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Abstract—Hardware designs often contain logical redundan-
cies: pairs of behaviorally-equivalent gates. Sequential redun-
dancy removal is the process of removing gates that are
behaviorally-equivalent within the reachable states of a design. It
has many applications in the hardware design process, including
logic optimization, equivalence checking, accelerating functional
verification, and engineering change-order optimization.

Redundancy removal is an intricate process, orchestrating
various algorithms to compute equivalence-classes of potentially-
equivalent gates, then to prove their validity. In this paper, we
introduce techniques to enable exhaustive redundancy removal
on practical designs, such as resource-balancing the underlying
algorithms; self-tailoring them to sequentially-deep logic; and
detailing an orders-of-magnitude optimization to the Proof Graph
essential to proving non-inductive redundancies. We integrate
these techniques within a state-of-the-art redundancy removal
framework, illustrating their efficacy on various benchmarks.

I. INTRODUCTION

Hardware designs are often rife with logical redundancies.

Some are deliberate, e.g. to improve circuit timing or imple-

ment error-resilience features. Many are unexpected and unde-

sired; including them in semiconductor devices degrades cost

and circuit performance, and increases power consumption.

In verification, logical redundancies are even more preva-

lent, e.g. due to input constraints disabling various functional-

ity, and redundancies arising between design and testbench

logic. Equivalence checking (EC) and engineering change

order (ECO) tools compare two related designs; significant

redundancy is common between those designs. Redundancy

removal is highly-beneficial to verification scalability, solving

some properties outright [1]–[3]; is the core solving procedure

of EC [4, 5]; and can yield smaller ECOs [6].

Sequential redundancy removal frameworks (Fig. 1) iden-

tify, then eliminate, functionally-equivalent gates. Each sus-

pected redundancy requires proving a property, called a miter,

confirming that a pair of gates behave identically in the

reachable states of a design. Simulation is used to refine

incorrect equivalence-classes of gates, correcting inaccurate

miters [4, 7]. Once a miter is proven, design size and power

can be reduced by replacing one of its gates by the other [5].

The choice of which gate to eliminate can be delay- and

placement-aware yielding higher-performance circuits.

Many techniques have been proposed to accelerate redun-

dancy removal. For example: combinational redundancy re-

moval solves miters from topologically-shallowest to deepest,

reducing effort for deeper miters by leveraging early-merging

and prior refinements [8, 9]. Speculative reduction models

assumptions through structural logic simplifications, enabling

a transformation-based verification (TBV) suite of model-

checking algorithms to benefit from those assumptions to

solve the non-inductive miters [2]. A Proof Graph enables

early-merging of selective miters even before a fixedpoint

of all-miters-proven is achieved, minimizing the number of

proofs necessary to converge, and yielding reductions even if

a resource-limit precludes convergence [10].

Contributions: We introduce various improvements to se-

quential redundancy removal in the pursuit of exhaustiveness.

(1) We present sequential resource-sweeping (Sec. III-A)

to self-tailor SAT-based bounded model-checking (BMC) [11]

and induction to the sequential depth of the design, enabling

them to solve deeper miters. This yields ≈ 5% greater redun-

dancy removal in less runtime via induction, and ≈ 20% fewer

incorrect miters deferred to TBV. (2) We propose techniques to

balance counterexample simulation runtime with solving effort

(Sec. III-B), yielding ≈ 30% overall speedup (Sec. III-B).

(3) We address scalability challenges of deep-counterexample

generation and simulation, via: separate eager shallow vs. lazy

deep simulation phases to accelerate ≈ 16% additional deep–

logic refinement (Sec. III-C); obtaining ≈ 34% complementary

deep refinements via seeded-state BMC (Sec. III-D); and min-

imally-lossy techniques to approximate pathologically-deep

miters impractical to simulate (Sec. III-E). (4) We present a

near-linear-runtime algorithm to construct a Proof Graph [10],

improving scalability by orders of magnitude (Sec. III-F).

Experiments in Sec. IV show our techniques yielding 2.1×
speedup to EC, 32.4% speedup with 16.9% more solves in

model-checking, and enabling exhaustive redundancy removal

on netlists up to 857110 AND gates, 75952 registers.

II. PRELIMINARIES AND RELATED WORK

We represent a hardware design as a netlist N , comprising

a directed graph G = ⟨V,E⟩. Vertices V represent logic gates

of different types: constants, primary inputs, combinational

primitives such as AND gates, and sequential primitives such

as registers. Edges E ⊆ V × V represent interconnections

between gates. The fanin (fanout) of gate u is the set of gates

reachable by traversing edges backward (forward) from u. A

strongly-connected component (SCC) is a set of gates having

a directed path between every pair of gates within the SCC.

Registers have initial values defining their time-0 behavior,

and next-state functions defining their time-i+1 behavior. A

trace is a sequence of Boolean valuations to gates over

timesteps, beginning from an initial state consistent with

initial-values at time 0. A state is a Boolean valuation to the

registers; a reachable state is one reachable along a trace.

Certain gates may be labeled as properties, representing a

verification objective to obtain a counterexample trace illus-

trating an assertion of that gate, or to prove the absence of any
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A miter proof is sound when the miters of all of its

fanin speculatively-merged gates are proven. When a miter

is soundly proven, its gates may be safely merged, regard-

less of other falsified or unproven miters. Sound proofs are

propagated through fanout nodes of the Proof Graph, which

may enable proven fanout miters to become soundly-proven.

For k-induction, the Proof Graph only needs to record miter-

dependencies relevant to the k-timestep unrolled netlist, along

with dynamically-added SAT proof dependencies upon postu-

lated induction-hypothesis constraints. For TBV, all transitive

fanin dependencies are recorded, to ensure soundness using

arbitrary model-checking algorithms [10].

The Proof Graph does not alter the set of miters to be

proven. It improves scalability by: (1) prioritizing miter-

solution order, generalizing combinational topological order-

ing [8, 9] to cyclic sequential netlists. Leaves can be solved

first, minimizing effort wasted solving possibly-unsound

miters. With parallel orchestration, leaf miters can be stub-

bornly solved, in parallel to time-balanced iteration among

others [13]. (2) More redundancy is identifiable before global

timeout. (3) The number of times each miter is repeatedly

solved across refinements is reduced. This is especially im-

portant when using stronger model-checking algorithms to

solve non-inductive miters: a PSPACE-complete problem. (4)

Early-merging within the original netlist yields other speedups,

e.g. faster simulation, unrolling, SAT, and future Proof Graph

reconstruction.

4) Trace simulation: When a miter is falsified, simulating

its counterexample on the original netlist identifies a set of

inaccurate miters. Failed induction proofs yield counterexam-

ples starting from possibly-unreachable induction leak states;

those may be simulated to refine other non-inductive miters.

Simulation can consume significant runtime, and thus re-

quires careful orchestration. Bit-parallel simulation atomically

simulates 64 independent patterns in each 64-bit machine

word. Counterexamples from BMC, induction, and TBV may

be accumulated into machine words [7, 14], allowing each

simulation to refine multiple counterexamples. Additional pro-

posed improvements include packing compatible counterex-

amples into the same machine-word pattern [14]; randomizing

unimportant input values; and permuting copies of counterex-

amples across patterns, e.g. with distance-1 modifications [15].

With shallow analysis, e.g. k-induction with small k, each

miter affects only a local fanout region. This allows to de-

compose the netlist into slightly-overlapping components to be

analyzed in parallel using fixed-depth simulation [5, 16, 17].

Exhaustive redundancy removal additionally requires deep

analysis across more timesteps. As the depth of analysis

increases, the inter-dependence of miters extends toward the

entire cone-of-influence; windowing becomes ineffective, and

simulation of the sequential netlist becomes inevitable.

III. EXHAUSTIVE REDUNDANCY REMOVAL

We describe the main contributions and experimentally eval-

uate their isolated impact on exhaustive redundancy removal

sequential resource sweeping (Netlist N , Miters M )

1: Miters Mu := ∅, Mi := ∅, Ms := ∅ # sets of miters

2: for k ∈ 0, 1, 2, 3, . . . : # iterate over increasing k-depth

3: for satLimit ∈ min, . . . , max : # iterate over SAT limits

4: # run BMC to increase bounded-proof depth ≥ k

5: ⟨proved, falsified, unsolved⟩ := BASECASE(k, M , N , satLimit) # BMC

6: ↪→ Check all miters with proof-depth < k using BMC

7: ↪→ Update proof-depth of newly-BMC-proved

8: ↪→ Simulate falsified miters to refine equivalence-classes

9: M := M \ falsified # discard BMC-falsified miters

10: Mu := Mu \ { proved ∪ falsified } # update unsolved miters

11: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters

12: # run induction on miters adequately checked by BMC

13: Mi := M # snapshot active-miters for later rollback from induction leaks

14: if Ms ̸≡ ∅ :

15: M := Ms ∪ newly-BMC-proved, Ms:= ∅ # restore snapshotted miters

16: else

17: M := M \ (miters with proof-depth < k) # base-case inconclusive

18: M := M \ Mu # drop miters unsolved in prior induction steps

19: repeat # fixedpoint (FP) iterations

20: N ′ := SPECREDUCE(N , M ), Graph G := PROOFGRAPH(N ′, M )

21: ⟨proved, falsified, unsolved⟩ := INDUCTIVESTEP(k, G, N ′, satLimit)

22: ↪→ Check miters in leaves of Proof Graph G

23: ↪→ Update Proof Graph for proven miters # enable early-merging

24: ↪→ Simulate falsified miters to refine equivalence-classes

25: N := EARLYMERGE(N , G) and remove merged miters from M , Mi

26: M := M \ falsified # drop falsified miters (induction leaks)

27: if satLimit ≡ max : Mu := Mu ∪ unsolved # cache unsolved miters

28: else if |unsolved| > 0 and Ms ≡ ∅ : # FP iteration with unsolved

29: Ms := M # snapshot miters for next SAT iteration

30: M := M \ unsolved # drop inconclusive miters

31: until fixedpoint (no unsolved or falsified) for k at satLimit

32: M := Mi # restore active-miter snapshot to roll-back induction leaks

33: if n-steps with no merging or timeout : break # self-tailor depth

Fig. 3. Sequential resource-sweeping using BMC and k-induction

in this section. End-to-end experimental results for various

formal applications appear in Section IV.

A. Sequential resource-sweeping

Most miters are easy to solve at shallow BMC or in-

duction depth, becoming unscalable as depth increases. Be-

cause satisfiability checking is NP-complete, some miters are

pathologically-difficult, even at shallow depth. Large netlists

often contain a diversity of logic, often comprising a mix of

easier and difficult miters.

Borrowing from combinational equivalence checking [8, 9],

sequential redundancy removal frameworks typically solve

unfolded miters from topologically-shallower to deeper. Shal-

low miters are often easier; their solution simplifies fanout

miters through merging unfolded gates, and refining incor-

rect equivalence-classes. Resource-limits may be applied, and

another fixedpoint iteration attempted after refining unsolved

miters. Due to diversity of miter-difficulty, combinational

netlist simplification via BDD- and SAT-sweeping may benefit

from iterating unsolved miters with increasing resource-limits,

solving gradually-more-difficult miters without indefinite de-

lays caused by pathological miters [7, 9].

For exhaustive sequential redundancy removal, additional

resource-sweeping controls and equivalence-class management

are necessary across k values, and to optimally defer miters

into TBV. We introduce sequential resource-sweeping in Fig. 3

to manage these intricacies. For each k-depth, each miter is
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to forcing X-pessimism to accelerate convergence in three-

valued approximate reachability analysis [29].

(2). Seeded BMC (Sec. III-D) can falsify deeper miters

from a simulated state, though often becomes unscalable too

shallowly to converge on large counters. It is sometimes

useful to overapproximate seeded BMC, randomly permuting

the value of known-deep gates, to be less dependent upon

simulation probabilities to propagate permuted values.

(3). In cases, the first concerningly-deep counterexample is

too deep to simulate, or even to generate. E.g., if a design

has a 64-bit LFSR, each bit may toggle shallowly, though

a compare-to value may only be reached incredibly-deeply.

If simulating a counterexample is impractical, the offending

miter may be blindly refined as if unsolved, losing the ability

to propagate refinements to fanout logic. Simulation permuta-

tion of deep gates may nonetheless be useful in other ways,

e.g. reusing previous (or future) counterexamples [14].

F. Linear Proof Graph construction

The Proof Graph [10] has one node per miter. Fanout

edges represent the miters whose behavior is compromised

by speculative-reduction until that node’s miter is proven. The

miters correlating to a node may be merged as soon as its

fanin miters are proven, regardless of other unproven miters.

Early merging has many runtime benefits (Sec. II-A3).

The Proof Graph is reconstructed whenever a new

speculatively-reduced netlist is created, at each iteration of

Fig. 1. Scalable construction is thus critical. Lossy redundancy

removal, e.g. using shallow fixed-depth induction [5], may

choose to not use a Proof Graph, instead deferring all merging

until fixed-point. Despite the overhead of deferred merging,

e.g. causing repeated proving of accurate miters across refine-

ments, this shortcut is motivated by the traditional runtime

overhead of constructing the Proof Graph vs. lossy-solver

runtime. Early merging is a practical necessity to enable ex-

haustive redundancy removal on large netlists, which requires

solving PSPACE-complete non-inductive miters via general

model-checking algorithms. In this section, we describe a

scalable graph-labeling algorithm to compute a minimally-

sized Proof Graph.

When using arbitrary model-checking algorithms to solve

miters, all transitive fanin dependencies are recorded in

the Proof Graph. Traditional iterative construction (e.g. [10]

Alg. 7) traverses the fanin of each miter m′ to find the

speculatively-reduced gates M ′ which affect its behavior

(stopping at vs. recursing through M ′, to contain runtime);

edges from M ′ to m′ are iteratively added to the Proof Graph.

This initial Proof Graph can be vastly larger than a condensed

version due to duplicate and transitively-implied edges, risking

memout. Postprocessing is proposed to condense the Proof

Graph to be irredundant and acyclic [10], reclaiming memory

before TBV. Though iterative fanin traversal and compaction

are often a runtime bottleneck on large netlists.

We propose a method to directly compute an optimally-

sized Proof Graph (Fig. 8), using a single netlist traversal. Our

algorithm uses an efficient graph-labeling approach [31, 32],

createProofGraph graphLabeling (Spec-Reduced Netlist N ′, Miters M )

1: Compute SCC within N ′ # Tarjan’s linear algorithm [30]

2: for each gate g ∈ topologically-sorted gates in N ′ :

3: if g is not in a multi-gate SCC :

4: if g is speculatively-reduced : # g is the non-rep. gate of a miter

5: Miter m := miter corresponding to g

6: # add dependencies of m in the fanin of g

7: for each miter n with index i such that bitvector(g)[i] ≡ 1 :

8: add edge(n, m) # add dependency n→m to graph

9: # create singleton bitvector for miter m

10: unsigned idx := get unique index for miter m

11: clear bitvector(g); bitvector(g)[idx] := 1 # singleton bitvector

12: # copy / union bitvector to fanout gates

13: for each gate h in the fanout of g : # propagate to fanout

14: if h is part of SCC S : h := representative gate of SCC S

15: bitvector(h) := bitvector(h) ∪ bitvector(g) # copy / union

16: delete bitvector(g) # cleanup

17: else if g is representative gate of SCC S :

18: if S contains miters :

19: # add cyclic dependencies between miters in SCC S

20: Miters M [ ] := get all miters in S, unsigned j := 0

21: while j+1 < size(M) :

22: Miter n := M [j], Miter m := M [j+1]

23: add edge(n, m) # add dependency n→m to graph

24: Miter n := M [size(M)], Miter m := M [0]

25: add edge(n, m) # add dependency n→m to graph

26: # add dependencies for miters in the fanin of SCC S

27: Miter m := miter corresponding to representative gate of SCC S

28: for each miter n with index i such that bitvector(g) [i] ≡ 1 :

29: add edge(n, m) # add dependency n→m to graph

30: # create singleton bitvector for miter m

31: unsigned idx := get unique index for miter m

32: clear bitvector(g); bitvector(g) [idx] := 1 # singleton bitvector

33: # copy / union bitvector to fanout gates

34: for each gate h in the fanout of gates in S : # traverse to fanout

35: if h is part of SCC T : h := representative gate of SCC T

36: bitvector(h) := bitvector(h) ∪ bitvector(g)

37: delete bitvector(g) # cleanup

Fig. 8. Graph labeling algorithm for Proof Graph construction.

propagating miter-dependency information as a bitvector. Each

speculatively-reduced gate is represented with a unique bit-

index, though all miters within an SCC reuse a single bit-

index, yielding a massive practical compaction.

Linear SCC identification [30] identifies the strongly-

connected components; each gate within an SCC is given

the bit-index of a representative miter therein (line 1). The

algorithm then iterates gates in a topological order, propagat-

ing fully-populated bitvectors denoting miter dependencies to

fanout logic. When gate g is traversed, bitvector copy or union

operators propagate g’s bitvector to fanout gates (lines 13–15

and 34–36), accumulating their fanin dependencies. If g is a

speculatively-reduced gate, all miters with indexed bits set to

1 in its bitvector are added as Proof Graph fanin edges to the

node for g’s miter (lines 7–8). Fanout edges of speculatively-

reduced gates propagate only that gate’s corresponding bit-

index vs. all transitive fanin dependencies (lines 10–11).

A single bitvector is maintained for all nodes in an SCC,

at its representative gate g (line 14, 35). If the SCC contains

miters, a single unique bitvector index for a representative

miter m therein is associated with all of that SCC’s miters

(line 27). The dependencies (asserted bitvector indices) of all

SCC inputs become Proof Graph fanin edges of the SCC-
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