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Abstract

Stochastic gradient optimization is the dominant learning paradigm for a variety of
scenarios, from classical supervised learning to modern self-supervised learning.
We consider stochastic gradient algorithms for learning problems whose objec-
tives rely on unknown nuisance parameters, and establish non-asymptotic con-
vergence guarantees. Our results show that, while the presence of a nuisance
can alter the optimum and upset the optimization trajectory, the classical stochas-
tic gradient algorithm may still converge under appropriate conditions, such as
Neyman orthogonality. Moreover, even when Neyman orthogonality is not sat-
isfied, we show that an algorithm variant with approximately orthogonalized up-
dates (with an approximately orthogonalized gradient oracle) may achieve similar
convergence rates. Examples from orthogonal statistical learning/double machine
learning and causal inference are discussed.

1 Introduction

Machine learning, statistics, and causal inference rely on risk minimization problems of the form

min
θ∈Θ

[
L0(θ) := EZ∼P [ℓ0(θ;Z)]

]
, (1)

where Θ ⊆ Rd is a parameter space, Z is a Z-valued random variable, and ℓ0 : Θ × Z → R is a
loss function. The quantity ℓ0(θ; z) describes the performance of a model parametrized by θ ∈ Θ
on a test example z ∈ Z . Given only an oracle that provides a stochastic gradient estimate of the
objective (1), practitioners are able to train models ranging from linear functions on tabular data to
billion-parameter neural networks on vision and language data.

The success of stochastic gradient descent (SGD) algorithms [Amari, 1993, Bottou and Le Cun,
2005, Bottou and Bousquet, 2007, Ward et al., 2020] has motivated an abundance of work on
their theoretical properties under various algorithmic and risk conditions, such as class separabil-
ity [Soudry et al., 2018], random reshuffling [Gürbüzbalaban et al., 2021], decomposable objectives
[Schmidt et al., 2017, Vaswani et al., 2019], quantization noise [Gorbunov et al., 2020], and noise
dominance [Sclocchi and Wyart, 2024]. This success has been fueled by machine learning and
AI software libraries such as JAX, PyTorch, TensorFlow, and others, which offer a wide range of
SGD variants, as long as a loss function can be clearly specified. The gradient is then evaluated
automatically on a mini-batch of datapoints and used for stochastic updates.

Though powerful, this recipe takes one thing for granted: that the learner can always compute the
risk (or an unbiased estimate thereof). Indeed, many complex learning problems rely on a risk
function that is only partially specified up to a class

L := {L( · , g) : g ∈ G} , (2)

where G is a possibly infinite-dimensional set and L : Θ × G → R is a function of both the target
parameter θ ∈ Θ and an unknown nuisance parameter g ∈ G.
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This framework originates from semiparametric estimation and inference [Levit, 1979, Linnik, 2008,
Bickel et al., 1993, Van der Vaart, 2000], where the risk is a Kullback-Leibler (KL) divergence and
g provides information about the true data-generating distribution P, but is not of primary scientific
interest. However, the partially specified loss formulation from (2) is not limited to semiparametric
estimation and inference problems. This framework connects to many areas of interest, including
profile likelihood based learning [Murphy and and, 2000, Pavlichin et al., 2019, Hao and Orlitsky,
2019] and distributionally robust learning [Shapiro, 2017, Levy et al., 2020, Mehta et al., 2024].

For instance, profile likelihood based learning reduces (2) by applying a pointwise minimum over
g ∈ G to then construct a problem that can be solved in θ ∈ Θ. Another example arises in applica-
tions with distribution shifts, for which g represents an unknown test data distribution that may differ
from the one from which the training data were drawn. Distributionally robust learning reduces (2)
by instead taking a pointwise maximum over G and solving the resulting problem. Although the
pointwise minimum and maximum are natural reductions, it is often the case that there is a “true”
g0 ∈ G and the loss class is reduced by first estimating g0 with auxiliary data to produce some ĝ,
which we refer to as double/debiased machine learning, or DML, following Chernozhukov et al.
[2018a]. The problem (1) is then thought to be derived via L0(θ) ≡ L(θ, g0) in this case (see
examples in Sec. 2). This is the focus of this paper.

Despite the prominence of SGD and DML individually, the convergence guarantees of SGD to re-
cover the risk minimizer with a misspecified nuisance parameter remain unknown. Indeed, after
producing ĝ, the user typically solves a (full batch) empirical risk minimization problem, i.e. mini-
mizing a sample average approximation of L(·, ĝ). In this paper, we aim to fill this gap by proving

convergence guarantees on the sequence (θ(n))n≥1 generated by updates of the form

θ(n) = θ(n−1) − ηS(θ(n−1), ĝ;Zn), (3)

where η > 0 is a learning rate, Dn := (Zi)
n
i=1 is a stream of independent data drawn from P, ĝ is a

nuisance parameter estimate, and S : Θ× G × Z → Rd is a stochastic gradient oracle satisfying of
EZ∼P[S(θ, g;Z)] = ∇θL(θ, g) for all (θ, g) ∈ Θ × G. In particular, when G lies within a Banach

space equipped with norm ∥·∥G , we wish to compare θ(n) to

θ⋆ = argmin
θ∈Θ

L(θ, g0), (4)

given conditions on the degree of misspecification ∥ĝ − g0∥G and (approximate) Neyman orthogo-
nality of the risk L [Neyman, 1959].

Intuitively, Neyman orthogonal classes of objectives are instances of (2) whose curvature with re-
spect to θ is insensitive to the choice of g (see Sec. 2 for the formal description). When Neyman
orthogonality is satisfied, the double machine learning framework is also known as orthogonal sta-
tistical learning (OSL) [Zadik et al., 2018, Liu et al., 2022, Foster and Syrgkanis, 2023]. In addition
to the obvious computational considerations, we argue that the SGD perspective in this paper also
sheds light on the methodological opportunities in DML/OSL. Indeed, while loss functions are typ-
ically specified by the chosen architecture, Neyman orthogonality is often achieved by specialized
analytic calculations on the part of the user. Although this property is generally seen as a second-
order property of the loss, it can also be viewed as a first-order property of the gradient oracle S. As
we detail in Sec. 3, it may be easier and more aligned with the spirit of modern machine learning, to
craft Neyman orthogonal gradient oracles instead of losses.

Contributions. We prove the first theoretical convergence guarantees for SGD under an unknown

nuisance model. We find that θ(n) converges linearly to a neighborhood of θ⋆—the optimum in the
well-specified case—with a radius that has a fourth-power (resp. squared) dependence on ∥ĝ− g0∥G
when Neyman orthogonality is (resp. is not) satisfied. Our analysis can also apply to two-stream
settings in which the nuisance parameter is learned online alongside the target. We further analyze
a new algorithm, called orthogonalized SGD (OSGD), wherein the gradient oracle of a possibly
non-orthogonal loss can be iteratively made orthogonal using an “approximately orthogonalized”
gradient oracle, which is based on a separate estimation procedure. This algorithm enjoys a con-
vergence guarantee that interpolates between the ∥ĝ − g0∥4G (nuisance insensitive) and ∥ĝ − g0∥2G
(nuisance sensitive) regimes depending on the quality of the orthogonalizing operator.
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We provide an introduction to the OSL/DML setting in Sec. 2. The SGD and OSGD algorithms are
described and analyzed in Sec. 3. We discuss related work in Sec. 4; additional discussion can be
found in Appx. F. All proofs and numerical illustrations can be found in the Appendix.

2 Orthogonal Statistical Learning

We first introduce various examples of risk functions in the form of (2), then formally introduce
Neyman orthogonality and its implications. As is common in learning settings, the risk will be in
the form of an expectation,

L(θ, g) = EZ∼P [ℓ(θ, g;Z)] ,

where ℓ : Θ × G × Z → R is an instance-level loss function. Various assumptions used in the
analysis in Sec. 3 (e.g. convexity) may be placed on either the loss ℓ or the risk L. In each example,
we provide the structure of the data point Z, the set G, and the loss ℓ, and the true g0 ∈ G to fully
specify the problem. Here, we interpret “true” to mean that g0 is a parameter of the data-generating
distribution (e.g. a propensity score in causal inference), or that g0 satisfies a cost-minimizing or
utility-maximizing criterion (as in the profile likelihood or distributional robustness examples from
Sec. 1).

Example ℓ(θ, g; z) g0

PLM 1
2 (y − gY (w)− ⟨θ, x− gX(w)⟩)2 (EP [Y |W ] ,EP [X |W ])

CATE 1
2

(

g(1)(x)− g(0)(x) + (w−gprop(x))(y−g(w)(x))
gprop(x)(1−gprop(x)) − ⟨θ, x⟩

)2

(EP [Y |W = 1, X] ,EP [X |W = 0, X] ,EP [W | X])

CRR −
[
µ(1)
g (z) log pθ(x) + µ(0)

g (z) log(1− pθ(x))
]

(EP [Y |W = 1, X] ,EP [X |W = 0, X] ,EP [W | X])

Table 1: Examples of Neyman Orthogonal Losses.

Example 1 (Partially Linear Model). Let Z = (X,Y,W ) ∼ P, where X is an Rd-valued
input, Y is a real-valued outcome, and W is a W-valued control or confounder. The space G
is a nonparametric class containing functions of the form

g = (gY , gX) : W → R× Rd.

Following the construction of Robinson [1988], this g is supplied to the loss

ℓPLM(θ, g; z) =
1

2
(y − gY (w)− ⟨θ, x− gX(w)⟩)2.

To ensure θ⋆ can be interpreted via the projection of EP[Y |X,W ] onto partially linear addi-
tive functions, the true nuisance is given by g0 = (g0,X , g0,Y ), where

g0,Y (w) := EP [Y |W = w] and g0,X(w) := EP [X |W = w] .

The next example concerns a quantity widely studied in causal inference [Kennedy, 2023].

Example 2 (Conditional Average Treatment Effect). We observe Z = (X,Y,W ) ∼ P,
where W is a binary treatment assignment. The functions in G are of the form

g = (g(0), g(1), gprop) : Rd → R× R× (0, 1),

and are evaluated (see van der Laan and Luedtke [2014, Thm. 1]) at the loss

ℓCATE(θ, g; z) =
1

2

(

g(1)(x)− g(0)(x) +
w − gprop(x)

gprop(x)(1− gprop(x))
(y − g(w)(x))− ⟨θ, x⟩

)2

.

For g0 = (g(0)

0 , g(1)

0 , gprop
0 ) nuisance functions g(0)

0 and g(1)

0 represent the outcome regressions

g(0)

0 (x) := EP[Y |W = 1, X = x] and g(1)

0 (x) := EP[Y |W = 0, X = x],
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whereas gprop
0 (x) := EP [W | X = x] denotes the propensity score. The minimizer θ⋆ in-

dexes a projection of the conditional average treatment effect g(1)

0 −g(0)

0 onto linear functions.

Finally, we maintain the data structure from the previous example, but consider a loss corresponding
to a different target parameter according to van der Laan et al. [2024].

Example 3 (Conditional Relative Risk). We retain all components of the previous exam-
ple, changing only the loss and assuming that the outcome Y is binary/non-negative. First,
consider the “label” function

µ(s)

g (z) = g(s)(x) +
1(w = s)

sgprop(x) + (1− s)(1− gprop(x))
(y − g(s)(x)),

where 1(·) denotes the indicator function, and the logit-linear predictor pθ(x) = e⟨θ,x⟩/(1 +
e⟨θ,x⟩). To obtain a linear approximation of the log-relative risk log(g(1)

0 /g(0)

0 ), we employ
the cross entropy-type loss function

ℓCRR(θ, g; z) = −
[
µ(1)

g (z) log pθ(x) + µ(0)

g (z) log(1− pθ(x))
]
.

While the choices of the loss function in Examples 2 and 3 might look opaque to readers outside of
causal inference and statistics, they are carefully designed to be Neyman orthogonal. To motivate its
definition, notice that, invariably, g0 is unknown to the user. In DML, the user may produce or access
some ĝ ∈ G, which is an estimate of g0 based on independent training data other than the stream

(Zi)
n
i=1 used to produce θ(n). It is of clear interest how stochastic optimization algorithms (and

their resulting minimizers) behave in light of the misspecification of g0, and what precise theoretical
conditions govern this behavior. Moreover, as we demonstrate in Sec. 3, these same conditions can
be used to analyze procedures for which the user may access additional data to progressively improve
the estimate ĝ and learn θ⋆ simultaneously. We now formally introduce Neyman orthogonality, and
by extension, the orthogonal statistical learning (OSL) variant of DML.

Neyman Orthogonality. For a definition that accounts for a possibly infinite-dimensional function
class G, we introduce the directional derivative, or equivalently, the derivative operator.

Definition 1 (Derivative Operator). For a functional F mapping from a vector space F to

R, we define the (directional) derivative operator D as DF (f)[h] := d
dtF (f + th) |t=0

for any f, h ∈ F . For a vector-valued F : F 7→ Rd, this derivative operator can be
generalized by taking derivatives coordinate-wise. We define the second-order derivative
as D2F (f)[h, h′] := D(DF (f)[h])[h′] for h, h′ ∈ F and higher-order derivatives simi-
larly. For functionals of multiple variables F : F × G → R, we use the subscript notation
DfF (f, g)[h] to indicate the directional derivative of f 7→ F (f, g) with g ∈ G fixed.

We denote by Sθ(θ, g; z) = ∇θℓ(θ, g; z) the gradient of the loss function w.r.t. the target parameter
θ ∈ Θ. Borrowing terminology from statistics, we call this the score, whether ℓ is based on a likeli-
hood or not.2 This constitutes one particular example of a stochastic gradient oracle S used in (3).
Overloading notation, the population gradient oracle is defined as Sθ(θ, g) = EZ∼P[∇θℓ(θ, g;Z)].

Definition 2 (Neyman Orthogonality). The population gradient oracle Sθ is Neyman orthog-
onal at (θ⋆, g0) over G′ ⊆ G if

DgSθ(θ⋆, g0)[g − g0] = 0 for all g ∈ G′. (5)

For Θ′ ⊆ Θ, the population loss L is Neyman orthogonal at (θ⋆, g0) over Θ′ × G′ if

DgDθL(θ⋆, g0)[θ − θ⋆, g − g0] = 0 for all (θ, g) ∈ Θ′ × G′. (6)

2This notion of (Fisher) score differs from the “score” used in score-based generative modeling [Song et al.,
2021]. If ℓ is based on a log-likelihood, then Sθ is the gradient w.r.t. the parameter θ ∈ Θ, not the input z ∈ Z .
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Non-Orthogonal Risk Orthogonalized Risk Cross Sections for Fixed 

Minimizers are insensitive
to the nuisance value.

Figure 1: Illustration of Neyman Orthogonalization. The first two panels are contour plots of the
risk function L(θ, g), where θ varies on the x-axis and g varies on the y-axis. For the orthogonalized
risk (center) the contours are approximately axis-aligned. The right plot shows the cross sections
of the non-orthogonal risk when fixing g = g0, g1, g2. Due to non-orthogonality, the minimizers θ1
and θ2 shown in the first and third plots may drift significantly from θ⋆. In contrast, the minimizers
in the center plot are less sensitive to the choice of g.

In Definition 2, we allow Θ′ ×G′ ⊆ Θ×G to be a proper subset, which not only provides a weaker
condition, but also accounts for localization-style arguments. Moreover, since DθL(θ⋆, g0)[θ−θ⋆] =
⟨Sθ(θ⋆, g0), θ − θ⋆⟩, if the population risk L satisfies (5), then (6) holds for any target parameter

class Θ′ ⊆ Rd. As mentioned above, the risk functions in Examples 1–3 are all Neyman orthogonal
at their respective value of (θ⋆, g0). In the next section, we will discuss a procedure to make a
non-orthogonal gradient oracle “approximately” orthogonal. We illustrate the intended outcome
intuitively in Fig. 1 by comparing a generic loss and its orthogonalized counterpart.

3 Stochastic Gradient Optimization

In this section, we propose two stochastic gradient algorithms, which rely on different choices of
the stochastic gradient oracle S used in (3). The first is the familiar stochastic gradient oracle that
provides a sample estimate of the gradient ∇L(·, ĝ) for a fixed estimate ĝ. The second employs an
approximately orthogonalized gradient oracle, or OSGD oracle, to achieve a notion of approximate
Neyman orthogonality (in a manner we make precise in this section). We analyze the first algorithm
under both non-orthogonal and orthogonal settings, achieving an illustrative breakdown of “nuisance
sensitive” and “nuisance insensitive” regimes regarding the theoretical convergence guarantee. For
the OSGD algorithm, we prove a convergence guarantee that interpolates between the two regimes,
depending on the accuracy of the oracle.

Notation and Assumptions. For readers’ convenience, a table of all the notation we introduce
throughout the paper is collected in Appx. A. We maintain the prototypical bias/variance conditions
on the stochastic gradient oracle S, that is, an unbiasedness condition and a second-moment growth
condition (see Asm. 3(d)). To dispel confusion, note that by “unbiased”, we mean specifically that
EZ∼P [S(θ, g;Z)] = ∇θL(θ, g) for all (θ, g), as opposed to the “bias” of replacing ĝ with g0, a
terminology sometimes used in DML/OSL. Our analysis will rely partly on the initial distance r of
the nuisance estimate ĝ to g0 in G, which defines the ball

Gr (g0) = {g ∈ G : ∥g − g0∥G ≤ r} . (7)

Various assumptions on the risk will be required to hold only locally, that is, within Gr (g0) as op-
posed to the entire linear space G. Thus, the assumptions become weaker as the estimate ĝ improves.

Assumption 3. The following conditions hold:

(a) Differentiability: For any (z, g) ∈ Z × G, θ 7→ ℓ(θ, g; z) is twice continuously dif-
ferentiable. For any (θ, g), (θ̄, ḡ) ∈ Θ × G, (i) D2

gDθℓ(θ̄, ḡ; z)[θ − θ⋆, g − g0, g −
g0] exists and is continuous, (ii) DθL(θ̄, ḡ)[θ − θ⋆] and DgL(θ̄, ḡ)[g − g0] exist,
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and (iii) EP

[
Dθℓ(θ̄, ḡ;Z)[θ − θ⋆]

]
= DθL(θ̄, ḡ)[θ − θ⋆], EP

[
Dgℓ(θ̄, ḡ;Z)[g − g0]

]
=

DgL(θ̄, ḡ)[g − g0].

(b) First-order optimality: The pair (θ⋆, g0) satisfies Sθ(θ⋆, g0) = 0.

(c) Smoothness and strong convexity: There exist constants M ≥ µ > 0 such that for all
g ∈ Gr (g0), the population risk L(·, g) is M -smooth and µ-strongly convex for θ ∈ Θ.

(d) Second-moment growth: There exist constants K1, κ1 ≥ 0 such that

EZ∼P[∥Sθ(θ, g;Z)− Sθ(θ, g)∥22] ≤ K1 + κ1∥θ − θ⋆∥22 ∀θ ∈ Θ, g ∈ Gr (g0) .

(e) Second-order smoothness: There exists a constant α1 ≥ 0 such that

|DgDθL (θ⋆, ḡ) [θ − θ⋆, g − g0]| ≤ α1 ∥θ − θ⋆∥2 ∥g − g0∥G ∀θ ∈ Θ, g, ḡ ∈ Gr (g0) .

Asm. 3 does not require Neyman orthogonality at (θ⋆, g0). Instead, Asm. 3(a) is a standard differ-
entiability condition. Asm. 3(b) and (c) implies that θ⋆ is a unique global minimizer. Asm. 3(d)
generalizes the uniformly bounded second moment condition in stochastic optimization (e.g. Cutler
et al. [2023]) by adding a quadratic form in θ, which allows us to consider an unbounded feasible
set Θ and more loss classes. Finally, Asm. 3(d) and (e) can be satisfied when the Hessian of the
population risk is a bounded operator. Usually, K1, κ1, and α1 would depend on the initial nui-
sance estimation distance r. We provide in Appx. B estimates of the constants in Asm. 3 for each
motivating example. We proceed to the main results regarding the convergence of SGD and OSGD.

Stochastic Gradient Algorithm. Here, we use the standard single-sample stochastic gradient esti-
mate S = Sθ in (3). This leads to the update

θ(n) = θ(n−1) − ηSθ(θ
(n−1), ĝ;Zn), θ(0) ∈ Θ. (8)

While the SGD procedure can be easily extended to using a batch of unbiased gradient estimates,
we keep our single-observation construction to highlight the most important aspects of the analysis.
In order to achieve quantitative guarantees in the Neyman orthogonal setting, which essentially
removes certain second-order terms that include θ and g, we will consider the following higher-
order condition in some cases.

Assumption 4 (Higher-Order Smoothness). The risk L satisfies Definition 2 at (θ⋆, g0), and there
exists some constant β1 > 0 such that
∣
∣D2

gDθL (θ⋆, ḡ) [θ − θ⋆, g − g0, g − g0]
∣
∣ ≤ β1 ∥θ − θ⋆∥2 ∥g − g0∥2G ∀θ ∈ Θ, g, ḡ ∈ Gr (g0) .

When satisfied, Asm. 4 results in the nuisance insensitivity alluded to at the beginning of this section.
Notice that Neyman orthogonality is not necessary to construct a stochastic optimizer, and it is still
possible to obtain a nuisance sensitive rate under only Asm. 3. We demonstrate this in Thm. 1.

Theorem 1. Define Dn = (Z1, . . . , Zn), sampled from the product measure Pn. Suppose that

Asm. 3 holds, ĝ ∈ Gr (g0) is estimated independently of Dn, and θ(0), . . . , θ(n) ∈ Θ almost surely.
The iterates of (8) satisfy:

1. Nuisance sensitive: If η ≤ µ/2(Mµ+ κ1), then

EDn∼Pn [∥θ(n) − θ⋆∥22] ≤
(

1− µη

2

)n

∥θ(0) − θ⋆∥22 +
2α2

1

µ2
∥ĝ − g0∥2G +

4K1η

µ
.

2. Nuisance insensitive: If Asm. 4 also holds, then, for η ≤ µ/2(Mµ+ κ1),

EDn∼Pn [∥θ(n) − θ⋆∥22] ≤
(

1− µη

2

)n

∥θ(0) − θ⋆∥22 +
β2
1

2µ2
∥ĝ − g0∥4G +

4K1η

µ
.

Note that the assumption that the iterates remain in Θ is satisfied in common cases. It is satisfied
trivially for the first two examples in Sec. 2 because Θ = Rd. Another case is when the loss
decomposes into the sum of a G-Lipschitz continuous component and the ℓ22-norm regularizer, i.e.
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ℓ(θ, g; z) = h(θ, g; z) + µ
2 ∥θ∥22. Then, the iterates and the optimum remain in {θ : ∥θ∥2 ≤ G/µ}

(see, e.g., Mehta et al. [2023, Appx. C]), so Definition 2 can be restricted to this compact set.

Thm. 1 states that SGD converges linearly to a ball around θ⋆ with a radius that depends on the
bias (due to the replacement of g0 with ĝ) and the variance due to gradient noise. Moreover, the
variance component decays proportionally to the learning rate η. Under Asm. 4, the bias component
can have a significantly more favorable scaling with the error in the nuisance estimate ∥ĝ − g0∥G—
specifically, ∥ĝ − g0∥4G instead of ∥ĝ − g0∥2G . A similar breakdown into two regimes of the bias
scaling occurs in the works of both Foster and Syrgkanis [2023] and Liu et al. [2022] under Asm. 4
(called “slow rate” and “fast rate” there). Importantly, their bounds are based on an exact, offline
empirical risk minimization procedure for a fixed training set, i.e. they provide excess risk bounds

on the quantity L(θ̂n, g0)− L(θ⋆, g0), where

θ̂n = argmin
θ∈Θ

1

n

n∑

i=1

ℓ(θ, ĝ;Zi).

In contrast, Thm. 1 accounts for both the expected distance to optimum and the interplay between
bias incurred by ĝ and the progress achieved at each step. In particular, even when using a constant

learning rate, the bias does not accrue on each iterate and is in fact constant in n. When θ̂n is
designed to be doubly robust, using SGD can achieve double robustness; see Appx. F.5 for an
example.

Orthogonalized Stochastic Gradient Algorithm. Given the marked improvement in the rate of
decay of the bias term when an orthogonal loss is used, it is clearly beneficial to do so when possible.
We now describe how we can induce orthogonality by adjusting the stochastic gradient oracle using
the solution of an auxiliary problem.

The construction of Neyman orthogonal losses has historically been motivated in semiparametric
theory and statistical learning as a means to build efficient – minimum asymptotic variance – full
batch statistical estimators [Tsiatis, 2006, Van der Vaart, 2000, Foster and Syrgkanis, 2023, Cher-
nozhukov et al., 2018b]. The approach we follow is inspired by the construction reviewed in Cher-
nozhukov et al. [2018a, Section 2.2]; see also Luedtke [2024]. We also give an intuitive explanation
based on least-squares estimation, instead of the usual differential/information geometry one.

While our construction holds in general spaces, let us first consider the illustrative case when G =
Rk. At the true parameters (θ⋆, g0), consider the problem of finding the best predictor of the Rd-

valued target variable Sθ(θ⋆, g0;Z) = ∇θℓ(θ⋆, g0;Z) given the Rk-valued predictor ∇gℓ(θ⋆, g0;Z)
variable in the space L(G,Θ) containing all continuous and linear operators from G to Θ:

Γ0 = argmin
Γ∈L(G,Θ)

EP

[
∥Sθ(θ⋆, g0;Z)− Γ∇gℓ(θ⋆, g0;Z)∥22

]
. (9)

In the special case where ℓ(θ, g; z) = − log pθ,g(z) for a density pθ,g on Z that governs the random

variable Z, the projection direction solving (9) can be shown to satisfy Γ0 = H⊤
θgH

−1
gg , where

Hθg = ∇gSθ(θ⋆, g0) ∈ Rk×d is the transposed Jacobian and Hgg = ∇2
gL(θ⋆, g0) ∈ Rk×k is the

Hessian. The prediction Γ0∇gℓ(θ⋆, g0;Z) accounts for the covariance between ∇θℓ(θ⋆, g0;Z) (the
gradient w.r.t. θ) and ∇gℓ(θ⋆, g0;Z) (the gradient w.r.t. g). It stands to reason that as θ → θ⋆, the
random vector

S(θ, g0;Z) := Sθ(θ, g0;Z)− Γ0∇gℓ(θ, g0;Z) = Sθ(θ, g0;Z)−H⊤
θgH

−1
gg ∇gℓ(θ, g0;Z) (10)

would be less sensitive to perturbations of g0, as the component of Sθ(θ, g0;Z) that is predictable
through changes in g0 is subtracted out. Furthermore, if we are aware that the expectation of S
is made zero at θ⋆, then a stochastic gradient scheme based on (10) could conceivably achieve a
nuisance insensitive rate guarantee in lieu of Thm. 1. From a variance reduction viewpoint, the
correction term in (10) subtracts the regression of the θ gradient of the loss on the g “gradient” of
the loss. By the law of total variance, the variance of the gradient reduces and improves the trajectory
of stochastic optimization; see Appx. F.4 for more details. This variational description (10) hints at
how such an operator can be computed algorithmically, instead of the historical approach of deriving
the operator via calculation by hand on case by case basis.
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Supported by this illustration, we define a generalization that will provide a modified stochastic gra-
dient oracle to use for optimization purposes. Without assuming that ℓ is a negative log-likelihood,
we generalize the formulas for ∇gℓ(θ, g; z) ∈ Rk, Hθg ∈ Rk×d and Hgg ∈ Rk×k for when
G ≡ (G, ⟨·, ·⟩G) is an infinite-dimensional Hilbert space. Under regularity conditions on the direc-

tional derivatives of L, we have that ∇gℓ(θ, g; z) ∈ G for all z ∈ Z , Hθg = (H (1)

θg , . . . , H
(d)

θg ) ∈ Gd,

andHgg : G → G is a bounded and self-adjoint operator. The formal details of their construction are

contained in Appx. D. Just as in (10), we may consider the operator Γ0 : G → Rd, defined element-
wise by [Γ0g]j = ⟨H (j)

θg , H
−1
gg g⟩G , where the invertibility of Hgg is satisfied by our assumptions

preceding Thm. 3. As shown in (9), the orthogonalizing Γ0 is defined by both the true nuisance g0
and the target θ⋆, where g0 can usually be learned as some conditional expectation and θ⋆ can be
learned by our proposed methods. We then construct the central object of the upcoming Thm. 3: the
Neyman orthogonalized (NO) gradient oracle

Sno(θ, g; z) = Sθ(θ, g; z)− Γ0∇gℓ(θ, g; z). (11)

Lemma 2. Suppose that Asm. 3(a) holds and D2
gL(θ⋆, g0)[·, ·] : G × G 7→ R is a bounded and

symmetric bilinear form. Then the NO gradient oracle Sno(θ, g; z) is Neyman orthogonal at (θ0, g0).

We refer readers to Lem. 15 for the proof. In this context, we refer to the operator Γ0 as the “or-
thogonalizing operator”. As a natural sanity check, we note that for a risk function that is already
Neyman orthogonal at (θ⋆, g0), the NO score Sno is exactly equal to score function Sθ itself since
Γ0 = 0. To construct Sno for the non-orthogonal loss, we provide the following example in partially
linear model where the corresponding derivations of Γ0 and Sno are included in Appx. B.1.2.

Example 4 (Partially Linear Model). In addition to Example 1, suppose that Z =
(X,Y,W ) ∼ P satisfies

Y = ⟨θ⋆, X⟩+ g0(W ) + ϵ,

where θ⋆ ∈ Rd is the true parameter, g0 : W 7→ R is the true nuisance function, and
EP [ϵ | X,W ] = 0. The space G ∈ L2(P) with inner product ⟨g1, g2⟩G = EP[g1(W )g2(W )]
for any g1, g2 ∈ G is a nonparametric class containing functions of the form

g : W → R.

Consider the following non-orthogonal squared loss function:

ℓ̃PLM(θ, g; z) =
1

2
[y − g(w)− ⟨θ, x⟩]2.

The orthogonalizing operator for this non-orthogonal loss is

Γ0 : g 7→ EP[EP[X |W ]g(W )],

and the NO gradient oracle is obtained as

Sno(θ, g; z) = −(y − g(w)− ⟨θ, x⟩)(x− EP[X |W = w]).

Motivated by the advantage of a Neyman orthogonal score, we now construct our OSGD algorithm
using an estimated the NO score Sno. While Γ0 (like g0) is unknown to the user in general, using an

arbitrary estimate Γ̂, we can define the estimated NO score Ŝno oracle via

Ŝno(θ, g; z) = Sθ(θ, g; z)− Γ̂∇gℓ(θ, g; z). (12)

Usually, one can obtain such an estimate Γ̂ using the same data stream of ĝ; we discuss possible

strategies in Appx. F.3. Finally, using Ŝno as the stochastic gradient oracle S in (3), we derive the
OSGD update

θ(n) = θ(n−1) − ηŜno(θ
(n−1), ĝ;Zn), θ(0) ∈ Θ. (13)
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To measure the quality of Γ̂ in our analysis, we use the Frobenius norm ∥Γ∥2Fro =
∑d

j=1∥Γ(j)∥2op
where Γ : G → Rd, Γ(j) : g 7→ [Γg]j and ∥·∥op denotes the usual operator norm for linear function-

als. As an example, by the uniqueness of Riesz representations, ∥Γ0∥2Fro =
∑d

j=1∥H−1
gg H

(j)

θg ∥2G .

Using this modified oracle (12) requires similar assumptions to those used in Thm. 1. For ease of
presentation, we defer the formal assumption statement to Appx. E, but note that the result depends
on the constants (µno,Mno, α2, β2,K2), which are exactly analogous to (µ,M,α1, β1,K1) from
Asm. 3.

Theorem 3. Consider the setting of Thm. 1, with the addition of Asm. 6. When ∥Γ̂ − Γ0∥Fro <
µno/(4α1) and

η ≤ µno − 4α1∥Γ̂− Γ0∥Fro
12M2

no − 3µ2
no/2 + 4(κ1 + κ2∥Γ̂∥2Fro)

,

the iterates of (13) satisfy:

EDn∼Pn [∥θ(n) − θ⋆∥22] ≤
(

1− µnoη

2

)n

∥θ(0) − θ⋆∥22 +
4(K1 +K2∥Γ̂∥2Fro)η

µno

+
3

µ2
no

(

β2
2∥ĝ − g0∥4G + 4α2

2∥ĝ − g0∥2G · ∥Γ̂− Γ0∥2Fro
)

. (14)

Compared with Thm. 1, Thm. 3 shows that OSGD can outperform the nuisance sensitive rate through

the correction term ∥ĝ − g0∥2G · ∥Γ̂− Γ0∥2Fro, and can align with the nuisance insensitive rate when

∥Γ̂− Γ0∥Fro is of the order O(∥ĝ − g0∥G). With slightly different assumptions, Thm. 3 can further
simplified – see Appx. E for details.

Interleaving Target and Nuisance Estimation. The results seen thus far have considered for sim-
plicity the estimate ĝ to be a fixed element of G, and included terms that depend on the discrepancy

∥ĝ − g0∥G . Part of the convenience of these results is that if ĝ ≡ ĝ(m) is the result of a learning

procedure with m independent data points, then statistical bounds on ∥ĝ(m)−g0∥G (either in expec-
tation or high probability, depending on the situation) can be plugged in to quantify the bias. While
the results naturally account for full batch learning procedures, they are also amenable to analyzing
staggered procedures in which two data sources are queried to estimate θ⋆ and g0, respectively. To
our knowledge, this is the first theoretical analysis of such an orthogonal stochastic learning method.

To be precise, suppose that we update the nuisance estimator for m times, leading to the sequence

ĝ(1), . . . , ĝ(m) on a stream of W-valued data W1, . . . ,Wm, sampled i.i.d. from a probability mea-

sure Q. We define θ(0,n) = θ(0) ∈ Θ, and for the update of ĝ(i) for 1 ≤ i ≤ m, we define

θ(i,0) = θ(i−1,n) and produce the sequence θ(i,1), . . . , θ(i,n) using n steps of the SGD update (8)

initialized at θ(i,0). Consider, for example, the case in which G is a reproducing kernel Hilbert space
(RKHS) with kernel k(·, ·). With the assumption that the eigenvalues (λj)j≥1 of covariance opera-
tor EQ[k(W, ·) ⊗ k(W, ·)] decay polynomially at order j−α, the nonparametric stochastic gradient

algorithm of Dieuleveut and Bach [2016] satisfies EQm

[
∥ĝ(m) − g0∥2G

]
= O(m−(2α−1)/(2α)). This

leads to the following nuisance sensitive rate for a non-Neyman orthogonal loss, by Prop. 22:

EPmn⊗Qm [∥θ(m,n) − θ⋆∥22] = O
(

(1− µη/2)
mn

+m− 2α−1
2α + n−1 + η

)

.

As another example, suppose that, in addition, we can estimate Γ̂ ≡ Γ̂(m) using the nonparamet-
ric stochastic gradient algorithm of Dieuleveut and Bach [2016] and using the same data stream

(W1, . . . ,Wm). If there are high probability bounds for ∥ĝ(m) − g0∥2G and ∥Γ̂(m) − Γ0∥2Fro of

the same order as O(m−(2α−1)/(2α)) and ∥θ(m,n) − θ⋆∥22 decays as described in Thm. 3, then we

have in Prop. 23 that ∥θ(m,n) − θ⋆∥22 = Op

(
(1− µη/2)

mn
+m−(2α−1)/α + n−1 + η

)
where the

Op(m
−(2α−1)/α) nuisance bias term decays quadratically faster than the one for a non-Neyman

orthogonal loss. We refer the reader to Appx. F.3 for further details of this analysis.
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4 Related Work

We summarize in this section our discussion of the related work. Additional discussions, as well as
calculations supporting them, can be found in Appx. F. Possible extensions to SGD variants such as
SGD with momentum, averaged SGD, and Adam, are explored in Appx. H.

From an optimization perspective, it is helpful to know how our convergence bounds perform in
the idealized case of a known nuisance, which is equivalent to (1). In this case, Thm. 1 gives

the convergence rate EDn∼Pn [∥θ(n) − θ⋆∥22] = O((1− µη/2)
n
+ η), which aligns with the non-

asymptotic SGD convergence rates, in mean-square error [Bach and Moulines, 2011] and in high-
probability [Cutler et al., 2023]. Our result requires a smaller learning rate η < µ/2(Mµ + 2κ1)
when compared to the requirement η < 1/(2M) from Cutler et al. [2023]. This is entirely due
to our bounded moment assumption (see Asm. 3(d)), which contrasts with a uniform boundedness
assumption over all Θ × Gr (g0). In addition, when the uniform moment bound holds true, κ1
becomes zero, and our learning rate requirement becomes η < 1/(2M).

The comparison with unbiased SGD, and biased SGD, respectively, is also valuable. In the biased
SGD literature, the “bias” refers to the fact that EZ∼P [S(θ, ĝ;Z)] ̸= ∇θL(θ, g0) in general. The

convergence radius then depends on the average value of ∥EZ∼P

[
S(θ(n), ĝ;Z)

]
−∇θL(θ

(n), g0)∥22.
Results along this line result in a radius that may not scale with η; see Demidovich et al. [2023, Thm.
3]. Although this form of bias may be related to ∥ĝ − g0∥G under Lipschitzness conditions on the
oracle, it is unclear how to effectively incorporate Neyman orthogonality into these general-purpose
approaches. Our approach naturally leverages Neyman orthogonality whenever it holds.

In the general case of an unknown nuisance, Foster and Syrgkanis [2023], Chernozhukov et al.
[2018b] consider full batch learning methods based on analytically crafted Neyman orthogonal risk
functions in various scenarios. For regression functionals, the procedure from Chernozhukov et al.
[2022] using random forests or neural networks can ensure that the bias term ∥ĝ − g0∥2G is asymp-
totically negligible for large samples, in the sense that classical statistical confidence sets for θ⋆ are
asymptotically valid. These papers are focused on algorithm-independent statistical properties.

Our work fills this gap, by providing non-asymptotic convergence guarantees for stochastic gradient
algorithms under unknown nuisances. Moreover, the modified stochastic gradient oracle moreover
offers a flexible solution to deal with general risk functions. If deriving an orthogonalized risk by
hand is difficult or impossible, then the strategy we propose can be applied, and Thm. 3 demonstrates
that, when the learning rate η is set appropriately, the convergence rate using the modified stochastic
gradient oracle can be improved to

O
((

1− µnoη

2

)n

+ ∥ĝ − g0∥4G + ∥ĝ − g0∥2G · ∥Γ̂− Γ0∥2Fro
︸ ︷︷ ︸

improvement over ∥ĝ − g0∥
2
G

+η
)

.

When we have the true orthogonalizing Γ0, the improved rate recovers the nuisance insensitive one

from Thm. 1. Besides, when ĝ converges but ∥Γ̂ − Γ0∥2G = Op(1), the improved rate resembles
the nuisance sensitive rate of Thm. 1, plus a O(η) bias term. Thus, the quality of the estimated
orthogonalizing operator governs how the optimization interpolates between these two rates.

Having understood the performance of SGD when using an estimated orthogonalizing operator, one
question is how to compute or approximate such an operator. Luedtke [2024] recently demonstrated
that an orthogonalizing operator can be derived using algorithmic/reverse mode functional differen-
tiation in many interesting cases. This can also be effective in our stochastic setting. In Sec. 3, using
least-squares regression as an illustration, we developed a control variate [Johnstone and Velleman,
1985] interpretation of the variance reduction. This viewpoint offers another venue to develop ap-
proximate orthogonalizing operators.

Conclusion. We established non-asymptotic convergence guarantees for SGD algorithms under
nuisances. We showed how the Neyman orthogonality of the loss function can mitigate the sensi-
tivity of SGD algorithms to the effect of nuisances, and obtained results that align with recent ones
from the DML/OSL literature in the batch setting. We also presented an iteratively orthogonalized
SGD algorithm, whose convergence rate aligns with the rate in the nuisance insensitive regime.
Extensions to hypothesis testing and reinforcement learning are interesting venues for future work.
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A. Défossez, L. Bottou, F. Bach, and N. Usunier. A Simple Convergence Proof of Adam and
Adagrad. A Simple Convergence Proof of Adam and Adagrad, 2022.

Y. Demidovich, G. Malinovsky, I. Sokolov, and P. Richtárik. A Guide Through the Zoo of Biased
SGD. In NeurIPS, 2023.

11



A. Dieuleveut and F. Bach. Nonparametric Stochastic Approximation with Large Step-Sizes. The
Annals of Statistics, 2016.

T. S. Ferguson. Mathematical Statistics: A Decision Theoretic Approach. Academic press, 2014.

D. J. Foster and V. Syrgkanis. Orthogonal Statistical Learning. The Annals of Statistics, 2023.

E. Gorbunov, F. Hanzely, and P. Richtarik. A Unified Theory of SGD: Variance Reduction, Sam-
pling, Quantization and Coordinate Descent. In AISTATS, 2020.

R. M. Gower, M. Schmidt, F. Bach, and P. Richtárik. Variance-Reduced Methods for Machine
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: Our claims are theoretical convergence guarantees for various optimization
algorithms. The results are included in Sec. 3 and the proofs are written in the appendix.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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goals are not attained by the paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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proach. For example, a facial recognition algorithm may perform poorly when image
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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dress problems of privacy and fairness.
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limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: While this work is primarily theoretical, we provide code that reproduces our
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• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is provided in github.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiments are included in Appx. G.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: Experiments of this nature are not included in our paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: Our numerical illustration is not computationally prohibitive, and can run on
an instance of Google Colab.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no ethical violations, to the authors’ knowledge.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: A “Broader Impact” statement is included before the references.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not provide any models or datasets in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any third party data/models that may incur licensing issues.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/

datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Our code is documented in notebook format.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Experiments of this nature are not included in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Experiments of this nature are not included in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

20



16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No substantive part of this research involved the use of large language models.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/
2025/LLM) for what should or should not be described.
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A Notation

Symbol Description

Θ ⊆ Rd Finite-dimensional parameter class.

(G, ∥ · ∥G) Possibly infinite-dimensional nuisance space.

(G, ⟨·, ·⟩G) The nuisance space as a Hilbert space.

P The unknown distribution of interest.

Z ∈ Z The random variable under P.

θ⋆ The target of interest.

g0 The true nuisance parameter.

ℓ(θ, g; z) The prespecified loss function.

L(θ, g) The population loss EZ∼P [ℓ(θ, g;Z)].

Sθ(θ, g; z) The score function ∇θℓ(θ, g; z).

Sθ(θ, g) The population score EZ∼P [∇θℓ(θ, g; z)].

Sno(θ, g; z) The Neyman orthogonalized score.

Sno(θ, g) The population Neyman orthogonalized score EZ∼P[Sno(θ, g;Z)].

(∇θ,∇g) The gradient w.r.t. θ and g

(Dθ,Dg) The derivative operator w.r.t. θ and g.

Hθg The transposed Jacobian defined by ∇gSθ(θ⋆, g0) ∈ Gd

Hgg The nuisance Hessian operator defined by ∇2
gL(θ⋆, g0)

Γ0 Linear operator defined by [Γ0g]j = ⟨H (j)

θg , H
−1
gg g⟩G .

µ The strong convexity constant of L.

M The smoothness constant of L.

(K1, κ1) Constants to bound the second moment of Sθ(θ, g;Z).

(α1, α2) The second order smoothness constant of L.

β1 The higher order smoothness constant of a Neyman orthogonal L.

µno The strong convexity constant of ∇θSno(θ⋆, g0).

Mno The smoothness constant of ∇θSno(θ⋆, g0).

(K2, κ2) Constants to bound the second moment of Sno(θ, g;Z).

β2 The higher order smoothness constant of Sno.

η The learning rate of stochastic optimization.

n The iteration of stochastic gradient.

m The iteration of nuisance estimation.

Table 2: Notation used throughout the paper.
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B Detailed Examples

In this section, we describe in detail how the three examples in Sec. 2 from the main text satisfy
Asm. 3 and Asm. 4. We first talk about the partially linear model (PLM) in Appx. B.1, and then
introduce the conditional averaged treatment effect (CATE) based on the potential outcomes frame-
work in Appx. B.1. Under the same framework, finally we talk about the conditional relative risk
(CRR) in Appx. B.3. In addition, we also study a non-orthogonal loss usually used for PLM in
Appx. B.1.2 and an unrestricted loss function for CATE in Appx. B.2.1. The constants for all exam-
ples are concluded in Tab. 3 and proofs of lemmas in this section are provided in Appx. B.4.

B.1 Partially Linear Model

B.1.1 Orthogonal Loss

We revisit Example 1 from the main text where we consider the target of interest as a solution
of a partially linear model. Let Z = (X,Y,W ), where X is an Rd-valued input, Y is a real-
valued outcome, and W is a W-valued control or confounder. The space G is a nonparametric class
containing functions of the form

g = (gY , gX) : W → R× Rd.

Following the construction of Robinson [1988], this g is supplied to the loss

ℓ(θ, g; z) =
1

2
[y − gY (w)− ⟨θ, x− gX(w)⟩]2. (15)

To ensure θ⋆ can be interpreted via the projection of EP[Y |X,W ] onto partially linear additive
functions, the true nuisance is given by g0 = (g0,X , g0,Y ), where

g0,Y (w) := EP [Y |W = w] and g0,X(w) := EP [X |W = w] .

We define the residual ϵ at (θ⋆, g0) as

ϵ = Y − g0,Y (W )− ⟨θ⋆, X − g0,X(W )⟩.

Lemma 4. Let Ỹ = Y − g0,Y (w) and X̃ = X − g0,X(w). We assume the following conditions:

(a) λmin(EP[X̃X̃
⊤]) ≥ λ0 for some constant λ0 > 0.

(b) ∥X̃∥2 ≤ CX a.s. and EP

[
ϵ4
]
≤ σ4 for some constants CX , σ > 0.

Then Asm. 3 and Asm. 4 are satisfied. The target θ⋆ is the minimizer of the squared loss:

θ⋆ = argmin
θ∈Rd

EP[(Ỹ − X̃⊤θ)2].

The proof of Lem. 4 is provided in Appx. B.4.1.

B.1.2 Non-orthogonal Loss

Suppose that the outcome Y is generated under the partially linear model:

Y = ⟨θ0, X⟩+ g0(W ) + ϵ, (16)

where θ0 ∈ Rd is the true parameter, g0 : W 7→ R is the true nuisance function and EP [ϵ | X,W ] =
0. The space G is a nonparametric class containing functions of the form

g : W 7→ R.

We can also consider the following non-orthogonal squared loss function:

ℓ(θ, g; z) =
1

2
[y − g(w)− ⟨θ, x⟩]2. (17)
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We define the residual ϵ at (θ⋆, g0) as

ϵ = Y − g0(W )− ⟨θ⋆, X⟩.

Lemma 5. We assume the following conditions:

(a) λmin(EP

[
XX⊤

]
) ≥ λ0 for some constant λ0 > 0.

(b) ∥X∥∞ ≤ CX a.s. and EP

[
ϵ2
]
≤ σ2 for some constants CX , σ > 0.

Then Asm. 3 is satisfied and the target θ⋆ is the true parameter, i.e., θ⋆ = θ0.

The proof of Lem. 5 is provided in Appx. B.4.2.

Orthogonalization. We can perform our orthogonalization method to obtain the Neyman orthogo-
nal gradient oracle for this non-orthogonal loss. For any h1, h2 ∈ G, we define the inner product of
G as

⟨h1, h2⟩G = EP [h1(W )h2(W )] . (18)

For any (θ, g, z) ∈ Θ×G×Z By Definition 1 the derivative of non-orthogonal loss (17) along the
direction of h1 is given by

Dgℓ(θ, g; z)[h1] =
d

dt

(
1

2
[y − (g + th1)(w)− ⟨θ, x⟩]2

)

= −(y − g(w)− ⟨θ, x⟩)h1(w). (19)

Do derivative on Dgℓ(θ, g; z)[h1] along the direction of h2 and we have

D2
gℓ(θ, g; z)[h1, h2] =

d

dt
(−(y − (g + th2)(w)− ⟨θ, x⟩)h1(w)) = h1(w)h2(w), (20)

which implies

D2
gL(θ⋆, g0)[h1, h2] = EP

[
D2

gℓ(θ⋆, g0;Z)[h1, h2]
]
= EP [h1(W )h2(W )] .

By the definition in (84), we have Hgg = I the identity operator. In addition, do derivative on the
score along the direction of h ∈ G and we have

DgSθ(θ, g; z)[h] =
d

dt
(−(y − (g + th)(w)− ⟨θ, x⟩)x) = h(w)x,

which implies that

DgSθ(θ, g)[h] = EP [Sθ(θ, g;Z)[h]] = EP [h(W )EP [X |W ]] .

By the definition in (83), we have Hθg = EP [X |W ]. Thus, by (85) we have

Γ0 : g 7→ ⟨EP [X |W ] , g⟩G = EP [EP [X |W ] g(W )] . (21)

Thus, the Neyman orthogonalized gradient oracle defined in (86) is given by

Sno(θ, g; z) = Sθ(θ, g; z)−Dgℓ(θ, g; z)[EP [X |W = w]]

= −(y − g(w)− ⟨θ, x⟩)(x− EP [X |W = w]). (22)

Lemma 6. Consider the bounded linear operator Γ̂ : G 7→ Rd such that [Γ̂g]j = ⟨γ̂(j), g⟩G , ∀g ∈ G
for some γ̂(j) ∈ G, j = 1, . . . , d. Let Ỹ = Y − g0,Y (w) and X̃ = X − g0,X(w). We assume the
following conditions:

(a) λmin(EP[X̃X̃
⊤]) ≥ λ0 for some constant λ0 > 0.

(b) ∥X̃∥2 ≤ CX a.s. and EP

[
ϵ4
]
≤ σ4 for some constants CX , σ > 0.

Then Asm. 6 is satisfied.

The proof of Lem. 6 is provided in Appx. B.4.3.
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B.2 Conditional Averaged Treatment Effect

We now introduce examples in causal inference which are established based on the potential out-
comes framework. The potential outcomes framework [Rubin, 1974] has been widely used in causal
inference. Let Z = (W,X, Y ) ∈ {0, 1}×Rd×R under some distribution P. We posit the existence
of potential outcomes Y (1), Y (0) ∈ R. The conditional averaged treatment effect (CATE) is then
defined as

τ0(x) = EP[Y (1)− Y (0) | X = x].

To identify τ0(x) and the following causal assumptions are required:

Assumption 5. The following conditions hold:

(a) (consistency) Y = Y (W ).

(b) (unconfoundedness) Y (w) ⊥W | X for all w ∈ {0, 1}.

(c) (positive overlap) c0 ≤ P (W = 1 | X) ≤ 1− c0 a.s. for some c0 > 0.

Under Asm. 5, τ0 can be identified by observed data since

τ0(x) = EP[Y (1)− Y (0) | X = x]

= EP[Y (1) |W = 1, X = x]− EP[Y (0) |W = 0, X = x]

= EP[Y |W = 1, X = x]− EP[Y |W = 0, X = x].

B.2.1 Unrestricted Nuisance

We observe Z = (X,Y,W ), where W is a binary treatment assignment. The functions in G are of
the form

g = (gout, gprop) : Rd → R× R,

and are evaluated (see Nie and Wager [2021, Eq. (2)]) at the loss

ℓ (θ, g; z) =
1

2

(
y − gout(x)− (w − gprop(x)) ⟨θ, x⟩

)2
. (23)

For g0 = (gout
0 , gprop

0 ) nuisance functions gout
0 and gprop

0 represent the outcome regression and the
propensity score, respectively:

gout
0 (x) := EP[Y | X = x] and gprop

0 (x) := EP[W | X = x].

We define the residual ϵ under the true model as

ϵ = Y − gout
0 (X)−

(
W − gprop

0 (X)
)
τ0(X).

Lemma 7. We assume Asm. 5 and the following conditions hold:

(a) λmin(EP

[
XX⊤

]
) ≥ λ0 for some constant λ0 > 0.

(b) ∥X∥2 ≤ CX and |τ0(X)| ≤ Cτ a.s. and EP

[
ϵ4
]
≤ σ4 for some constants CX , Cτ , σ > 0.

Then Asm. 3 and Asm. 4 are satisfied. The target θ⋆ is the minimizer of the squared loss:

θ⋆ = argmin
θ∈Rd

EP

[
(W − gprop

0 (X))2(τ0(X)−X⊤θ)2
]
.

The proof of Lem. 7 is provided in Appx. B.4.4.
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B.2.2 Restricted Nuisance

We observe Z = (X,Y,W ), where W is a binary treatment assignment. Here we restrict the

propensity model as gprop : Rd 7→ (0, 1). The functions in G are of the form

g = (g(0), g(1), gprop) : Rd → R× R× (0, 1),

and are evaluated (see van der Laan and Luedtke [2014, Thm. 1]) at the loss

ℓ(θ, g; z) =
1

2

(

g(1)(x)− g(0)(x) +
w − gprop(x)

gprop(x)(1− gprop(x))
(y − g(w)(x))− ⟨θ, x⟩

)2

. (24)

This loss also appears in Foster and Syrgkanis [2023, Eq. (23)]. For g0 = (g(0)

0 , g(1)

0 , gprop
0 ) nuisance

functions g(0)

0 and g(1)

0 represent the outcome regressions

g(0)

0 (x) := EP[Y |W = 1, X = x] and g(1)

0 (x) := EP[Y |W = 0, X = x].

We define the residual ϵ as

ϵ =
W − gprop

0 (X)

gprop
0 (X)(1− gprop

0 (X))
(Y − g(W )

0 (X)).

Lemma 8. We assume Asm. 5 and the following conditions hold:

(a) λmin(EP

[
XX⊤

]
) ≥ λ0 for some constant λ0 > 0.

(b) EP

[
ϵ2
]
≤ σ2, ∥X∥2 ≤ CX , and

∣
∣Y − g(w)

0 (X)
∣
∣ ≤ CY , w = 0, 1 a.s. for some constants

σ,CX , CY > 0.

Then Asm. 3 and Asm. 4 are satisfied. The target θ⋆ is the minimizer of the squared loss:

θ⋆ = argmin
θ∈Rd

EP

[
(τ0(X)−X⊤θ)2

]
.

The proof of Lem. 8 is provided in Appx. B.4.5.

B.3 Conditional Relative Risk

We retain all components of the previous example, changing only the loss and assuming that the
outcome Y is binary/non-negative. First, consider the “label” function

µ(s)

g (z) = g(s)(x) +
1(w = s)

sgprop(x) + (1− s)(1− gprop(x))
(y − g(s)(x)),

where 1(·) denotes the indicator function, and the log-linear predictor pθ(x) = e⟨θ,x⟩/(1 + e⟨θ,x⟩).
Following Example 2 in van der Laan et al. [2024], we then employ the cross entropy-type loss
function

ℓ(θ, g; z) = −
[
µ(1)

g (z) log pθ(x) + µ(0)

g (z) log(1− pθ(x))
]
. (25)

Lemma 9. We assume the following conditions:

(a) λmin(EP

[
XX⊤

]
) ≥ λ0 for some constant λ0 > 0.

(b) ∥X∥2 ≤ CX and Y (w)− g(w)

0 (X) ≤ CY , w = 0, 1 a.s. for some constants CX , CY > 0.

(c) δ ≤ g(0)

0 (X) + g(1)

0 (X) ≤ δ−1 a.s. for some constant δ > 0.

Then Asm. 3 and Asm. 4 are satisfied. The target θ⋆ is the minimizer of the weighted cross entropy
loss:

θ⋆ = argmin
θ∈Rd

−EP

[
g(1)

0 (X) log pθ(X) + g(0)

0 (X) log(1− pθ(X))
]
.

The proof of Lem. 9 is provided in Appx. B.4.6.
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B.4 Proofs

B.4.1 Proof of Lemma 4

Proof. We consider the following loss:

ℓ(θ, g; z) =
1

2
(y − gY (w)− ⟨θ, x− gX(w)⟩)2,

with the corresponding risk function defined as

L(θ, g) =
1

2
EP

[
(Y − gY (W )− ⟨θ,X − gX(W )⟩)2

]
.

Let Ỹ = Y − g0,Y (w) and X̃ = X − g0,X(w). By definition, the target θ⋆ is the minimizer of the
squared loss:

θ⋆ = argmin
θ∈Rd

EP

[

(Ỹ − X̃⊤θ)2
]

= EP

[

X̃X̃⊤
]−1

EP

[

Ỹ X̃
]

. (26)

Differentiating ℓ(θ, g; z) with respect to θ, we obtain the gradient and Hessian w.r.t. θ as

Sθ(θ, g; z) = −(y − gY (w)− ⟨θ, x− gX(w)⟩)(x− gX(w)),

Hθθ(θ, g; z) = (x− gX(w))(x− gX(w))⊤.

The expected gradient and expected Hessian are then obtained as

Sθ(θ, g) = −EP [(Y − gY (W )− ⟨θ,X − gX(W )⟩)(X − gX(W ))] ,

Hθθ(θ, g) = EP

[
(X − gX(W ))(X − gX(W ))⊤

]
.

We consider the nuisance neighborhood such that for g ∈ Gr (g0),

∥g − g0∥G := max
{

EP

[
∥gX(W )− g0,X(W )∥42

] 1
4 ,EP

[
(gY (W )− g0,Y (W ))4

] 1
4

}

≤ r. (27)

We now verify that the loss function ℓ satisfies Asm. 3.

(a) We assume that gX(w) : W 7→ Rd and gY (w) : W 7→ R are continuous functions, thus
Asm. 3(a) is satisfied.

(b) By (26), it follows from KKT conditions that

Sθ(θ⋆, g0) = −EP

[

(Ỹ − ⟨θ⋆, X̃⟩)X̃
]

= 0. (28)

(c) Since EP[X̃ |W ] = 0 and EP[Ỹ |W ] = 0, we have

Hθθ(θ, g) = EP

[

X̃X̃⊤
]

+ EP

[
(gX(W )− g0,X(W ))(gX(W )− g0,X(W ))⊤

]
.

For any g ∈ Gr, when λmin(EP[X̃X̃
⊤]) ≥ λ0 and ∥X̃∥2 ≤ CX a.s. , we have

λ0I ≼ Hθθ(θ, g) ≼ (C2
X + r2)I =⇒ µ = λ0 and M = C2

X + r2. (29)

(d) Consider the Taylor expansion around θ⋆, we have

Sθ(θ, g;Z)− Sθ(θ, g) = Sθ(θ⋆, g;Z)− Sθ(θ⋆, g) + (Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆).

Let ϵ = Ỹ − ⟨θ⋆, X̃⟩. Note that X − gX(W ) = X̃ − (gX − g0,X)(W ) and

Y − gY (W )− ⟨θ⋆, X − gX(W )⟩ = ϵ− (gY − g0,Y )(W ) + ⟨θ⋆, (gX − g0,X)(W )⟩. (30)
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Since EP [ϵ |W ] = 0, EP[X̃ | W ] = 0 by definition and EP[ϵX̃] = 0 by (28), then for any
g ∈ Gr (g0),

∥Sθ(θ⋆, g)∥2 = ∥EP [(gY − g0,Y )(gX − g0,X)(W )− ⟨θ⋆, (gX − g0,X)(W )⟩(gX − g0,X)(W )]∥2

≤
(

EP

[

((gY − g0,Y )(W ))
2
]

EP

[
∥(gX − g0,X)(W )∥22

])1/2

+ EP

[
∥(gX − g0,X)(W )∥22

]
∥θ⋆∥2

≤ r2(1 + ∥θ⋆∥).
Similarly, we have

∥Sθ(θ⋆, g;Z)∥22 ≤ (ϵ− (gY − g0,Y )(W ) + ⟨θ⋆, (gX − g0,X)(W )⟩)2 ∥X̃ − (gX − g0,X)(W )∥22
≤ 3

(
ϵ2 + ((gY − g0,Y )(W ))2 + ∥(gX − g0,X)(W )∥22∥θ⋆∥22

)
(CX + ∥(gX − g0,X)(W )∥2)2

≤ 6
(
ϵ2 + ((gY − g0,Y )(W ))2 + ∥(gX − g0,X)(W )∥22∥θ⋆∥22

) (
C2

X + ∥(gX − g0,X)(W )∥22
)
,

which implies that for g ∈ Gr (g0), when EP[ϵ
4] ≤ σ4,

EP[∥Sθ(θ⋆, g;Z)∥22]
≤ 6C2

X

(
EP

[
ϵ2
]
+ EP

[
((gY − g0,Y )(W ))2

]
+ EP

[
∥(gX − g0,X)(W )∥22

]
∥θ⋆∥22

)

+ 6EP

[
ϵ2∥(gX − g0,X)(W )∥22

]
+ 6EP

[
((gY − g0,Y )(W ))2∥(gX − g0,X)(W )∥22

]

+ 6EP

[
∥(gX − g0,X)(W )∥42

]
∥θ⋆∥22

≤ 6C2
X(σ2 + r2 + r2∥θ⋆∥22) + 6r4∥θ⋆∥22 + 6

(
EP

[
ϵ4
]
EP

[
∥(gX − g0,X)(W )∥42

])1/2

+ 6
(
EP

[
((gY − g0,Y )(W ))4

]
EP

[
∥(gX − g0,X)(W )∥42

])1/2

≤ 6C2
Xσ

2 + 6
{
σ2 + C2

X(1 + ∥θ⋆∥22)
}
r2 + 6(1 + ∥θ⋆∥22)r4.

Thus, for any g ∈ Gr (g0),

EP[∥Sθ(θ⋆, g;Z)− Sθ(θ⋆, g)∥22] ≤ 2EP

[
∥Sθ(θ⋆, g;Z)∥22

]
+ 2∥Sθ(θ⋆, g)∥22

≤ 12C2
Xσ

2 +
{
12σ2 + 2(1 + ∥θ⋆∥2) + 12C2

X(1 + ∥θ⋆∥22)
}
r2 + 12(1 + ∥θ⋆∥22)r4

= 12C2
Xσ

2 +O(r2).

On the other hand, since

∥Hθθ(θ⋆, g;Z)∥2 = ∥(X̃ − (gX − g0,X)(W ))(X̃ − (gX − g0,X)(W ))⊤∥2
≤ ∥X̃ − (gX − g0,X)(W )∥22
≤ 2∥X̃∥22 + 2∥(gX − g0,X)(W )∥22 ≤ 2C2

X + 2∥(gX − g0,X)(W )∥22,
by (29) we have

∥Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g)∥2 ≤ ∥Hθθ(θ⋆, g;Z)∥2 + ∥Hθθ(θ⋆, g)∥2
≤ 3C2

X + r2 + 2∥(gX − g0,X)(W )∥22,
which implies that

EP[∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22]
≤ EP

[
(3C2

X + r2 + 2∥(gX − g0,X)(W )∥22)2
]
∥θ − θ⋆∥22

= (9C4
X +O(r2))∥θ − θ⋆∥22.

Thus,

EP

[
∥Sθ(θ, g;Z)− Sθ(θ, g)∥22

]
≤2EP

[
∥Sθ(θ⋆, g;Z)− Sθ(θ⋆, g)∥22

]

+ 2EP

[
∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22

]

≤24C2
Xσ

2 +O(r2) + (18C4
X +O(r2))∥θ − θ⋆∥22,
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which implies

K1 = 24C2
Xσ

2 +O(r2) and κ1 = 18C4
X +O(r2). (31)

(e) For any θ ∈ Θ and g, ḡ ∈ Gr (g0), by (30) we have

DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]

= EP [(−(gY − g0,Y )(W ) + ⟨θ⋆, (gX − g0,X)(W )⟩)⟨θ − θ⋆, (ḡX − g0,X)(W )⟩]
+ EP [(−(ḡY − g0,Y )(W ) + ⟨θ⋆, (ḡX − g0,X)(W )⟩)⟨θ − θ⋆, (gX − g0,X)(W )⟩] .

Since ḡ ∈ Gr (g0),

|EP [(−(gY − g0,Y )(W ) + ⟨θ⋆, (gX − g0,X)(W )⟩)⟨θ − θ⋆, (ḡX − g0,X)(W )⟩]|
≤ EP [|(gY − g0,Y )(W )| ∥(ḡX − g0,X)(W )∥2] ∥θ − θ⋆∥2
+ ∥θ⋆∥2EP [∥(gX − g0,X)(W )∥2∥(ḡX − g0,X)(W )∥2] ∥θ − θ⋆∥2

≤ EP

[
∥(ḡX − g0,X)(W )∥22

]1/2
EP

[
((gY − g0,Y )(W ))2

]1/2 ∥θ − θ⋆∥2
+ ∥θ⋆∥2EP

[
∥(ḡX − g0,X)(W )∥22

]1/2
EP

[
∥(gX − g0,X)(W )∥22

]1/2 ∥θ − θ⋆∥2
≤ (1 + ∥θ⋆∥2)r∥g − g0∥G∥θ − θ⋆∥2.

Similarly,

|EP [(−(ḡY − g0,Y )(W ) + ⟨θ⋆, (ḡX − g0,X)(W )⟩)⟨θ − θ⋆, (gX − g0,X)(W )⟩]|
≤ (1 + ∥θ⋆∥2)r∥g − g0∥G∥θ − θ⋆∥2.

Thus,

|DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]|
≤ |EP [(−(gY − g0,Y )(W ) + ⟨θ⋆, (gX − g0,X)(W )⟩)⟨θ − θ⋆, (ḡX − g0,X)(W )⟩]|
+ |EP [(−(ḡY − g0,Y )(W ) + ⟨θ⋆, (ḡX − g0,X)(W )⟩)⟨θ − θ⋆, (gX − g0,X)(W )⟩]|

≤ 2(1 + ∥θ⋆∥2)r∥g − g0∥G∥θ − θ⋆∥2.
which implies

α1 = 2(1 + ∥θ⋆∥2)r. (32)

In addition, the risk L is Neyman orthogonal at (θ⋆, g0) since

DgDθL(θ⋆, g0)[θ − θ⋆, g − g0] = 0. (33)

Note that

D2
gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]

= 2EP [(−(gY − g0,Y )(W ) + ⟨θ⋆, (gX − g0,X)(W )⟩)⟨θ − θ⋆, (gX − g0,X)(W )⟩] .
By identical proof of (32), we have that L satisfies Asm. 4 since

D2
gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0] ≤ 2(1 + ∥θ⋆∥2)∥g − g0∥2G∥θ − θ⋆∥2,

which implies

β1 = 2(1 + ∥θ⋆∥2). (34)

B.4.2 Proof of Lemma 5

Proof. We consider the following loss:

ℓ(θ, g; z) =
1

2
(y − g(w)− ⟨θ, x⟩)2,
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with the corresponding risk function defined as

L(θ, g) =
1

2
EP

[
(Y − g(W )− ⟨θ,X⟩)2

]

Under the true nuisance, the target is the minimizer of the following squared loss:

θ⋆ = argmin
θ∈Rd

1

2
EP

[
(Y − g0(W )− ⟨θ,X⟩)2

]
.

Since ϵ = Y − g0(W )− ⟨θ0, X⟩ satisfies EP [ϵ | X,W ] = 0 under the true model, by bias-variance
decomposition, we have

θ⋆ = argmin
θ∈Rd

1

2
EP

[
(⟨θ0, X⟩ − ⟨θ,X⟩)2

]
= θ0. (35)

Differentiating ℓ(θ, g; z) with respect to θ, we obtain the gradient and Hessian w.r.t. θ as

Sθ(θ, g; z) = −(y − g(w)− ⟨x, θ⟩)x and Hθθ(θ, g; z) = xx⊤.

The expected gradient and expected Hessian are then obtained as

Sθ(θ, g) = −EP [(Y − g(W )− ⟨X, θ⟩)X] and Hθθ(θ, g) = EP

[
XX⊤

]
.

We consider the nuisance neighborhood such that for g ∈ Gr (g0),

∥g − g0∥G := EP

[
(g(W )− g0(W ))2

]1/2 ≤ r. (36)

We now verify that the loss function ℓ satisfies Asm. 3.

(a) We assume that g : W 7→ R is continuous, thus Asm. 3(a) is satisfied.

(b) Since θ⋆ = θ0 by (35), we have

Sθ(θ⋆, g0) = −EP [ϵX] = 0. (37)

(c) When λmin(EP

[
XX⊤

]
) ≥ λ0 > 0 and ∥X∥2 ≤ CX a.s. , L(θ, g) is λ0-strongly convex and

C2
X -smooth since

λ0I ≼ Hθθ(θ, g) ≼ C2
XI =⇒ µ = λ0 and M = C2

X . (38)

(d) Consider the Taylor expansion around θ⋆, we have

Sθ(θ, g;Z)− Sθ(θ, g) = Sθ(θ⋆, g;Z)− Sθ(θ⋆, g) + (Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆).

Since Sθ(θ⋆, g;Z) = ((g − g0)(w)− ϵ)X and ∥X∥2 ≤ CX a.s. , we have

∥Sθ(θ⋆, g;Z)− Sθ(θ⋆, g)∥2 = ∥((g − g0)(W )− ϵ)X − EP [((g − g0)(W ))X]∥2
≤ CX (|(g − g0)(W )|+ EP [|(g − g0)(W )|] + |ϵ|) .

On the other hand,

Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g) = XX⊤ − E
[
XX⊤

]
≼ 2C2

XI,

which implies that

∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥2 ≤ 2C2
X∥θ − θ⋆∥2.
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For g ∈ Gr (g0), when EP

[
ϵ2
]
≤ σ2 we have

EP

[
∥Sθ(θ, g;Z)− Sθ(θ, g)∥22

]
≤2EP

[
∥Sθ(θ⋆, g;Z)− Sθ(θ⋆, g)∥22

]

+ 2EP

[
∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22

]

≤2C2
XEP

[

(|(g − g0)(W )|+ EP [(g − g0)(W )] + |ϵ|)2
]

+ 2C4
X∥θ − θ⋆∥22

≤6C2
X

(
2EP

[
((g − g0)(W ))2

]
+ EP

[
ϵ2
])

+ 2C4
X∥θ − θ⋆∥22

≤6C2
X

(
2r2 + σ2

)
+ 2C4

X∥θ − θ⋆∥22,
which implies that

K1 = 6C2
X

(
2r2 + σ2

)
and κ1 = 2C4

X . (39)

(e) For any θ ∈ Θ and g, ḡ ∈ Gr (g0), we have

|DgDθL(θ, ḡ)[θ − θ⋆, g − g0]| = |EP [(g − g0)(W )⟨X, θ − θ⋆⟩]|
≤ EP [|(g − g0)(W )⟨X, θ − θ⋆⟩|]
≤ CX∥θ − θ⋆∥2EP

[
((g − g0)(W ))2

]1/2
,

which implies that

α1 = CX . (40)

B.4.3 Proof of Lemma 6

Proof. We consider the following loss:

ℓ(θ, g; z) =
1

2
(y − g(w)− ⟨θ, x⟩)2,

with the corresponding risk function defined as

L(θ, g) =
1

2
EP

[
(Y − g(W )− ⟨θ,X⟩)2

]
.

First by the same proof as Appx. B.4.2, we have θ⋆ = θ0. Define the inner product ⟨·, ·⟩G as (18) and

define the norm ∥·∥G such that ∥g∥2G = ⟨g, g⟩G∀g ∈ G. Consider a uniformly bounded neighborhood

Gr (g0) such that

Gr (g0) = {g ∈ G : |g(W )− g0(W )| ≤ r almost surely} . (41)

The NO gradient oracle for this non-orthogonal loss is derived as (22) such that

Sno(θ, g; z) = −(y − g(w)− ⟨θ, x⟩)(x− E [X |W = w]).

We now verify that Asm. 6 is satisfied.

(a) Since ϵ = Y − g0(W ) − ⟨θ0, X⟩ satisfies EP [ϵ | X,W ] = 0 under the true model, by (22) we
first have

Sno(θ⋆, g0) = EP [Sno(θ⋆, g0;Z)]

= −EP [ϵ(X − E [X |W ])]

= −EP [EP [ϵ | X,W ] (X − E [X |W ])] = 0. (42)

Let γ
(j)
0 = H−1

gg H
(j)
θg for j = 1, . . . , d. By (85), we have [Γ0g]j = ⟨γ(j)0 , g⟩G , ∀g ∈ G. Thus, by

(82) we have

[(Γ̂− Γ0)∇gL(θ⋆, g0)]j = ⟨γ̂(j) − γ
(j)
0 ,∇gL(θ⋆, g0)⟩G = DgL(θ⋆, g0)[γ̂

(j) − γ
(j)
0 ],
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which, by (19), implies that

[(Γ̂− Γ0)∇gL(θ⋆, g0)]j = −EP

[

ϵ[Γ̂− Γ0]j(W )
]

= EP

[

EP [ϵ |W ] [Γ̂− Γ0]j(W )
]

= 0. (43)

Thus, Asm. 6(a) holds true due to (42) and (43).

(b) By (22), for any (θ, g) ∈ Θ× G,

∇θSno(θ, g) = EP

[
X(X − EP [X |W ])⊤

]

= EP

[
XX⊤

]
− EP

[

EP [X |W ]EP [X |W ]
⊤
]

= EP

[

X̃X̃⊤
]

, (44)

which implies that

λmin∇θSno(θ, g) +∇θSno(θ, g)
⊤ = λmin2EP

[

X̃X̃⊤
]

≥ 2λ0.

Thus, Asm. 6(b) holds true for µno = λ0.

(c) For any (θ, g, ḡ) ∈ Θ× G × Gr (g0), by (19),

EP

[
(DgL(θ, ḡ;Z)[g]−DgL(θ, ḡ)[g])

2
]

≤ EP

[
(DgL(θ, ḡ;Z)[g])

2
]

= EP

[

(Y − ḡ(W )− ⟨θ,X⟩)2 (g(W ))
2
]

= EP

[

(ϵ− (ḡ − g0)(W )− ⟨θ − θ⋆, X⟩)2 (g(W ))
2
]

≤ 3EP

[

ϵ2 (g(W ))
2
]

+ 3EP

[

(ḡ − g0)(W ))2 (g(W ))
2
]

+ 3EP

[

⟨θ − θ⋆, X⟩2 (g(W ))
2
]

.

Assume that EP

[
ϵ2 |W

]
≤ σ2 and ∥X∥∞ ≤ CX a.s. . By (41) we have

EP

[
(DgL(θ, ḡ;Z)[g]−DgL(θ, ḡ)[g])

2
]
≤ 3(σ2 + r2 + C2

X∥θ − θ⋆∥22)∥g∥2G . (45)

Thus, Asm. 6(c) holds true for K2 = 3(σ2 + r2) and κ2 = 3C2
X .

(d) For any (θ, ḡ, g1, g2) ∈ Θ× Gr (g0)× G × G, by (20),
∣
∣D2

gL(θ, g)[g1, g2]
∣
∣ = |EP [g1(W )g2(W )]|
≤ EP

[
(g1(W ))2

]1/2
EP

[
(g2(W ))2

]1/2
= ∥g1∥G∥g2∥G . (46)

In addition, for any (θ, θ̄, g) ∈ Θ×Θ× G, by (19) we have
∣
∣DθDgL(θ̄, g0)[g, θ − θ⋆]

∣
∣ =

∣
∣Dθ̄EP

[
(Y − g0(W )− ⟨θ̄, X⟩)g(W )

]
[θ − θ⋆]

∣
∣

= |EP [⟨θ − θ⋆, X⟩g(W )]|

≤ EP

[

⟨θ − θ⋆, X⟩2
]1/2

EP

[
(g(W ))2

]1/2

≤ CX∥θ − θ⋆∥2∥g∥G . (47)

Thus, Asm. 6(d) holds true for α2 = 1 due to (46) and α1 = CX due to (47).

(e) Note that

Sno(θ, g; z) = −(y − g(w)− ⟨θ, x⟩)(x− EP [X |W = w]),

which implies that for any g1, g2 ∈ G,

D2
gSno(θ, g; z)[g1, g2] = 0. (48)

Thus, Asm. 6(e) holds true for β2 = 0.

34



B.4.4 Proof of Lemma 7

Proof. We consider the following loss:

ℓ(θ, g; z) =
1

2

(
y − gout(x)− (w − gprop(x)) ⟨θ, x⟩

)2
,

with the corresponding risk function defined as

L(θ, g) =
1

2
EP

[(
Y − gout(X)− (W − gprop(X)) ⟨θ,X⟩

)2
]

.

Note that ϵ = Y − gout
0 (X) −

(
W − gprop

0 (X)
)
τ0(X). Under Asm. 5, we have EP [ϵ |W,X] = 0,

which implies that

L(θ, g0) =
1

2
EP

[(
ϵ+

(
W − gprop

0 (X)
)
(τ0(X)− ⟨θ,X⟩)

)2
]

=
1

2
EP

[(
W − gprop

0 (X)
)2

(τ0(X)− ⟨θ,X⟩)2
]

+
1

2
EP

[
ϵ2
]
.

Thus, the target is the minimizer of the following squared loss:

θ⋆ = argmin
θ∈Rd

EP

[(
W − gprop

0 (X)
)2

(τ0(X)− ⟨θ,X⟩)2
]

. (49)

Differentiating ℓ(θ, g; z) with respect to θ, we obtain the gradient and Hessian w.r.t. θ as

Sθ(θ, g; z) = −
(
y − gout(x)− (w − gprop(x)) ⟨θ, x⟩

)
(w − gprop(x))x,

Hθθ(θ, g; z) = (w − gprop(x))
2
xx⊤.

The expected gradient and expected Hessian are then obtained as

Sθ(θ, g) = −EP

[(
Y − gout(X)− (W − gprop(X)) ⟨θ,X⟩

)
(W − gprop(X))X

]
,

Hθθ(θ, g) = EP

[(
gprop
0 (1− gprop

0 )(X) + ((gprop − gprop
0 )(X))2

)
XX⊤

]
.

We consider the nuisance neighborhood such that for g ∈ Gr (g0),

∥g − g0∥G := max
{

EP

[
(gout(X)− gout

0 (X))4
] 1

4 ,EP

[
(gout(X)− gout

0 (X))4
] 1

4

}

≤ r.

We now verify that the loss function ℓ satisfies Asm. 3.

(a) We assume that gout : Rd 7→ R and gprop : Rd 7→ R are continuous, thus Asm. 3(a) is satisfied.

(b) Since θ⋆ is a global minimizer of (49), we have

Sθ(θ⋆, g0) = 0. (50)

(c) We assume that c0 ≤ gprop
0 (X) ≤ 1−c0 a.s. for some c0 > 0. When λmin(EP

[
XX⊤

]
) ≥ λ0 > 0

and ∥X∥2 ≤ CX a.s. , we have

c20λ0I ≼ Hθθ(θ, g) ≼ (1 + r2)C2
XI =⇒ µ = c20λ0 and M = (1 + r2)C2

X . (51)

(d) Consider the Taylor expansion around θ⋆, we have

Sθ(θ, g;Z)− Sθ(θ, g) = Sθ(θ⋆, g;Z)− Sθ(θ⋆, g) + (Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆).

Note that

Sθ(θ⋆, g;Z) =−
(
Y − gout(X)− (W − gprop(X)) ⟨θ⋆, X⟩

)
(W − gprop(X))X

=−
(
ϵ− (gout − gout

0 )(X) + (gprop − gprop
0 )(X)τ0(X)

)
(W − gprop(X))X

+ (W − gprop(X))
2
(⟨θ⋆, X⟩ − τ0(X))X.
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We assume that τ0 : Rd 7→ R is continuous. Then when ∥X∥2 ≤ CX a.s. , |τ0(X)| ≤ Cτ for some
Cτ > 0. It follows that

∥Sθ(θ⋆, g;Z)∥2 ≤CX

∣
∣
(
ϵ− (gout − gout

0 )(X) + (gprop − gprop
0 )(X)τ0(X)

)
(W − gprop(X))

∣
∣

+ CX (W − gprop(X))
2 |⟨θ⋆, X⟩ − τ0(X)|

≤CX

(
|ϵ|+

∣
∣(gout − gout

0 )(X)
∣
∣+ Cτ

∣
∣(gprop − gprop

0 )(X)
∣
∣
)
|W − gprop(X)|

+ CX(CX∥θ⋆∥2 + Cτ ) (W − gprop(X))
2
.

Since EP

[
(W − gprop(X))2 | X

]
= gprop

0 (1 − gprop
0 )(X) + ((gprop − gprop

0 )(X))2 and (W −
gprop(X))2 ≤ 2 + 2((gprop − gprop

0 )(X))2, we have

EP

[
∥Sθ(θ⋆, g;Z)∥22

]
≤4C2

XEP

[
ϵ2
(
1 + ((gprop − gprop

0 )(X))2
)]

+ 4C2
XEP

[
((gout − gout

0 )(X))2
(
1 + ((gprop − gprop

0 )(X))2
)]

+ 4C2
XC

2
τEP

[
((gprop − gprop

0 )(X))2
(
1 + ((gprop − gprop

0 )(X))2
)]

+ 4C2
X(CX∥θ⋆∥2 + Cτ )

2EP

[
4 + 4((gprop − gprop

0 )(X))4
]
.

When EP

[
ϵ4
]
≤ σ4, by Hölder inequality,

EP

[
∥Sθ(θ⋆, g;Z)∥22

]
≤4C2

X(σ2 + 4(CX∥θ⋆∥2 + Cτ )
2)

+ 4C2
X(1 + σ2 + C2

τ )r
2 + 4C2

X(1 + C2
τ + 4(CX∥θ⋆∥2 + Cτ )

2)r4.

Similarly, use the fact that EP [ϵ |W,X] = 0 and by the stationary condition of (49), we have

Sθ(θ⋆, g) =− EP

[(
(gout − gout

0 )(X)− (gprop − gprop
0 )(X)τ0(X)

) (
gprop − gprop

0

)
(X)X

]

+ EP

[(
(W − gprop

0 (X))2 + ((gprop − gprop
0 )(X))2

)
(⟨θ⋆, X⟩ − τ0(X))X

]

=− EP

[(
(gout − gout

0 )(X)− (gprop − gprop
0 )(X)τ0(X)

) (
gprop − gprop

0

)
(X)X

]

+ EP

[
((gprop − gprop

0 )(X))2(⟨θ⋆, X⟩ − τ0(X))X
]
,

which implies

∥Sθ(θ⋆, g)∥22 ≤ 3C2
X(1 + C2

τ + (CX∥θ⋆∥2 + Cτ )
2)r4.

On the other hand,

Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g) ≼ (W − gprop(X))
2
XX⊤ + (1 + r2)C2

XI

≼ C2
X(3 + r2 + 2((gprop − gprop

0 )(X))2)I,

which implies that

EP

[
∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22

]
≤ (9C4

X +O(r2))∥θ − θ⋆∥22.
Thus,

EP

[
∥Sθ(θ, g;Z)− Sθ(θ, g)∥22

]
≤3EP

[
∥Sθ(θ⋆, g;Z)∥22

]
+ 3∥Sθ(θ⋆, g)∥22

+ 3EP

[
∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22

]
,

which implies

K1 = 12C2
X(σ2 + 4(CX∥θ⋆∥2 + Cτ )

2) +O(r2) and κ1 = 27C4
X +O(r2). (52)

(e) For any θ ∈ Θ and g, ḡ ∈ Gr (g0), we have

DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]

= −EP

[(
(ḡout − gout

0 )(gprop − gprop
0 )(X) + (gout − gout

0 )(ḡprop − gprop
0 )(X)

)
⟨X, θ − θ⋆⟩

]

+ 2EP

[
τ0(X)(gprop − gprop

0 )(ḡprop − gprop
0 )(X)⟨X, θ − θ⋆⟩

]

+ 2EP

[
(gprop − gprop

0 )(ḡprop − gprop
0 )(X)(⟨θ⋆, X⟩ − τ0(X))⟨X, θ − θ⋆⟩

]
.
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Thus,

|DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]|
≤ CX∥θ − θ⋆∥2EP

[∣
∣(ḡout − gout

0 )(gprop − gprop
0 )(X)

∣
∣+
∣
∣(gout − gout

0 )(ḡprop − gprop
0 )(X)

∣
∣
]

+ 2CX(2Cτ + CX∥θ⋆∥2)∥θ − θ⋆∥2EP

[∣
∣(gprop − gprop

0 )(ḡprop − gprop
0 )(X)

∣
∣
]

≤ CX(1 + 4(CX∥θ⋆∥2 + Cτ ))r∥θ − θ⋆∥2∥g − g0∥G ,
which implies

α1 = CX(1 + 4(CX∥θ⋆∥2 + Cτ ))r. (53)

In addition, L(θ, g) is Neyman orthogonal at (θ⋆, g0) since

DgDθL(θ⋆, g0)[θ − θ⋆, g − g0] = 0.

Since for any θ ∈ Θ and g, ḡ ∈ Gr (g0),

D2
gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]

= −EP

[(
(gout − gout

0 )(gprop − gprop
0 )(X) + (gout − gout

0 )(gprop − gprop
0 )(X)

)
⟨X, θ − θ⋆⟩

]

+ 2EP

[
τ0(X)((gprop − gprop

0 )(X))2⟨X, θ − θ⋆⟩
]

+ 2EP

[
((gprop − gprop

0 )(X))2(⟨θ⋆, X⟩ − τ0(X))⟨X, θ − θ⋆⟩
]
.

Similarly, we can show that

|D2
gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]|

≤ CX(1 + 4(CX∥θ⋆∥2 + Cτ ))∥θ − θ⋆∥2∥g − g0∥2G ,
which implies that

β1 = CX(1 + 4(CX∥θ⋆∥2 + Cτ )). (54)

B.4.5 Proof of Lemma 8

Proof. Let

ϕ(g; z) = g(1)(x)− g(0)(x) +
w − gprop(x)

gprop(x)(1− gprop(x))
(y − g(w)(x)).

We consider the following loss:

ℓ(θ, g; z) =
1

2
(ϕ(g; z)− ⟨θ, x⟩)2 ,

with the corresponding risk function defined as

L(θ, g) =
1

2
EP

[

(ϕ(g; z)− ⟨θ, x⟩)2
]

.

We define the residual ϵ as

ϵ =
W − gprop

0 (X)

gprop
0 (X)(1− gprop

0 (X))
(Y − g(W )

0 (X)).

Under Asm. 5, we have EP [ϵ |W,X] = 0. Since τ0(x) = g(1)

0 (x)− g(0)

0 (x), we have

L(θ, g0) =
1

2
EP

[

(ϵ+ τ0(X)− ⟨θ,X⟩)2
]

=
1

2
EP

[
(τ0(X)− ⟨θ,X⟩)2

]
+

1

2
EP

[
ϵ2
]
.
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Thus, the target is the minimizer of the following squared loss:

θ⋆ = argmin
θ∈Rd

EP

[
(τ0(X)− ⟨θ,X⟩)2

]
. (55)

Differentiating ℓ(θ, g; z) with respect to θ, we obtain the gradient and Hessian w.r.t. θ as

Sθ(θ, g; z) = − (ϕ(g; z)− ⟨θ, x⟩)x,
Hθθ(θ, g; z) = xx⊤.

The expected gradient and expected Hessian are then obtained as

Sθ(θ, g) = −EP [(ϕ(g;Z)− ⟨θ,X⟩)X] ,

Hθθ(θ, g) = EP

[
XX⊤

]
.

We consider the nuisance neighborhood such that for g ∈ Gr (g0),

∥g − g0∥G := max







EP





(

(g(w) − g
(w)
0 )(X)

g(w)(1− g(w))(X)

)4




1
4

,EP

[(
(gprop − gprop

0 )(X)

gprop(1− gprop)(X)

)4
] 1

4







≤ r.

We now verify that the loss function ℓ satisfies Asm. 3.

(a) We assume that g(w) : Rd 7→ R, w = 0, 1, and gprop : Rd 7→ (0, 1) are continuous, thus Asm. 3(a)
is satisfied.

(b) Since θ⋆ is a global minimizer of (55), we have

Sθ(θ⋆, g0) = 0. (56)

(c) When λmin(EP

[
XX⊤

]
) ≥ λ0 > 0 and ∥X∥2 ≤ CX a.s. , we have

λ0I ≼ Hθθ(θ, g) ≼ C2
XI =⇒ µ = λ0 and M = C2

X . (57)

(d) Consider the Taylor expansion around θ⋆, we have

Sθ(θ, g;Z)− Sθ(θ, g) = Sθ(θ⋆, g;Z)− Sθ(θ⋆, g) + (Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆).

Let τ = g(1) − g(0) and

ψ(g;x) =
1

gprop(1− gprop)(x)
− 1

gprop
0 (1− gprop

0 )(x)

=
(gprop − gprop

0 )(x)

gprop(1− gprop)(x)
· (g

prop + gprop
0 )(x)− 1

gprop
0 (1− gprop

0 )(x)
.

Under Asm. 5, we have

|ψ(g;X)| ≤ 2c−2
0

∣
∣
∣
∣

(gprop − gprop
0 )(X)

gprop(1− gprop)(X)

∣
∣
∣
∣
.

We can decompose Sθ(θ⋆, g;Z) as

Sθ(θ⋆, g;Z) = I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9,
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where

I1 = − ((τ − τ0)(X) + τ0(X)− ⟨θ⋆, X⟩)X,
I2 = −ψ(g;X)(W − gprop

0 (X))(Y − g
(W )
0 (X))X,

I3 = ψ(g;X)(W − gprop
0 (X))(g(W ) − g

(W )
0 )(X)X,

I4 = ψ(g;X)(gprop − gprop
0 )(X)(Y − g

(W )
0 (X))X,

I5 = −ψ(g;X)(gprop − gprop
0 )(g(W ) − g

(W )
0 )(X)X,

I6 = − (W − gprop
0 (X))(Y − g

(W )
0 (X))

gprop
0 (1− gprop

0 )(X)
X = −ϵX,

I7 =
(W − gprop

0 (X))(g(W ) − g
(W )
0 )(X)

gprop
0 (1− gprop

0 )(X)
X,

I8 =
(gprop − gprop

0 )(X)(Y − g
(W )
0 (X))

gprop
0 (1− gprop

0 )(X)
X,

I9 = − (gprop − gprop
0 )(g(W ) − g

(W )
0 )(X)

gprop
0 (1− gprop

0 )(X)
X.

For I1, when ∥X∥2 ≤ CX a.s. , we have |τ0(X)− ⟨θ⋆, X⟩| ≤ C for some C > 0 and

∥I1∥2 ≤ CX(|(τ − τ0)(X)|+ C),

which implies

EP

[
∥I1∥22

]
≤ 2C2

X(2r2 + C2).

For I2, when

∣
∣
∣Y − g

(W )
0 (X)

∣
∣
∣ ≤ CY a.s. , we have

∥I2∥2 ≤ 4c−2
0 CXCY

∣
∣
∣
∣

(gprop − gprop
0 )(X)

gprop(1− gprop)(X)

∣
∣
∣
∣
,

which implies

EP

[
∥I2∥22

]
≤ 16c−4

0 (CXCY )
2r2.

For I3,

∥I3∥2 ≤ 4c−2
0 CX

∣
∣
∣
∣

(gprop − gprop
0 )(X)

gprop(1− gprop)(X)

∣
∣
∣
∣

∣
∣
∣(g(W ) − g

(W )
0 )(X)

∣
∣
∣ ,

which implies

EP

[
∥I3∥22

]
≤ 16c−4

0 C2
Xr

4.

For I4, since
∣
∣gprop − gprop

0

∣
∣ ≤ 2,

∥I4∥2 ≤ 4c−2
0 CXCY

∣
∣
∣
∣

((gprop − gprop
0 )(X))

gprop(1− gprop)(X)

∣
∣
∣
∣
,

which implies

EP

[
∥I4∥22

]
≤ 16c−4

0 (CXCY )
2r2.

For I5,

∥I5∥2 ≤ 4c−2
0 CX

∣
∣
∣
∣

(gprop − gprop
0 )(X)

gprop(1− gprop)(X)

∣
∣
∣
∣

∣
∣
∣(g(W ) − g

(W )
0 )(X)

∣
∣
∣ ,
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which implies

EP

[
∥I5∥22

]
≤ 16c−4

0 (CXCY )
2r4.

For I6,

∥I6∥2 ≤ CX |ϵ| .

When EP

[
ϵ2
]
≤ σ2, we have

EP

[
∥I6∥22

]
≤ C2

Xσ
2.

For I7,

∥I7∥2 ≤ 2c−2
0 CX

∣
∣
∣(g(W ) − g

(W )
0 )(X)

∣
∣
∣ ,

which implies

EP

[
∥I7∥22

]
≤ 4c−4

0 C2
Xr

2.

For I8,

∥I8∥2 ≤ c−2
0 CXCY

∣
∣(gprop − gprop

0 )(X)
∣
∣ ,

which implies

EP

[
∥I8∥22

]
≤ c−4

0 (CXCY )
2r2.

For I9,

∥I9∥2 ≤ c−2
0 CX

∣
∣(gprop − gprop

0 )(X)
∣
∣

∣
∣
∣(g(W ) − g

(W )
0 )(X)

∣
∣
∣ ,

which implies

EP

[
∥I9∥22

]
≤ c−4

0 C2
Xr

4.

By Cauchy-Schwarz inequality, it follows that

EP

[
∥Sθ(θ⋆, g;Z)∥22

]
≤ 9C2

X(2C2 + σ2) +O(r2).

Similarly, we have

∥Sθ(θ⋆, g)∥22 ≤ 9C2
X(2C2 + σ2) +O(r2).

Since Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g) ≼ C2
XI, we have

∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22 ≤ C4
X∥θ − θ⋆∥22.

Thus,

EP

[
∥Sθ(θ, g;Z)− Sθ(θ, g)∥22

]
≤3EP

[
∥Sθ(θ⋆, g;Z)∥22

]
+ 3∥Sθ(θ⋆, g)∥22

+ 3EP

[
∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆)∥22

]

=27C2
X(2C2 + σ2) +O(r2) + 3C4

X∥θ − θ⋆∥22,
which implies

K1 = 27C2
X(2C2 + σ2) +O(r2) and κ1 = 3C4

X . (58)
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(e) Since Y =W (Y (1)−Y (0))+Y (0) and g(W )(X) =W (g(1)(X)−g(0)(X))+g(0)(X), ϕ(g;Z)
can be written as

ϕ(g;Z) = τ0(X) +

(

1− W (W − gprop(X))

gprop(X)(1− gprop(X))

)

(g(1)(X)− g(0)(X)− τ0(X))

+
W − gprop(X)

gprop(1− gprop)(X)
(Y (0)− g(0)(X)) +

W (W − gprop(X))

gprop(1− gprop)(X)
(Y (1)− Y (0)− τ0(X))

= τ0(X) +
gprop(X)−W

gprop(X)

(
g(1) − g(1)

0

)
(X) +

gprop(X)−W

1− gprop(X)
(g(0) − g(0)

0 )(X)

+
W − gprop(X)

gprop(X)(1− gprop(X))
(Y (0)− g(0)

0 (X)) +
W

gprop(X)
(Y (1)− Y (0)− τ0(X)) .

Under Asm. 5, we have

EP [ϕ(g;Z) | X] = τ0(X) +
gprop − gprop

0

gprop
(g(1) − g(1)

0 )(X) +
gprop − gprop

0

1− gprop
(g(0) − g(0)

0 )(X).

Thus, for τ = g(1) − g(0) and for any θ ∈ Θ and g, ḡ ∈ Gr (g0) such that ḡ = tg + (1 − t)g0 for
some t ∈ (0, 1), we have

DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]

= −DgEP [(EP [ϕ(g;Z) | X] + ⟨θ⋆, X⟩)⟨X, θ − θ⋆⟩] [g − g0]

= −EP [⟨X, θ − θ⋆⟩DgEP [ϕ(ḡ;Z) | X] [g − g0]]

= −EP

[

⟨X, θ − θ⋆⟩
(

gprop
0

(ḡprop)2
(ḡ(1) − g(1)

0 )(gprop − gprop
0 )(X)− ḡprop − gprop

0

ḡprop
(g(1) − g(1)

0 )(X)

)]

− EP

[

⟨X, θ − θ⋆⟩
(
(1− gprop

0 )(gprop − gprop
0 )(ḡ(0) − g(0)

0 )

(1− ḡprop)2
− (ḡprop − gprop

0 )(g(0) − g(0)

0 )

1− ḡprop

)

(X)

]

.

Since (a+ b)4 ≤ 8a4 + 8b4 for a, b ∈ R, we have

E

[
gprop
0 (X)4

gprop(X)4

]

= E

[(
gprop
0 (X)− gprop(X) + gprop(X)

)4

gprop(X)4

]

≤ 8E

[(
gprop
0 (X)− gprop(X)

)4
+ gprop(X)4

gprop(X)4

]

≤ 8r4 + 8. (59)

Similarly, we have

E

[
(1− gprop

0 (X))4

(1− gprop(X))4

]

≤ 8r4 + 8.

It is easy to show that
∣
∣
∣
∣
EP

[

⟨X, θ − θ⋆⟩
gprop
0

(ḡprop)2
(ḡ(1) − g(1)

0 )(gprop − gprop
0 )(X)

]∣
∣
∣
∣

≤ CX(8r4 + 8)
1
4 r∥θ − θ⋆∥2∥g − g0∥G ,

and
∣
∣
∣
∣
EP

[

⟨X, θ − θ⋆⟩
ḡprop − gprop

0

ḡprop
(g(1) − g(1)

0 )(X)

]∣
∣
∣
∣
≤ CXr∥θ − θ⋆∥2∥g − g0∥G .

Thus,

|DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]| ≤ 2((8r4 + 8)
1
4 + 1)CXr∥θ − θ⋆∥2∥g − g0∥G

≤ 2(2(r + 1) + 1)CXr∥θ − θ⋆∥2∥g − g0∥G ,
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which implies

α1 = 2CX(2r + 3)r. (60)

In addition, L(θ, g) is Neyman orthogonal at (θ⋆, g0) since

DgDθL(θ⋆, g0)[θ − θ⋆, g − g0] = 0.

We have the higher-order derivative such that for any θ ∈ Θ and g, ḡ ∈ Gr (g0),

D2
gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]

= 2EP

[(
gprop
0 (gprop − gprop

0 )2

(ḡprop)3
(
ḡ(1) (X)− g(1)

0 (X)
)
)

⟨X, θ − θ⋆⟩
]

− 2EP

[(
gprop
0 (gprop − gprop

0 )

(ḡprop)2
(
g(1) (X)− g(1)

0 (X)
)
)

⟨X, θ − θ⋆⟩
]

− 2EP

[(
(1− gprop

0 )(gprop − gprop
0 )2

(1− ḡprop)3
(
ḡ(0) (X)− g(0)

0 (X)
)
)

⟨X, θ − θ⋆⟩
]

− 2EP

[(
(1− gprop

0 )(gprop − gprop
0 )

(1− ḡprop)2
(
g(0) (X)− g(0)

0 (X)
)
)

⟨X, θ − θ⋆⟩
]

.

Note that ḡprop = tgprop + (1− t)gprop
0 for some t ∈ (0, 1) by Taylor’s theorem. Then

gprop(X)

ḡprop(X)
=

gprop(X)

tgprop(X) + (1− t)gprop
0 (X)

=
1

t+ (1− t)(gprop
0 /gprop)(X)

≤ 1

t+ (1− t)gprop
0 (X)

≤ c−1
0 . (61)

Thus,
∣
∣
∣
∣
EP

[(
gprop
0 (gprop − gprop

0 )2

(ḡprop)3
(
ḡ(1) (X)− g(1)

0 (X)
)
)

⟨X, θ − θ⋆⟩
]∣
∣
∣
∣

≤ EP

[
(gprop)4

(ḡprop)4
(gprop(X)− gprop

0 (X))4

(gprop)4

]1/2

EP

[(
ḡ(1) (X)− g(1)

0 (X)

ḡprop

)2
]1/2

CX∥θ − θ⋆∥2

≤ c−2
0 CXr∥θ − θ⋆∥2∥g − g0∥2G .

Similarly, we have
∣
∣
∣
∣
EP

[(
gprop
0 (gprop − gprop

0 )

(ḡprop)2
(
g(1) (X)− g(1)

0 (X)
)
)

⟨X, θ − θ⋆⟩
]∣
∣
∣
∣

≤ EP

[∣
∣
∣
∣

(gprop)2

(ḡprop)2
(gprop − gprop

0 )

gprop

(g(1) − g(1)

0 )

gprop

∣
∣
∣
∣
(X)

]

CX∥θ − θ⋆∥2 ≤ c−2
0 CX∥θ − θ⋆∥2∥g − g0∥2G .

Then we can show that
∣
∣D2

gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]
∣
∣ ≤ 4c−2

0 CX(1 + r)∥θ − θ⋆∥2∥g − g0∥2G .
which implies that

β1 = 4c−2
0 CX(1 + r). (62)

B.4.6 Proof of Lemma 9

Proof. Define

µ(s)

g (z) = g(s)(x) +
1(w = s)

sgprop(x) + (1− s)(1− gprop(x))
(y − g(s)(x)),
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where 1(·) denotes the indicator function, and the log-linear predictor pθ(x) = e⟨θ,x⟩/(1 + e⟨θ,x⟩).
Under Asm. 5,

EP[µ
(s)

g (Z) | X] = EP

[

g(s)(X) +
1(W = s)

sgprop(X) + (1− s)(1− gprop(X))
(Y (s)− g(s)(X)) | X

]

= g(s)(X) +
sgprop

0 (X) + (1− s)(1− gprop
0 (X))

sgprop(X) + (1− s)(1− gprop(X))
(g(s)

0 (X)− g(s)(X))

= g(s)

0 (X) +
(2s− 1)(gprop(X)− gprop

0 (X))

sgprop(X) + (1− s)(1− gprop(X))
(g(s)(X)− g(s)

0 (X)) =: f (s)(g;X). (63)

We consider the following loss:

ℓ(θ, g; z) = −
[
µ(1)

g (z) log pθ(x) + µ(0)

g (z) log(1− pθ(x))
]
.

with the corresponding risk function defined as

L(θ, g) = −EP

[
µ(1)

g (Z) log pθ(x) + µ(0)

g (Z) log(1− pθ(X))
]
.

By (63), we have EP[µ
(s)
g0 (Z) | X] = g(s)

0 (X). Thus, the target is the minimizer of the following
squared loss:

θ⋆ = argmin
θ∈Rd

−EP

[
g(1)

0 (X) log pθ(x) + g(0)

0 (X) log(1− pθ(X))
]
. (64)

Since ∇θpθ(x) = pθ(x)(1− pθ(x))x, we have

∇θ log pθ(x) =
∇θpθ(x)

pθ(x)
= (1− pθ(x))x,

∇θ log(1− pθ(x)) = − ∇θpθ(x)

1− pθ(x)
= −pθ(x)x.

Differentiating ℓ(θ, g; z) with respect to θ, we obtain the gradient and Hessian w.r.t. θ as

Sθ(θ, g; z) = −
[
µ(1)

g (z)(1− pθ(x))x− µ(0)

g (z)pθ(x)x
]
,

Hθθ(θ, g; z) = (µ(1)

g (z) + µ(0)

g (z))pθ(x)(1− pθ(x))xx
⊤.

The expected gradient and expected Hessian are then obtained as

Sθ(θ, g) = −EP [f
(1)(g;X)(1− pθ(X))X − f (0)(g;X)pθ(X)X] ,

Hθθ(θ, g) = EP

[
(f (1)(g;X) + f (0)(g;X))pθ(X)(1− pθ(X))XX⊤

]
.

We consider the nuisance neighborhood such that for g ∈ Gr (g0),

∥g − g0∥G := max







EP





(

(g(w) − g
(w)
0 )(X)

g(w)(1− g(w))(X)

)4




1
4

,EP

[(
(gprop − gprop

0 )(X)

gprop(1− gprop)(X)

)4
] 1

4







≤ r.

We assume that δ ≤ g(0)

0 (X)+g(1)

0 (X) ≤ δ−1 for δ > 0. In addition, we assume that for g ∈ Gr (g0),
f (1)(g;X) + f (0)(g;X) ≥ δ a.s. . Note that

EP [|f (1)(g;X) + f (0)(g;X)|] ≤ δ +
∑

s={0,1}

EP

[∣
∣
∣
∣

gprop(X)− gprop
0 (X)

gprop(1− gprop(X))
(g(s)(X)− g(s)

0 (X))

∣
∣
∣
∣

]

≤ δ + 2r2.

We now verify that the loss function ℓ satisfies Asm. 3.

(a) We assume that g(w) : Rd 7→ R, w = 0, 1, and gprop : Rd 7→ (0, 1) are continuous, thus Asm. 3(a)
is satisfied.
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(b) Since θ⋆ is a global minimizer of (64), we have

Sθ(θ⋆, g0) = 0. (65)

(c) We assume that Θ is bounded such that C ≤ pθ(X) ≤ 1 − C a.s. for some C > 0. When

λmin(EP

[
XX⊤

]
) ≥ λ0 > 0 and ∥X∥2 ≤ CX a.s. , we have

C2δλ0I ≼ Hθθ(θ, g) ≼ C2
X(1 + 2δ−1r2)I =⇒ µ = C2δλ0 and M = C2

X(1 + 2δ−1r2). (66)

(d) Consider the Taylor expansion around θ⋆, we have

Sθ(θ, g;Z)− Sθ(θ, g) = Sθ(θ⋆, g;Z)− Sθ(θ⋆, g) + (Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))(θ − θ⋆).

Note that

EP

[
∥Sθ(θ⋆, g;Z)− S4(θ⋆, g4)∥22

]
≤ EP

[
∥Sθ(θ⋆, g;Z)∥22

]

≤ C2
XE

[(∣
∣µ(1)

g (Z)
∣
∣+
∣
∣µ(0)

g (Z)
∣
∣
)2
]

≤ 2C2
XE

[
(µ(1)

g (Z))2 + (µ(1)

g (Z))2
]
.

For s = 1, when Y (1)− g(1)

0 (X) ≤ CY a.s. for CY > 0, we have

EP[µ
(1)

g (Z)2] = EP

[(

g(1)

0 (X) +
gprop(X)−W

gprop(X)
(g(1) − g(1)

0 )(X) +
W

gprop(X)

(
Y − g(1)

0 (X)
)
)2
]

≤ 3δ−2 + 3EP

[
(gprop(X)−W )2

(gprop(X))2
(
(g(1) − g(1)

0 )(X)
)2
]

+ 3C2
Y EP

[
gprop
0 (X)

(gprop(X))2

]

≤ 3δ−2 + 12EP

[(
(g(1) − g(1)

0 )(X)

gprop(X)

)2
]

+ 3c−1
0 C2

Y EP

[
(gprop

0 (X))2

(gprop(X))2

]

≤ 3δ−2 + 12r2 + 3c−1
0 C2

Y (8r
4 + 8)1/2 ≤ 3(δ−2 + 4c−1

0 C2
Y ) +O(r2).

Thus,

EP

[
∥Sθ(θ⋆, g;Z)− S4(θ⋆, g4)∥22

]
≤ 12C2

X(δ−2 + 4c−1
0 C2

Y ) +O(r2).

Since

Hθθ(θ, g;Z)−Hθθ(θ, g) ≼ C2
X(µ(1)

g (Z) + µ(0)

g (Z) + 1 + 2δ−1r2)I,

we have

∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))∥22 ≤ 3C4
X((µ(1)

g (Z))2 + (µ(0)

g (Z))2 + (1 + 2δ−1r2)2).

Similarly, we can show that

EP

[
∥(Hθθ(θ⋆, g;Z)−Hθθ(θ⋆, g))∥22

]
≤ 3C4

X(1 + 6(δ−2 + 4c−1
0 C2

Y )) +O(r2).

It follows that

K1 = 24C2
X(δ−2 + 4c−1

0 C2
Y ) +O(r2) and κ1 = 6C4

X(1 + 6(δ−2 + 4c−1
0 C2

Y )) +O(r2). (67)

(e) For s = 1, we have

Dgf
(1)(ḡ;X)[g − g0] =

gprop
0 (X)

(ḡprop(X))2
(ḡ(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X))

+
ḡprop(X)− gprop

0 (X)

ḡprop(X)
(g(1)(X)− g(1)

0 (X)).
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Similarly, for s = 0,

Dgf
(0)(ḡ;X)[g − g0] =

1− gprop
0 (X)

(1− ḡprop(X))2
(ḡ(0)(X)− g(0)

0 (X))(gprop(X)− gprop
0 (X))

− ḡprop(X)− gprop
0 (X)

1− ḡprop(X)
(g(0)(X)− g(0)

0 (X)).

For any ḡ, g ∈ Gr(g0) such that ḡ = tg + (1− t)g0 for some t ∈ (0, 1), we have

DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]

= −EP [Dg(f
(1)(ḡ;X)(1− pθ(X))− f (0)(ḡ;X)pθ(X))[g − g0]⟨X, θ − θ⋆⟩]

= −EP

[
gprop
0 (1− pθ)

(ḡprop)2
(ḡ(1) − g(1)

0 )(gprop − gprop
0 )(X)⟨X, θ − θ⋆⟩

]

− EP

[
(1− gprop

0 )pθ
(1− ḡprop)2

(ḡ(0) − g(0)

0 )(gprop − gprop
0 )(X)⟨X, θ − θ⋆⟩

]

− EP

[
(ḡprop − gprop

0 )(1− pθ)

ḡprop
(g(1) − g(1)

0 )(X)⟨X, θ − θ⋆⟩
]

+ EP

[
(ḡprop − gprop

0 )pθ
1− ḡprop

(g(0) − g(0)

0 )(X)⟨X, θ − θ⋆⟩
]

.

Note that by (61),
∣
∣
∣
∣
EP

[
gprop
0 (1− pθ)

(ḡprop)2
(ḡ(1) − g(1)

0 )(gprop − gprop
0 )(X)⟨X, θ − θ⋆⟩

]∣
∣
∣
∣

≤ EP

[∣
∣
∣
∣

gprop(X)

ḡprop(X)

(ḡ(1) − g(1)

0 )(X)

gprop(X)

(gprop − gprop
0 )(X)

gprop(X)

∣
∣
∣
∣

]

CX∥θ − θ⋆∥2

≤ c−1
0 CXr∥θ − θ⋆∥2∥g − g0∥G .

In addition,
∣
∣
∣
∣
EP

[
(ḡprop − gprop

0 )(1− pθ)

ḡprop
(g(1) − g(1)

0 )(X)⟨X, θ − θ⋆⟩
]∣
∣
∣
∣

≤ EP

[∣
∣
∣
∣

(ḡprop − gprop
0 )

ḡprop
(g(1) − g(1)

0 )(X)

∣
∣
∣
∣

]

CX∥θ − θ⋆∥2 ≤ CXr∥θ − θ⋆∥2∥g − g0∥G .

Thus, it is easy to show that

|DgDθL(θ⋆, ḡ)[θ − θ⋆, g − g0]| ≤ 2(c−1
0 + 1)CXr∥θ − θ⋆∥2∥g − g0∥G ,

which implies

α1 = 2(c−1
0 + 1)CXr. (68)

In addition, L(θ, g) is Neyman orthogonal at (θ⋆, g0) since

DgDθL(θ⋆, g0)[θ − θ⋆, g − g0] = 0.

Now we compute the the higher-order derivative. For s = 1, we have

D2
gf

(1)(ḡ;X)[g − g0, g − g0] =− 2gprop
0 (X)

(ḡprop(X))3
(ḡ(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X))2

+
2gprop

0 (X)

(ḡprop(X))2
(g(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X)).
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Similarly, for s = 0,

D2
gf

(0)(ḡ;X)[g − g0, g − g0] =2
1− gprop

0 (X)

(1− ḡprop(X))3
(ḡ(0)(X)− g(0)

0 (X))(gprop(X)− gprop
0 (X))2

+ 2
1− gprop

0 (X)

(1− ḡprop(X))2
(g(0)(X)− g(0)

0 (X))(gprop(X)− gprop
0 (X)).

Then for any θ ∈ Θ and g, ḡ ∈ Gr (g0) such that ḡ = tg + (1− t)g0 for some t ∈ (0, 1),

D2
gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]

= −EP

[
D2

g(f
(1)(ḡ;X)(1− pθ(X))− f (0)(ḡ;X)pθ(X))[g − g0, g − g0]⟨X, θ − θ⋆⟩

]

= 2EP

[
gprop
0 (X)

(ḡprop(X))3
(ḡ(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X))2⟨X, θ − θ⋆⟩

]

− 2EP

[
1− gprop

0 (X)

(1− ḡprop(X))3
(ḡ(0)(X)− g(0)

0 (X))(gprop(X)− gprop
0 (X))2⟨X, θ − θ⋆⟩

]

− 2EP

[
gprop
0 (X)

(ḡprop(X))2
(g(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X))⟨X, θ − θ⋆⟩

]

− 2EP

[
1− gprop

0 (X)

(1− ḡprop(X))2
(g(0)(X)− g(0)

0 (X))(gprop(X)− gprop
0 (X))⟨X, θ − θ⋆⟩

]

.

By (61), we have
∣
∣
∣
∣
EP

[
gprop
0 (X)

(ḡprop(X))3
(ḡ(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X))2⟨X, θ − θ⋆⟩

]∣
∣
∣
∣

≤ EP

[∣
∣
∣
∣
∣

(gprop(X))2

(ḡprop(X))2
ḡ(1)(X)− g(1)

0 (X)

ḡprop(X)

(
gprop(X)− gprop

0 (X)

gprop(X)

)2
∣
∣
∣
∣
∣

]

CX∥θ − θ⋆∥2

≤ c−2
0 CXr∥θ − θ⋆∥2∥g − g0∥2G .

In addition,
∣
∣
∣
∣
EP

[
gprop
0 (X)

(ḡprop(X))2
(g(1)(X)− g(1)

0 (X))(gprop(X)− gprop
0 (X))⟨X, θ − θ⋆⟩

]∣
∣
∣
∣

≤ EP

[
(gprop(X))2

(ḡprop(X))2
g(1)(X)− g(1)

0 (X)

gprop(X)

gprop(X)− gprop
0 (X)

gprop(X)

]

CX∥θ − θ⋆∥2

≤ c−2
0 CX∥θ − θ⋆∥2∥g − g0∥2G .

Together we have
∣
∣D2

gDθL(θ⋆, ḡ)[θ − θ⋆, g − g0, g − g0]
∣
∣ ≤ 4c−2

0 CX(1 + r)∥θ − θ⋆∥2∥g − g0∥2G ,
which implies

β1 = 4c−2
0 CX(1 + r). (69)
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C Convergence Proofs for Stochastic Gradient

This section is dedicated to demonstrate the SGD convergence in Thm. 1 from Sec. 3 of the main
text using Asm. 3 and Asm. 4. We first give an overview of the problem settings and the expected
results with the proof outline in Appx. C.1. We then provide all the technical lemmas needed for
Thm. 1 in Appx. C.2, and finally prove our first main result in Appx. C.3.

C.1 Overview

In this section, we demonstrate the convergence of SGD for a risk minimization problem with nui-
sance:

θ⋆ = argmin
θ∈Θ

L(θ, g0),

where g0 ∈ G is the true nuisance, L(θ, g) = EZ∼P [ℓ(θ, g;Z)], and ℓ is a prespecified loss function.
We consider the stochastic gradient method for learning θ⋆ when g0 is unknown but an estimate ĝ
is accessible. Define Dn = (Z1, . . . , Zn), sampled from the product measure Pn. Recall the SGD

θ(n) defined as

θ(n) = θ(n−1) − ηSθ(θ
(n−1), ĝ;Zn). (70)

Throughout the section, we take the following notations for simplicity:

δ(n) = θ(n) − θ⋆, (71)

S(n) = Sθ(θ
(n−1), ĝ;Zn), (72)

v(n) = S(n) − Sθ(θ
(n−1), ĝ), (73)

where Sθ(θ, g; z) = ∇θℓ(θ, g; z) is the gradient and Sθ(θ, g) = EZ∼P [Sθ(θ, g;Z)] is the population
gradient. We are interested in the mean squared error using an estimated nuisance ĝ, and our results

show that for non-Neyman orthogonal loss L, the error δ(n) satisfies

EDn∼Pn [∥δ(n)∥22] ≲
(

1− µη

2

)n

∥δ(0)∥22 + ∥ĝ − g0∥2G + η, (74)

where the nuisance estimator ĝ would lead to a bias of order O(∥ĝ − g0∥2G) for the SGD conver-
gence. If L is Neyman orthogonal, this bias introduced by the nuisance estimation would be further
removed, resulting in the following convergence

EDn∼Pn [∥δ(n)∥22] ≲
(

1− µη

2

)n

∥δ(0)∥22 + ∥ĝ − g0∥4G + η. (75)

Proof Outline. The proofs for both results (74) and (75) proceed through the following four steps:

1. Upper bound the excess risk L(θ(n), ĝ)− L(θ⋆, ĝ) in terms of the SGD improvement.

2. Lower bound L(θ(n), ĝ)− L(θ⋆, ĝ) using strong convexity and Neyman orthogonality.

3. Derive a recursive formula of EDn∼Pn [∥δ(n)∥22] from these bounds.

4. Perform the recursion and obtain the final result.

Follow these steps above, we provide technical lemma in Appx. C.2, and then prove our first main
result Thm. 1 in Appx. C.3.

C.2 Technical Lemma

Lemma 10 (One-step improvement for SGD). Suppose that Asm. 3 holds. If η < 1/M , θ(n) ∈ Θ,
and ĝ ∈ Gr(g0), it holds that

2η(L(θ(n), ĝ)− L(θ⋆, ĝ)) ≤ (1− µη) ∥δ(n−1)∥22 − ∥δ(n)∥22 − 2η⟨v(n), δ(n−1)⟩+ η2

1−Mη
∥v(n)∥22.
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Proof. We first define the η−1-strongly convex function fn as

fn (u) = ⟨S(n), u− θ(n−1)⟩+ 1

2η
∥u− θ(n−1)∥22. (76)

Note that

argmin
u∈Rd

fn (u) = argmin
u∈Rd

∥u− (θ(n−1) − ηS(n))∥22,

which implies that θ(n) = θ(n−1) − ηS(n) is the global minimizer of (76) and ∇θfn(θ
(n)) = 0.

Then

fn (θ⋆) ≥ fn(θ
(n)) + ⟨∇θfn(θ

(n)),−δ(n)⟩+ 1

2η
∥δ(n)∥22

= fn(θ
(n)) +

1

2η
∥δ(n)∥22. (77)

Since L (·, ĝ) is µ-strongly convex and fn (θ⋆) = ⟨S(n),−δ(n−1)⟩+(2η)−1∥δ(n−1)∥22, we have that

L(θ⋆, ĝ) ≥ L(θ(n−1), ĝ) + ⟨Sθ(θ
(n−1), ĝ),−δ(n−1)⟩+ µ

2
∥δ(n−1)∥22

= L(θ(n−1), ĝ) + ⟨S(n),−δ(n−1)⟩+ ⟨v(n), δ(n−1)⟩+ µ

2
∥δ(n−1)∥22

= L(θ(n−1), ĝ) + fn (θ⋆) + ⟨v(n), δ(n−1)⟩+
(
µ

2
− 1

2η

)

∥δ(n−1)∥22.

Together with (77), it follows that

L(θ(n−1), ĝ) + fn(θ
(n)) ≤L(θ⋆, ĝ)− ⟨v(n), δ(n−1)⟩

+

(
1

2η
− µ

2

)

∥δ(n−1)∥22 −
1

2η
∥δ(n)∥22. (78)

Since L (·, ĝ) is M -smooth and fn
(
θ(n)

)
= ⟨S(n), θ(n) − θ(n−1)⟩ + (2η)−1∥θ(n) − θ(n−1)∥22, we

have that

L(θ(n), ĝ) ≤ L(θ(n−1), ĝ) + ⟨S(θ(n−1), ĝ), θ(n) − θ(n−1)⟩+ M

2
∥θ(n) − θ(n−1)∥22

= L(θ(n−1), ĝ) + ⟨S(n), θ(n) − θ(n−1)⟩+ M

2
∥θ(n) − θ(n−1)∥22 − ⟨v(n), θ(n) − θ(n−1)⟩

= L(θ(n−1), ĝ) + fn(θ
(n)) +

(
M

2
− 1

2η

)

∥θ(n) − θ(n−1)∥22 − ⟨v(n), θ(n) − θ(n−1)⟩.

By (78), it follows that

L(θ(n), ĝ) ≤ L(θ⋆, ĝ)− ⟨v(n), δ(n−1)⟩+
(

1

2η
− µ

2

)

∥δ(n−1)∥22 −
1

2η
∥δ(n)∥22

+

(
M

2
− 1

2η

)

∥θ(n) − θ(n−1)∥22 − ⟨v(n), θ(n) − θ(n−1)⟩,

which implies that

L(θ(n), ĝ)− L(θ⋆, ĝ) ≤
(

1

2η
− µ

2

)

∥δ(n−1)∥22 −
1

2η
∥δ(n)∥22 − ⟨v(n), δ(n−1)⟩

+

(
M

2
− 1

2η

)

∥θ(n) − θ(n−1)∥22 − ⟨v(n), θ(n) − θ(n−1)⟩. (79)

For any ω > 0, by Cauchy-Schwarz inequality and Young’s inequality, we have

−⟨v(n), θ(n) − θ(n−1)⟩ ≤ ω

2
∥v(n)∥22 +

1

2ω
∥θ(n) − θ(n−1)∥22.
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Take this into (79) and we have

L(θ(n), ĝ)− L(θ⋆, ĝ) ≤
(

1

2η
− µ

2

)

∥δ(n−1)∥22 −
1

2η
∥δ(n)∥22 − ⟨v(n), δ(n−1)⟩

+

(
M

2
− 1

2η
+

1

2ω

)

∥θ(n) − θ(n−1)∥22 +
ω

2
∥v(n)∥22.

When η < 1/M , set M
2 − 1

2η + 1
2ω = 0, i.e., set ω = 1/(η−1 −M). It follows that

L(θ(n), ĝ)− L(θ⋆, ĝ) ≤
(

1

2η
− µ

2

)

∥δ(n−1)∥22 −
1

2η
∥δ(n)∥22 − ⟨v(n), δ(n−1)⟩

+
η

2(1−Mη)
∥v(n)∥22.

We complete the proof by multiplying both sides of the inequality by 2η.

Lemma 11. Suppose that Asm. 3 holds. If η < 1/M , θ(n) ∈ Θ, and ĝ ∈ Gr(g0), it holds that

∥δ(n)∥22 ≤ (1− µη) ∥δ(n−1)∥22 +
α2
1η

µ
∥ĝ − g0∥2G + 2η⟨v(n), δ(n−1)⟩+ η2∥v(n)∥22

1−Mη
.

Proof. Under Asm. 3,

DθL(θ⋆, ĝ)[δ
(n)] = DθL(θ⋆, g0)[δ

(n)] +DgDθL(θ⋆, ḡ)[δ
(n), ĝ − g0]

= DgDθL(θ⋆, ḡ)[δ
(n), ĝ − g0] ≥ −α1∥δ(n)∥2∥ĝ − g0∥G . (80)

Since L(·, ĝ) is µ-strongly convex,

L(θ(n), ĝ)− L(θ⋆, ĝ) ≥ ⟨S(θ⋆, ĝ), δ(n)⟩+
µ

2
∥δ(n)∥22

= DθL(θ⋆, ĝ)[δ
(n)] +

µ

2
∥δ(n)∥22.

By (80), it follows that

L(θ(n), ĝ)− L(θ⋆, ĝ) ≥ −α1∥δ(n)∥2∥ĝ − g0∥G +
µ

2
∥δ(n)∥22.

Together with Lemma 10, we have

2η
(

−α1∥δ(n)∥2∥ĝ − g0∥G +
µ

2
∥δ(n)∥22

)

≤(1− µη)∥δ(n−1)∥22

− ∥δ(n)∥22 − 2η⟨v(n), δ(n−1)⟩+ η2∥v(n)∥22
1−Mη

.

Rearranging it, we have

(1 + µη)∥δ(n)∥22 ≤(1− µη)∥δ(n−1)∥22

+ 2ηα1∥δ(n)∥2∥ĝ − g0∥G − 2η⟨v(n), δ(n−1)⟩+ η2∥v(n)∥22
1−Mη

. (81)

By Young’s inequality,

2ηα1∥δ(n)∥2∥ĝ − g0∥G ≤ ηα1

(
µ

α1
∥δ(n)∥22 +

α1

µ
∥ĝ − g0∥2G

)

.

Take this into (81) and we have

∥δ(n)∥22 ≤ (1− µη)∥δ(n−1)∥22 + ηα2
1µ

−1∥ĝ − g0∥2G − 2η⟨v(n), δ(n−1)⟩+ η2∥v(n)∥22
1−Mη

.
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Corollary 12. Suppose that Asm. 3 holds. If η < 1/M , θ(n) ∈ Θ, and ĝ ∈ Gr(g0), it holds that

EZn∼P

[

∥δ(n)∥22
]

≤
(

1− µη +
κ1η

2

1−Mη

)

∥δ(n−1)∥22 +
α2
1η

µ
∥ĝ − g0∥2G +

K1η
2

1−Mη
.

Proof. Note that EZn∼P

[
⟨v(n), δ(n−1)⟩

]
= 0. By Lem. 11, we have

EZn∼P

[

∥δ(n)∥22
]

≤ (1− µη) ∥δ(n−1)∥22 +
α2
1η

µ
∥ĝ − g0∥2G +

η2

1−Mη
EZn∼P

[

∥v(n)∥22
]

.

Under Asm. 3, EZn∼P

[
∥v(n)∥22

]
≤ K1 + κ1∥δ(n)∥22, and it follows that

EZn∼P

[

∥δ(n)∥22
]

≤
(

1− µη +
κ1η

2

1−Mη

)

∥δ(n−1)∥22 +
α2
1η

µ
∥ĝ − g0∥2G +

K1η
2

1−Mη
.

Lemma 13. Suppose that Asm. 3 and Asm. 4 hold. If η < 1/M , θ(n) ∈ Θ, and ĝ ∈ Gr(g0), it holds
that

∥δ(n)∥22 ≤ (1− µη) ∥δ(n−1)∥22 +
β2
1η

4µ
∥ĝ − g0∥4G − 2η⟨v(n), δ(n−1)⟩+ η2∥v(n)∥22

1−Mη
.

Proof. Under Asm. 3 and Asm. 4,

DθL(θ⋆, ĝ)[δ
(n)] =DθL(θ⋆, g0)[δ

(n)] +DgDθL(θ⋆, g0)[δ
(n), ĝ − g0]

+
1

2
D2

gDθL(θ⋆, ḡ)[δ
(n), ĝ − g0, ĝ − g0]

=
1

2
D2

gDθL(θ⋆, ḡ)[δ
(n), ĝ − g0, ĝ − g0] ≥ −β1

2
∥δ(n)∥2∥ĝ − g0∥2G .

The rest of the proof is similar to Lem. 11.

Corollary 14. Suppose that Asm. 3 and Asm. 4 hold. If η < 1/M , θ(n) ∈ Θ, and ĝ ∈ Gr(g0), it
holds that

EZn∼P

[

∥δ(n)∥22
]

≤
(

1− µη +
κ1η

2

1−Mη

)

∥δ(n−1)∥22 +
β2
1η

4µ
∥ĝ − g0∥4G +

K1η
2

1−Mη
.

Proof. The proof is similar to Cor. 12 using Lem. 13.

C.3 Proof of Theorem 1

Proof. Let c(η) = µ− κ1η/(1−Mη). When η < µ/(Mµ+ κ1), we have

1− µη +
κ1η

2

1−Mη
= 1−

(

µ− κ1η

1−Mη

)

η = 1− c(η)η < 1.

Under Asm. 3 and by Cor. 12, we have that

EDn∼Pn

[

∥δ(n)∥22
]

=EDn−1∼Pn−1

[

EZn∼P

[

∥δ(n)∥22
]]

≤ (1− c(η)η)EDn−1∼Pn−1

[

∥δ(n−1)∥22
]

+
α2
1η

µ
∥ĝ − g0∥2G +

K1η
2

1−Mη

≤ (1− c(η)η)
2
EDn−2∼Pn−2

[

∥δ(n−1)∥22
]

+ {1 + (1− c(η)η)} α
2
1η

µ
∥ĝ − g0∥2G + {1 + (1− c(η)η)} K1η

2

1−Mη
.
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By recursion, it follows that

EDn∼Pn

[

∥δ(n)∥22
]

≤ (1− c(η)η)
n ∥δ(0)∥22 +

α2
1η

µ
∥ĝ − g0∥2G

n−1∑

i=0

(1− c(η)η)
i

+
K1η

2

1−Mη

n−1∑

i=0

(1− c(η)η)
i

≤ (1− c(η)η)
n ∥δ(0)∥22 +

α2
1

µc(η)
∥ĝ − g0∥2G +

K1η

c(η)(1−Mη)
.

If η ≤ µ/2(Mµ+ κ1), we have µ/2 ≤ c(η) ≤ µ. Thus,

EDn∼Pn

[

∥δ(n)∥22
]

≤
(

1− µη

2

)n

∥δ(0)∥22 +
2α2

1

µ2
∥ĝ − g0∥2G +

4K1η

µ
.

In addition, if Asm. 4 holds, then by Cor. 14 and using identical proof as above, it follows that for a
Neyman orthogonal risk L,

EDn∼Pn

[

∥δ(n)∥22
]

≤
(

1− µη

2

)n

∥δ(0)∥22 +
β2
1

2µ2
∥ĝ − g0∥4G +

4K1η

µ
.
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D Orthogonalization with respect to Nuisance

In this section, we establish our orthogonalization method for the possibly infinite-dimensional nui-
sance introduced in Sec. 3 of the main text. We demonstrate how we construct the orthogonalizing
operator in Appx. D.1, and provide all the technical lemmas in Appx. D.2.

D.1 Orthogonalization via Riesz Representation

We consider G ≡ (G, ⟨·, ·⟩G) as a possibly infinite-dimensional Hilbert space. Recall the derivative
operator Dg defined as for any h ∈ G,

Dgℓ(θ, g; z)[h] =
d

dt
ℓ(θ, g + th; z) |t=0 .

This derivative operator is also known as the Gateaux derivative. We posit the usual assumption as
Jordan et al. [2022] that the derivative operator Dgℓ(θ, g; z) is linear and continuous in G for any
(θ, g, z) ∈ Θ × Gr (g0) × Z . We also assume regularity conditions such that DgDθℓ(θ, g; z) is
continuous and DgDθℓ(θ, g; z) = DθDgℓ(θ, g; z) at any (θ, g, z).

Since Dgℓ(θ, g; z) is linear and continuous, by the Riesz representation theorem, there uniquely
exists some ∇gℓ(θ, g; z) ∈ G such that for any g ∈ G,

Dgℓ(θ, g; z)[g] = ⟨∇gℓ(θ, g; z), g⟩G . (82)

Lem. 16 shows that the operator DgSθ(θ⋆, g0) is linear and continuous. By Riesz representation

theorem, we can define Hθg = (H
(1)
θg , . . . , H

(d)
θg ) ∈ Gd such that for all g ∈ G,

DgS
(j)
θ (θ⋆, g0)[g] = ⟨H(j)

θg , g⟩G for any j = 1, . . . , n. (83)

The Hessian operator Hgg : G 7→ G is defined as for any g1, g2 ∈ G,

D2
gL(θ⋆, g0)[g1, g2] = ⟨Hggg1, g2⟩G . (84)

We will show in Lem. 17 that Hgg uniquely exists and is an self-adjoint and bounded linear operator

when D2
gL(θ⋆, g0) is bounded and symmetric bilinear. Assuming that Hgg is invertible, we define

the orthogonalizing operator as

Γ0 : G 7→ Rd, [Γ0g]j = ⟨H(j)
θg , H

−1
gg g⟩G , ∀g ∈ G. (85)

We now construct the Neyman orthogonalized (NO) gradient oracle

Sno(θ, g; z) = Sθ(θ, g; z)− Γ0∇gℓ(θ, g; z).

In addition, Γ0∇gℓ(θ, g; z) can be written as the derivative in the sense that for each j = 1, . . . , d,

[Γ0∇gℓ(θ, g; z)]j = ⟨H(j)
θg , H

−1
gg ∇gℓ(θ, g; z)⟩G

= ⟨H−1
gg H

(j)
θg ,∇gℓ(θ, g; z)⟩G = Dgℓ(θ, g; z)[H

−1
gg H

(j)
θg ].

That is, the NO gradient oracle can be easily obtain by

Sno(θ, g; z) = Sθ(θ, g; z)−Dgℓ(θ, g; z)[H
−1
gg Hθg]. (86)

The following Lemma shows that Sno(θ, g; z) is Neyman orthogonal at (θ⋆, g0).

Lemma 15. Sno(θ, g; z) is a Neyman orthogonal score at (θ0, g0).

Proof. Since Sno(θ, g; z) = Sθ(θ, g; z)−Dgℓ(θ, g; z)[H
−1
gg Hθg], for any h ∈ G,

EP [DgSno(θ0, g0;Z)[h]] = DgSθ(θ0, g0)[h]−D2
gL(θ0, g0)[H

−1
gg Hθg, h]

= ⟨Hθg, h⟩G − ⟨HggH
−1
gg Hθg, h⟩G

= ⟨Hθg, h⟩G − ⟨Hθg, h⟩G = 0,
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which implies that Sno(θ, g; z) is Neyman orthogonal at (θ0, g0).

D.2 Technical Lemma

Lemma 16. DgSθ(θ, g; z) : G 7→ Rd and DgSθ(θ, g) : G 7→ Rd are linear and continuous in G.

Proof. The continuity of DgSθ(θ, g; z) and DgSθ(θ, g) follows from the continuity of

DgDθℓ(θ, g; z). It suffices to prove that DgSθ(θ, g; z) is linear. For all u ∈ Rd, h1, h2 ∈ G,

⟨u,DgSθ(θ, g; z)[h1 + h2]⟩ = Dg⟨u, Sθ(θ, g; z)⟩[h1 + h2]

= DgDθℓ(θ, g; z)[u, h1 + h2]

= DθDgℓ(θ, g; z)[h1 + h2, u]

= ⟨∇θ (Dgℓ(θ, g; z)[h1 + h2]) , u⟩
= ⟨∇θ (Dgℓ(θ, g; z)[h1] + Dgℓ(θ, g; z)[h2]) , u⟩
= DθDgℓ(θ, g; z)[h1, u] + DθDgℓ(θ, g; z)[h2, u]

= DgDθℓ(θ, g; z)[u, h1] + DgDθℓ(θ, g; z)[u, h2]

= ⟨u,DgSθ(θ, g; z)[h1] + DgSθ(θ, g; z)[h2]⟩,
which implies that

DgSθ(θ, g; z)[h1 + h2] = DgSθ(θ, g; z)[h1] + DgSθ(θ, g; z)[h2].

Lemma 17. Suppose that D2
gL(θ⋆, g0)[·, ·] : G ×G 7→ R is a bounded and symmetric bilinear form.

Then Hgg : G 7→ G uniquely exists and is self-adjoint, bounded, and linear.

Proof. Given g1, g2 ∈ G, since D2
gL(θ⋆, g0)[g1, ·] is a bounded linear map from G to R, by Riesz

representation theorem, for any g2 ∈ G, there uniquely exists some Th1 ∈ G such that

D2
gL(θ⋆, g0)[g1, g2] = ⟨Tg1, g2⟩G .

Thus, we define the operator T : G 7→ G. Note that D2
gL(θ⋆, g0)[·, ·] is bilinear. For any a, a′ ∈ R,

and any g1, g
′
1, g2 ∈ G, we have

⟨T (ag1 + a′g′1), g2⟩G = D2
gL(θ⋆, g0)[ag1 + a′g′1, g2]

= aD2
gL(θ⋆, g0)[g1, g2] + a′D2

gL(θ⋆, g0)[g
′
1, g2]

= a⟨Tg1, g2⟩G + a′⟨Tg′1, g2⟩G
= ⟨aTg1 + a′Tg′1, g2⟩G ,

which implies T is a linear operator. To show T is bounded, suppose that the norm of the bilinear
form D2

gL(θ⋆, g0) is bounded by B. Thus, for Tg1 ̸= 0,

∥Tg1∥G = ⟨Tg1,
T g1

∥Tg1∥G
⟩
G

≤ sup
∥g2∥G=1

⟨Tg1, g2⟩G ≤ sup
∥g2∥G=1

∣
∣D2

gL(θ⋆, g0)[g1, g2]
∣
∣ ≤ B∥g1∥G ,

which implies T is bounded. Note that D2
gL(θ⋆, g0)[·, ·] is symmetric, we have T being self-adjoint

since

⟨Tg1, g2⟩G = D2
gL(θ⋆, g0)[g1, g2] = D2

gL(θ⋆, g0)[g2, g1] = ⟨Tg2, g1⟩G = ⟨g1, T g2⟩G .
Finally, we show that T is unique. If there exists some T ′ : G 7→ G such that for any g1, g2 ∈ G,

⟨Tg1, g2⟩G = D2
gL(θ⋆, g0)[g1, g2] = ⟨T ′g1, g2⟩G ,

which implies

⟨(T − T ′)g1, g2⟩G = 0 ∀g1, g2 ∈ G.
That is, T = T ′. We finish the proof by letting Hgg = T .
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E Convergence Proofs for Orthogonalized Stochastic Gradient

This section is dedicated to demonstrate the OSGD convergence in Thm. 3 of the main text. In
Appx. E.1, we give an overview of the OSGD settings, the additional assumptions, and the expected
results with the proof outline. We then provide all the technical lemmas in Appx. E.2, and finally
prove Thm. 3 in Appx. E.3.

E.1 Overview

Following the same problem settings in Appx. C, we consider the orthogonalized SGD (OSGD)

using the estimated NO score Ŝno oracle defined as

Ŝno(θ, g; z) = Sθ(θ, g; z)− Γ̂∇gℓ(θ, g; z), (87)

where Γ̂ is an estimator for the orthogonalizing operator defined in (85). Specifically, we consider

all continuous linear Γ̂ : G 7→ Rd for estimating the orthogonalizing operator Γ0. By Riesz repre-

sentation theorem, there exists some γ̂(j) ∈ G for j = 1, . . . , d, such that

[Γ̂g]j = ⟨γ̂(j), g⟩G for all g ∈ G.

For the orthogonalizing operator Γ0, we define γ
(j)
0 = H−1

gg H
(j)
θg , j = 1, . . . , d, such that

[Γ0g]j = ⟨γ(j)0 , g⟩G for all g ∈ G.
We focus on the OSGD defined below:

θ(n) = θ(n−1) − ηŜno(θ
(n−1), ĝ;Zn), θ(0) ∈ Θ. (88)

Throughout the section, we take the following notations for simplicity:

δ(n)no = θ(n) − θ⋆, (89)

Ŝ(n)
no = Ŝno(θ

(n−1), ĝ;Zn), (90)

v(n)no = Ŝ(n)
no − Ŝno(θ

(n−1), ĝ). (91)

Let ∇gL(θ, g) = EZ∼P[∇gℓ(θ, g;Z)] and Sno(θ, g) = EZ∼P[Sno(θ, g;Z)]. We need the following
assumptions to establish the convergence result of the OSGD.

Assumption 6. The following conditions hold:

(a) First-order optimality: Sno(θ⋆, g0) = 0 and (Γ̂− Γ0)∇gL(θ⋆, g0) = 0.

(b) Smoothness and strong convexity: There exists some Mno, µno > 0 such that for all θ ∈ Θ
and g ∈ Gr (g0), ∥∇θSno(θ, g)∥2 ≤Mno and

λmin(∇θSno(θ, g) +∇θSno(θ, g)
⊤) ≥ 2µno.

(c) Second-moment growth: There exist constants K2, κ2 > 0 such that

EZ∼P[(DgL(θ, ḡ;Z)[g]−DgL(θ, ḡ)[g])
2
] ≤ (K2 + κ2∥θ − θ⋆∥22)∥g∥2G .

for all θ ∈ Θ, ḡ ∈ Gr (g0), and g ∈ G.

(d) Second-order smoothness: There exists a constant α2 > 0 such that
∣
∣D2

gL(θ, ḡ)[g1, g2]
∣
∣ ≤ α2∥g1∥G∥g2∥G ∀θ ∈ Θ, ḡ ∈ Gr (g0) , g1, g2 ∈ G,

∣
∣DθDgL(θ̄, g0)[g, θ − θ⋆]

∣
∣ ≤ α1∥θ − θ⋆∥2∥g∥G ∀θ, θ̄ ∈ Θ, g ∈ G.

(e) Higher-order smoothness: There exists a constants β2 > 0 such that

∥D2
gSno(θ⋆, ḡ)[g − g0, g − g0]∥2 ≤ β2∥g − g0∥2G ∀g, ḡ ∈ Gr (g0) .
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Asm. 6(a) is necessary for the convergence of the OSGD to θ⋆. When Sθ is Neyman orthogonal
at (θ⋆, g0), Γ0 = 0 is accessible and thus, Sno = Sθ. When Sθ is non-orthogonal, Asm. 6(a)
can be satisfied whenever ∇gL(θ⋆, g0) = 0, implying that (θ⋆, g0) is a local minimizer of L(θ, g).
Asm. 6(b) is related to the Schur complement of the population Hessian. Thus, the hypothetical
objective relating to Sno inherits its strong convexity from that of the population risk L w.r.t. (θ, g) ∈
Θ × Gr(g0) when G is finite-dimensional; see Boyd and Vandenberghe [2004]. Asm. 6(c) and (d)
are exactly analogous to Asm. 3(d) and (e), while Asm. 6(e) is analogous to Asm. 4.

With Asm. 6, we aim to show that the error δ
(n)
no satisfies

EDn∼Pn [∥δ(n)no ∥22] ≲
(

1− µnoη

2

)n

∥δ(0)no ∥22 + ∥ĝ − g0∥4G + ∥ĝ − g0∥2G · ∥Γ̂− Γ0∥2Fro + η. (92)

Proof Outline. The proof the (92) follows the following four steps:

1. Upper bound ∥I − η∇θŜno(θ, g)∥2 w.r.t. the operator estimation error ∥Γ̂− Γ0∥Fro.

2. Upper bound ∥Ŝno(θ⋆, ĝ)∥2 using Neyman orthogonality and the first order optimality.

3. Derive a recursive formula of EDn∼Pn [∥δ(n)no ∥22] from these bounds.

4. Perform the recursion and obtain the final result.

Follow these steps above, we provide technical lemma in Appx. E.2, and then prove our second main
result Thm. 3 in Appx. E.3.

Alternatively, the intuition of step 1 also suggests that we should focus on Γ̂ that lies in the neigh-

borhood of Γ0 such that ∥Γ̂−Γ0∥Fro ≤ R for a small R > 0. Then, instead of assuming Asm. 6(b),

we can directly assume that for all θ ∈ Θ and g ∈ Gr (g0), ∥∇θŜno(θ, g)∥2 ≤Mno and

λmin(∇θŜno(θ, g) +∇θŜno(θ, g)
⊤) ≥ 2µno.

With this assumption, one can still show the same OSGD convergence rate by the identical proof
while the constraint of the learning rate η will be simplified.

E.2 Technical Lemma

Lemma 18. Given η > 0. For any ω > 0 and u, v ∈ Rd,

∥u+ ηv∥22 ≤ (1 + ηω)∥u∥22 + (η2 + ηω−1)∥v∥22.

Proof. By definition,

∥u+ ηv∥22 = ∥u∥22 + η2∥v∥22 + 2η⟨u, v⟩ ≤ ∥u∥22 + η2∥v∥22 + 2η∥u∥2∥v∥2.
By Young’s inequality, for any ω > 0,

2∥u∥2∥v∥2 ≤ ω∥u∥22 + ω−1∥v∥22.
Thus,

∥u+ ηv∥22 ≤ (1 + ηω)∥u∥22 + (η2 + ηω−1)∥v∥22.

Lemma 19. Suppose that Asm. 6 holds. For all θ ∈ Θ and g ∈ Gr (g0),

∥I − η∇θŜno(θ, g)∥22 ≤ 1− 2η(µno − α1∥Γ̂− Γ0∥Fro) + 2η2(M2
no + 2α2

1∥Γ̂− Γ0∥2Fro).

Proof. Note that

(I−η∇θŜno(θ, g))(I − η∇θŜno(θ, g))
⊤

= I − η
(

∇θŜno(θ, g) +∇θŜno(θ, g)
⊤
)

+ η2∇θŜno(θ, g)∇θŜno(θ, g)
⊤.
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Since ∇θŜno(θ, g) = ∇θSno(θ, g)−∇θ((Γ̂− Γ0)∇gL(θ, g)), we have

∇θŜno(θ, g) +∇θŜno(θ, g)
⊤

= ∇θSno(θ, g) +∇θSno(θ, g)
⊤ −∇θ((Γ̂− Γ0)∇gL(θ, g))−∇θ((Γ̂− Γ0)∇gL(θ, g))

⊤

≽ 2(µno − ∥∇θ((Γ̂− Γ0)∇gL(θ, g))∥2)I.

We now bound ∥∇θ(Γ̂− Γ0)∇gL(θ, g)∥2. For each j = 1, . . . , d, for any θ ∈ Rd,
∣
∣
∣∇θ((Γ̂− Γ0)

(j)∇gL(θ, g))(θ − θ⋆)
∣
∣
∣ =

∣
∣
∣Dθ⟨γ̂(j) − γ

(j)
0 ,∇gL(θ, g)⟩G [θ − θ⋆]

∣
∣
∣

=
∣
∣
∣DθDgL(θ, g)[γ̂

(j) − γ
(j)
0 , θ − θ⋆]

∣
∣
∣

≤ α1∥γ̂(j) − γ
(j)
0 ∥G∥θ − θ⋆∥2.

Thus,

∥∇θ((Γ̂− Γ0)∇gL(θ, g))(θ − θ⋆)∥2 ≤ α1∥Γ̂− Γ0∥Fro∥θ − θ⋆∥2,

which implies that ∥∇θ(Γ̂− Γ0)∇gL(θ, g)∥2 ≤ α1∥Γ̂− Γ0∥Fro and

∇θŜno(θ, g) +∇θŜno(θ, g)
⊤ ≥ 2(µno − α1∥Γ̂− Γ0∥Fro)I.

Additionally, we have

∥∇θŜno(θ, g)∇θŜno(θ, g)
⊤∥2 ≤ ∥∇θŜno(θ, g)∥22

≤ 2∥∇θSno(θ, g)∥22 + 2∥∇θ((Γ̂− Γ0)∇gL(θ, g))∥22
≤ 2M2

no + 2α2
1∥Γ̂− Γ0∥2Fro.

In conclusion, we have

(I−η∇θŜno(θ, g))(I − η∇θŜno(θ, g))
⊤

≼
(

1− 2η(µno − α1∥Γ̂− Γ0∥Fro) + 2η2(M2
no + 2α2

1∥Γ̂− Γ0∥2Fro)
)

I.

Lemma 20. Suppose that Asm. 6 holds. When ĝ ∈ Gr (g0),

∥Ŝno(θ⋆, ĝ)∥22 ≤ β2
2

2
∥ĝ − g0∥4G + 2α2

2∥Γ̂− Γ0∥2Fro · ∥ĝ − g0∥2G .

Proof. Note that

∥Ŝno(θ⋆, ĝ)∥22 = ∥Sno(θ⋆, ĝ)− (Γ̂− Γ0)∇gL(θ⋆, ĝ)∥22
≤ 2∥Sno(θ⋆, ĝ)∥22 + 2∥(Γ̂− Γ0)∇gL(θ⋆, ĝ)∥22

= 2∥Sno(θ⋆, ĝ)∥22 + 2

d∑

j=1

⟨∇gL(θ⋆, ĝ), γ̂
(j) − γ

(j)
0 ⟩

2

G

= 2∥Sno(θ⋆, ĝ)∥22 + 2

d∑

j=1

(DgL(θ⋆, ĝ)[γ̂
(j) − γ

(j)
0 ])2.

Since Sno(θ⋆, g0) = 0 and Sno is Neyman orthogonal at (θ⋆, g0), we have for some ḡ ∈ Gr (g0),

Sno(θ⋆, ĝ) = Sno(θ⋆, g0) + DgSno(θ⋆, g0)[ĝ − g0] +
1

2
D2

gSno(θ⋆, ḡ)[ĝ − g0]

=
1

2
D2

gSno(θ⋆, ḡ)[ĝ − g0],
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which implies

∥Sno(θ⋆, ĝ)∥2 ≤ β2
2
∥ĝ − g0∥2G .

Similarly, since (Γ̂(j) − Γ0)∇gL(θ⋆, g0) = 0, we have for some ḡ′ ∈ Gr (g0),

DgL(θ⋆, ĝ)[γ̂
(j) − γ

(j)
0 ] = DgL(θ⋆, g0)[γ̂

(j) − γ
(j)
0 ] + D2

gL(θ⋆, ḡ
′)[γ̂(j) − γ

(j)
0 ]

= (Γ̂(j) − Γ0)∇gL(θ⋆, g0) + D2
gL(θ⋆, ḡ

′)[γ̂(j) − γ
(j)
0 ]

= D2
gL(θ⋆, ḡ

′)[γ̂(j) − γ
(j)
0 ],

which implies
∣
∣
∣DgL(θ⋆, ĝ)[γ̂

(j) − γ
(j)
0 , ĝ − g0]

∣
∣
∣ ≤ α2∥γ̂(j) − γ

(j)
0 ∥G∥ĝ − g0∥G .

In conclusion,

∥Ŝno(θ⋆, ĝ)∥22 ≤ β2
2

2
∥ĝ − g0∥4G + 2α2

2∥Γ̂− Γ0∥2Fro · ∥ĝ − g0∥2G .

Lemma 21. Suppose that Asm. 3 and Asm. 6 holds. Then

EZn∼P

[

∥v(n)no ∥22
]

≤ 2(K1 +K2∥Γ̂∥2Fro) + 2(κ1 + κ2∥Γ̂∥2Fro)∥δn−1
no ∥22.

Proof. Note that v
(n)
no = Ŝno(θ

(n−1), ĝ;Zn)− Ŝno(θ
(n−1), ĝ).

EZn∼P

[

∥v(n)no ∥22
]

≤ 2EZn∼P

[

∥Sθ(θ
(n−1), ĝ;Zn)− Sθ(θ

(n−1), ĝ)∥22
]

+ 2EZn∼P

[

∥Γ̂∇gℓ(θ
(n−1), ĝ;Zn)− Γ̂∇gL(θ

(n−1), ĝ)∥22
]

.

By Asm. 3,

EZn∼P

[

∥Sθ(θ
(n−1), ĝ;Zn)− Sθ(θ

(n−1), ĝ)∥22
]

≤ K1 + κ1∥δn−1
no ∥22.

Since

EZn∼P

[

∥Γ̂∇gℓ(θ
(n−1), ĝ;Zn)− Γ̂∇gL(θ

(n−1), ĝ)∥22
]

=

d∑

j=1

EZn∼P

[

(Dgℓ(θ
(n−1), ĝ;Zn)[γ̂

(j)]−DgL(θ
(n−1), ĝ)[γ̂(j)])2

]

≤
d∑

j=1

(K2 + κ2∥θ − θ⋆∥22)∥γ̂(j)∥2G = (K2 + κ2∥θ − θ⋆∥22)∥Γ̂∥2Fro.

In conclusion,

EZn∼P

[

∥v(n)no ∥22
]

≤ 2(K1 +K2∥Γ̂∥2Fro) + 2(κ1 + κ2∥Γ̂∥2Fro)∥δn−1
no ∥22.

E.3 Proof of Theorem 3

Proof. Since θ(n) = θ(n−1) − ηŜ
(n)
no , by Taylor’s theorem we have that for some θ̄(n−1),

δ(n)no = δ(n−1)
no − η(Ŝno(θ

(n−1), ĝ)− Ŝno(θ⋆, ĝ))− ηŜno(θ⋆, ĝ)− ηv(n)no

= (I − η∇θŜno(θ̄
(n−1), ĝ))δ(n−1)

no − ηŜno(θ⋆, ĝ)− ηv(n)no .
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Note that EZn∼P

[

v
(n)
no

]

= 0. Take the expectation of the squared norm of both sides w.r.t. Zn and

we have

EZn∼P

[

∥δ(n)no ∥22
]

= ∥(I − η∇θŜno(θ̄
(n−1), ĝ))δ(n−1)

no − ηŜno(θ⋆, ĝ)∥22 + η2EZn∼P

[

∥v(n)no ∥22
]

.

By Lem. 18, Lem. 19, and Lem. 20, for any ω > 0,

∥(I−η∇θŜno(θ̄
(n−1), ĝ))δ(n−1)

no − ηŜno(θ⋆, ĝ)∥22
≤ (1 + ηω)∥(I − η∇θŜno(θ̄

(n−1), ĝ))δ(n−1)
no ∥22 + (η2 + ηω−1)∥Ŝno(θ⋆, ĝ)∥22

≤ (1 + ηω)
(

1− 2η(µno − α1∥Γ̂− Γ0∥Fro) + 2η2(M2
no + 2α2

1∥Γ̂− Γ0∥2Fro)
)

∥δ(n−1)
no ∥22

+ (η2 + ηω−1)

(
β2
2

2
∥ĝ − g0∥4G + 2α2

2∥Γ̂− Γ0∥2Fro · ∥ĝ − g0∥2G
)

.

Set ω = µno. For η ≤ 2/µno, we have

(1 + ηω)
(

1− 2η(µno − α1∥Γ̂− Γ0∥Fro) + 2η2(M2
no + 2α2

1∥Γ̂− Γ0∥2Fro)
)

= 1− (µno − 2α1∥Γ̂− Γ0∥Fro)η − 2(µ2
no − µnoα1∥Γ̂− Γ0∥Fro)η2

+ 2(1 + ηµno)(M
2
no + 2α2

1∥Γ̂− Γ0∥2Fro)η2

≤ 1− (µno − 2α1∥Γ̂− Γ0∥Fro)η
+
(

6M2
no − 2µ2

no + 2µnoα1∥Γ̂− Γ0∥Fro + 12α2
1∥Γ̂− Γ0∥2Fro

)

η2

=: 1− b(η)η,

where

b(η) = µno − 2α1∥Γ̂− Γ0∥Fro − (6M2
no − 2µ2

no + 2µnoα1∥Γ̂− Γ0∥Fro + 12α2
1∥Γ̂− Γ0∥2Fro)η.

By Lem. 21,

EZn∼P

[

∥v(n)no ∥22
]

≤ 2(K1 +K2∥Γ̂∥2Fro) + 2(κ1 + κ2∥Γ̂∥2Fro)∥δn−1
no ∥22.

It follows that

EZn∼P[∥δ(n)no ∥22] ≤ (1− b(η)η + 2(κ1 + κ2∥Γ̂∥2Fro)η2)∥δ(n−1)
no ∥22

+
3η

µno

(
β2
2

2
∥ĝ − g0∥4G + 2α2

2∥Γ̂− Γ0∥2Fro · ∥ĝ − g0∥2G
)

+ 2(K1 +K2∥Γ̂∥2Fro)η2.

Thus, it is clear that when ∥Γ̂− Γ0∥Fro ≤ µno/(4α1) and the learning rate satisfies

η ≤ min

{

2

µno

,
µno − 4α1∥Γ̂− Γ0∥Fro

12M2
no − 3µ2

no/2 + 4(κ1 + κ2∥Γ̂∥2Fro)

}

=
µno − 4α1∥Γ̂− Γ0∥Fro

12M2
no − 3µ2

no/2 + 4(κ1 + κ2∥Γ̂∥2Fro)
, (93)

we have 1− µnoη/2 ≥ 0 and

1− b(η)η + 2(κ1 + κ2∥Γ̂∥2Fro)η2 ≤ 1− µnoη

2
.

When η satisfies (93), it follows that

EZn∼P[∥δ(n)no ∥22] ≤
(

1− µnoη

2

)

∥δ(n−1)
no ∥22

+
3η

µno

(
β2
2

2
∥ĝ − g0∥4G + 2α2

2∥Γ̂− Γ0∥2Fro · ∥ĝ − g0∥2G
)

+ 2(K1 +K2∥Γ̂∥2Fro)η2.
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Finally, perform the same recursion in Appx. C.3 and we have

EDn∼Pn [∥δ(n)no ∥22] ≤
(

1− µnoη

2

)n

∥δ(0)no ∥22 +
4(K1 +K2∥Γ̂∥2Fro)η

µno

+
3

µ2
no

(

β2
2∥ĝ − g0∥4G + 4α2

2∥Γ̂− Γ0∥2Fro · ∥ĝ − g0∥2G
)

.
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F Detailed Discussion

This section provides details on comparisons and remarks following the statements of the main re-
sults in the main text, and details on the discussions summarized in Sec. 4 from the main text. In
Appx. F.1, we compare our results to generic state-of-the-art results on biased SGD, that is SGD
with errors in the stochastic gradients. In Appx. F.2, we discuss different orthogonalization method
in orthogonal statistical learning. In Appx. F.3, we discuss how to interleave the target and nuisance
estimation. In Appx. F.4, we describe the connection between our orthogonalized gradient to vari-
ance reduction method in the Monte Carlo estimation literature. In Appx. F.5, we discuss the double
robustness of SGD for dose-response estimation.

F.1 Comparison to Biased SGD

There are several ways to think about the bias induced by using an imperfect estimate ĝ as opposed
to the true nuisance g0 ∈ G. For the sake of discussion, we will define L(·, g0) and L(·, ĝ) as the
“original objective” and “shifted objective”, respectively. Accordingly, we will call θ⋆ the “original
minimizer” and denote by

θ̂⋆ = argmin
θ∈Θ

L(θ, ĝ). (94)

the “shifted minimizer”. The bias can be measured in terms of (i) the error ∥θ̂⋆ − θ⋆∥22 between the
original and shifted minimizers, (ii) the uniform error supθ |L(θ, g0)− L(θ, ĝ)| between the original
and shifted objectives, and (iii) some summary of the gradient bias

EZt∼P

[

S(θ(t−1), ĝ;Zt)
]

−∇θL(θ
(t), g0), (95)

of the oracle S (a vector-valued quantity) for step t = 1, . . . , n of the algorithm. Whether one
appeals to (i) or (ii) depends on whether the convergence guarantees are stated in terms of iterate
convergence or function value convergence; because we analyze convergence of iterates, our discus-
sion will cover (i) and (iii).

On (i), one applies the decomposition

∥θ(n) − θ⋆∥22 ≤ 2∥θ(n) − θ̂⋆∥22 + 2∥θ̂⋆ − θ⋆∥22,

and plugs an analysis of unbiased SGD from the current literature for the ∥θ(n) − θ̂⋆∥22 term. The
purpose of this substitution is to check how our theoretical results align with the known results on
unbiased SGD.

Bach and Moulines [2011, Thm. 1] show that for constant learning rate η = O(µ/M2), the iterate

θ(n) satisfies

EDn∼Pn [∥θ(n) − θ⋆∥22] ≲ exp
(

−µηn
2

)

∥θ(0) − θ⋆∥22 +
K1η

µ
+ ∥θ̂⋆ − θ⋆∥22. (96)

Cutler et al. [2023, Thm. 3] demonstrate that with the learning rate η = O(1/M), the iterates would
satisfy the following bound:

EDn∼Pn [∥θ(n) − θ⋆∥22] ≲
(

1− µη

2

)n

∥θ(0) − θ⋆∥22 +
K1η

µ
+ ∥θ̂⋆ − θ⋆∥22 (97)

In addition, Cutler et al. [2023, Thm. 6] provide the high probability bound of θ(n) that for η =
O(1/M), with probability at least 1− δ,

∥θ(n) − θ⋆∥22 ≲
(

1− µη

2

)n

∥θ(0) − θ⋆∥22 +
K1η

µ
log
(e

δ

)

+ ∥θ̂⋆ − θ⋆∥22 (98)

All of these bounds essentially agree, as we may apply (1− µη/2) ≤ exp(−µη/2). In comparison
to our Thm. 1, our bias term is stated directly in terms of the nuisance error ∥ĝ − g0∥2G . This

can be viewed as a refinement of the less transparent bias measurement ∥θ̂⋆ − θ⋆∥22. Moreover,
although (96)–(98) are of the same order as our results in Thm. 1 when the true nuisance g0 is
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available, all of the three bounds above require κ1 = 0 in Asm. 3(d). In this case, provide (97)
and (98) use a learning rate of the order O(1/M) (whereas the learning rate of (96) encounters an
additional condition number M/µ). Our learning rate recovers O(1/M) when κ1 = 0, and adapts
via the setting η = O(µ/(Mµ + κ1)) when κ1 > 0. Finally, the high probability bound (98)
requires a stronger assumption in the sense that Sθ(θ, g;Z)−Sθ(θ, g) is sub-Gaussian with uniform
parameter K1/2 for all θ ∈ Θ and g ∈ Gr (g0).

Returning to the bias in the stochastic gradient oracle (95), this case is handled quite generally in
Demidovich et al. [2023]. Their “ABC assumption” considers constants A,B,C, b, c ≥ 0 such that
the inequalities

⟨∇L(θ, g0),EZ∼P [Sθ(θ, ĝ;Z)]⟩ ≥ b∥∇L(θ, g0)∥22 + c (99)

EZ∼P∥Sθ(θ, ĝ;Z)∥22 ≤ 2A (L(θ, g0)− L(θ⋆, g0)) +B∥∇L(θ, g0)∥22 + C (100)

A+M (B + 1− 2b) <
µ

2
(101)

hold for all θ ∈ Rd (where the expectations are conditional on any randomness in ĝ).3 The bias is
really captured in the first of the three inequalities, whereas the third inequality places conditions on
the parameters of the problem that are not in the hands of the algorithm user. By strong convexity,
our Asm. 3(d) satisfies (100) withA = κ1/µ,B = 0,C = K1. The resulting convergence guarantee
[Demidovich et al., 2023, Thm. 5] gives

EDn∼Pn [∥θ(n) − θ⋆∥22] ≲
(

1− µη

2

)n

∥θ(0) − θ⋆∥22 +
ηK1

µ
+
K1 + c

µ2
.

for a learning rate set as

η ≤ min

{
2

µ
,
µ− 2(κ1/µ+M(1− 2b))

κ1

}

.

We would like to check how our theoretical results compare with the above application of generic
results on biased SGD. In our setting, the condition (101) reads κ1/µ +M(1 − 2b) < µ/2. We

assume neither this nor (99), and in our Thm. 1, replace the K1+c
µ2 term with a bias term that depends

directly on the nuisance error ∥ĝ − g0∥2G , either in the nuisance sensitive regime, or in the nuisance
insensitive regime.

F.2 Discussion of Full-sample Orthogonal Statistical Learning and Related Methods

Comparison of Orthogonalizing Operators. Constructing orthogonal losses or scores has been
widely studied in semiparametric inference, hypothesis testing, and machine learning. In semipara-
metric statistics, such constructions often rely on the efficient influence function, which character-
izes the asymptotic efficient estimation bound; see Bickel et al. [1993, Ch. 3], Tsiatis [2006, Ch. 4],
Van der Vaart [2000, Ch. 25], Luedtke and Chung [2024]. In hypothesis testing, orthogonal scores
were used by Neyman [1959, 1979] and Ferguson [2014] to guarantee the local unbiasedness of
specific tests based on the likelihood with finite-dimensional nuisance. In machine learning, the con-
struction of orthogonal scores was latter extended to non-likelihood losses in Wooldridge [1991] and
Liu et al. [2022], which aligns with our construction limited to the finite-dimensional nuisance case.
Recent work of orthogonalization in machine learning with infinite-dimensional nuisance relies on
the approach named concentrating-out [Newey, 1994, Chernozhukov et al., 2018a]. However, al-
though all these constructions produce Neyman orthogonal losses or scores, none of them consider
the stochastic design. Our work is complementary to these, providing non-asymptotic guarantees
for stochastic optimization.

Although these constructions might lead to different orthogonal scores, they can be the same at both
the target and the true nuisance. Specifically, when ℓ is the negative log-likelihood and G = Rk,
the concentrating-out approach and our NO gradient oracle Sno both produce the efficient score in
the semiparametric theory literature; see Newey [1994, Page 1359], Van der Vaart [2000, Ch. 25.4],
and Tsiatis [2006, Def. 8]. This identity can happen for infinite-dimensional nuisances as well. As

3The third inequality is actually A + M (B + 1− 2b) < µ, but the constant (1/2) to make the resulting
bound more comparable, in that their bound can only improve over ours for the stronger inequality.
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an example, consider the partial linear model from Appx. B.1.2, where the non-orthogonal loss is
defined as

ℓ(θ, g; z) =
1

2
(y − g(w)− ⟨θ, x⟩)2.

Chernozhukov et al. [2018a, Sec. 2.2.2] showed that the concentrating-out approach would produce
an orthogonal score under the concentrated-out nuisance φ0(θ) = Z 7→ EP[Y − ⟨θ,X⟩ |W ] as

S(θ⋆, φ0(θ⋆);Z) = −(X − EP [X |W ])(Y − EP [Y |W ]− ⟨θ⋆, X − EP [X |W ]⟩).
On the other hand, it is easy to verify that Hgg = I, Hθg = EP[X | W ], and Γ0∇gℓ(θ, g; z) =
Dgℓ(θ, g; z)[H

−1
gg Hθg], which implies that our orthogonal gradient oracle Sno in (11) has the same

form under the target θ⋆ and true nuisance g0(W ) = EP[Y − ⟨θ⋆, X⟩ |W ]:

Sno(θ⋆, g0;Z) = −(X − EP [X |W ])(Y − EP [Y |W ]− ⟨θ⋆, X − EP [X |W ]⟩).

Comparison with Debiased Machine Learning. In machine learning, debiasing typically refers
to reducing the impact of model selection error on the parameter or quantity of interest. In partic-
ular, mitigating the bias introduced by nuisance estimation is known as debiased machine learning
(DML), which has been recently studied by van der Laan et al. [2011], Shi et al. [2019], Cher-
nozhukov et al. [2024], van der Laan et al. [2025]. Some of the calculations used by DML estimators
have been shown to be amenable to computerization, simplifying their construction [Carone et al.,
2019, Ichimura and Newey, 2022, Luedtke, 2024]. Statistical learning methods that use debiasing
are also called orthogonal statistical learning (OSL) and have been studied in Foster and Syrgkanis
[2023], Liu et al. [2022], Zadik et al. [2018]. While the earlier studies focus on the empirical risk
minimization, our paper provide a stochastic approximation method in DML/OSL and establish the
convergence rate of the debiased estimation.

To strengthen the debiasing effect, one possible approach is to consider the higher-order Neyman
orthogonality. If the loss function satisfies the k-th order orthogonality at (θ⋆, g0), Zadik et al. [2018,

Cor. 4] show that we only need the nuisance estimator to converge at rate Op(n
− 1

2(k+1) ) to have the

nuisance effect in the order of Op(n
−1), which aligns with the nuisance insensitive rate in Thm. 1,

where k = 1 and the nuisance effect ∥ĝ − g0∥4G = Op(n
−1) when ∥ĝ − g0∥G = Op(n

−1/4).
Similar improvements in sensitivity to nuisance estimation rates have been developed previously
using higher-order influence functions [Pfanzagl, 1985, Robins et al., 2008].

For a range of problems, debiasing methods often lead to cross-product estimations consisting of
two nuisance estimators [Rotnitzky et al., 2021]. Such remainders frequently result from orthogo-
nalization procedures used in missing data problems and causal inference problems [Robins et al.,
1994, Robins and Rotnitzky, 1995, Laan and Robins, 2003]. Chernozhukov et al. [2024] consider
cases where Z = (W,Y ), g0(W ) = EP [Y |W ], and the target can be written as the averaged
moment of the form

θ⋆ = EP[m(g0;W )],

where E[m(g;W )] : G × W 7→ Rd is a continuous linear functional of g : W 7→ R. By
Riesz representation theorem, there uniquely exists a Riesz representer (RR) gRR

0 ∈ G such that
EP[m(g;W )] = EP[g

RR
0 (W )g(W )]. Then the debiased score for estimating θ⋆ is defined as

S(θ, g;Z) = m(g;W ) + gRR
0 (W )(Y − g(W ))− θ.

The debiasing effect on the nuisance turns out depending on the cross-product ∥ĝRR − gRR
0 ∥G · ∥ĝ−

g0∥G . Specifically, Chernozhukov et al. [2024, Asm. 4] requires the cross product to be in the order

Op(n
−1/2) to construct Op(n

−1) consistent target estimator. This aligns with the cross-product

∥ĝ − g0∥G · ∥Γ̂ − Γ0∥Fro in Thm. 3 where the same requirement needs to be satisfied to obtain a

Op(n
−1/2) consistent estimator. However, Thm. 3 also has a second, non-cross-product remainder

∥ĝ − g0∥4G that will only be small if ĝ approximates g0, making it so that our consistency guarantee

is robust to misspecification of Γ̂, but not to misspecification of ĝ.

62



F.3 Discussion of Interleaving Target and Nuisance Estimation

To propose the interleaving approach, we consider the case where we learn the nuisance from the
W-valued data W = (U, V ) from a probability measure Q. We assume that the true nuisance g0
satisfies g0 : U 7→ R and is the minimizer of the mean squared error over G:

g0 = argmin
g∈G

EQ

[
(g(U)− V )2

]
.

Suppose that we observe another data stream W1, . . . ,Wm sampled i.i.d. from Q, and that Sm =
{W1, . . . ,Wm} is independent of the parameter stream Dn. We define the sigma algebra Hm =
σ(Sm),m ≥ 1 as the nuisance filtration and the sigma algebra Fm,t = σ(Sm ∪ D(m−1)n+t), 0 ≤
t ≤ n as the parameter filtration. We assume that there are two stochastic processes ĝ(m),m ≥ 1
adapted to Hm and θ(m,t), 0 ≤ t ≤ n adapted to Fm,t, to which we refer as the nuisance estimator

and the parameter estimator, respectively. Intuitively, this means that the nuisance estimator ĝ(m)

can be updated now instead of being the fixed ĝ, and the parameter estimator θ(m,t) can be updated
n times between every two nuisance updates. Specifically, we use SGD as the parameter estimator.

We define θ(0,n) = θ(0) ∈ Θ and θ(i,0) = θ(i−1,n) for 1 ≤ i ≤ m, and produce the sequence

θ(i,1), . . . , θ(i,n) using n steps of the SGD update (8) initialized at θ(i,0).

Under Non-orthogonality. Consider the case that G is a reproducing kernel Hilbert space (RKHS)

with kernel k(·, ·). To obtain a sequence of nuisance estimator ĝ(m) on Hm, one possible approach
is to adopt the non-parametric stochastic approximation. With the assumption that the eigenvalues
(λj)j≥1 of covariance operator EQ[k(W, ·)⊗ k(W, ·)] decay polynomially at order j−α, Dieuleveut

and Bach [2016, Cor. 3] suggests that the non-parametric stochastic approximation ĝ(m) satisfies for
some C > 0,

ξm := ESm∼Qm

[

∥ĝ(m) − g0∥2G
]

≤ Cm− 2α−1
2α . (102)

This leads to the following nuisance sensitive rate for non-Neyman orthogonal losses.

Proposition 22. Suppose that ĝ(m) satisfies (102) and that ĝ(m) ∈ Gr (g0) and θ(m,t) ∈ Θ almost
surely for all m ≥ 1 and 0 ≤ t ≤ n. Under the same conditions to Thm. 1, it holds that

EDmn∪Sm∼Pmn⊗Qm [∥θ(m,n)−θ⋆∥22] ≲
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22

+m exp
(

−µηnm
4

)

+ (m− 2α−1
2α + η)((ηn)−1 + 1).

In addition, when (ηn)−1 = O(1), it holds that

EDmn∪Sm∼Pmn⊗Qm [∥θ(m,n) − θ⋆∥22] ≲
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22 +m− 2α−1
2α + n−1 + η.

The proof is provided in Appx. F.6. Prop. 22 demonstrates that interleaving the target and nuisance
estimation allows η ≍ n−1 since the nuisance update iterations guarantees the shrinking of the term
(1− µη/2)

mn
in this case. This is an improvement to Thm. 1 where η should satisfy (ηn)−1 = o(1)

to ensure (1− µη/2)n shrinking to zero.

Under Orthogonalized SGD. To establish a similar probability bound for OSGD, we assume that
the orthogonalizing operator Γ0 can be written as the minimizer of the following program:

Γ0 = argmin
Γ∈Gd

∗

EP

[
∥Sθ(θ⋆, g0;Z)− Γ∇gℓ(θ⋆, g0;Z)∥22

]
,

where G∗ is the dual space of G. When d is fixed, we assume that Γ0 can be estimated (coordinate-
wisely) from the data stream Sm using the stochastic approximation of Dieuleveut and Bach [2016],

which leads to a sequence of operator estimators Γ̂(m),m ≥ 1. For any s > 0, we define the
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following events for i = 0, 1, . . . ,m,

Ai(s) =
{

∥ĝ(i) − g0∥2G ≤ Cs−1i−
2α−1
2α

}

and Bi(s) =
{

∥Γ̂(i) − Γ0∥2Fro ≤ Cs−1i−
2α−1
2α

}

.

We assume that for some constant c ≥ 1 the nuisance estimator ĝ(i) satisfies

ESi

[

∥ĝ(i) − g0∥2cG | Ai−1(s
1/c), . . . ,A1(s

1/c)
]

≤ Cci−
(2α−1)c

2α . (103)

Additionally, we assume that Γ̂(i) decays in the same rate such that

ESi

[

∥Γ̂(i) − Γ0∥2cFro | Bi−1(s
1/c), . . . ,B1(s

1/c)
]

≤ Cci−
(2α−1)c

2α . (104)

With all the assumptions above, it is possible to provide a convergence bound of ∥θ(m,n) − θ⋆∥22 in
probability. The following proposition shows that estimations from Sm using OSGD contribute to

a nuisance insensitive rate of O(m− 2α−1
α ), compared to the nuisance sensitive rate O(m− 2α−1

2α ) in
Prop. 22 for non-Neyman orthogonal losses.

Proposition 23. Suppose that {ĝ(m),m ≥ 1} satisfies (103), and that {Γ̂(m),m ≥ 1} satisfies

(104). Assume that θ(m,t) ∈ Θ almost surely for all m ≥ 1 and 0 ≤ t ≤ n. For any s ≥ 0, define
δ(s) = O(ms) as (109). Under the same conditions to Thm. 1, with probability at least 1− δ(s), it
holds that

∥θ(m,n)−θ⋆∥22 ≲ s−1
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22

+ s−1
(

m exp
(

−µηnm
4

)

+ (s−2/cm− 2α−1
α + η)((ηn)−1 + 1)

)

.

In addition, when (ηn)−1 = O(1), with probability at least 1− δ(s), it holds that

∥θ(m,n)−θ⋆∥22 ≲ s−1
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22 + s−1
(

s−2/cm− 2α−1
α + n−1 + η

)

.

We refer the reader to Appx. F.7 for the proof.

F.4 Interpretation as Control Variate for Variance Reduction

The regression equation (9), which provides an alternate characterization of the orthogonalized
stochastic gradient oracle in the case of negative log-likelihood losses, yields an interesting con-
nection to the Monte Carlo estimation literature. Variance reduction techniques (or “swindles”) are
used in problems such as estimating the mean or variance of a statistic via Monte Carlo simulation.
Consider a probability space (Ω,F,P) with expectation denoted by E and an unknown vector-valued

target v ∈ Rd. We have v̂ : Ω → Rd, where we interpret v̂ as a (not necessarily unbiased) sample
estimate of v. Several variance reduction techniques fall into the category of control variates [Gra-
ham and Talay, 2013], where a random variable û : Ω → Rk with known expectations u = E[û]
and a matrix Γ ∈ Rd×k are used in the variance-reduced estimator

ṽ = v̂ − Γ(û− u).

A mean squared error decomposition yields the identity

E∥ṽ − v∥22 = E∥v̂ − v∥22 − 2E⟨v̂ − v,Γ(û− u)⟩+ E∥Γ(û− u)∥22
= E∥v̂ − v∥22 − 2E⟨v̂ − v,Γ(û− u)⟩+ o(∥Γ∥op),

indicating that for sufficiently “small” Γ, ṽ provides an improved estimator if v̂ − v and û− u have
high (multiple) correlation. While in the Monte Carlo literature, û and Γ can be chosen optimally
provided knowledge of the underlying data-generating mechanism, as Γ can be interpreted as the
regression function of v̂ − v on û − u.4 Outside of Monte Carlo simulation, this procedure can be

applied more widely if the user chooses û and Γ̂ based on intuition or limiting arguments.

4In the Monte Carlo settings, it often holds that d = k and Γ = αI for some constant α ∈ R. Then,
E⟨v̂ − v,Γ(û− u)⟩ can be replaced by αTr(Cov(v̂, û)) and o(∥Γ∥op) can be replaced by o(α).
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In the stochastic optimization setting, v represents the true gradient of the objective at a particular
parameter, while v̂ represents a stochastic gradient estimate from an oracle. Variance reduction
techniques have previously been applied in an incremental setting, in which a fixed data set of size n
is provided at initialization, and the algorithm may only make multiple passes through this same data
set [Gower et al., 2020]. Note that this differs from our fully stochastic setting, in which we receive a
fresh sample Zt on each iterate t = 1, . . . , n. For negative log-likelihood losses, our orthogonalized
oracle can be viewed in a similar light to control variate-based variance reduction methods (although
in an infinite-dimensional setting). To summarize, we have from (9) that

v = Sθ(θ⋆, g0)

v̂ = Sθ(θ⋆, ĝ)

u = 0 (by Asm. 6)

û = ∇gℓ(θ⋆, g0;Z)

ṽ = Sθ(θ⋆, g0;Z)− Γ0∇gℓ(θ⋆, g0;Z),

using the idealized parameters. Using the approximations for θ ̸= θ⋆, we have

v = Sθ(θ, g0)

v̂ = Sθ(θ, ĝ)

u ≈ 0 (for θ ≈ θ⋆)

û = ∇gℓ(θ, ĝ;Z)

ṽ = Sθ(θ, ĝ;Z)− Γ̂∇gℓ(θ, ĝ;Z).

In fact, using the derivative of the log likelihood in a control variate procedure has been explored
in the simulation literature as early as Johnstone and Velleman [1985], as the correlation between a
statistic and the score function has tight connections to the Cramér-Rao lower variance bound and
exponential families. We emphasize, however, that our method does not require the loss to be of
negative log-likelihood form nor any specific distributional knowledge to be applied.

F.5 Discussion of Double Robustness

We now study the double robustness of SGD for dose-response estimation as discussed in Bonvini
and Kennedy [2022]. Consider estimating the effect of the continuous treatment A ∈ A ⊂ R on
the outcome Y ∈ Y ⊂ R, which is defined as EY (a) (known as the dose-response function, DRF)
under the potential outcomes framework. Under standard assumptions, the DRF takes the form

θ0(t) = E [E[Y | A = t,X]] =

∫

E[Y | A = t,X = x]dP(x),

where X ∈ X ⊂ Rd is the measured confounders. Let Z = (Y,A,X) ∼ P with density p. We take
the following notations:

p(u) =
d

du
P(U ≤ u), π(a | x) = p(a, x)

p(x)
, µ(a, x) = E[Y | A = a,X = x], w(a, x) =

p(a)

π(a | x) .

We can rewrite θ0(t) equivalently as

θ0(t) = E [µ(t,X)] = E [w(t,X)Y | A = t] .

We also take the notations P(g(Z)) =
∫
g(z)dP(z), Pn(g(Z)) = n−1

∑n
i=1 g(Zi), ∥g∥L2(P) =

[P(g2(Z))]1/2 to denote the L2(P) norm, and ∥g∥L4(P) = [P(g4(Z))]1/4 to denote the L4(P) norm.

We now establish the procedure to estimate θ0(t) as Algorithm 1 in Bonvini and Kennedy [2022]
with slightly modification to apply SGD:

1. Observe i.i.d. samples {Z ′
i}mi=1 for the nuisance estimation and i.i.d. samples {Zi}ni=1 for

the parameter estimation.

2. Estimate µ, w, and m(a) = Pµ(a, ·) using {Z ′
i}mi=1 with µ̂, ŵ, and m̂(a) = Pn(µ̂(a, ·)),

respectively.
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3. Construct the pseudo-outcome

φ̂(Z) = ŵ(A,X)Y − µ̂(A,X) + m̂(A).

We also define the true nuisance as

φ0(Z) = w(A,X)Y − µ(A,X) +

∫

µ(A, x)dP(x).

4. Define the loss function via a parametric function class FΘ = {fθ : A 7→ R | θ ∈ Θ ⊂ Rd}
as

ℓ(θ, φ; z) =
1

2
(fθ(a)− φ(z))2. (105)

Define the stochastic gradient oracle as

Sθ(θ, φ; z) = (fθ(a)− φ(z))∇θfθ(a).

5. Solve the optimization problem

θ⋆ = argmin
θ∈Θ

E [ℓ(θ, φ0;Z)]

using SGD with the stochastic gradient Sθ(θ, φ̂;Z) by

θ(n) = θ(n−1) − ηSθ(θ
(n−1), φ̂;Zn−1), θ(0) ∈ Θ. (106)

As demonstrated in Bonvini and Kennedy [2022], this procedure would yield a doubly robust ERM
estimator. In the following proposition, we claim that double robustness would be preserved if the
SGD estimator is adopted instead.

Proposition 24. Assume that E
[
∥∇θfθ⋆(A)∥22

]1/2 ≤ CA. Suppose that Asm. 3 holds and

θ(0), . . . , θ(n) ∈ Θ almost surely for θ(n) in (106). If η ≤ µ/2(Mµ + κ1), the iterates of (106)
satisfy

EDn∼Pn [∥θ(n) − θ⋆∥22] ≲
(

1− µη

2

)n

+ η

+ ∥w − ŵ∥L4(P)∥µ− µ̂∥L4(P) +max
a∈A

|(Pn − P) {µ̂(a,X)}|2 .

Prop. 24 follows directly from the following two lemmas, Lem. 25 and Lem. 26, and the nui-

sance sensitive rate in Thm. 1. Whenever the empirical estimation maxa∈A |(Pn − P) {µ̂(a,X)}|2
shrinks, Prop. 24 suggests that the θ(n) would converge to the the target parameter when either ŵ or
µ̂ is correctly specified.

Lemma 25. Assume that E
[
∥∇θfθ⋆(A)∥22

]1/2 ≤ CA. Then for the loss defined in (105), we have

|DφDθL(θ⋆, φ̄)[θ − θ⋆, φ̂− φ0]| ≤ CA∥φ̂− φ0∥G∥θ − θ⋆∥2,

where ∥φ̂− φ0∥G = E[E[φ̂(Z)− φ0(Z) | A]2]1/2 = E[(E[φ̂(Z) | A]− θ0(A))
2]1/2.

Proof. Let r̂(t) = E [φ̂(Z) | A = t]− θ0(t). Note that

DφDθL(θ⋆, φ̄)[θ − θ⋆, φ̂− φ0] = −E [(φ̂(Z)− φ0(Z))⟨∇θfθ⋆(A), θ − θ⋆⟩]
= −E [(E [φ̂(Z) | A]− E [φ0(Z) | A])⟨∇θfθ⋆(A), θ − θ⋆⟩]
= −E [(E [φ̂(Z) | A]− θ0(A))⟨∇θfθ⋆(A), θ − θ⋆⟩]
= −E [r̂(A)⟨∇θfθ⋆(A), θ − θ⋆⟩] .

66



Thus, by the assumption that E
[
∥∇θfθ⋆(A)∥22

]1/2 ≤ CA,

|DφDθL(θ⋆, φ̄)[θ − θ⋆, φ̂− φ0]| ≤ E

[

|r̂(A)|2
]1/2

E
[
∥∇θfθ⋆(A)∥22

]1/2 ∥θ − θ⋆∥2

≤ CAE

[

|r̂(A)|2
]1/2

∥θ − θ⋆∥2.

Lemma 26. For the norm defined in Lem. 25, we have

∥φ̂− φ0∥G ≤ ∥w − ŵ∥1/2L4(P)
∥µ− µ̂∥1/2L4(P)

+max
a∈A

|(Pn − P) {µ̂(t,X)}| .

Proof. Lemma 1 of Bonvini and Kennedy [2022] demonstrates that

|r̂(t)| ≤ ∥w − ŵ∥t∥µ− µ̂∥t + |(Pn − P) {µ̂(t,X)}| , (107)

where ∥f∥2t =
∫
f2(z)dP(z | A = t). By (107), we have

∥φ̂− φ0∥G ≤ ∥∥w − ŵ∥A∥µ− µ̂∥A + |(Pn − P)t=A {µ̂(t,X)}|∥L2(PA)

≤ ∥w − ŵ∥1/2L4(P)
∥µ− µ̂∥1/2L4(P)

+max
a∈A

|(Pn − P) {µ̂(t,X)}| .

F.6 Proof of Proposition 22

Proof. For simplicity, we use the notation Em,n to replace EDmn∪Sm∼Pmn⊗Qm . Let qn = (1 −
µη/2)n, δ(m,n) = θ(m,n) − θ⋆, and δ(0) = δ(0,n). Thus, by Thm. 1,

Em,n[∥δ(m,n)∥22] ≤ qnEm−1,n[∥δ(m,0)∥22] +
2α2

1

µ2
ξm +

4K1η

µ

= qnEm−1,n[∥δ(m−1,n)∥22] +
2α2

1

µ2
ξm +

4K1η

µ
.

This recursive formula gives a complete bound for θ(m,n) as

Em,n[∥δ(m,n)∥22] ≤ qmn ∥δ(0)∥22 +
2α2

1

µ2

m∑

i=1

qm−i
n ξi +

4K1η

µ

m∑

i=1

qm−i
n .

By (96), we assume that ξm ≤ Cm− 2α−1
2α for some C > 0. Note that

qn =
(

1− µη

2

)n

≤ exp
(

−µηn
2

)

.

For the second term, when qn ∈ (0, 1) we have

m∑

i=1

qm−i
n ξi =

⌊m/2⌋
∑

i=1

qm−i
n ξi +

m∑

i=⌊m/2⌋+1

qm−i
n ξi

≤ C

⌊m/2⌋
∑

i=1

qm−i
n + C

(m

2

)− 2α−1
2α

m∑

i=⌊m/2⌋+1

qm−i
n

≤ Cm

2
qm/2
n +

C

1− qn

(m

2

)− 2α−1
2α

≤ Cm

2
exp

(

−µηnm
4

)

+
C

1− qn

(m

2

)− 2α−1
2α

.
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The last term is easy to bound since for qn ∈ (0, 1),

m∑

i=1

qm−i
i =

m−1∑

i=0

qin ≤ 1

1− qn
.

We claim that for some constant c > 0,

1− qn = 1−
(

1− µη

2

)n

≥ cmin
{µηn

2
, 1
}

. (108)

With (108), we have

1

1− qn
≤ c−1

(
2

µηn
+ 1

)

,

which implies that

Em,n[∥δ(m,n)∥22] = O
(

qmn ∥δ(0)∥22 +m exp
(

−µηnm
4

)

+
(

m− 2α−1
2α + η

)( 1

ηn
+ 1

))

.

When (ηn)−1 = O(1), the bound above reduces to

Em,n[∥δ(m,n)∥22] = O
(

qmn ∥δ(0)∥22 +m− 2α−1
2α + n−1 + η

)

.

We will finish the proof by showing (108). The key step is to show 1 − e−x ≥ cmin(x, 1) for all
x > 0 and some constant c > 0.

Let f(x) = 1− e−x − x/2, for x ∈ (0, 1) we have

f ′(x) = e−x − 1

2







> 0 for x ∈ (0, log 2),

= 0 for x = log 2,

< 0 for x ∈ (log 2, 1).

Thus, f(x) ≥ f(log 2) = (1 − log 2)/2 > 0 for x ∈ (0, 1), which implies that 1 − e−x > x/2 for
x ∈ (0, 1). Note that 1 − e−x ≥ 1 − e−1 for x ≥ 1. Let c = min(2−1, 1 − e−1). Then we have
1− e−x ≥ cmin(x, 1).

It follows that

1− qn = 1− exp

(

−n log
(

1

1− µη/2

))

≥ cmin

{

n log

(
1

1− µη/2

)

, 1

}

.

Since x− 1 ≥ log x for all x > 0, we have

log (1− µη/2) ≤ 1− µη/2− 1 = −µη/2,
which implies that

n log

(
1

1− µη/2

)

≥ µηn

2
.

Thus, we complete the proof.

68



F.7 Proof of Proposition 23

Proof. Given s > 0, we define Ai = Ai(s
1/c) and Bi = Bi(s

1/c) for i = 0, . . . ,m for simplicity.
First, since c ≥ 1, by (103) and Markov inequality, for i = 1, . . . ,m,

P [Ai | Ai−1, . . . ,A0] = 1− P

[

∥ĝ(i) − g0∥2G ≥ Cs−1/ci−
2α−1
2α | Ai−1, . . . ,A0

]

= 1− P

[

∥ĝ(i) − g0∥2cG ≥ Ccs−1i−
(2α−1)c

2α | Ai−1, . . . ,A0

]

≥ 1− ESm

[
∥ĝ(i) − g0∥2cG | Ai−1, . . . ,A1

]

Ccs−1i−
(2α−1)c

2α

≥ 1− s.

We assume that P [A0] = P [B0] = 1, and we have

P [Am,Ai−1, . . . ,A1,A0] = P [Am | Am−1, . . . ,A1] . . .P [A1 | A0]P [A0]

≥
m∏

i=1

(1− s) = (1− s)m.

Similarly, we have

P [Bm,Bi−1, . . . ,B1] ≥ (1− s)m.

we consider the conditional mean squared error of θ(m,n) given (∩m
i=0Ai) ∩ (∩m

i=0Bi). By similar
proof to Prop. 22, we can show that for some constant C1 > 0,

EDmn∪Sm
[∥θ(m,n)−θ⋆∥22 | (∩m

i=0Ai) ∩ (∩m
i=0Bi)] ≤ C1

(

1− µη

2

)mn

∥θ(0) − θ⋆∥22

+ C1

(

m exp
(

−µηnm
4

)

+ (s−2/cm− 2α−1
α + η)((ηn)−1 + 1)

)

.

We define the event of interest as

E(s) =
{

∥θ(m,n) − θ⋆∥22 ≤ C1s
−1fs(m,n)

}

,

where fs(m,n) is defined as

fs(m,n) =
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22

+m exp
(

−µηnm
4

)

+ (s−2/cm− 2α−1
α + η)((ηn)−1 + 1).

By Markov inequality, we have

P [E3(s) | (∩m
i=0Ai) ∩ (∩m

i=0Bi)] ≥ 1− EDmn∪Sm
[∥θ(m,n) − θ⋆∥22 | (∩m

i=0Ai) ∩ (∩m
i=0Bi)]

C1s−1f(m,n)

≥ 1− s.

Since

P [E3(s)c] = EP

[
1E3(s)c1(∩m

i=0Ai)∩(∩m
i=0Bi)

]
+ EP

[
1E3(s)c1((∩m

i=0Ai)∩(∩m
i=0Bi))c

]

≤ EP

[
1E3(s)c∩(∩m

i=0Ai)∩(∩m
i=0Bi)

]
+ EP

[
1((∩m

i=0Ai)∩(∩m
i=0Bi))c

]

= P [E3(s)c ∩ (∩m
i=0Ai) ∩ (∩m

i=0Bi)] + P [((∩m
i=0Ai) ∩ (∩m

i=0Bi))
c]

≤ P [E3(s)c | (∩m
i=0Ai) ∩ (∩m

i=0Bi)] + P [(∩m
i=0Ai)

c] + P [(∩m
i=0Bi)

c] ,

which implies that

P [E3(s)] ≥ 2(1− s)m − s− 1.
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Define δ(s) as

δ(s) = s+ 2(1− (1− s)m) = O(ms). (109)

Then, with probability at least 1− δ(s), we have

∥θ(m,n)−θ⋆∥22 ≲ s−1
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22

+ s−1
(

m exp
(

−µηnm
4

)

+ (s−2/cm− 2α−1
α + η)((ηn)−1 + 1)

)

.

When (ηn)−1 = O(1), it follows that

∥θ(m,n)−θ⋆∥22 ≲ s−1
(

1− µη

2

)mn

∥θ(0) − θ⋆∥22 + s−1
(

s−2/cm− 2α−1
α + n−1 + η

)

.
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G Numerical Experiments

This section provides numerical experiments of the proposed stochastic methods in this paper.
In Appx. G.1, we design a numerical experiment to illustrate our orthogonalization method. In
Appx. G.2, we design simulations based on a partially linear model. In Appx. G.3, we conduct a
real data analysis with synthetic outcome to evaluate the performance of our methods. Code for
reproduction can be found at https://fachengyu.github.io/.

G.1 Numerical Illustration

In this section, we design a numerical experiment to illustrate how our orthogonalization method
effects the target estimation as shown in Fig. 1 from the main text.

Settings. Consider Θ ∈ R and G = R. Let L(θ, g) be a real-valued risk function defined as

L(θ, g) := L(u) =
1

2
⟨u,Au⟩+ λ sin2(⟨u,Bu⟩), (110)

where u = (θ, g)⊤ ∈ R2, λ = 0.02 is the regularization parameter, and

A =

(
8 3
3 2

)

≻ 0 and B =

(
2 −1
−1 1.5

)

≻ 0.

It is easy to see that (0, 0) is the global minimizer of L since L(θ, g) ≥ 0. Let q(u) = ⟨u,Bu⟩. The
gradient w.r.t. u is

∇uL(u) = Au+ 4λ sin(q(u)) cos(q(u))Bu

= (A+ 2λ sin(2q(u))B)u.

Since A + 2λ sin(2q(u))B ≽ A − 0.04B ≻ 0, it is clear that (0, 0) is the only stationary point,
implying that (0, 0) is the only minimizer of L. Furthermore, we can obtain the Hessian w.r.t. u as

∇2
uL(u) = A+ 2λ sin(2q(u))B + 8λ cos(2q(u))Bu(Bu)⊤, (111)

which implies that L(·, g) is not convex in R given any g ∈ Gr (g0). However, when Θ is a small
neighborhood around zero, it is still possible to have L(·, g) strongly convex for in Θ given any
g ∈ Gr (g0).

Orthogonalization. To orthogonalize L, we first derive the orthogonal gradient oracle using (11),
and then integral the oracle w.r.t. θ to obtain the orthogonalized loss Lno.

Let H be the Hessian at (0, 0). By (111), we know that H = A, implying Hθg = A12 and Hgg =
A22. Since the gradient w.r.t. θ satisfies

∇θL(θ, g) = [1, 0](A+ 2λ sin(2q(u))B)u

= (A11 + 2λ sin(2q(θ, g))B11)θ + (A12 + 2λ sin(2q(θ, g))B12)g,

and the gradient w.r.t. g satisfies

∇gL(θ, g) = [0, 1](A+ 2λ sin(2q(u))B)u

= (A21 + 2λ sin(2q(θ, g))B21)θ + (A22 + 2λ sin(2q(u))B22)g,

follow the construction of (11) and we obtain the orthogonal gradient oracle as

Sno(θ, g) = ∇θL(θ, g)−HθgH
−1
gg ∇gL(θ, g)

= (a+ 2bλ sin(2q(θ, g)))θ + 2cλ sin(2q(θ, g))g,

where a = A11 − A12A
−1
22 A21, b = B11 − A12A

−1
22 B21, and c = B12 − A12A

−1
22 B22. Finally, we

can integral Sno(θ, g) w.r.t. θ and recover the orthognalized loss Lno as

Lno(θ, g) =

∫ θ

0

Sno(s, g)ds.
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Numerical Computation. Usually, Sno(s, g) contains a form of integral, which needs to be nu-
merically computed. For the example introduced above, we can simplify Lno(θ, g) to stabilize the

numerical computation. Note that ∇θ sin
2(q(θ, g)) = sin(2q(θ, g))(B11θ +B12g). Then

2bλ

∫ θ

0

sin(2q(s, g))sds =
2bλ

B11

(
∫ θ

0

sin(2q(s, g))(B11s+B12g)ds−B12g

∫ θ

0

sin(2q(s, g))ds

)

=
2bλ

B11

(

sin2(q(θ, g))−B12g

∫ θ

0

sin(2q(s, g))ds

)

.

It follows that the orthogonalized loss Lno admits the following form

Lno(θ, g) =
a

2
θ2 +

2bλ

B11
sin2(q(θ, g)) + 2

(

c− B12

B11
b

)

λg

∫ θ

0

sin(2q(s, g))ds,

which implies that only the integral of sin(2q(s, g)) w.r.t. s needs to be computed.

G.2 Simulations

G.2.1 Data Generating Process

To demonstrate Thm. 1 and Thm. 3, we revisit the partially linear model and the corresponding
orthogonal and non-orthogonal losses in Appx. B.1. Specifically, (X,W, Y ) ∈ Rd×Rd×R satisfies
the following partially linear model where the nonlinear function is determined by the distribution
of (W,U) ∈ Rd × R:

Y = ⟨θ0, X⟩+ α0(W ) + ϵ, (112)

U = α0(W ) + ξ, (113)

where θ0 ∈ Rd is the true parameter, α0 : W 7→ R is the true nonlinear function, ϵ and ξ are
independent noises that satisfy E[ϵ | X,W ] = 0 and E[ξ | W ] = 0. It is clear that α0(W ) = E[U |
W ]. In our simulations, we choose d = 2 and θ0 = [−0.5 1]⊤.

To get samples for simulations, we first generate (X,W ) under the Gaussian model
[
X
W

]

= N
([

µX
µW

]

,

[
(1 + δ)I2 λI2
λI2 (1 + δ)I2

])

, (114)

where µX = [1 1]⊤, µW = [2 2]⊤, I2 ∈ R2×2 is the identity matrix, λ ∈ [0, 1] is used to
control the correlation between X and W , and δ = 0.05 is used to prevent the degeneration of the
covariance matrix. For simplicity, we define the nonlinear function α0 as

α0(w) = 0.5× cos

(
w1 + w2

2

)

+ 0.5× sin

(
w1 + w2

2

)

, (115)

where w = [w1 w2]
⊤ ∈ R2. We then generate Y and U using independent Gaussian noises

ϵ ∼ N (0, 1) and ξ ∼ N (0, 1) based on (112) and (113), respectively.

G.2.2 Stochastic Gradient Oracles

To estimate the true parameter θ0 using stochastic gradients, we need to design a correspond loss
whose minimizer θ⋆ is equal to θ0. Based on Appx. B.1, there are two types of loss, the orthogonal
loss and the non-orthogonal loss, available for this goal. We will derive the stochastic gradient oracle
for these two losses and further derive the orthogonalized gradient oracle for the non-orthogonal loss.

Orthogonal loss. Recall the orthogonal loss in Appx. B.1.1:

ℓ(θ, g; z) =
1

2
[y − gY (w)− ⟨θ, x− gX(w)⟩]2, (116)

where g = (gY , gX) : W → R×Rd and the norm ∥·∥G is defined in (27). The true nuisance for this
loss is g0 = (g0,X , g0,Y ), where g0,Y (w) := EP [Y |W = w] and g0,X(w) := EP [X |W = w] .
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In fact, the explicit expression for g0 can be easily obtained as

g0,Y (w) = ⟨θ0, g0,X(w)⟩+ α0(w), (117)

g0,X(w) = µX +
λ

1.05
(w − µW ). (118)

From (112) and (117), it is clear that

Y − g0,Y (W ) = ⟨θ0, X − g0,X(W )⟩+ ϵ,

which implies that θ⋆ = θ0 by Lem. 4. The stochastic gradient oracle for the orthogonal loss (116)
is then defined as

Sθ(θ, g; z) = −(y − gY (w)− ⟨θ, x− gX(w)⟩)(x− gX(w)). (119)

Non-orthogonal loss. We also provide the non-orthogonal loss in Appx. B.1.2 as

ℓ(θ, g; z) =
1

2
[y − g(w)− ⟨θ, x⟩]2, (120)

where g : W 7→ R and the norm ∥ · ∥G is now defined in (36). The true nuisance for this non-
orthogonal loss satisfies

g0(w) = α0(w) = E [U |W = w] . (121)

By Lem. 5, we have θ⋆ = θ0. The stochastic gradient oracle for the orthogonal loss (120) is then
defined as

Sθ(θ, g; z) = −(y − g(w)− ⟨θ, x⟩)x. (122)

Orthogonalized gradient oracle. Since we perform orthogonalization on the non-orthogonal loss,
we have θ⋆ = θ0 being the same target parameter. By (22) in Appx. B.1.2, the Neyman orthogonal-
ized gradient oracle for this non-orthogonal loss (120) is given by

Sno(θ, g; z) = −(y − g(w)− ⟨θ, x⟩)(x− E [X |W = w]). (123)

G.2.3 Estimation Methods

Throughout the experiments, we estimate the nuisances and the orthogonalizing operator using full-
batch data and stream data, respectively.

Nuisance estimation. Note that the true nuisances for the orthogonal loss and the non-orthogonal
loss are conditional expectation given W . To conduct nonparametric regression, we use random
Fourier feature (RFF) [Rahimi and Recht, 2007] using the kernel w 7→ exp

(
−γ · ∥w∥22

)
to generate

a randomized feature map for W .

The nuisance estimation procedure for obtaining ĝ(m) using full batch data can be summarized as

1. Fit RFF sampler with 20 components using m i.i.d. samples from PW |λ.

2. Fit Ridge regressions where the regularization parameter is set to be 0.01/m. Specifically,

• For the orthogonal loss, fit two Ridge regressions using m i.i.d. samples from the
joint distribution PX,W,Y |λ and the fitted RFF sampler to coordinate-wisely estimate

E[X | W ]. With the same data, fit one Ridge regression using the fitted RFF sampler
to estimate E[Y |W ].

• For the non-orthogonal loss, fit one Ridge regression using m i.i.d. samples from the
joint distribution PX,W,Y |λ and the fitted RFF sampler to estimate E[U |W ].

To estimate nuisances using stream data, instead of fit a Ridge regression each time, we perform
SGD for the Ridge regression loss. The procedure can be summarized as

1. Initialize RFF sampler with 20 components using n0 i.i.d. samples (Wi)
n0
i=1 from PW |λ.

2. Perform SGD update once observing a mini-batch of i.i.d. samples from the joint distribu-
tion PX,W,Y |λ with size ng . Specifically,
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• For the orthogonal loss, perform two SGD with the Ridge loss for m iterations to
estimate E[X |W ] coordinate-wisely. With the same data perform another SGD with
the Ridge loss for m iterations to estimate E[Y |W ].

• For the non-orthogonal loss, perform one SGD with the Ridge loss for m iterations to
estimate E[U |W ].

Orthogonalizing operator estimation. To approximate the orthogonalizing operator Γ0, it suffices
to estimate E [X |W ] by (21). To that end, we use the same method as the nuisance estimation. The

orthogonalizing operator estimation procedure for obtaining Γ̂(k) can be summarized as

1. Fit RFF sampler with 20 components using k i.i.d. samples (W ′
i )

k
i=1 from PW |λ.

2. Fit two Ridge regressions with the regularization parameter being 0.01/k using the fitted

RFF sampler and another k i.i.d. samples (X ′
i,W

′
i )

2k
i=k to coordinate-wisely estimate E[X |

W ].

Target estimation. After the estimation of nuisances and orthogonalizing operator, we perform
stochastic gradient descent (SGD) to estimate θ⋆ using each of the three stochastic gradient oracles
in (119), (122), and (123) on n i.i.d. samples drawn from the joint distribution PX,W,U,Y . The
learning rates of all the three SGDs are fixed during the training.

G.2.4 Simulation Results

Setup. For each nuisance estimation setting, we study three types of estimation methods for learning

θ0 established in this paper: (1) (orthogonal loss) obtain nuisance estimator ĝ(m) = (ĝ
(m)
Y , ĝ

(m)
X ) of

(117) and (118) and then perform SGD to obtain θ(n) using the gradient oracle (119) after plugging

in ĝ(m); (2) (non-orthogonal loss) obtain the nuisance estimator ĝ(m) = α̂(m) of (121) and then

perform SGD to obtain θ(n) using the gradient oracle (122) after plugging in ĝ(m); (3) (OSGD)

obtain the nuisance estimator ĝ(m) of (121) and the orthogonalizing operator estimator Γ̂(k) of (21),

and then perform SGD to obtain θ(n) using the gradient oracle (123) after plugging in ĝ(m) and

Γ̂(k). Each method is independently repeated 20 times. For nuisance estimated using stream data,
we allow the procedure repeated by plugging in updated nuisance estimators and an updated operator
estimator, where the nuisances get updated for 2000 iterations after every 2000 target SGD iterations.

Evaluation. We evaluate the performance of nuisance estimators using the corresponding norms
defined in (27) and (36). Specifically, for method (1), we evaluate the nuisance estimation by

∥ĝ(m) − g0∥G = max

{

E

[

∥ĝ(m)
X (W )− g0,X(W )∥42

] 1
4

,E
[

(ĝ
(m)
Y (W )− g0,Y (W ))4

] 1
4

}

. (124)

For method (2) and (3), we evaluate the nuisance estimation by

∥ĝ(m) − g0∥G = E

[

∥α̂(m)(W )− α0(W )∥22
] 1

2

. (125)

We evaluate Γ̂(k) : g 7→ E[ĝ
(k)
X (W )g(W )] in method (3) using the Frobenius norm ∥Γ̂(k) − Γ0∥Fro,

which is defined as

∥Γ̂(k) − Γ0∥Fro = E

[

∥ĝ(k)X (W )− ĝ0,X(W )∥22
] 1

2

. (126)

Finally, we evaluate the target estimation using two kinds of criterion: (a) the relative error
∥θ(n)−θ0∥2

∥θ0∥2
, and (b) the risk L(θ(n), g0) − L(θ⋆, g0) where L(θ, g) = E[ℓ(θ, g;Z)]. For method

(1), ℓ(θ, g; z) is the orthogonal loss defined in (116) while for method (2) and (3), ℓ(θ, g; z) is the
non-orthogonal loss defined in (120).

Results using nuisances fitted on full-batch data. We first estimate the target using prefitted
nuisances and operator. The estimation errors of nuisances and the operator fitted on full-batch data
are shown in Fig. 2, where all estimation converges when the sample size m increases and less
samples are usually required to obtain the same error level when λ increases.
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Figure 2: The Nuisance and Orthogonalizing Operator Fitted on Full-Batch Simulated Data.
The y-axis measures the corresponding error defined in (124) - (126) and the x-axis displays the
sample size of data used to estimate the nuisance and operator.

Figure 3: SGD for Orthogonal Loss with the Nuisance Fitted on Full-Batch Simulated Data.
The x-axis represents the SGD iteration. Top: The y-axis measures the relative error. Bottom: The
y-axis measures the risk.

The performances of SGDs using prefitted nuisances and stochastic gradient oracles (119), (122),
and (123) are shown in Fig. 3, Fig. 4, and Fig. 5, respectively. These figures suggest that when
λ increases, i.e., the correlation between X and W increases, usually more iterations are required
to have SGD converged due to the difficulty of separating the effect of X from W . In addition,
a well prefitted nuisance estimator would largely reduce the SGD estimation error, which aligns
with Thm. 1. This improvement would be more obvious as λ increases. Fig. 5 also shows that either
using a well estimated nuisance or a well estimated orthogonalizing operator can improve the OSGD
performance, and that OSGD using both well prefitted nuisance and operator would perform nearly
the same as OSGD using the true nuisance and the true operator.

Results using nuisances fitted on stream data. We then study the interleaving the nuisance and
target estimations discussed in Appx. F.3. Here, Both the nuisance and the operator are learned using
the same data stream and the results are shown in Fig. 6. Compared with Fig. 2, nuisances estimated
using stream data usually has larger error and need more iterations to converge due to mini-batch,
learning rate, and other tuning parameters.

The performances of SGDs by interleaving nuisance and target updates with stochastic gradient
oracles (119), (122), and (123) are shown in Fig. 7, Fig. 8, and Fig. 9, respectively. For all the three
stochastic gradients, when λ increases, the relative errors of the target SGD always get larger and
their convergence rates become slower. There are obvious errors for SGDs using gradient oracles
(119) and (122) in Fig. 7 and Fig. 8 since nuisances are not well estimated. However, OSGD
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Figure 4: SGD for Non-Orthogonal Loss with the Nuisance Fitted on Full-Batch Simulated
Data. The x-axis represents the SGD iteration. Top: The y-axis measures the relative error. Bottom:
The y-axis measures the risk.

Figure 5: OSGD with the Nuisance and Operator Fitted on Full-Batch Simulated Data. Here,
m1 = 500, m2 = 10000, k1 = 300, k2 = 10000. The x-axis represents the OSGD iteration. Top:
The y-axis measures the relative error. Bottom: The y-axis measures the risk.

Figure 6: Nuisance and Orthogonalizing Operator Fitted on Simulated Stream Data. The y-
axis measures the corresponding error defined in (124) - (126) and the x-axis displays the sample
size of data used to estimate the nuisance and operator.
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Figure 7: SGD for Orthogonal Loss with the Nuisance Fitted on Simulated Stream Data. The
x-axis represents the SGD iteration. Top: The y-axis measures the relative error. Bottom: The
y-axis measures the risk.

Figure 8: SGD for Non-Orthogonal Loss with the Nuisance Fitted on Simulated Stream Data.
The x-axis represents the SGD iteration. Top: The y-axis measures the relative error. Bottom: The
y-axis measures the risk.

performs perfectly as shown in Fig. 9, which verifies the analysis of Thm. 3 that using an estimated
orthogonalizing operator would reduce the bias from nuisance estimation.

G.3 Real Data Analysis

We consider the Diabetes 130-Hospitals Dataset [Clore et al., 2014] as the real dataset example. We
use six of these features as covariates, which are summarized in Tab. 4. We take the binary feature
“change” as the input X ∈ {0, 1} and take the rest five features as the control W ∈ R5.

G.3.1 Synthetic outcomes

To evaluate the performance of our proposed methods, we use the synthetic outcome instead of a
real outcome to examine the performance of our proposed methods. Using the synthetic outcome
is common in causal inference; see Nie and Wager [2021, Sec. 4.1]. In this real data analysis, we
generate outcome according to the following partially linear model:

Y = θ̃0 ·X + α̃0(W ) + 0.5× ϵ, (127)

U = α̃0(W ) + 0.5× ξ, (128)

77



Figure 9: OSGD with the Nuisance Fitted on Simulated Stream Data. The x-axis represents the
SGD iteration. Top: The y-axis measures the relative error. Bottom: The y-axis measures the risk.

Feature Description

change Indicates if there was a change in diabetic medications.

time in hospital Integer number of days between admission and discharge.

num lab procedures Integer number of lab tests performed during the encounter.

num procedures Integer number of procedures (other than lab tests) performed during the encounter.

num medications Integer number of distinct generic names administered during the encounter.

number diagnoses Integer number of diagnoses.

Table 4: Features used for real data analysis.

where θ̃0 = −1, ϵ ∼ N (0, 1) and ξ ∼ N (0, 1) are independent noises, and α̃0 : R5 7→ R satisfies
that for w = (w1, . . . , w5),

α̃0(w) = 0.5× cos

(

5−1
5∑

i=1

wi

)

+ 0.5× sin

(

5−1
5∑

i=1

wi

)

.

Similar to Appx. G.2.2, we have θ⋆ = θ̃0 in this case.

G.3.2 Real Data Results

Setup. We consider the same three stochastic gradient oracles as Appx. G.2.2 and the same two
nuisance estimation methods as Appx. G.2.3 except that we use logistic regression on full batch data
and SGD of the logistic loss on stream data for estimating E[X | W ]. The setup of SGD using
prefitted nuisances for this real data analysis is the same as Appx. G.2.4. For nuisance estimated
using stream data, we update nuisances for 100 iterations after every 500 target SGD iterations.

Evaluation. Since the true nuisances E[X | W ] and E[Y | W ] are unknown, we evaluate the per-

formance of nuisance estimation ĝ(m) = (ĝ
(m)
Y , ĝ

(m)
X ) for the orthogonal loss by the mean squared

error:

MSE1(ĝ
(m)) = max

{

EP

[

(ĝ
(m)
Y (W )− Y )2

]

,EP

[

(ĝ
(m)
X (W )−X)2

]}

. (129)

We adopt the nuisance estimation error ∥ĝ(n) − g0∥G defined in (125) as the nuisance evaluation for
non-orthogonal loss due to the synthetic outcome, where now g0 = α̃0. For the operator estimation
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Figure 10: Nuisance and Orthogonalizing Operator Fitted on Full-Batch Real Data. The x-
axis displays the sample size of data used to estimate the nuisance and operator. Left. The y-axis
measure the nuisance error defined in (125). Middle. The y-axis measure the nuisance estimation
MSE defined in (129). Right. The y-axis measure the operator estimation MSE defined in (130).

Figure 11: Stochastic Gradients with Nuisance Fitted on Full-Batch Real Data. Here, m1 = 32,
m2 = 64, m3 = 128, m4 = 8, m5 = 128, k1 = 32 and k2 = 128. The x-axis represents the
SGD iteration using corresponding stochastic gradient. Top: The y-axis measures the relative error.
Bottom: The y-axis measures the risk.

Γ̂(m) : g 7→ E[ĝ
(m)
X (W )g(W )], evaluate its performance by the mean squared error:

MSE2(Γ̂
(m)) = EP

[

(ĝ
(m)
X (W )−X)2

]

. (130)

Results using nuisances fitted on full-batch data. We first estimate the target using prefitted
nuisances and operator. The estimation errors of nuisances and the operator using full-batch real data
are shown in Fig. 10, which suggests that the estimation of α̃0 converges to zero due to our design
while there exists obvious bias for estimating the nuisance (g0,X , g0,Y ) and the orthogonalizing
operator Γ0 possibly due to model misspecification.

The performances of SGDs using prefitted nuisances and stochastic gradient oracles (119), (122),
and (123) are shown in Fig. 11. Overall, the relative error and the risk are small when well estimated
nuisances are used. In addition, both relative errors and risks become smaller when we use more
samples to estimate nuisances for the orthogonal loss and the non-orthogonal loss.

Results using nuisances fitted on stream data. We then estimate the target by interleaving the
nuisance and target updates. Here, Both the nuisance and the operator are learned using the same
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Figure 12: Estimation Errors of Nuisance and Orthogonalizing Operator Fitted on Stream
Data. The x-axis displays the sample size of data used to estimate the nuisance and operator. Left.
The y-axis measure the nuisance error defined in (125). Middle. The y-axis measure the nuisance
estimation MSE defined in (129). Right. The y-axis measure the operator estimation MSE defined
in (130).

Figure 13: Stochastic Gradients with Nuisance Fitted on Real Stream Data. The x-axis repre-
sents the SGD iteration. Top: The y-axis measures the relative error. Bottom: The y-axis measures
the risk.

data stream and the results are shown in Fig. 12. Compared with Fig. 10, nuisances estimated using
stream data converges similarly.

The performances of SGDs by interleaving nuisance and target updates with stochastic gradient
oracles (119), (122), and (123) are shown in Fig. 13. The figure on the left in Fig. 13 shows that the

target estimation has small relative error using the estimated nuisance sequence {ĝ(m) : m ≥ 1}.
The figure in the middle suggests that there is still some bias for the target estimation while this bias
is negligible. The figure on the right shows the performance of OSGD, where the relative error of
OSGD using the estimated nuisance sequence is similar to OSGD using the true nuisance, which
aligns with Thm. 3.
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H Extension to SGD Variants

In this section, we discuss strategies for analyzing other variants of SGD under nuisances. In
Appx. H.1, we discuss the relationship between SGD with momentum and averaged SGD and pro-
vide a convergence analysis example of the averaged SGD. In Appx. H.2, we discuss Adam as
a generalization of SGD with momentum and the difficulties to analyze the convergence rate of
Adam.

H.1 SGD with Momentum and Averaged SGD

For the gradient oracle sequence S(n), SGD with momentum following the description of Li et al.
[2022] can be expressed as

m(n+1) = βnm
(n) + S(n) and θ̄(n+1) = θ̄(n) − αnm

(n), (131)

where θ̄(n) is the SGD estimation sequence, m(n) is the momentum sequence, and (αn)n≥0 and
(βn)n≥0 can be any positive sequence. The following example shows that the averaged SGD is a
special case of SGD with momentum.

Example 5 (Averaged SGD). Let βn = 1/n and αn = η(1 − βn+1) for all n ≥ 1. The
momentum updates implied by this sequence are

m(n+1) =
1

n
m(n) + S(n) and θ̄(n+1) = θ̄(n) − η

(

1− 1

n+ 1

)

m(n),

which implies that θ̄(n+1) is the averaged SGD such that

θ̄(n+1) =
1

n+ 1

n∑

t=0

θ(t). (132)

Example 5 demonstrates that the convergence rate of SGD with momentum can be analyzed in the
same way as averaged SGD. While it is not the focus of this paper, we provide a convergence result
of the averaged SGD based on the analysis of Défossez and Bach [2015].

Proposition 27 (Convergence rate of averaged SGD). Consider the partially linear model and the
non-orthogonal loss ℓ(θ, g; z) in Appx. B.1.2. Define Dn = (Z1, . . . , Zn), sampled from the product

measure Pn. Choose the gradient oracle S(n) to be the score Sθ(θ, ĝ;Zn) where ĝ is estimated

independently of Dn. Let θ̄(n) be the averaged SGD defined in (132). Suppose the same assumptions
as Lem. 5. If 0 < η < ηmax, then

EP

[

∥θ̄(n) − θ⋆∥22
]

≲
1

n
+ ∥ĝ − g0∥2G ,

where ηmax = sup{η > 0 : tr
(
A⊤EP[XX

⊤]A
)
− ηEP

[
(X⊤AX)2

]
> 0, ∀A ∈ S(Rd)} and

S(Rd) is the set of all d× d symmetric matrices.

Before we prove Prop. 27, recall the example of non-orthogonal loss for the partially linear model
in Appx. B.1.2, where Z = (X,W, Y ) ∼ P satisfies

Y = ⟨θ0, X⟩+ g0(W ) + ϵ, EP [ϵ | X,W ] = 0. (133)

The target parameter θ⋆ = argminθ∈Θ EP [ℓ(θ, g;Z)] where ℓ is the non-orthogonal loss defined as

ℓ(θ, g; z) =
1

2
[y − g(w)− ⟨θ, x⟩]2, (134)

By Lem. 5, we have θ⋆ = θ0. The stochastic gradient oracle for this non-orthogonal loss is

Sθ(θ, g; z) = −X(y − g(w)− ⟨θ, x⟩),
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and the SGD iteration is defined by θ(0) ∈ Θ and

θ(n) = θ(n−1) − ηSθ(θ, ĝ;Zn−1) = θ(n−1) + ηXn−1(Yn−1 − ĝ(Wn−1)− ⟨θ,Xn−1⟩), (135)

where ĝ ∈ Gr (g0) is any nuisance estimator independent of {Zi}ni=1. Note that (135) can be written
as

θ(n) − θ⋆ =
(
I − ηXnX

⊤
n

)
θ(n−1) + ηXn (Yn − ĝ (Wn))− θ⋆

=
(
I − ηXnX

⊤
n

)
(θ(n−1) − θ⋆) + ηXn

(
Yn − ĝ (Wn)−X⊤

n θ⋆
)

=
(
I − ηXnX

⊤
n

)
(θ(n−1) − θ⋆) + ηXnϵn − ηXn (ĝ (Wn)− g0 (Wn)) .

Let β(n) = θ(n) − θ⋆, rn = ĝ (Wn)− g0 (Wn), and

Mk,j =

(
j
∏

i=k+1

(
I − ηXiX

⊤
i

)

)⊤

∈ Rd×d.

By recursion, we have

β(n) =
(
I − ηXnX

⊤
n

)
β(n−1) + ηXnϵn − ηXnrn

=M0,nβ
(0) + η

n∑

k=1

Mk,nXkϵk − η
n∑

k=1

Mk,nXkrk.

Let β̄(n) = θ̄(n) − θ⋆ = (n+ 1)
−1∑n

j=0 β
(j), we have

β̄(n) =
1

n+ 1

n∑

j=0

M0,jβ
(0) +

η

n+ 1

n∑

k=1





n∑

j=k

Mk,j



 (Xk (ϵk − rk) + E [Xkrk])

− η

n+ 1

n∑

k=1





n∑

j=k

Mk,j



E [Xkrk] .

In the above formula, first two terms are usually interpreted as the bias term and the variance term
under the true nuisance, respectively according to Défossez and Bach [2015], and the last term can
be viewed as the error term caused by the nuisance estimation.

To analyze the bias term and the variance term, we adopt the notations of Défossez and Bach [2015]
for matrices and operators. First, Define H = EP[XX

⊤]. Let HL (resp. HR) be the matrix operator
representing left multiplication (resp. right multiplication) by H , and T be the linear operator such
that for any square matrix M ∈ Rd×d, TM = HM +MH − ηEP

[
(X⊤MX)XX⊤

]
. Let ρ =

max{∥I−ηH∥op, ∥I−ηT∥op} where the operator norm ∥·∥op is defined as the largest singular value.
Finally, let ηmax be the same as in Prop. 27. With definitions above, the asymptotic covariances of
the bias and the variance follow directly from Theorems 1 and 2 of Défossez and Bach [2015,
Appx. 3].

Lemma 28 (Asymptotic covariance of the bias). Let Ξ0 = EP

[

β(0)β(0)T
]

. If 0 < η < ηmax, then

EP

[
BnB

⊤
n

]
=

1

n2η2
(
H−1

L +H−1
R − ηI

) (
T−1Ξ0

)
+O

(
ρn

n
∥Ξ0∥F

)

,

where Bn = 1
n+1

∑n
j=0M0,jβ

(0).

Lemma 29 (Asymptotic covariance of the variance). Let Σ0 = Var(Xn (ϵn − rn) + E [Xnrn]). If
0 < η < ηmax, then

EP

[
VnV

⊤
n

]
=

1

n

(
H−1

L +H−1
R − ηI

)
T−1Σ0

− 1

ηn2
(
H−1

L +H−1
R − ηI

)
(I − ηT )T−2Σ0 +O

(
ρn

n
∥Σ0∥F

)

,
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where Vn = η
n+1

∑n
k=1

(
∑n

j=kMk,j

)

(Xk (ϵk − rk) + E [Xkrk]).

In fact, the convergence rate of averaged SGD depends on tr
(
BnB

⊤
n

)
and tr

(
VnV

⊤
n

)
. When ρ < 1,

Lem. 28 demonstrate that tr
(
BnB

⊤
n

)
is of order n−2, while Lem. 29 shows that tr

(
VnV

⊤
n

)
is of

order n−1, which is reasonable due to the randomness of the noise ϵk − rk.

For the error term, we can analyze it in a similar way to the bias term. Let ∆ = EP [Xnrn] and

En =
η

n+ 1

n∑

k=1





n∑

j=k

Mk,j



∆.

Note that by Jensen’s inequality,

EP

[
∥En∥22

]
≤ EP





η2

n

n∑

k=1

∥
∥
∥
∥
∥
∥





n∑

j=k

Mk,j



∆

∥
∥
∥
∥
∥
∥

2

2






=
η2

n

n∑

k=1

tr




EP










n∑

j=k

Mk,j∆









n∑

j=k

Mk,j∆





⊤








 .

It is clear to see that the asymptotic covariance of ∆k,n :=
∑n

j=kMk,j∆ is of the same form as the

bias term in Lem. 28. Let G0 = EP

[
∆∆⊤

]
and we have

EP

[
∆k,n∆

⊤
k,n

]
=

1

η2
(
H−1

L +H−1
R − ηI

) (
T−1G0

)
+O

(
(n− k)ρn−k∥G0∥F

)
.

Thus, the trace of the covariance summation over k = 1, . . . , n satisfies

η2

n

n∑

k=1

tr
(
EP

[
∆k,n∆

⊤
k,n

])
= tr

(
(H−1

L +H−1
R − ηI)(T−1G0)

)
+O

(

η2

n

n−1∑

k=0

kρk∥G0∥F
)

.

(136)

Gathering the bias term, the variance term, and the error term, we are now ready to proof Prop. 27.

Proof of Prop. 27. By Lemma 1 of Défossez and Bach [2015], 0 < ρ < 1 when 0 < η < ηmax.
Suppose that ∥X∥∞ ≤ CX almost surely. By Jensen’s inequality we have that

∥G0∥2 = ∥EP [Xnrn]∥22 ≤ C2
XEP [rn]

2 ≤ C2
XEP

[
r2n
]
= C2

X∥ĝ − g0∥2G .
Note that

n−1∑

k=0

kρk = ρ
d

dρ

(
n−1∑

k=0

ρk

)

= ρ
d

dρ

(
1− ρn

1− ρ

)

=
ρ− nρn + (n− 1)ρn+1

(1− ρ)2
= O(1).

By Lem. 28, Lem. 29, and (136), we have

EP

[

∥θ̄(n) − θ⋆∥22
]

≲ EP

[
∥Bn∥22

]
+ EP

[
∥Vn∥22

]
+ EP

[
∥En∥22

]

≲ tr
(
EP

[
BnB

⊤
n

])
+ tr

(
EP

[
VnV

⊤
n

])
+
η2

n

n∑

k=1

tr
(
EP

[
∆k,n∆

⊤
k,n

])

≲
1

n
+ ∥ĝ − g0∥2G .

83



H.2 Adam

The primary updates for Adam under nuisance estimate ĝ are given by the following recursive equa-
tions. Below, we let i ∈ {1, . . . , d} denote a particular dimension of the finite-dimensional parame-
ter of interest. Following the description of Défossez et al. [2022], for the gradient oracle sequence

S(n) the Adam generates the target estimator θ̃(n) as below:

m
(n)
i = β1m

(n−1)
i + S

(n)
i (137)

v
(n)
i = β2v

(n−1)
i +

(

S
(n)
i

)2

(138)

θ̃
(n)
i = θ̃

(n−1)
i − η

m
(n)
i

√

ϵ+ v
(n)
i

, (139)

where β2 ∈ (0, 1], β1 ∈ [0, β2] are the momentum and variance parameters, m(n), v(n) ∈ Rd are
the momentum and variance sequences, and ϵ > 0 is a numerical stability parameter. Adam differs

from the SGD with momentum by adding a variance sequence v(n). When v(n) is chosen to be a
constant, then (137) and (139) would reduce to the special case of SGD with momentum where βn
and αn are constant.

The analysis of Adam is often done in the case of smooth non-convex optimization, in which it is
shown that the gradient of the objective tends to zero [Ward et al., 2020, Défossez et al., 2022].
Specifically, Défossez et al. [2022] consider a momentum-free Adam (β1 = 0) to analyze the es-
sential ingredients that differ from momentum: the variance pre-conditioning and element-wise up-

dates, which suggests that under the true nuisance, i.e., S(n) = Sθ(θ
(n), g0;Zn) for an i.i.d. sample

{Zi}ni=1 ∼ Pn, the convergence result of Adam satisfies

EPn

[

∥Sθ(θ̃
(n), g0)∥22

]

≲
1√
n

(

1 + log

(
1

ϵ

))

.

Note that this result is not comparable to our convergence criterion (in terms of iterations), which
differs non-trivially from a stationarity or function value analysis. While the convergence of Adam
without nuisance has been studied in the literature, it still remains unclear that how to analysis Adam
under an estimated nuisance ĝ and what should be the nuisance effect on the gradient norm criterion.
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