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Abstract: Volumetric video allows users 6 degrees of freedom (6-DoF) in viewing continuously evolving scenes
in 3D. Given broadband speeds today, volumetric video conferencing will soon be feasible. Even so, these
scenes will need to be compressed, and compression will need to adapt to variations in bandwidth availability.
Existing 3D compression techniques cannot adapt to bandwidth availability, are slow, and utilize bandwidth
inefficiently, so they don’t scale well to large scene descriptions. LiVo achieves low-latency and large-scene
two-way conferencing by maximally leveraging existing 2D video infrastructure, including compression
standards, rate-adaptive codecs, and real-time transport protocols. To achieve high quality, LiVo must carefully
compose scenes from multiple cameras into multiple streams, encode scene geometry in a novel way, adapt
to and apportion available bandwidth dynamically between streams to ensure high reconstruction quality,
and cull content outside the receiver’s field of view to reduce information sent into the network. These novel
contributions enable LiVo to outperform the state-of-the-art by over 20% in objective quality. In a user study,
LiVo achieves a mean opinion score of 4.1, while other approaches achieve significantly lower values.
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Fig. 1. Left: Capture, Right: Two user viewpoints from an actual user trace.

1 Introduction

Volumetric Video.Volumetric video captures a three-dimensional representation of a continuously
evolving scene (e.g., a game, a live performance, a conference call). Each viewer of a volumetric
video has 6 degrees of freedom (6-DoF) — he/she can view the video from any point in the captured
space, in any direction. For example, a viewer can watch a live performance of a string quartet
as though sitting next to a violinist, while at the same time, another viewer can take the cellist’s
perspective. Or, a technician can remotely assist in debugging and repairing an aircraft part, moving
in space to inspect the part from different perspectives. Typically, viewers watch volumetric videos
on a mixed-reality headset. They interact with the video by moving around in a physical space;
the headset tracks the viewer’s movement and, at any given moment, renders the video from a
perspective consistent with the viewer’s current position and orientation. Thus, in our example of
the musical performance, viewers can move to change perspective during the performance (Fig. 1).

A volumetric video consists of a sequence of 3D frames, each representing a three-dimensional
capture of a physical space. A point cloud [40, 55] is one representation of a frame. Each point in
a point cloud corresponds to a 3D location (usually on the surface of an object) that has location
coordinates (also called geometry) and color of the surface at that location.
In this paper, we consider volumetric videos obtained from an array of low-cost commodity

off-the-shelf (COTS) RGB-D cameras encircling a scene. COTS RGB-D cameras, such as Azure
Kinect DK [18] or Intel RealSense [13], can capture both the color (RGB) and depth (D) of points in
a scene.
Truly Immersive Two-Way Conferencing.We consider the problem of streaming volumetric
video between two locations (A and B) while permitting 6-DoF viewing at both ends. In contrast to
prior work [51, 54, 89] on volumetric video conferencing that transmits 3D representations of a
single human being (their face or torso), we seek to stream a full-scene from A that may consist of
multiple participants and objects surrounding them (e.g., furniture, the floor, walls, etc.). Full-scene
conferencing would enable an application in which, for example, groups of actors at A and B

could collaborate jointly to rehearse an upcoming theater performance. As users at B receive and
view the video from A, they can move around the scene to change their perspective, permitting
true immersion. Simultaneously, the movements of users at B are captured and transmitted to A,
bringing a level of interactivity for human interaction comparable to physical presence.
Requirements. To realize this interactivity, a conferencing system must (a) transmit full-scene
point clouds at full frame rate (30 frames per second) (b) with an end-to-end latency of 200-
300 ms [28, 32, 52, 53]. Today’s 2D conferencing systems satisfy these requirements. Full-scene
point clouds can be much larger than those representing more constrained views (single human
being with only their face or torso). For example, in one 3D dataset [46] we use in §4, the average
point cloud frame size is about 1 MB uncompressed for a participant (single person in the scene),
but is 10 MB for the full-scene (with furniture, floor, objects, etc.) (Table 3). As such, transmitting
full-scenes will require significant network bandwidth. Today, average global broadband speeds
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are nearly 100 Mbps and are expected to increase by 20% annually [16]; thus, we expect immersive
two-way conferencing to be feasible in the near future, if it is not already.
Challenge: Compression. Even with increased broadband speeds, transmitting full-scenes will
require compression. In our example above, each full frame must be compressed to a twentieth of
its original size to fit the 100 Mbps capacity. The need for compression is unlikely to go away: even
if broadband bandwidth increases, point cloud sizes might increase with better cameras.

Point cloud compression techniques such as Draco [4], V-PCC [80], and G-PCC [36] can poten-
tially address this. Indeed, prior work has used these for on-demand [40, 55] and live [37] streaming
of non-full-scene volumetric video. However, these techniques can be compute intensive, and their
computational complexity grows linearly with point cloud size. For example, on a machine we
use in §4, compressing a 1 MB point cloud (single person) using Draco takes 25 ms, while com-
pressing a 10 MB frame (full-scene) takes over 300 ms. Other compression techniques are slower:
8 minutes using V-PCC for a 11 MB point cloud, and 10 seconds for G-PCC. These latencies can
make it difficult to achieve the 200–300 ms end-to-end latency target discussed above. Parallelizing
compression [37, 40, 45] can help, but the increase in compute cost can deter or delay adoption.
Point cloud compression techniques are also less compression-efficient than 2D video com-

pression. This is because their inter-frame compression algorithms are the subject of ongoing
research [42, 43, 94]. For instance, Draco’s default setting can compress the 10 MB per full-frame
video to about 1.78 MB per frame. In contrast, the approach we describe in this paper does not use
point cloud compression and can compress to about 0.66 MB per frame on average by leveraging
spatial and temporal redundancy in 2D video streams.
Challenge: Bandwidth-adaptivity. Even with increasing average bandwidths, it will be important
for two-way conferencing to be bandwidth-adaptive. Bandwidth availability can vary spatially (i.e.,
across different regions) and temporally (i.e., during a single session). Two-way conferencing can
exploit high bandwidth availability to deliver high quality. However, when bandwidth drops, it
must deliver volumetric video without stalling.

Trace

Names

Mean

Capacity

(Mbps)

MeshReduce Livo

Mean TPS

(Mbps)

Util.

(%)

Mean TPS

(Mbps)

Util.

(%)

trace-1 216.90 40.19 18.53 158.75 73.19

trace-2 89.20 27.75 31.11 82.21 92.16

Table 1. LiVo achieves higher throughput, and utilizes the available capacity better
than MeshReduce. The latter’s indirect adaptation is conservative.

2D video conferencing systems
(e.g., those that use WebRTC [23]) ad-
dress this by (a) continuously estimat-
ing available bandwidth and (b) us-
ing a rate-adaptive codec implemen-
tation. Such a codec takes a desired
bandwidth as input, and attempts to

encode the frame at that target bandwidth [24] by internally controlling the quality parameter
(QP) [71, 77], thus directly adapting to bandwidth changes. Today, 3D compression algorithms (e.g.,
Draco [4], G-PCC [36]) are designed for directly compressing static point clouds or meshes, so they
are not rate-adaptive: applications cannot specify a target output bitrate when compressing 3D
frames (in theory, it should be possible to design rate-adaptive Draco codecs, but to our knowledge
these don’t exist yet). Instead, 3D compression algorithms can only control the quality of the
encoder output. For example, Draco’s quality parameter (QP) governs the degree of allowable
distortion in the output; lower quality output requires lower rate for transmission. However, an
application cannot know a priori what QP value to choose to achieve a given target bandwidth.
V-PCC [80] supports direct rate-adaptation, since it encodes point clouds using 2D video codecs,
but it takes several minutes to encode one point cloud frame.

Recent work, MeshReduce [45] is the only live volumetric video streaming system that supports
bandwidth adaptivity. Since it uses Draco for compression, it profiles 3D videos offline to map
bitrate to one or more parameters (like QP). During a session, given the current available bandwidth,
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it instructs the compression algorithm to use parameters from the map. This approach can only
indirectly adapt to bandwidth (as opposed to using a codec implementation that can directly encode
at a given target rate). It can also be conservative: as Table 1 shows, unlike LiVo which uses direct
bandwidth adaptation, MeshReduce produces encodings at significantly lower bitrates than the
target bandwidth.
Contributions. To address these challenges while satisfying the performance requirements listed
above, LiVo makes three distinct contributions (§3).

First, it exploits technology trends to compose streams from several RGB-D camera outputs into
just two video streams: a color stream and a depth stream. This uses significantly lower encoding
resources, and requires less complex receiver-side synchronization when reconstructing point
clouds (§3.2). Some recent systems [39, 51, 54, 89] stream volumetric video frames as 2D color and
depth streams, but they only consider constrained views (e.g., the face, the torso, or single person).
Full-scene conferencing requires encoding larger physical depth ranges; for this, LiVo develops a
novel depth encoding and a video transmission mode that reduces distortion due to depth. This
allows LiVo to use widely-deployed 2D video codecs to compress both color and depth streams.
LiVo’s second contribution is a novel bandwidth-splitting strategy that continuously adapts to

both bandwidth availability and scene complexity changes. Even though bandwidth-adaptivity
comes for free when using 2D video, LiVo needs to carefully split available bandwidth between color
and depth streams while being able to process the video at full frame rate. Humans are sensitive to
distortion in depth, so LiVo must allocate more of the available bandwidth to depth than to color. A
static split is sub-optimal because bandwidth needed to ensure high-quality delivery can depend
on scene complexity (e.g., number of participants or objects in the scene). This motivates a fast,
adaptive, dynamic splitting strategy (§3.3), which no prior work has considered.
Finally, LiVo employs a novel, efficient view-culling, so a LiVo sender needs only send 3D

information within the receiver’s current field of view (§3.4). This increases bandwidth-efficiency
by transmitting less data. Prior work [40, 55] culls 3D point clouds, but LiVo (a) culls 3D views
efficiently without reconstructing the point cloud and (b) exploits the fact that the tighter end-to-end
latency of conferencing results in a smaller prediction horizon, which permits LiVo to use cheap,
accurate prediction of receiver views relative to systems for on-demand volumetric video [40, 55].

Using a complete implementation of LiVo, which we have released publicly (https://github.com/
USC-NSL/LiVo), we have conducted a user study and measured objective 3D quality metrics. In
these, LiVo consistently outperforms three baselines: a bandwidth-adaptive oracle of Draco [4], a
popular point cloud compression technique; an approach that mimics a bandwidth-adaptive version
of Project Starline [51]; and a complete implementation of MeshReduce [45]. Experiments also
demonstrate that LiVo can achieve around 250 ms end-to-end latency at 30 frames per second (fps)
with negligible stalls, comparable to the performance of existing 2D conferencing platforms [28, 53].
Statement of Ethics.We obtained Institutional Review Board (IRB) approval for collecting user
interactivity traces with 3D videos, and for our user study (§4). As required by the IRB, to protect
user privacy, we removed all identifiable information and our analyses use only aggregated statistics.

2 Related Work
Table 2 compares LiVo with prior work in volumetric video streaming. To our knowledge, LiVo is
the only full-scene bandwidth-adaptive conferencing system that operates at 30 fps.
On-demand Streaming. A line of work has explored on-demand volumetric video streaming [26,
40, 55, 62, 91, 96], and focused on reducing data rate and improving decoding efficiency. ViVo [40]
culls occluded points or those outside the predicted frustum. Groot [55] employs parallelism to
improve Draco decoding efficiency and achieve 30 fps. Fumos [60] improves data rate by exploiting
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inter-frame redundancy using a neural codec and supports high frame rate decoding. In contrast,
LiVo avoids point cloud compression to achieve performant two-way live conferencing.

Streaming Systems Type Compression Content BW-adaptive? FPS Cull?

ViVo [40] On-demand 3D Multiple Person Indirect 30
Groot [55] On-demand 3D Full-scene No 30
Fumos [60] On-demand 3D Single Person No 30
Vues [62] On-demand 2D Multiple Person Indirect 30
Holoportation [74] Conferencing 3D Single Person No 30
LiveScan3D [50] Live 3D Full-scene No 15
FarFetchFusion [54] Live 2D Portrait No 30
Starline [51] Conferencing 2D Upper Torso No 30
Tele-Aloha [89] Conferencing 2D Upper Torso No 30
VRComm [39] Conferencing 2D One Person No 30
MeshReduce [45] Live 3D Full-scene Indirect 15
MetaStream [37] Live 3D One Person No 30
LiVo Conferencing 2D Full-scene Direct 30

Table 2. Comparison to related work, more details in §2.

Live Streaming and

Conferencing. LiveS-
can3D [50] uses a fast
binary compression
method, zstd, which
achieves low compression
ratios. Holoportation [74]
achieves conferencing by
compressing a 3D represen-
tation of a single person

using LZ4 binary encoding, which doesn’t scale to larger scenes. Starline [51], a conferencing
system, streams upper body views in 3D over fixed quality 2D video streams; §4 describes how it
differs from LiVo. FarfetchFusion [54] streams only the face and is optimized for mobile devices.
MeshReduce [45] supports full-scene conferencing using a mesh, but achieves a lower frame rate
and lower quality (§4). MetaStream [37] uses Draco encoding to stream a single person at 30 fps by
reducing the number of points in the captured point cloud. Unlike LiVo, none of the live volumetric
streaming systems support full-scene 2-way live conferencing with bandwidth adaptation at 30 fps.
Other 3D Formats and Compression Standards. Besides point clouds, prior work explores
textured meshes [27, 29, 45, 68, 69, 74]. Meshes are generally higher quality representations that are
muchmore bandwidth-intensive; future work can explore mesh-based two-way bandwidth-adaptive
live streaming. Besides Draco, prior work has proposed other point cloud compression techniques:
G-PCC [36], V-PCC [80], and PCL [11]. Draco achieves faster compression with higher compression
ratios than these, so we base our evaluations on it. Recently, Hermes [91], patchVVC [26], and
DeformStream [56] have attempted to exploit inter-frame redundancy in volumetric videos, but
these have high encoding latency, so can only be used for on-demand streaming.
Learned 3D Representations. Recent work uses learned 3D representations such as Neural
Radiance Fields (NeRFs) [65] and Gaussian Splatting (GSplat) [48] for streaming and conferencing.
Many papers [35, 57, 61, 82, 85, 86, 90, 92] have explored learned 3D representations for on-demand
streaming. Tele-Aloha [89] has used GSplat for conferencing but constrains only to upper torso of a
person like Starline [51]. Though these representations can generate high-quality rendering superior
to point clouds or meshes, they suffer from high training and rendering overheads, rendering them
currently unsuitable for live or conferencing systems.
Quality Metrics. Other work has explored different 3D objective quality metrics: point2point-
PSNR [88], PCQM [64], and GraphSIM [95]. These compare point positions and attributes such as
colors, normals, and curvatures in 3D. We choose PointSSIM for measuring quality since it can
measure both geometry and color distortions by directly extending the popular SSIM metric to 3D.
Future work can evaluate LiVo using other metrics.

3 LiVo Design
LiVo addresses the two challenges discussed above — it efficiently encodes 3D content and employs
direct bandwidth-adaptation — while ensuring efficient, high-quality volumetric video transmission.

3.1 Overview
LiVo enables volumetric video conferencing between two sites. Each site has an array of off-the-
shelf RGB-D cameras and a desktop-class computing device for processing, sending, or receiving
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Fig. 2. LiVo Architecture. The green blocks on the left run on the sender and blue blocks on the right run on the receiver.

volumetric video from the other site, as well as a viewing device (e.g., a mixed reality headset).
Multi-way conferencing can be built using LiVo, but presents opportunities for optimizations (e.g.,
across receivers from a single sender) that we leave to future work.
Fig. 2 shows the design of LiVo’s sender-to-receiver pipeline; in the deployment model above,

each site runs one instance of the pipeline in each direction. LiVo captures a sequence of RGB-D
frames from each camera in an array encircling a scene (e.g., a conference table, a small stage or
performance area, or a small room). At a given instant, frames from the cameras produce a point
cloud (§3.2), and a sequence of such point clouds constitutes the volumetric video.

First, LiVo transmits the volumetric video as streams of 2D video, instead of transmitting point
clouds. This choice permits LiVo to re-use mature widely-deployed technology: (a) off-the-shelf
highly efficient video compression standards such as H.264 and H.265; (b) mature rate-adaptive
open-source codec implementations (e.g.,GStreamer [7] and FFmpeg [6]); and (c) real-time transport
for video conferencing such as WebRTC [23] with its built-in Google congestion control [24].
Second, LiVo culls points that fall outside the receiver’s frustum. The frustum represents the

receiver’s 3D field of view (Fig. 2). When the receiver is viewing the entire scene, her frustum
includes the entire point cloud. However, if she moves closer to objects or participants in the scene,
the frustum will likely include a much smaller part of the point cloud (Fig. 2).
Together, these address the two challenges described in §1. 2D codecs employ inter-frame

compression, resulting in higher bandwidth-efficiency relative to point-cloud compression. Culling
further reduces the bandwidth requirements. Moreover, 2D codecs can encode to a target bandwidth,
so LiVo can directly adapt to bandwidth changes. Finally, there exist mature, compute-efficient
implementations of 2D codecs that can, with low latency, process video streams at full frame rate.
Even though it relies maximally on 2D video technology, LiVo’s design poses two significant

challenges: (a) how to encode RGB-D frames in 2D videos and how to adapt these to available
bandwidth; (b) how to determine receiver frustum and cull views at the sender. We describe how
LiVo addresses these challenges in the remainder of this section.

3.2 2D Video Encoding

Background: Point Clouds from RGB-D Camera Array. Each camera produces RGB color
and depth frames at 30 frames per second. Consider a static RGB-D camera array (Fig. 2) with
𝑁 frame-synchronized cameras1. Then, for every inter-frame interval (30th of a second), we can
generate a point cloud from 𝑁 frames, one from each camera. To do this, we first need to determine
the position and orientation of each RGB-D camera in a common frame of reference. There exist
standard one-shot calibration techniques for this [97] that produce a transformation matrix to
convert each camera’s local coordinate system to a global one. Then, we can downsample2 the
color image resolution to match the depth image resolution to make them pixel-aligned [1, 10, 50].
Generating a point cloud is then simple: for each pixel of each RGB-D frame, first determine the
1There exist techniques to synchronize Kinect cameras [14].
2The alternative is to transmit color at full resolution, and use depth super-resolution at the receiver. This can incur lower
quality.
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pixel’s position in the camera’s local coordinate frame (using camera parameters such as its center
and focal length [37]), and then convert it to global coordinates (using the transformation matrix)
to obtain one point in a point cloud.
The Challenge. Prior work in volumetric video generates a point cloud at the sender, then applies
point cloud compression (e.g., Draco [4]) [37, 50]. LiVo is qualitatively different: it encodes 2D
RGB-D video frames directly at the sender; the receiver then decodes and constructs a point cloud
for viewing. An array of 𝑁 cameras produces 𝑁 color frames and 𝑁 depth frames at 30 fps.
For these frames, LiVo must solve three distinct problems: stream composition, depth encoding,

and bandwidth splitting. We discuss these in this and the next (§3.3) subsection.
Stream Composition. Stream composition refers to the problem of multiplexing the 2𝑁 images
into one or more video streams. Multiplexing all images, depth and color, onto a single stream
defeats inter-frame prediction because successive frames might be from different cameras or might
interleave color and depth frames. At the other extreme, independently encoding each camera’s
output into a color stream and a depth stream increases complexity in three ways.

First, the sender needs to run 2𝑁 parallel encoders,𝑁 for color and𝑁 for depth streams. Hardware-
accelerated codecs often limit the number of streams that can be concurrently encoded. For example,
nvenc, NVIDIA’s GPU-accelerated codec library [8], allows up to 8 parallel encoders on any
desktop-class GPU [72]. In conferencing setups with more than 4 cameras, it is then infeasible to
encode these streams in parallel on a GPU. They can be encoded in batched-parallel fashion; for
example, 20 streams from 10 RGB-D cameras can be encoded in 3 batches (8/8/4, respectively),
but this can increase latency. CPU encoding is expensive: encoding 20 parallel streams using
x265enc [21] incurs 2-3 sec per stream on a machine we use in §4, which is infeasible for
conferencing.
Second, if LiVo composes frames into more than one stream, it must determine how to split

available bandwidth to each stream (§3.3). The more streams there are, the more complex the
splitting algorithm. Third, the receiver must reassemble corresponding color and depth frames from
different streams to reconstruct the point cloud. The reassembly logic can be complex, especially
when different streams incur different delays.

Fig. 3. Tiled color view for 10 Kinect cameras. A Similar view is generated for depth.

LiVo’s approach: Tiling. LiVo
leverages technology trends to com-
pose streams in a novel way. Off-
the-shelf RGB-D cameras have lower
depth resolution than color resolu-
tion. For example, the Azure Kinect
DK [18] offers 640 × 576 depth image
resolution, and the Intel RealSense
D457 [19] supports up to 1280 × 720, but their color images can have up to 4K resolution. This is
because these cameras usually include a time-of-flight sensor that measures, for each pixel, the
depth of that pixel. The cost of these sensors has resulted in the slower growth of RGB-D camera
depth resolution.
LiVo exploits this observation to multiplex the 2𝑁 images into two videos: a color video and

a depth video. Specifically, it tiles3 the 𝑁 depth images into a 4K frame (Fig. 3). RGB-D cameras
3This tiling is qualitatively different from tiling in 360◦ video. In LiVo, each tile represents a color or depth image from an
RGB-D camera. In 360◦ video, tiles represent arbitrary tessellations of the 360◦ view and permit efficient viewport selection.
It is also different from prior work such as HoloKinect [83] and VRComm [39], which tile color and depth from 1 camera
into one stream and encode this stream using H.264. Moreover, their depth encoding assumes 1-1.5 meters of depth range,
whereas Kinect cameras have a range of 5–6m.
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generate color images at a much higher resolution (up to 4K), but it would be wasteful to transmit
this, since the receiver would first downsample the color image to match the depth image resolution
to construct the point cloud. Upsampling the depth to match color resolution is not followed in
practice to avoid introducing distortion in geometry [1, 10, 50]. Accordingly, LiVo downsamples color
images to the depth resolution, then tiles them into a 4K color frame. Using this approach, LiVo can
fit 9 Intel RealSense cameras or 16Azure Kinect DK cameras into two 4K frames (for color and depth).
While most commodity RGB-D cameras have resolution similar to Azure Kinect DK or Intel

RealSense, some newer cameras have a higher depth image resolution [79]. For example, Astra 2 [73]
has the highest depth image resolution of 1600× 1200 among commodity RGB-D cameras. For such
cameras, LiVo can tile frames into two 8K frames; these can fit up to 30 of these cameras. Today’s
hardware-accelerated codecs like nvenc/nvdec [20, 72] can support up to 8K streaming at 30 fps
on desktop-class GPUs. This approach should work for high resolution LiDAR sensors [44, 75, 87]
as well, but we have left it to future work since our focus is on commodity, low-cost, conferencing
setups.
Given that these cameras have a modest range (5–6 m) and can only cover small spaces, we do

not foresee deployments with significantly more RGB-D cameras (other work also makes similar
assumptions about the number of cameras [17, 51, 54, 74]). With more cameras, we may need to
multiplex images onto more streams and add more complex receiver synchronization, which we
have left to future work.

Consistently tiling camera images on a 4K frame does not impact video compression efficiency.
2D video codecs predict macroblocks (8x8 or 16x16 pixel blocks) within and between frames. In
successive frames, the location of the macroblocks is fixed (images from the same camera are
located at the same spot in the tiled image). Inter-frame prediction is thus relatively unaffected by
tiling4 since the macroblocks preserve locality, improving compressibility.

After tiling, LiVo passes each color 4K image and depth 4K image to two separate H.265 encoders5
(see below for depth). These can encode 4K frames at full frame rate.
Depth Encoding. Early work has designed new coding strategies for depth [33, 63, 66], or strategies
that encode depth in existing codecs but specialize them for specific types of 3D displays [49, 63].
For pragmatic reasons, we focus on techniques that encode depth in existing, widely deployed
codecs. These approaches have explored two different techniques to encode depth into images. One
approach packs each depth pixel value into a 3-channel color pixel (RGB) before encoding using 2D
video codecs such as VP9, H.264, etc. [76, 84]. In general, this approach can introduce significant
distortions, since video compression algorithms exploit smoothness in natural images to achieve
compression, but depth information can exhibit discontinuities [49, 76, 93]. These discontinuities
can result in poor 3D visual quality, since the 3D views must be reconstructed from multiple
decoded views, each of which can exhibit depth errors (§4.5, Fig. 17). LiVo must attempt to minimize
depth distortion, especially since humans are very sensitive to point cloud depth errors [95].
Other work [51, 54] encodes 10-bit depth into the Y-channel of a YUV [12] encoding. Codecs

compress the Y-channel (representing luminance) at higher bitrates to minimize loss because
humans are sensitive to luminance distortions. For this line of work, this depth encoding works
well because they target portrait 3D videos (of faces or upper torsos), which require a lower depth
range (1–2 meters). Our RGB-D cameras output 16-bit depth values at millimeter resolution, so
4For the same reason, tiling does not affect reconstruction quality relative to transmitting each stream separately.
5Multi-view coding [25, 31] can eliminate redundancies from multiple RGB-D cameras. In our setting, we expect gains from
multi-view coding to be minimal, since we envision a circular arrangement of cameras with minimal overlap.
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they can capture larger scenes. Quantizing these to 10 bits can sacrifice either depth or resolution,
potentially impacting perceived quality and impairing full 6-DoF capabilities.
LiVo’s Depth Encoding. LiVo leverages a YUV H.265 mode which represents each channel

using 16 bits [20]. LiVo stores the 16-bit depth pixel value in the Y channel and sets the U and V
channels to the same fixed value. This reduces depth distortion since codecs distort the Y-channel
less. This H.265 mode is supported by nvenc [71], an encoder available for all consumer and
professional-grade NVIDIA GPUs; as such, it ensures wide applicability of LiVo.
However, simply storing the depth value in 16 bits on the Y channel introduces significant

artifacts (Fig. A.1). Current depth cameras have a maximum depth range of 5–6 meters [13, 15, 79],
so the depth values can range from 0 − 6000 at millimeter resolution. This uses only a portion of
the full 16-bit range. So, we scale the depth value to occupy the entire 16-bit range, i.e., scaled depth
value for 0 mm remains at 0 while it is 216 − 1 for 6000 mm6. This approach incurs lower depth
distortion: codecs quantize depth values, and, for a given quantization step size, more unscaled
depth values fall into one quantization bin than scaled depth values. To understand this, consider
two nearby depth values 𝑥 and 𝑥 + 𝜈 . Without scaling, if the quantization step size is larger than 𝜈 ,
the compression algorithm will represent these two values with the same encoded number. When
scaled by a factor of 𝑘 > 1, these will be represented by distinct values, as long as the quantization
step size is smaller than 𝑘𝜈 , which will ensure that the decoder can distinguish between these values.

3.3 Bandwidth Splitting

Background: WebRTC and Rate-adaptive Codecs. 2D video conferencing systems use a real-
time transport protocol (e.g., WebRTC [23]) with rate-based congestion control (e.g., GCC [24]).
The sender feeds the available bandwidth from congestion control to a rate-adaptive video encoder,
which compresses the frame to fit within the target bandwidth.
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Fig. 4. Color and depth RMSE for different splits at target bandwidth of 80 mbps.
Log-scale y-axis. Video sequence: band2

The Challenge. LiVo transmits
depth and color streams as two sep-
arate WebRTC streams. Suppose, at
a given instant, the sender’s rate con-
trol algorithm estimates an available
bandwidth of 𝐵. LiVo cannot assign
𝐵/2 to each stream. It encodes depth
(§3.2) to reduce depth distortion, but
in order to get higher quality, it must
also assign more bandwidth to the depth stream than the color stream. To understand why, Fig. 4
shows the variation in depth and color quality for different splits of a target bandwidth of 80 Mbps
for one of the videos we use in §4. If each stream were to receive 𝐵/2 (i.e., split=0.5), depth error
can be significant. When the depth stream gets 90% of the available bandwidth, the error in depth
and color is most balanced. This is because humans are much more sensitive to depth than to color
errors [95]; allocating more bitrate to depth reduces depth distortion [98]. Moreover, distortion in
depth can also affect objective measures of color quality [98].

Thus, to ensure high quality, LiVo must determine the bandwidth split 𝑠 : the fraction of available
bandwidth allocated to the depth stream such that depth and color errors are the same7. A strawman
approach might profile, offline, volumetric videos to determine an optimal static split at a given
bandwidth. Intuitively, this split jointly minimizes distortion in depth and color. For example, Fig. 4
6In future, the same depth scaling mechanism can be easily applied to larger depth ranges.
7Other objectives are possible, such as minimizing a weighted sum of the two errors. Our choice results in high quality (§4),
so we have left an exploration of other objectives to future work.
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suggests a split 𝑠 of 90%. This may not generalize; the optimal split can vary from frame to frame,
as scene complexity — the number of participants, or the degree of motion — changes. It might be
possible to design learned split predictors, but these might need considerable data with varying
degrees of scene complexity to generalize well, and we have left this to future work.
LiVo’s Approach: Adaptively Splitting Bandwidth. Instead of determining the split statically,
LiVo adaptively and continuously determines the split to capture bandwidth and scene complexity
changes. It repeatedly encodes a frame with a given split 𝑠 , determines the resulting quality of the
encoded frame, and then either increases or decreases 𝑠 to improve depth and color quality. To do
this, it must solve two problems: (a) how to estimate encoding quality and (b) how to adapt.
Estimating encoding quality. LiVo’s approach encodes a frame at the sender, immediately

decodes it, and then computes distortion relative to the ground truth frame (available at the sender).
Today, GPU-accelerated video encoders and decoders, like NVIDIA’s nvenc/nvdec [8], can
decode multiple frames while also encoding other frames. Moreover, NVIDIA does not limit the
number of parallel decoders8 on a desktop-class GPU [72]. So, while the GPU is encoding a frame,
it can simultaneously decode a previously encoded frame to determine quality. We have found that
parallel decoding adds a modest 11% more GPU utilization on a desktop-class GPU like NVIDIA
GeForce RTX 1080 Ti for tiled views from 10 cameras.

To estimate the quality of the decoded frames, LiVo could use a point cloud quality metric such as
PointSSIM [22], but this requires the sender to reconstruct the point cloud before and after encoding.
Instead, LiVo uses the root-mean-square error (RMSE) in pixel values between the original (depth
or color) frame and the decoded frame9. This choice is far more compute-efficient. LiVo further
reduces the compute overhead by computing RMSE every 𝑘 frames (𝑘 = 3, chosen empirically in our
evaluations, §4), instead of every frame, which suffices to capture scene dynamics in conferencing
at 30 fps.

Adapting the split. LiVo continuously adapts the split using the following steps (Fig. 2):
• It uses two video decoders (running in parallel) which decode the compressed tiled frames to
generate the distorted tiled color and depth frames.

• For each decoded color (resp. depth) frame, it calculates the color RMSE 𝑅𝑀𝑆𝐸𝑐 (resp. depth
RMSE 𝑅𝑀𝑆𝐸𝑑 ) by comparing the distorted tiled frame (𝐹 ′) to the ground truth tiled frame (𝐹 ).

• LiVo does not modify the split if |𝑅𝑀𝑆𝐸𝑑 − 𝑅𝑀𝑆𝐸𝑐 | ≤ 𝜖 , where 𝜖 is a parameter to the algorithm.
• It finds the optimal split using multi-dimensional line search [41, 70]. This process additively
increases or decreases 𝑠 . If 𝑅𝑀𝑆𝐸𝑑 − 𝑅𝑀𝑆𝐸𝑐 > 𝜖 , then 𝑠 increases by 𝛿 (the step size). Else, 𝑠
decreases by 𝛿 .
At the beginning of a session, 𝑠 is set to an initial value 𝑠𝑖 . This can be estimated empirically

from video data (e.g., Fig. 4) or can be set to a fixed initial value.
Multi-dimensional line search is sensitive to 𝛿 . A smaller value can result in delayed convergence

when the scene complexity changes, while a larger one can oscillate around the optimal split.
We have empirically chosen a step size of 0.005 to balance these two concerns. We also choose
0.5 ≤ 𝑠 ≤ 0.9. The lower limit ensures depth always gets more bandwidth than color. When available
bandwidth is too low, 𝑅𝑀𝑆𝐸𝑑 − 𝑅𝑀𝑆𝐸𝑐 may always exceed 𝜖 , which will drive 𝑠 to 1, and this can
significantly degrade color quality. To prevent this, we clamp 𝑠 at 0.9.
8As discussed above, it only limits the number of parallel encoders.
9LiVo’s bandwidth splitting tries to fit the best quality tiled color and depth frame within the available bandwidth instead of
maximizing compression gains.
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3.4 View Prediction and Culling
In addition to encoding RGB-D frames as 2D videos, LiVo culls points outside the receiver’s view
by (a) determining the receiver’s frustum and (b) efficiently removing points outside the frustum.
Challenge: Frustum Prediction. The frustum is determined by the pose (position and orientation)
of the receiver’s headset, as well as the parameters of the viewing device (such as the focal length
and aspect ratio). Today’s headsets can provide values for these, and the receiver can transmit these
to the sender. Even so, given the feedback delay between the receiver and the sender, the latter
must predict the frustum of the receiver at the time the receiver views the frame.
On-demand 360° and volumetric video systems [34, 40, 62, 78] train viewport predictors from

user data. In that setting, if many users watch the same video, learned predictors can be accurate.
In a conferencing setting, it is less clear if learned predictors can be accurate, since each conference
call is unique and not enough user traces may be available for the same content. We show (§4) that
predictors trained on a few traces perform poorly relative to LiVo’s approach.
Challenge: Efficient Culling. Given a frustum and a point cloud, the culled point cloud consists
of points inside the frustum. Prior work [40, 55] has used culling for on-demand volumetric video
streaming. However, RGB-D cameras do not provide point clouds. LiVo can generate the point cloud
from RGB-D frames, but this process can be slow. LiVo’s frustum prediction and fast culling scheme
can generate culled RGB-D frames within 30 ms (§4.4).
LiVo’s Approach: Frustum Prediction. When culling a frame at time 𝑡 , LiVo’s sender must
predict the receiver’s frustum at 𝑡 + Δ𝑡 , where Δ𝑡 is the one-way delay from sender to receiver
(including both network and processing delays at the two ends). LiVo obtains Δ𝑡 by halving a
smoothed application-level RTT estimate.
LiVo predicts frustums by applying a Kalman Filter [47] on the 6 dimensions of receiver pose

(position and orientation) based on prior work [38]. Still, prediction errors can arise from sudden
user movement or errors in one-way delay estimates. To counter these, LiVo expands the predicted
frustum by a guard-band (𝜖). For our datasets, an 𝜖 of 20 cm represents a sweet-spot in the trade-off
between compression efficiency and reconstruction accuracy (§4.5). Future work can explore other
techniques to ensure better tracking accuracy.
LiVo’s Approach: RGB-D View Culling. This step, performed before stream composition and
depth encoding (§3.2), is invoked every inter-frame interval, and takes as input the viewer’s frustum
and the 𝑁 RGB-D views (instead of a point cloud, as in prior work). For each pixel in each image,
it must determine if that pixel falls within the frustum or not, and replace culled pixels with a
zero value (both for color and depth). LiVo culls without reconstructing the point cloud. Instead, it
determines whether a pixel in an RGB-D frame is within the receiver’s frustum, using the following
technique. For each RGB-D camera, LiVo first transforms the frustum into the local coordinate
system of the camera. Then, for each pixel, it obtains that pixel’s local coordinates and determines
if it lies within the frustum as follows. At its core, culling must determine if a point 𝑃 lies outside
the frustum. A frustum is a 3D truncated pyramid defined by six planes — near, far, top, bottom,
left, and right — whose plane normals point inwards. 𝑃 is outside the frustum if distance of the
point from either of the six planes is positive, i.e., the point lies in the direction of one of the six
normals of the planes pointing outwards. Otherwise, it is inside or on the frustum.
Other Design Details (§A.1). LiVo speeds up receiver rendering by voxelizing the point cloud,
pipelines computation stages to achieve 30 fps, and adjusts socket buffer settings to minimize loss.
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4 Evaluation
We compare LiVo to other alternatives, using both a user study and a trace analysis on real bandwidth
traces. We also quantify its compute-efficiency and quantify the impact of its design choices.

4.1 Methodology

Implementation. Our LiVo implementation (Fig. 2) contains 15K lines of C++ and a few hundred
lines of Unity code. It implements pipelined capture, view generation, and tiling using Boost [2]
and OpenMP [9]. It also uses: Eigen [5] for linear algebra operations for point cloud transformation;
the Kalman Filter implementation in OpenCV; WebRTC10 and NVENC (NVIDIA Video Codec)
in GStreamer [20] for color (H.265, BGRA) and depth (H.265, Y444_16LE); and Open3D [99] for
rendering on PC or on a headset using Unity. LiVo captures RGB-D frames using the Azure Kinect
SDK [1], and synchronizes them as described in [14].
Evaluation testbed. Our evaluation uses two desktop-class machines, each with 32 GB RAM and
1 Gbps Ethernet. Both have modest computing resources: one is an Intel i7-8700K @ 3.70GHz,
with one NVIDIA GeForce GTX 1080 Ti; the other is an Intel Core i9-10900KF @ 3.70GHz and one
NVIDIA GeForce RTX 3080. We use Chrony [3] to synchronize these two machines. While we
evaluate one-way streaming, LiVo supports two-way streaming if each user runs an instance of
LiVo’s sender as well as its receiver.
Traces and Datasets. To compare LiVo against other alternatives while subjecting all of them to
the same workload, we use volumetric video replay instead of live transmission.

Videos Duration (s) Objects Frame Size (MB)

band2; Musical performance 197 9 11.1
dance5; Dance 333 1 10.8
office1; Person working 187 7 10.6
pizza1; Food and party 47 14 13.8
toddler4; A child playing games 127 3 10.6

Table 3. Summary of 5 videos in the Panoptic Dataset. Duration is in seconds,
objects include people, and frame sizes are in MB.

Volumetric videos. We use the
Panoptic Dataset [46], which con-
tains videos captured at 30 fps using
10 Kinect v2 RGB-D cameras. We se-
lect 5 videos (Table 3) of duration 1–5
minutes that capture 1–6 participants
performing a range of activities pro-

viding a fully immersive live experience, e.g., dance, musical band, party, and games. Their frame
sizes, 10.6–13.8 MB, are much larger than the ones in prior work (Table 2).
User traces.When a user interacts with a volumetric video by moving to change perspective,

the sequence of her instantaneous poses (position and rotation) constitutes a user trace. There are
no publicly available user traces for the videos in Panoptic dataset, so we collected these under an
IRB-approved study. In a 30–45 minute session, we asked each user to view 2–3 videos selected
randomly. Users could freely move around in a sufficiently empty room while viewing the videos,
and their headset recorded their instantaneous poses. We collected three user traces for each video.

Trace

Names

Bandwidth (Mbps)

Mean Max Min 90
th

10
th

trace-2 89.20 106.37 36.35 98.09 80.52
trace-1 216.90 262.19 151.91 234.41 191.52

Table 4. Statistics of the bandwidth traces.

Network traces.We replay the videos on two
real-world bandwidth traces representative of
user experience in stationary and mobile envi-
ronments. trace-1 (Table 4) captures homeWifi
throughput variation [59]. trace-2 captures a

WiFi connection while moving around in a shopping mall [58]. These traces likely exhibit variability
(§A.3) comparable to broadband connections, but not their capacity. As such, by themselves, these
traces cannot support volumetric video conferencing. For this reason, we scaled trace-2 by 15×
and trace-1 by 10× to reach mean throughputs around 90 Mbps and 217 Mbps, respectively; the
10WebRTC is widely used for low-latency video conferencing today. Future work can explore RTP over Quic [30].
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former corresponds to current broadband bandwidth, while the latter is representative of broadband
bandwidth in 3–4 years [16].
Trace replay. This reads RGB-D frames from disk at 30 fps and feeds them into LiVo sender

(Fig. 2). Using the frame sequence number, the receiver retrieves the corresponding user frustum
from the selected user trace file, then culls and renders the point cloud. We replay the network
traces using Mahimahi [67] to emulate the bandwidth conditions between sender and receiver.
Comparison Alternatives. We compare the performance of LiVo with other alternatives inspired
by live volumetric video streaming systems such as Holoportation [74], Project Starline [51],
LiveScan3D [50], and MetaStream [37] (Table 2). None of these schemes are bandwidth-adaptive,
and all of them achieve live transmission on a network with sufficient bandwidth by sending more
constrained views (e.g., single person or torso, Table 2). Recall that these constrained views require
an order of magnitude lower bandwidth than full-frame transmission. Most of these do not provide
open-source implementations, so we resort to mimicking their essential video compression and
transmission strategies, but adapt these for full-frame transmission. To this end, we design two
baselines: Draco-Oracle and LiVo-NoCull. We tune essential parameters of these systems, so we
can compare them with LiVo. MeshReduce [45] is the only system that is open-source, supports
bandwidth adaptivity, and streams full-scene, so we compare it head-to-head.

Draco-Oracle. Volumetric video on-demand systems such as ViVo [40] and GROOT [55] and live
systems such as MetaStream [37] use Draco [4], an open-source point cloud compression library.
They have shown that Draco provides either better compression ratio or lower encoding latency
than other point cloud compression schemes like PCL [11], G-PCC [36], and V-PCC [80]. Draco
by itself is not rate-adaptive, which is why prior work that uses Draco is not bandwidth-adaptive.
To understand what would happen if Draco were to develop rate-adaptivity, and yet transmit
the information that LiVo does in our evaluations, we designed a Draco-Oracle: given a target
bandwidth and a perfect estimate of a receiver’s frustum (perfect culling), it picks the highest quality
compression for the point cloud that fits within the target bandwidth.

To do this, we compute offline a table from each video frame and each user trace. This maps, for
each video frame and user frustum and each Draco compression level (Draco has 10 of these) and
quantization parameter (Draco supports 31 of these), the time to compress the perfectly-culled frame,
and the compressed size of this frame. During playback, we use this map to find the best quantization
parameter and compression level that fits the bandwidth estimate, and whose compression time is
smaller than the inter-frame interval. If no such entry exists, we record a stall for Draco-Oracle.

At 30 fps, Draco-Oracle exhibits over 90% stalls for most of our video sequences. So, our evalua-
tions use a lower frame rate, 15 fps, consistent with prior work [50].

LiVo-NoCull. This baseline runs LiVo without culling. In addition to quantifying the importance
of culling, LiVo-NoCull is intended to mimic one small aspect of Project Starline [51], which also
streams RGB-D captured from multiple depth cameras over 2D video streams using WebRTC and
performs 3D reconstruction in the receiver. Starline streams 2D videos at a fixed quality, but LiVo-
NoCull includes bandwidth splitting (§3.3) and bandwidth-adaptivity (in §4.5, we also quantify the
impact of disabling bandwidth-adaptivity). So, this baseline seeks to understand what would happen
if Starline were to be bandwidth-adaptive. Starline is an impressive system that differs in many
other respects from LiVo, so we do not intend LiVo-NoCull to represent Starline’s performance. We
run LiVo-NoCull and LiVo at 30 fps on all our videos.
MeshReduce. MeshReduce [45] is a mesh-based full-scene live volumetric video streaming

system, which represents any 3D surface as a collection of interlocking triangles, not a collection
of points. The sender captures a RGB-D frame from off-the-shelf RGB-D cameras, reconstructs
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a per-frame mesh, encodes the geometry and color separately, and transmits over 2 TCP socket
connections. It compresses mesh geometry using Draco and mesh texture using H.264.

MeshReduce employs indirect bandwidth adaptation (§1): using a profile obtained from an offline
analysis, it determines the best compression parameters for a given level of available bandwidth.
We use the publicly available MeshReduce implementation, which decides these parameters based
on the average bandwidth availability in a trace and by profiling videos offline.
Metrics. Aside from end-to-end latency and frame rate, we also measure objective point cloud
quality. Prior work [40, 55, 62] has used 2D metrics such as SSIM and PSNR on a rendered 2D image
of the point cloud. However, these metrics are inadequate for several reasons. 3D to 2D projection
introduces errors. 2D pixel size influences quality, but points in a point cloud do not capture size. A
slight change in point position due to depth coding error can impact scene geometry minimally,
but can result in a large drop for 2D metrics. These metrics depend on the distance of the viewer
from the point cloud. Finally, they are influenced by the color of background pixels.

We use PointSSIM [22] (or PSSIM), which is analogous to SSIM for 2D images, but extends it to 3D
by exploring a higher-dimensional feature space that includes geometry, normals, curvatures, and
color attributes. PSSIM separately captures the quality of depth and color. It ranges from 0 to 100;
higher values are better, and values in the high 80s or above are generally considered good. PSSIM
is not defined for meshes, so to compare MeshReduce against LiVo, we sample as many points from
the rendered mesh as there are in the ground truth point cloud, then compute PointSSIM.

4.2 User Study

Setup. We conducted an IRB-approved user study to measure the perceptual quality of LiVo
against other alternatives. Each participant viewed 2-3 videos from Table 3 over 45–60 minutes.
For each video and a randomly selected user and network trace, the participant passively observed
the video from the perspective of the user who contributed the trace (§4.1). Participants rated the
videos across 4 schemes on a Likert scale of 1 (worst) to 5 (best) with respect to the ground truth
and (optionally) left comments. These experiments used the replay infrastructure described in §4.1.
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Fig. 5. Aggregated opinion scores for 4 methods.

Perceptual Quality Results. Fig. 5
shows the distribution of perceptual qual-
ity scores for each of the 4 schemes across
20 participants. Each scheme received a to-
tal of 57 ratings across all combinations of
<video, user trace, network trace>. Draco-
Oracle performs poorly with a Mean Opin-
ion Score (MOS) of 1.5 due to 3 factors:
Draco is streamed at 15 fps; even at 15 fps,
it experiences 36 − 98% stalls; and Draco-Oracle settles for lower quality to remain within compute
and bandwidth budgets. While other work on volumetric video streaming has used Draco to achieve
good quality, in our setting with large point clouds from full-scenes, Draco proves to be a poor
choice as it is both compute-intensive and compression-inefficient.

MeshReduce has a median opinion score of around 2.3 (MOS 2.5), higher than Draco-Oracle. In
theory, MeshReduce should perform worse than Draco-Oracle, since it doesn’t use a bandwidth
oracle. It likely performs better because it uses meshes, which have better perceptual quality than
point clouds in general, and because MeshReduce incurs fewer stalls.
By comparison, LiVo-NoCull has a median opinion score of 3.5 (and MOS of 3.4), higher than

Draco-Oracle and MeshReduce; its 2D video encoding and direct bandwidth-adaptivity lead to
higher perceptual quality. LiVo has the highest MOS of 4.1 and median opinion score of 4.0, 14−20%
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Fig. 6. Opinion scores across 5 videos.
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Fig. 7. Opinion scores for trace-1.
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Fig. 8. Opinion scores for trace-2.

better than LiVo-NoCull and 64 − 74% better than MeshReduce. Culling enables LiVo to encode at
higher quality and incur fewer stalls.
Across 5 videos (Fig. 6), LiVo and LiVo-NoCull perform significantly better than Draco-Oracle.

LiVo also outperforms MeshReduce by 48 − 135% in MOS, and LiVo-NoCull by 10 − 33% in MOS.
For the dance5 video, the median opinion score for LiVo and LiVo-NoCull are comparable. dance5
contains only one person and no objects, so it requires less bandwidth, and culling does not help.
Across our bandwidth traces, quality improves with increasing bandwidth. In trace-1 (Fig. 7),

LiVo’s MOS is about 4.3, going up to 4.5 for the pizza1 video. The performance improvement over
LiVo-NoCull is 6.6−43.9% (except for dance5 on trace-1, for the reasons mentioned above). The direct
bandwidth adaptation in LiVo-NoCull shows 2.0 − 113.3% improvement over MeshReduce, which
uses an indirect adaptation. When bandwidth is low (trace-2, Fig. 8), LiVo’s MOS is 3.9; compression
at lower bitrates affects both color and geometry. At lower bandwidth, multiple competing factors
influence MOS — lower overall quality and higher stalls vs. quality improvement due to culling.
These results are consistent with our objective evaluation (§4.3).
Qualitative feedback. Participants were invited to optionally provide free-form feedback. We
received 184 responses across 20 participants. We classified these responses into three categories
(quality, frame rate, and stalls). For each category, we assigned a high/medium/low rating to each
response (Table 5). Descriptions such as “smooth” or “seamless” indicate low stalls and high frame
rate, “more distorted” indicate low quality, and “some glitches” indicate medium stalls.

Schemes

Frame Rate (in %) Stalls (in %) Quality (in %)

L M H L M H L M H

Draco-Oracle 94.4 5.6 0.0 0.0 12.5 87.5 35.0 45.0 20.0
MeshReduce 73.3 26.7 0.0 90.9 9.1 0.0 61.3 34.1 4.6
LiVo-NoCull 15.0 25.0 60.0 25.0 50.0 25.0 12.5 53.1 34.4
LiVo 0.0 0.0 100.0 70.8 25.0 4.2 6.1 33.3 60.6

Table 5. Percentage of comments providing a Low (L), Medium (M), or High (H)
rating for frame rate, stalls, and quality.

Draco-Oracle exhibits most stalls
(high=87.5%); every response de-
scribes “glitches” or “blanks” for
Draco-Oracle. No response indicated
high stalls for LiVo; 96% of responses
discussing stalls for LiVo agree
that it had fewer stalls (low=71%,

medium=25%). MeshReduce was rated best in terms of stalls: this is because it conservatively
uses a lower frame rate. No response rated it high in terms of frame rate, compared to 100% for LiVo.
MeshReduce encodes at a lower quality (only 4.6% of responses rated it high, compared to 60.6%
for LiVo). Other alternatives also perform poorly in terms of quality: only 34% of responses rated
LiVo-NoCull high, only 20% rated Draco-Oracle high. 95% of the participants said MeshReduce
had low to medium quality, with many responses such as “triangles are disturbing”, “block of
black mass”, and “blobs”. Users rated LiVo and LiVo-NoCull superior in terms of frame rate to
MeshReduce and Draco-Oracle.
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Fig. 9. PSSIM Geometry across 5 videos.

band2 dance5 office1 pizza1 toddler4
Videos

0

20

40

60

80

100

PS
SI

M
 C

ol
or

Draco-Oracle Meshreduce LiVo-NoCull LiVo

Fig. 10. PSSIM Color across 5 videos.
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Fig. 11. Stalls in 3 methods across 5 videos.
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Fig. 12. Effect of culling on PSSIM Geometry, no stalls.

4.3 Objective Quality Comparisons

Setup. We use the same experimental setup as described above but now the receiver logs the
received point cloud. We compare each point cloud against ground truth for the same 5 videos, 3
user traces per video and 2 network traces.
Results. Fig. 9 and Fig. 10 separately plot PSSIM for depth (geometry) and color across 4 schemes.
For each video sequence, we aggregate the geometry and color PSSIM values over all user traces and
network traces. We use a PSSIM of 0 for frames that experience stalls. Draco-Oracle achieves the
lowest geometry and color score with mean value of 28.3 (std. 19.1) and 29.9 (std. 19.8), respectively,
which correlates with the lower opinion scores in our user study.

LiVo outperforms LiVo-NoCull, achieving a mean PSSIM geometry of 87.8 (std. 3.7) compared to
81.0 LiVo-NoCull’s (std. 9.5). This is consistent with our user study and demonstrates the benefits of
culling. LiVo’s benefits relative to LiVo-NoCull are more pronounced on videos with more subjects
(Table 3); in such videos, users often focus on a few subjects at any given instant, so culling is
very effective. In most instances, LiVo requires 2× lower bandwidth after encoding compared to
LiVo-NoCull, which enables LiVo to transmit at higher quality for the same available bandwidth.
MeshReduce has a significantly lower PSSIM geometry of 67.0 (std. 1.8) because it uses Draco,
which is less bandwidth efficient, and because it adapts indirectly to bandwidth.

LiVo is slightly better than LiVo-NoCull by the PSSIM color metric (82.9, std. 7.59 vs. 80.9, std.
5.06). This is because our bandwidth splitting allocates only a small fraction of available bandwidth
to color, so any bandwidth reductions from culling for color are proportionally lower. Interestingly,
MeshReduce compares more favorably with LiVo for color (77.30, std. 10.6), probably because
meshes are less affected by depth distortion, a conjecture future work can verify.
Fig. 11 shows the aggregate stalls across videos for 3 schemes. We omit MeshReduce since it

doesn’t experience stalls: it uses reliable transmissions and its parameters are designed to match
average bandwidth, so instead of experiencing stalls, it exhibits varying frame rates. Draco-Oracle
suffers from a high mean stall rate of 69.3%. Even on the dance5 video, which has only 1 participant
and no objects in the scene (Table 3), it has a stall rate of 37.8%. LiVo-NoCull incurs an average stall
rate of 7.9% (std. 7.5%) while LiVo incurs 1.7% (std. 2.3%); culling accounts for this difference. LiVo’s
infrequent stalls occur when the rate-adaptive codec overshoots the bandwidth target.
Culling improves quality: LiVo improves over LiVo-NoCull by an average difference of 2% for

PSSIM geometry (Fig. 12) and 1% for color (omitted for brevity), without accounting for stalls.
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Fig. 13. FPS for trace-1.
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Fig. 14. FPS for trace-2.

Guard

Band

Prediction Window Size

W=5 W=10 W=20 W=30

10 98.44 (0.57) 96.69 (0.54) 94.37 (0.57) 91.76 (0.57)
20 99.26 (0.62) 98.37 (0.62) 96.13 (0.62) 93.95 (0.62)
30 99.61 (0.66) 98.97 (0.66) 97.22 (0.67) 95.41 (0.67)
50 99.89 (0.73) 99.56 (0.73) 98.46 (0.73) 97.18 (0.73)

Fig. 15. Accuracy of culling using Kalman
Filter by varying the guard band (in cm) for
band2. The numbers in brackets represent
fraction of points within frustum.

Method

# Hidden

Units

Position

(m)

Rotation

(degree)

MLP
3 0.40 33.34
32 0.09 3.69
64 0.07 2.17

Kalman Filter - 0.04 7.19

Fig. 16. Comparing prediction errors in
Kalman Filter-based to learning-based pre-
diction methods.
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Fig. 17. LiVo with and without depth scal-
ing, and comparison with RGB-based depth
encoding [39, 76, 84].

4.4 Performance Validation

Component

LiVo-NoCull (in ms) LiVo (in ms)

Mean Std Mean Std

Capture Frame 32.75 6.81 29.85 5.09
View Generation 19.50 8.93 30.59 2.91
Tile Creation 7.16 5.08 5.49 0.86
Synchronization 31.74 14.24 32.33 4.60
Point cloud Reconstruction 21.80 2.47 15.83 3.64
Rendering 5.16 1.32 4.91 1.23
WebRTC Send-Recv 133.19 2.13 132.82 0.65
Total latency 251.30 23.32 251.82 6.93

Table 6. Component-wise latency.

Table 6 lists the per-component la-
tency for LiVo and LiVo-NoCull.
Through our careful choice of
design (§3) and implementation
(§4.1), both LiVo and LiVo-NoCull
achieve end-to-end latency within
300 ms, in line with production 2D
video conferencing systems such as
Zoom, Google Meet, etc. [32, 53].
Another essential requirement of
volumetric video streaming systems is rendering content within the motion-to-photon (MTP)
latency (<20 ms) [40, 55]. LiVo can consistently render within 6 ms, easily meeting the MTP require-
ment. For LiVo, the sender processing latency is around 64 ms while the receiver processing latency
is 53 ms. In contrast, LiVo-NoCull incurs lower processing latency at the sender since it does not
perform view culling, but requires culling at the receiver. The largest latency is incurred byWebRTC
transmission (color and depth transmissions are parallel), which is about 137 ms. Much of this is
attributable to the jitter buffer in WebRTC: we use 100 ms [81], consistent with current practice.

Fig. 13 plots the rendering frame rate for LiVo-NoCull and LiVo for trace-1. LiVo maintains 30 fps
with a lower standard deviation than LiVo-NoCull. For trace-2 (Fig. 14), LiVo maintains close to
30 fps (std. 0.7), while LiVo-NoCull achieves 28 fps (std. 1.8). At lower bandwidth, LiVo-NoCull
experiences more stalls (mean fps drops to 24 fps for pizza1) than LiVo because compressed non-
culled frames occasionally exceed the bandwidth budget. MeshReduce achieves a mean frame rate
of 12.1 fps, 2.5x lower than LiVo, despite fully utilizing all cores on the sender to encode frames.
MeshReduce’s frame rate for trace-2 is slightly higher than trace-1, because it decimates the mesh
more to fit the lower bandwidth, and the encoder needs to perform less work.

4.5 Validating Design Choices

Depth Encoding. Unlike prior work which has encoded depth in RGB images, LiVo encodes scaled
depth in the 16-bit Y-channel of an H.265 mode. Fig. 17 shows that LiVo’s scaled depth encoding
outperforms the RGB-based encoding used in [39, 76, 84] and unscaled depth encoding.
Kalman Filter buffer size. LiVo uses a static guard-band 𝜖 of 20 cm around the frustum to
minimize quality loss due to prediction errors. Fig. 15 shows that for guard-bands up to 30 cm,
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Fig. 18. PSSIM Geometric for static vs dynamic split.

60 80 100 120
Bitrate (Mbps)

70

75

80

85

90

95

100

PS
SI

M
 C

ol
or

static=0.45
static=0.50
static=0.55

static=0.60
static=0.65
static=0.70

static=0.75
static=0.80
static=0.85

static=0.90
static=0.95
dynamic

Fig. 19. PSSIM Color for static vs dynamic split.
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Fig. 20. PSSIM Geometric, LiVo-NoAdapt vs LiVo.

band2 dance5 office1 pizza1 toddler4
Videos

0

20

40

60

80

100

PS
SI

M
 C

ol
or

LiVo-NoAdapt LiVo

Fig. 21. PSSIM Color, LiVo-NoAdapt vs LiVo.

LiVo’s accuracy and data volume are relatively insensitive to the choice of guard-band, hence a
static guard-band works well. We have verified this for other videos as well.
Bandwidth Splitting. Fig. 18 compares PSSIM for different static splits with LiVo’s dynamic split
(§3.3) for bitrates ranging from 60-120 Mbps for office1 (similarly, color in Fig. 19). Dynamic splitting
achieves quality within 0.5 PSSIM points for geometry and 3 PSSIM points for color relative to
the best static split. With higher available bandwidth, both geometry and color PSSIM values are
within 0.5 of the best static split, demonstrating the effectiveness of dynamic splitting.
Bandwidth Adaptation.What if LiVo did not use bandwidth adaptation and view culling at all,
but instead used fixed quality parameters? We set fixed color QP (quantization parameter) to 22 and
depth QP to 14. Starline [51] uses these values. Fig. 20 and Fig. 21 show that this LiVo-NoAdapt’s
quality drops by 30 − 41% for geometry and 27 − 37% for color, with PSSIM going below 60.
Frustum Prediction. To estimate quality impairment caused by our predictive culling, we compare
it against LiVo with perfect culling (using predictions obtained from the user trace). The average
quality difference in PSSIM geometry and color is 1% across all 5 videos when run on trace-1.
Prior work has trained frustum predictors from user traces [40, 62] for on-demand volumetric

videos. We evaluate (Fig. 16) whether an MLP with 3 hidden layers used in ViVo [40] could learn
effectively from a small number of our traces. We find that it may be possible to match LiVo’s
predictor only with 64 hidden layers. With 3 layers, prediction errors are unacceptably high.

5 Conclusions
LiVo enables bandwidth-adaptive conferencing of full-scene volumetric video by maximally lever-
aging 2D video compression, rate-adaptive codecs, and real-time transport. Both user studies and
objective quality assessments show that it outperforms baselines while maintaining its perfor-
mance goals. Future work can explore better frustum prediction techniques, extend the work to
support multi-way conferencing, devise additional techniques to be robust to packet losses, extend
bandwidth splitting to 2D video, and adapt LiVo for mobile devices.
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A Appendix
A.1 Other Details
Our LiVo implementation combines techniques from various sources to achieve high-quality,
low-latency volumetric video streaming. We describe these briefly.
Stream Synchronization. WebRTC does not permit embedding frame numbers in video streams.
Following prior work [32], the LiVo sender embeds a (pre-generated) QR code in each 4K depth
and color tiled frame that encodes the frame sequence number (Fig. 3). The receiver decodes the
QR code to obtain frame sequence numbers. If both depth and color frames have not been decoded
by the time necessary to render the point cloud, LiVo simply skips the frame.
Receiver-side rendering. The receiver must reconstruct point clouds from received 4K frames.
To do this, it needs the parameters and positions of the RGB-D cameras; these are exchanged
once during connection setup or whenever they change. The receiver uses these to transform the
position of each pixel from each 4K frame into the global coordinate frame. Together with the
corresponding color attributes, these constitute the reconstructed point cloud at the receiver. This
point cloud may be more dense than necessary and may have more points because LiVo transmits
a guard-band around the frustum (§3.4). To speed up rendering, LiVo first voxelizes the point cloud,
then further culls the point cloud to the actual (current) frustum, following prior work [40, 55].

Fig. A.1. Block artifacts arising from unscaled depth
encoding when we use naive H.265 YUV 16-bit variant.

Pipelining and parallelism. To ensure frame-rate pro-
cessing, LiVo consists of several stages that run in parallel,
and each stage incurs a delay per frame of less than one
inter-frame interval. The sender has four stages: cap-
ture, view generation, tiling, and transmission. The re-
ceiver also has three stages: receiving and synchroniza-
tion, point cloud reconstruction, and rendering. Thus,
the total end-to-end processing latency is within 180 ms.
Each stage has a dedicated thread and is connected to the
next stage via a small inter-stage buffer (implemented
using a thread-safe queue). We also employ parallelism
within some stages when possible: e.g., view generation
and point cloud generation.
Minimizing the impact of packet loss. We enable several WebRTC features, including negative
acknowledgments, Picture Loss Indication (PLI), and Full Intraframe Request (FIR). Because 4K
videos are large, the default Linux UDP socket buffer (213 KB) proved insufficient, so we increased
it.

A.2 Depth vs Color Distortion
Fig. A.2 studies the variability in PSSIM quality metric in depth (similarly for color) when we fix
color (similarly for depth) bitrate and vary depth bitrate. Fig. A.2a shows how PSSIM Geometry
metric varies when we increase depth bitrate (normalized as depth bitrate per point); Fig. A.2b
similarly reports PSSIM color. We observe that depth quality improves significantly with increased
bitrate before it flattens, while the variation in color quality is minimal. Also, the bitrate that needs
to be allocated for depth is almost 7× higher before it saturates (around the vertical dotted line).
This confirms that depth is much more sensitive to bitrate than color and requires careful bitrate
allocation.
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(a) Depth distortion vs depth bitrate.
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(b) Color distortion vs color bitrate.

Fig. A.2. PSSIM distortion across videos when bitrate is varied

A.3 Variability in Bandwidth Traces
We show the variability in the two traces we use - trace-1 and trace-2 in Fig. A.3.
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Fig. A.3. Variability in the 2 network traces we consider.
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