithms to compute equivalence-classes of potentially-
equivalent gates, then to prove their validity. In this paper, we
introduce techniques to enable exhaustive redundancy removal
on practical designs, such as resource-balancing the underlying
algorithms; self-tailoring them to sequentially-deep logic; and
detailing an orders-of-magnitude optimization to the Proof Graph
essential to proving non-inductive redundancies. We integrate
these techniques within a state-of-the-art redundancy removal
framework, illustrating their efficacy on various benchmarks.

I. INTRODUCTION

Hardware designs are often rife with logical redundancies.

Some are deliberate, e.g. to improve circuit timing or imple-

ment error-resilience features. Many are unexpected and unde-

sired; including them in semiconductor devices degrades cost

and circuit performance, and increases power consumption.

In verification, logical redundancies are even more preva-

lent, e.g. due to input constraints disabling various functional-

ity, and redundancies arising between design and testbench

logic. Equivalence checking (EC) and engineering change

order (ECO) tools compare two related designs; significant

redundancy is common between those designs. Redundancy

removal is highly-beneficial to verification scalability, solving

some properties outright [1]–[3]; is the core solving procedure

of EC [4, 5]; and can yield smaller ECOs [6].

Sequential redundancy removal frameworks (Fig. 1) iden-

tify, then eliminate, functionally-equivalent gates. Each sus-

pected redundancy requires proving a property, called a miter,

confirming that a pair of gates behave identically in the

reachable states of a design. Simulation is used to refine

incorrect equivalence-classes of gates, correcting inaccurate

miters [4, 7]. Once a miter is proven, design size and power

can be reduced by replacing one of its gates by the other [5].

The choice of which gate to eliminate can be delay- and

placement-aware yielding higher-performance circuits.

Many techniques have been proposed to accelerate redun-

dancy removal. For example: combinational redundancy re-

moval solves miters from topologically-shallowest to deepest,

reducing effort for deeper miters by leveraging early-merging

and prior refinements [8, 9]. Speculative reduction models

assumptions through structural logic simplifications, enabling

a transformation-based verification (TBV) suite of model-

checking algorithms to benefit from those assumptions to

solve the non-inductive miters [2]. A Proof Graph enables

early-merging of selective miters even before a fixedpoint

of all-miters-proven is achieved, minimizing the number of

proofs necessary to converge, and yielding reductions even if

a resource-limit precludes convergence [10].

Contributions: We introduce various improvements to se-

quential redundancy removal in the pursuit of exhaustiveness.

(1) We present sequential resource-sweeping (Sec. III-A)

to self-tailor SAT-based bounded model-checking (BMC) [11]

and induction to the sequential depth of the design, enabling

them to solve deeper miters. This yields ≈ 5% greater redun-

dancy removal in less runtime via induction, and ≈ 20% fewer

incorrect miters deferred to TBV. (2) We propose techniques to

balance counterexample simulation runtime with solving effort

(Sec. III-B), yielding ≈ 30% overall speedup (Sec. III-B).

(3) We address scalability challenges of deep-counterexample

generation and simulation, via: separate eager shallow vs. lazy

deep simulation phases to accelerate ≈ 16% additional deep–

logic refinement (Sec. III-C); obtaining ≈ 34% complementary

deep refinements via seeded-state BMC (Sec. III-D); and min-

imally-lossy techniques to approximate pathologically-deep

miters impractical to simulate (Sec. III-E). (4) We present a

near-linear-runtime algorithm to construct a Proof Graph [10],

improving scalability by orders of magnitude (Sec. III-F).

Experiments in Sec. IV show our techniques yielding 2.1×
speedup to EC, 32.4% speedup with 16.9% more solves in

model-checking, and enabling exhaustive redundancy removal

on netlists up to 857110 AND gates, 75952 registers.

II. PRELIMINARIES AND RELATED WORK

We represent a hardware design as a netlist N , comprising

a directed graph G = ⟨V,E⟩. Vertices V represent logic gates

of different types: constants, primary inputs, combinational

primitives such as AND gates, and sequential primitives such

as registers. Edges E ⊆ V × V represent interconnections

between gates. The fanin (fanout) of gate u is the set of gates

reachable by traversing edges backward (forward) from u. A

strongly-connected component (SCC) is a set of gates having

a directed path between every pair of gates within the SCC.

Registers have initial values defining their time-0 behavior,

and next-state functions defining their time-i+1 behavior. A

trace is a sequence of Boolean valuations to gates over

timesteps, beginning from an initial state consistent with

initial-values at time 0. A state is a Boolean valuation to the

registers; a reachable state is one reachable along a trace.

Certain gates may be labeled as properties, representing a

verification objective to obtain a counterexample trace illus-

trating an assertion of that gate, or to prove the absence of any

https://doi.org/10.34727/2024/isbn.978-3-85448-065-5 27
This article is licensed under a Creative
Commons Attribution 4.0 International License

Authorized licensed use limited to: Iowa State University. Downloaded on November 23,2025 at 00:24:51 UTC from IEEE Xplore. Restrictions apply.

A miter proof is sound when the miters of all of its

fanin speculatively-merged gates are proven. When a miter

is soundly proven, its gates may be safely merged, regard-

less of other falsified or unproven miters. Sound proofs are

propagated through fanout nodes of the Proof Graph, which

may enable proven fanout miters to become soundly-proven.

For k-induction, the Proof Graph only needs to record miter-

dependencies relevant to the k-timestep unrolled netlist, along

with dynamically-added SAT proof dependencies upon postu-

lated induction-hypothesis constraints. For TBV, all transitive

fanin dependencies are recorded, to ensure soundness using

arbitrary model-checking algorithms [10].

The Proof Graph does not alter the set of miters to be

proven. It improves scalability by: (1) prioritizing miter-

solution order, generalizing combinational topological order-

ing [8, 9] to cyclic sequential netlists. Leaves can be solved

first, minimizing effort wasted solving possibly-unsound

miters. With parallel orchestration, leaf miters can be stub-

bornly solved, in parallel to time-balanced iteration among

others [13]. (2) More redundancy is identifiable before global

timeout. (3) The number of times each miter is repeatedly

solved across refinements is reduced. This is especially im-

portant when using stronger model-checking algorithms to

solve non-inductive miters: a PSPACE-complete problem. (4)

Early-merging within the original netlist yields other speedups,

e.g. faster simulation, unrolling, SAT, and future Proof Graph

reconstruction.

4) Trace simulation: When a miter is falsified, simulating

its counterexample on the original netlist identifies a set of

inaccurate miters. Failed induction proofs yield counterexam-

ples starting from possibly-unreachable induction leak states;

those may be simulated to refine other non-inductive miters.

Simulation can consume significant runtime, and thus re-

quires careful orchestration. Bit-parallel simulation atomically

simulates 64 independent patterns in each 64-bit machine

word. Counterexamples from BMC, induction, and TBV may

be accumulated into machine words [7, 14], allowing each

simulation to refine multiple counterexamples. Additional pro-

posed improvements include packing compatible counterex-

amples into the same machine-word pattern [14]; randomizing

unimportant input values; and permuting copies of counterex-

amples across patterns, e.g. with distance-1 modifications [15].

With shallow analysis, e.g. k-induction with small k, each

miter affects only a local fanout region. This allows to de-

compose the netlist into slightly-overlapping components to be

analyzed in parallel using fixed-depth simulation [5, 16, 17].

Exhaustive redundancy removal additionally requires deep

analysis across more timesteps. As the depth of analysis

increases, the inter-dependence of miters extends toward the

entire cone-of-influence; windowing becomes ineffective, and

simulation of the sequential netlist becomes inevitable.

III. EXHAUSTIVE REDUNDANCY REMOVAL

We describe the main contributions and experimentally eval-

uate their isolated impact on exhaustive redundancy removal

sequential resource sweeping (Netlist N , Miters M)

1: Miters Mu := ∅, Mi := ∅, Ms := ∅ # sets of miters

2: for k ∈ 0, 1, 2, 3, . . . : # iterate over increasing k-depth

3: for satLimit ∈ min, . . . , max : # iterate over SAT limits

4: # run BMC to increase bounded-proof depth ≥ k

5: ⟨proved, falsified, unsolved⟩ := BASECASE(k, M , N , satLimit) # BMC

6: ↪→ Check all miters with proof-depth < k using BMC

7: ↪→ Update proof-depth of newly-BMC-proved

8: ↪→ Simulate falsified miters to refine equivalence-classes

9: M := M \ falsified # discard BMC-falsified miters

10: Mu := Mu \ { proved ∪ falsified } # update unsolved miters

11: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters

12: # run induction on miters adequately checked by BMC

13: Mi := M # snapshot active-miters for later rollback from induction leaks

14: if Ms ̸≡ ∅ :

15: M := Ms ∪ newly-BMC-proved, Ms:= ∅ # restore snapshotted miters

16: else

17: M := M \ (miters with proof-depth < k) # base-case inconclusive

18: M := M \ Mu # drop miters unsolved in prior induction steps

19: repeat # fixedpoint (FP) iterations

20: N ′ := SPECREDUCE(N , M), Graph G := PROOFGRAPH(N ′, M)

21: ⟨proved, falsified, unsolved⟩ := INDUCTIVESTEP(k, G, N ′, satLimit)

22: ↪→ Check miters in leaves of Proof Graph G

23: ↪→ Update Proof Graph for proven miters # enable early-merging

24: ↪→ Simulate falsified miters to refine equivalence-classes

25: N := EARLYMERGE(N , G) and remove merged miters from M , Mi

26: M := M \ falsified # drop falsified miters (induction leaks)

27: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters

28: else if |unsolved| > 0 and Ms ≡ ∅ : # FP iteration with unsolved

29: Ms := M # snapshot miters for next SAT iteration

30: M := M \ unsolved # drop inconclusive miters

31: until fixedpoint (no unsolved or falsified) for k at satLimit

32: M := Mi # restore active-miter snapshot to roll-back induction leaks

33: if n-steps with no merging or timeout : break # self-tailor depth

Fig. 3. Sequential resource-sweeping using BMC and k-induction

in this section. End-to-end experimental results for various

formal applications appear in Section IV.

A. Sequential resource-sweeping

Most miters are easy to solve at shallow BMC or in-

duction depth, becoming unscalable as depth increases. Be-

cause satisfiability checking is NP-complete, some miters are

pathologically-difficult, even at shallow depth. Large netlists

often contain a diversity of logic, often comprising a mix of

easier and difficult miters.

Borrowing from combinational equivalence checking [8, 9],

sequential redundancy removal frameworks typically solve

unfolded miters from topologically-shallower to deeper. Shal-

low miters are often easier; their solution simplifies fanout

miters through merging unfolded gates, and refining incor-

rect equivalence-classes. Resource-limits may be applied, and

another fixedpoint iteration attempted after refining unsolved

miters. Due to diversity of miter-difficulty, combinational

netlist simplification via BDD- and SAT-sweeping may benefit

from iterating unsolved miters with increasing resource-limits,

solving gradually-more-difficult miters without indefinite de-

lays caused by pathological miters [7, 9].

For exhaustive sequential redundancy removal, additional

resource-sweeping controls and equivalence-class management

are necessary across k values, and to optimally defer miters

into TBV. We introduce sequential resource-sweeping in Fig. 3

to manage these intricacies. For each k-depth, each miter is

219

Authorized licensed use limited to: Iowa State University. Downloaded on November 23,2025 at 00:24:51 UTC from IEEE Xplore. Restrictions apply.

to forcing X-pessimism to accelerate convergence in three-

valued approximate reachability analysis [29].

(2). Seeded BMC (Sec. III-D) can falsify deeper miters

from a simulated state, though often becomes unscalable too

shallowly to converge on large counters. It is sometimes

useful to overapproximate seeded BMC, randomly permuting

the value of known-deep gates, to be less dependent upon

simulation probabilities to propagate permuted values.

(3). In cases, the first concerningly-deep counterexample is

too deep to simulate, or even to generate. E.g., if a design

has a 64-bit LFSR, each bit may toggle shallowly, though

a compare-to value may only be reached incredibly-deeply.

If simulating a counterexample is impractical, the offending

miter may be blindly refined as if unsolved, losing the ability

to propagate refinements to fanout logic. Simulation permuta-

tion of deep gates may nonetheless be useful in other ways,

e.g. reusing previous (or future) counterexamples [14].

F. Linear Proof Graph construction

The Proof Graph [10] has one node per miter. Fanout

edges represent the miters whose behavior is compromised

by speculative-reduction until that node’s miter is proven. The

miters correlating to a node may be merged as soon as its

fanin miters are proven, regardless of other unproven miters.

Early merging has many runtime benefits (Sec. II-A3).

The Proof Graph is reconstructed whenever a new

speculatively-reduced netlist is created, at each iteration of

Fig. 1. Scalable construction is thus critical. Lossy redundancy

removal, e.g. using shallow fixed-depth induction [5], may

choose to not use a Proof Graph, instead deferring all merging

until fixed-point. Despite the overhead of deferred merging,

e.g. causing repeated proving of accurate miters across refine-

ments, this shortcut is motivated by the traditional runtime

overhead of constructing the Proof Graph vs. lossy-solver

runtime. Early merging is a practical necessity to enable ex-

haustive redundancy removal on large netlists, which requires

solving PSPACE-complete non-inductive miters via general

model-checking algorithms. In this section, we describe a

scalable graph-labeling algorithm to compute a minimally-

sized Proof Graph.

When using arbitrary model-checking algorithms to solve

miters, all transitive fanin dependencies are recorded in

the Proof Graph. Traditional iterative construction (e.g. [10]

Alg. 7) traverses the fanin of each miter m′ to find the

speculatively-reduced gates M ′ which affect its behavior

(stopping at vs. recursing through M ′, to contain runtime);

edges from M ′ to m′ are iteratively added to the Proof Graph.

This initial Proof Graph can be vastly larger than a condensed

version due to duplicate and transitively-implied edges, risking

memout. Postprocessing is proposed to condense the Proof

Graph to be irredundant and acyclic [10], reclaiming memory

before TBV. Though iterative fanin traversal and compaction

are often a runtime bottleneck on large netlists.

We propose a method to directly compute an optimally-

sized Proof Graph (Fig. 8), using a single netlist traversal. Our

algorithm uses an efficient graph-labeling approach [31, 32],

createProofGraph graphLabeling (Spec-Reduced Netlist N ′, Miters M)

1: Compute SCC within N ′ # Tarjan’s linear algorithm [30]

2: for each gate g ∈ topologically-sorted gates in N ′ :

3: if g is not in a multi-gate SCC :

4: if g is speculatively-reduced : # g is the non-rep. gate of a miter

5: Miter m := miter corresponding to g

6: # add dependencies of m in the fanin of g

7: for each miter n with index i such that bitvector(g)[i] ≡ 1 :

8: add edge(n, m) # add dependency n→m to graph

9: # create singleton bitvector for miter m

10: unsigned idx := get unique index for miter m

11: clear bitvector(g); bitvector(g)[idx] := 1 # singleton bitvector

12: # copy / union bitvector to fanout gates

13: for each gate h in the fanout of g : # propagate to fanout

14: if h is part of SCC S : h := representative gate of SCC S

15: bitvector(h) := bitvector(h) ∪ bitvector(g) # copy / union

16: delete bitvector(g) # cleanup

17: else if g is representative gate of SCC S :

18: if S contains miters :

19: # add cyclic dependencies between miters in SCC S

20: Miters M [] := get all miters in S, unsigned j := 0

21: while j+1 < size(M) :

22: Miter n := M [j], Miter m := M [j+1]

23: add edge(n, m) # add dependency n→m to graph

24: Miter n := M [size(M)], Miter m := M [0]

25: add edge(n, m) # add dependency n→m to graph

26: # add dependencies for miters in the fanin of SCC S

27: Miter m := miter corresponding to representative gate of SCC S

28: for each miter n with index i such that bitvector(g) [i] ≡ 1 :

29: add edge(n, m) # add dependency n→m to graph

30: # create singleton bitvector for miter m

31: unsigned idx := get unique index for miter m

32: clear bitvector(g); bitvector(g) [idx] := 1 # singleton bitvector

33: # copy / union bitvector to fanout gates

34: for each gate h in the fanout of gates in S : # traverse to fanout

35: if h is part of SCC T : h := representative gate of SCC T

36: bitvector(h) := bitvector(h) ∪ bitvector(g)

37: delete bitvector(g) # cleanup

Fig. 8. Graph labeling algorithm for Proof Graph construction.

propagating miter-dependency information as a bitvector. Each

speculatively-reduced gate is represented with a unique bit-

index, though all miters within an SCC reuse a single bit-

index, yielding a massive practical compaction.

Linear SCC identification [30] identifies the strongly-

connected components; each gate within an SCC is given

the bit-index of a representative miter therein (line 1). The

algorithm then iterates gates in a topological order, propagat-

ing fully-populated bitvectors denoting miter dependencies to

fanout logic. When gate g is traversed, bitvector copy or union

operators propagate g’s bitvector to fanout gates (lines 13–15

and 34–36), accumulating their fanin dependencies. If g is a

speculatively-reduced gate, all miters with indexed bits set to

1 in its bitvector are added as Proof Graph fanin edges to the

node for g’s miter (lines 7–8). Fanout edges of speculatively-

reduced gates propagate only that gate’s corresponding bit-

index vs. all transitive fanin dependencies (lines 10–11).

A single bitvector is maintained for all nodes in an SCC,

at its representative gate g (line 14, 35). If the SCC contains

miters, a single unique bitvector index for a representative

miter m therein is associated with all of that SCC’s miters

(line 27). The dependencies (asserted bitvector indices) of all

SCC inputs become Proof Graph fanin edges of the SCC-

223

Authorized licensed use limited to: Iowa State University. Downloaded on November 23,2025 at 00:24:51 UTC from IEEE Xplore. Restrictions apply.

[22] P. Chauhan, E. Clarke, J. Kukula, S. Sapra, H. Veith, and D. Wang,
“Automated abstraction refinement for model checking large state spaces
using SAT based conflict analysis,” in Formal Methods in Computer-

Aided Design (FMCAD), pp. 33–51, 2002.
[23] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for

formal verification,” in International Conference on Computer-Aided

Design (ICCAD), pp. 1076–1082, November 2005.
[24] A. R. Bradley, “SAT-based model checking without unrolling,” in

Verification, Model Checking, and Abstract Interpretation (VMCAI),
p. 70–87, 2011.

[25] R. Dureja, A. Gurfinkel, A. Ivrii, and Y. Vizel, “IC3 with Interal Signals,”
in Formal Methods in Computer-Aided Design (FMCAD), (New Haven,
CT, USA), IEEE/ACM, Oct. 2021.

[26] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L.
Dill, “Symbolic model checking for sequential circuit verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 13, pp. 401–424, April 1994.
[27] C. Wang, A. Gupta, and F. Ivancic, “Induction in CEGAR for detect-

ing counterexamples,” in Formal Methods in Computer Aided Design

(FMCAD), pp. 77–84, 2007.
[28] H. Mony, J. Baumgartner, A. Mishchenko, and R. Brayton, “Speculative

reduction-based scalable redundancy identification,” in Design, Automa-

tion and Test in Europe (DATE), pp. 1674–1679, Apr 2009.
[29] M. L. Case, J. Baumgartner, H. Mony, and R. Kanzelman, “Approximate

reachability with combined symbolic and ternary simulation,” in Formal

Methods in Computer-Aided Design (FMCAD’11), pp. 109–115, 2011.
[30] R. Tarjan, “Depth first search and linear graph algorithms,” in SIAM

Journal on Computing, 1972.
[31] G. Cabodi, P. Camurati, and S. Quer, “A graph-labeling approach for

efficient cone-of-influence computation in model-checking problems
with multiple properties,” Software: Practice and Experience, vol. 46,
no. 4, pp. 493–511, 2016.

[32] R. Dureja, J. Baumgartner, A. Ivrii, R. Kanzelman, and K. Y. Rozier,
“Boosting verification scalability via structural grouping and semantic
partitioning of properties,” in Formal Methods in Computer Aided

Design (FMCAD), pp. 1–9, Oct 2019.
[33] “Hardware Model Checking Competition 2010-2017,” http://fmv.jku.at,

Selected all non-liveness benchmarks, filtered to largest file sizes. Fig.
10b prunes timeout-vs-timeout.

[34] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman, and A. Kuehlmann,
“Scalable automated verification via expert-system guided transfor-
mations,” in Formal Methods in Computer-Aided Design (FMCAD),
pp. 159–173, 2004.

[35] M. Mann and V. Putsche, “Semiconductor: Supply chain
deep dive assessment,” February 24, 2022. United States.
https://www.osti.gov/biblio/1871585 “The global energy use of

products featuring semiconductors has doubled every three years since

2010 primarily due to the accelerating use of semiconductors in all

facets of our modern economy and the deceleration of energy efficiency

increases due to miniaturization. This exponential growth in energy use

is projected to accelerate...”.

226

Authorized licensed use limited to: Iowa State University. Downloaded on November 23,2025 at 00:24:51 UTC from IEEE Xplore. Restrictions apply.

