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Abstract

Language model (LM) agents are increasingly used as autonomous decision-
makers which need to actively gather information to guide their decisions.
A crucial cognitive skill for such agents is the efficient exploration and
understanding of the causal structure of the world—key to robust, scientif-
ically grounded reasoning. Yet, it remains unclear whether LMs possess
this capability or exhibit systematic biases leading to erroneous conclu-
sions. In this work, we examine LMs’ ability to explore and infer causal
relationships, using the well-established Blicket Test paradigm from devel-
opmental psychology. We find that LMs reliably infer the common, intuitive
disjunctive causal relationships but systematically struggle with the un-
usual, yet equally (or sometimes even more) evidenced conjunctive ones.
This “disjunctive bias” persists across model families, sizes, and prompting
strategies, and performance further declines as task complexity increases.
Interestingly, an analogous bias appears in human adults, suggesting that
LMs may have inherited deep-seated reasoning heuristics from their train-
ing data. To this end, we quantify similarities between LMs and humans,
finding that LMs exhibit adult-like inference profiles (but not child-like).
Finally, we propose a test-time sampling method which explicitly samples
and eliminates hypotheses about causal relationships from the LM. This
scalable approach significantly reduces the disjunctive bias and moves LMs
closer to the goal of scientific, causally rigorous reasoning.

1 Introduction

Language models (LM) have achieved remarkable recent advances, driving progress in
natural language processing, human-computer interaction, and robotics. Building on these
models, LM “agents”—which observe and act in an environment over time—are rapidly
gaining prominence. Such “agents” offer the promise of fully autonomous intelligent
decision making, and exploratory works have already applied these agents to challenging
settings such as designing new antibody fragments (Swanson et al., 2024), and taking over
the full experimental and paper writing loop of machine learning conference papers (Lu
et al., 2024).

A central cognitive ability of any intelligent agent is an ability to discover causal relation-
ships in its environment (Gopnik et al., 2004b; Blaisdell et al., 2006). Despite their success,
it is unclear if LM agents naturally possesses this ability. Additionally, human data fun-
damentally shape LM agents (Gao et al., 2020; Raffel et al., 2020). LMs are pre-trained to
imitate human-text, fine-tuned on human-derived signal including supervised instructions
(Ouyang et al. 2022; Wang et al. 2022) and/or preference-based reward models (Christiano
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The Blicket Game

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them:

(]
O) object 0is on the floor, object 1 is on the floor, object 2 is on the floor.
o
+2  The machine hums softly in front of you, seemingly waiting. The light on
the machine is currently off. You wonder if there is a relationship between
g the objects and the machine.
"6‘ > put object 0 on machine
et
O  Vou put object 0 on the machine. The light on the machine is currently off.
a
Iﬁ > put object 1 on machine “Disjunctive” Condition:
Vou put object 1 on the machine. The light on the machine is now on. any blickets on the machine
turns on light
a Based on the information you have gathered, answer the following “Conjunctive” Condition:
1 question: Is object 0 a blicket? .
all blickets must be on the
(G N machine to turn on light

Figure 1: The Blicket Test.

et al., 2017; Bai et al., 2022). Even techniques like chain-of-thought prompting (Wei et al.,
2022) still rely on human-documented reasoning. Yet, decades of research in psychology
show that humans can be systematically irrational in many contexts (Kahneman, 2011). A
more specific question, then, is whether LMs trained to mimic human behaviour inherit
human-like biases and heuristics when reasoning about causal relationships?

To answer the above questions, we adopt the “Blicket Test” from cognitive science, which
has long been used to study how individuals throughout development infer and discover
causal relationships (Gopnik & Sobel, 2000a; Gopnik et al., 2004a; Sobel et al., 2004a; Gopnik
et al., 2001; Sobel & Kirkham, 2007; Lucas et al., 2014a; Walker & Gopnik, 2014; Bonawitz
et al., 2010). These works have shed light on how human adult causal inferences can deviate
from purely rational norms, but infants and toddlers reason with less bias like “scientists in
the crib”.

In this paper, we adapt the Blicket Test into a text-based sequential decision making game
to evaluate the LM’s causal reasoning capabilities. Critically, we assume the LM is “agentic”
and is capable of active learning: it must first take actions to discover how its world works,
then reflect on its own accumulated past experiences (which, in our set-up, is always stored
and given back to the LM as prompts) to infer correct causal relationship in its world.

The contributions are as follows:

1. We conduct rigorous experiments of LM agents’ performance in our text-based Blicket
Test to study their ability to explore and reason about causal relationships.

2. We show they explore poorly, act inefficiently to narrow down hypotheses, and can fail
to infer correct causal relationships even when provided with perfect exploration data.

3. We directly compare LM behaviour to human developmental data, and find that LMs
exhibit reasoning biases similar to adults (but not children).

4. We propose a test-time procedure that addresses this bias by explicitly constructing a
flatter prior, and prompting the LM to eliminate hypotheses under this new prior. This
significantly improves their performance.

2 Experimental Set-Up

2.1 The Blicket Test

The Blicket Test is an experimental paradigm involving N objects and a Blicket-detecting
machine (Gopnik & Sobel, 2000a). A subset of the objects are “Blickets”, which activate the
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machine following some unobserved rule. There are two possible rules.! The “disjunctive”
rule describes an OR relationship, where the machine turns on when any Blicket objects are
placed on it. The “conjunctive” rule describes an AND relationship, where the machine
only turns on when all Blicket objects are placed on it. These structures are ubiquitous in
real-world reasoning settings: a burglar alarm may be triggered by an intruder or the wind,
while a heart attack might require both high blood cholesterol and a genetic susceptibility
(Lucas et al., 2014b). Importantly, the structural causal model for these two rules is the same:
If the Blicket-detecting machine is the child node, then its parent nodes are the Blickets
that can turn it on, regardless of whether the rule is conjunctive or disjunctive. An agent
trying to solve the Blicket Test needs to interact with the environment to figure out which
objects turn on the machine, and the rule governing the machine (see detailed discussion in
Appendix A).

We convert the Blicket Test to a text-based game (Figure 1). First, the agent enters an
exploration phase. In each step, the agent can place a single object on or off the machine
(via specifying “> put [object id] [on/off] the machine”), and observe the state of the
machine (whether the light turned on or off). The agent also can perform auxiliary actions
including terminating the episode before the pre-specified maximum number of steps each
trial (via “> exit”) if it believes it has collected enough information. After the exploration
stage, the agent enters the Q&A phase. It is provided with the full observation history and
asked whether each of the N objects are Blickets. The agent answers “> True / False” to
each question.

The goal of the agent is to correctly answer all of the questions. To do this, the agent must
collect sufficiently informative observations during the exploration phase in order to resolve
the uncertainty about Blicket identities and the underlying rule.

2.2 Information Gain

One way to measure optimal behaviour in the Blicket Test is through each action’s informa-
tiveness (Kosoy et al., 2022b). Concretely, the space of hypothesis F is the set of functions
mapping from the objects’ states (on or off the machine) X € X to the machine’s state (light
isonoroff), Y € Y. F: X — ). The agent’s goal is to discover the correct F € F, via
maximizing information gain (Bernardo, 1979; Rainforth et al., 2024):

InfoGain(x,y) := H[p(F)] — H[p(F|x,y)] . (1)

This describes the reduction in (Shannon) entropy from the prior over the hypothesis space,
p(F), to the posterior after observing new data, p(F|x,y). In the Blicket Test, the space
of hypothesis is discrete, consisting of all combinations of items being Blickets with the
number of rules.? Further, if we assume the the distribution p(F) is always uniform over
all non-zero hypotheses, then maximizing information gain correspond to eliminating the
most number of hypotheses. When all but one hypothesis remains, p(F) has zero entropy
and no further information gain is possible.

In practice, an agent does not know the outcome y a priori. It can instead maximize expected
information gain,

G(x) := E,(yx) [InfoGain(x,y)] = E,(F)p(y|F ) [log p(F|x,y) —log p(F)] . ()

As a baseline, we will construct an “Oracle InfoGain” agent which explicitly computes and
maximizes this quantity based on one-step information maximization as a good approxima-
tion of the upper-bound for how well we can explore (more details in Appendix B.1).

2.3 Models and Baselines

We evaluate a number of LMs (Appendix B.2), over a range of carefully designed system
messages (Appendix B.4), with multiple prompting methods (Appendix B.5). All agents are

IThere can be more than two rules, but we used the two most commonly used rules in the existing
literature within the scope of this paper.
2For N items and 2 rules (conjunctive / disjunctive), there are a total 2N*! hypotheses.
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allowed up to 32 steps in a given trial. We evaluate in a easier environment containing 4
objects (2 are Blickets), and a harder environment containing 8 objects (2 are Blickets). An
example full interaction trace is provided in Appendix B.6.

Baseline Models We compare the LM agents against non-LM baseline agents. One is the
InfoGain Oracle, which explicitly calculates the expected information gain for each action,
and takes the action with the max information gain. This “Oracle” reasons about how to do
exploration optimally and provides an approximate upper-bound for performance in this
environment. The second agent is simply a random agent which takes random actions (to
put objects on or off the machine), and also randomly guesses the answers during the Q&A
phase, providing a lower-bound for performance.

Having now established the task and experimental set-up, we report the ability of LMs to
explore and infer causal relationships below.

3 LM Agents Exhibit Cognitive Biases

3.1 LM agents all perform poorly in the Blicket Test

Best Model Accuracy (4 objects) Best Model Accuracy (8 objects) All Model Accuracies (8 Objects)
l I ‘ l i 0.21
b bl

disjunctive conjunctive disjunctive conjunctive 0.0 0.2 0.4 0.6 0.8 1.0
Number of Objects Number of Objects Disjunctive Accuracy
baseline random gpt-40 deepseek-chat qwq ® infoGain oracle deepseek-chat @® cot
baseline random deepseek-reasoner ¥ default
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B infoGain oracle deepseek-reasoner gpt-40-mini gemma3:27b

(a) Best models over prompt variants. Error bar denote stan-
dard error of mean over multiple random seeds. Details in  (b) All models disj/conj accuracies.
Appendix B.3. Shape shows prompt techniques.

Figure 2: Quiz accuracy of various models during the question-and-answering phase of
the Blicket Test. The accuracy measures the proportion of trials where the model correctly
identifies all Blickets.

First, we directly evaluate the ability of LM agents to successful identify all Blickets. Figure 2a
shows the result of the best model within each model class over all system messages and
prompting methods. Across the board, all LMs struggle when the number of objects increase
from 4 to 8. Interestingly, LMs also systematically struggle when going from the disjunctive
(“OR”) rule to the conjunctive (“AND”) rule. This is not due to conjunctive rules being
harder: the InfoGain Oracle can perfectly resolve the entire hypothesis space every time
and achieves an Q&A accuracy of 1. This hints at the LMs having a disjunctive bias: a
preference for a disjunctive interpretation of the world over a conjunctive one. Models perform
worse in the 8 object, conjunctive case. This effect is further observed in Figure 2b: across
various models and prompting techniques, the LMs systematically skew toward lower
conjunctive accuracy. We report both the 4 and 8 objects results in Figure 11.

The results here outline a fundamental inability of LMs to causally explore and discover
its environment, even though we are in a setting where an optimal solution is tractably
computable. We study this further. We first investigate general factors that correlate with
Blicket Test success in Section 3.2, study LM’s (in)ability to do efficient exploration in
Section 3.3, and evaluate their (in)ability to infer causal relationship unbiasedly from data
in Section 3.4.
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Figure 3: Correlation analysis of fac-
tors contributing to model performance.

Steps Steps

1 1 1 —_ 3:12b t-4 t-40-mini
Each point is a unique model + prompt Ty e e
+ environment rule combination. The — deepseckreasoner  —— baseline random  —— qwg
Spearman’s rank correlation along with
the p-value is reported. Figure 4: Hypothesis elimination efficiency.

3.2 Which factors contribute to success?

We begin by studying common factors which may contribute to agent performance by
analyzing correlations in the 8 objects setting. For each factor, we compute the best logistic
fit, and conduct statistical hypothesis testing using Spearman’s rank correlation to determine
whether the factor is (rank) correlated with final performance. Spearman’s instead of
Pearson’s correlation is used as the data do not necessarily obey linear relationships. We
report the result and p-values in Figure 3.

Information Gain (Equation 1) is computed between the initial and final p(F) (assuming
uniform distribution over consistent hypothesis). This shows the strongest correlation with
performance accuracy, leading credence to information gain being a measure of optimality
in this task.

Unique State Visitation is a commonly used metric in reinforcement learning as a proxy for
good exploration (Bellemare et al., 2016). While this is correlated with final performance
(p < 0.05), it shows weaker correlation as compared to information gain.

Number of steps taken is a proxy for when the LM believes it has gathered enough
information, and therefore exits the trial early. Interestingly, this is strongly (negatively)
correlated with performance, hinting at the LMs having a good notion of when it has
explored well.

Response length measures the average number of output tokens during the Q&A phase
(including reasoning tokens for reasoning models). This is a proxy for the amount of
“reasoning” the LM performs. We find that longer reasoning correlate with lower performance
(p < 0.05).

As information gain—an exploration metric—shows the strongest correlation with final
performance, we now turn to an in-depth study of each agent’s ability to efficiently explore.

3.3 All LM agents do not explore efficiently

To study exploration efficiency, we quantify the number of hypotheses consistent with observed
data as a function of actions taken. An agent that efficiently explores should rapidly eliminate
hypotheses down to just one. This is equivalent to maximizing information gain as defined
in Section 2.2.
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We observe in Figure 4 that the InfoGain Oracle efficiently reduces the number of hypothesis
down to one. LM agents, on the other hand, perform worse. Similar to Section 3.1, they
struggle when the number of objects are increased, and with conjunctive (“AND”) rules.
This is likely not due to the conjunctive setting being inherently more difficult, as the
InfoGain Oracle resolves both in similar number of actions (we discuss this further in
Appendix C.1). This provides further evidence for the disjunctive bias (here specifically
for exploration). We also observe variability between the LM agents in their exploration
efficiencies, with GPT-40 performing the best, while other frontier models such as Gemma3
and deepseek-reasoner at times exploring worse than simply taking random actions.
We additionally plot the agents” performance as [0,1] progress, and progress normalized
by the baseline random performance to account for potential differences in environment
complexity. This is detailed in Appendix C.1, and show a similar trend as Figure 4.

3.4 Most LM agents show reasoning bias when inferring causal relationships

Disjunctive Rule Conjunctive Rule

o o o Iy
> o o o
|

Inference Accuracy

e
N

Iim (gpt-40) oracle random object_count IIm (gpt-40) oracle random object_count

Exploration Data Source Exploration Data Source
I gpt-4o B gpt-4o-mini m deepseek-reasoner B deepseek-chat —== infoGain oracle ——- lim explore + q&a

Figure 5: Evaluating LM’s ability to infer causal relationship when the same exploration
data is given as context in the 8 objects setting. Error bar denote standard error of mean.

Finally, we investigate the LM’s stand-alone ability to infer causal relationships by providing
all LMs with a standardized set of exploration data, including exploration trajectories
generated by (i) an LM (GPT-4o0), (ii) the InfoGain Oracle (which perfectly resolve the
hypothesis space), (iii) random exploration, and (iv) count-based exploration agent that
place objects on/ off the machine inversely proportional to how often they’ve been perturbed
before.

The results are in Figure 5 (additional data in Appendix C.3). Of particular interest is the
conjunctive (“AND”) setting: we observe that all LMs improve in Q&A performance when
provided with oracle exploration data as supposed to LM-exploration, suggesting that bad
exploration plays a causal role in their poor Q&A performance. However, for all but the
deepseek-reasoner model, the LMs still do not achieve near perfect accuracies despite the
oracle exploration data. Further, a disjunctive bias is still present for models such as GPT-4o,
which still performs worse in the conjunctive setting than the disjunctive one even with
oracle data present in both.

4 LM’s cognitive biases appear similar to human adults

The systematic disjunctive bias observed in LM’s causal reasoning raises a question: where
do these cognitive biases originate? We postulate that LMs, trained on vast corpora of
internet text predominantly generated by adult humans, naturally internalize cognitive
biases characteristic of adult human reasoning. To this end, we further evaluate the LM
agents in Blicket Test experiments where human data is available (Lucas et al., 2014b; Gopnik
etal., 2017; Kosoy et al., 2022b) in order to provide direct comparisons of LM behaviours
to that of humans. We conduct two sets of experiments which (i) compare the LM agents’
preference when performing inference based on ambiguous information to human children
and adults, and (ii) compare LM agents” exploration characteristics to children performing



Published as a conference paper at COLM 2025

Conjunctive Evidence Disjunctive Evidence Ambiguous Evidence
adults [l adults o adults{ o4
4yo - 4yo oA 4yo oo
phi4 ° phi41 @ phi4
llama3.31 @ llama3.31 @ llama3.3 L]
gemma3:27B{ ® gemma3:27B{ @ gemma3:27B{ @
gpt-40-mini{ @ gpt-40-mini{ @ gpt-40-mini{ @
gpt-401 @ gpt-401 @ gpt-401 @
deepseek-reasoner ® | deepseek-reasoner{ @ deepseek-reasoner HoH
deepseek-chat{ @ deepseek-chat{ @ deepseek-chat{ @
llama3.2-3B-inst | ® llama3.2-3B-inst | ® llama3.2-3B-inst | @
PO AN SRS PN PO AN PN N I N SN PN ]
more disj« - more conj more disj« - more conj more disje< - more conj

® LM Human

Figure 6: The number between 0 and 1 (x-axis) is the proportion of responses that favour
conjunctive inferences (about whether an ambiguous key object is a Blicket), when conjunc-
tive, disjunctive, or ambiguous hints about the rule governing the machine were presented.

the same task. Unlike the experiments in Section 3, all experiments in this section will be
conducted with 3 objects and 2 Blickets to be consistent with the psychology literature.

41 Most LM agents prefer disjunctive answers given uncertain data (like adults)

We replicate the Blicket Test experiment from Lucas et al. (2014b) and Gopnik et al. (2017),
which investigates children’s and adults’ preference for disjunctive versus conjunctive
inference when ambiguous evidence is presented. In short, the agents are first presented
with exploration data hinting at the Blicket-detecting machine following a disjunctive (“OR”)
or conjunctive ("AND”) rule. Then, the agent is provided with additional data with new
objects, but the same machine. The new data is by design ambiguous, thus the agent must
combine their previous belief about the machine with the new objects” data to identify which
(new) objects are Blickets. In particular, for one new object, identifying it as a Blicket means
that the agent believes that the machine obeys the conjunctive rule. We provide more details
for this set-up in Appendix B.8.

We report the LM’s tendency to identify the key object as a Blicket in Figure 6, along with
that of (i) human children (4-year-olds) and (ii) human adults. The human data is replicated
from Gopnik et al. (2017). We observe that in general, LMs show high “adult-like” bias
toward thinking the machine is disjunctive, even when the evidence suggests it’s conjunctive.
4-year-olds, on the other hand, correctly infer that the machine is conjunctive when the
evidence suggests so.

4.2 LM agents spend less time exploring disjunctive settings (unlike children)

Previous psychology research on the Blicket Test has predominantly focused on causal
inference—where participants are passively presented with observations. However, Kosoy
et al. (2022b) took a first step towards examining how children generate data through active
causal exploration. Their results revealed that children’s exploration is characterized by
an intrinsic, unbiased curiosity; the underlying causal rule does not significantly impact
children’s exploratory behaviour (Figure 7, second and fourth panels from the left; additional
data in Appendix C.4).

Here, we analyzed the exploration trajectories generated by LMs in a 3-object setting, using
system prompts as similar to the psychology experimental scripts as possible, to allow
direct comparison to the psychology literature. We measured the number of unique object
combinations attempted (same as unique states visited) as well as the number of steps
taken before exiting in each trial, and compared the results to children data from Table 1 of
Kosoy et al. (2022b). Our analysis showed that, unlike children, LMs explored differently
for the different causal structures (Figure 7, first and third panels from the left): LMs
generally attempted less unique combinations of objects and spent less time exploring in
the disjunctive condition, suggesting that their exploration is influenced by their biases.
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Figure 7: LM exploration is more affected by the causal rule than children. Left panels:
average number of unique combinations tried per trial by LMs or children. Right panels:
exploration extensiveness per trial, measured as the average number of steps taken before
exiting the trial in LMs, or the number of times children pressed the “check” button. Error
bar denote standard deviation. Two-sample t-test: * p < 0.05, ** p < 0.01, *** p < 0.001, ns:
not significant.

5 Making LMs more scientific through inference time hypothesis
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Figure 8: Hypothesis sampling agent first samples (without replacement) from the LM prior
to construct new prior g(F), then prompt the LM to maximize expected information gain
under g(F).

One way we can interpret the LM’s deep rooted bias for disjunctive hypotheses is that the
LM has a skewed prior p(F). One way to fix this is to “flatten out” this prior. While it
is highly non-trivial to do this via weight updates, we can do this during inference time
by explicitly representing uniform belief over a discrete set of hypothesis. Specifically, we
construct a new prior, q(F), which is “flatter” than the LM prior. We do this by sampling
discrete hypotheses from p(F) and rejecting identical samples. We give each accepted
samples uniform weight, which gives us q(F). It is trivial to show that g(F) is uniform over
its support and that its entropy monotonically increases with each additional unique sample
(Remark 1). After constructing the new prior q(F), we maximize expected information
gain under this prior. Since the prior assigns uniform probability over each hypothesis,
maximizing expected information gain corresponds to eliminating hypotheses. We therefore
prompt the LM to “take actions to eliminate as many hypotheses as possible” from g(F),
update the hypotheses in ¢(F) based on new observations, and repeat. This procedure is
outlined in Figure 8 and in more details in Appendix C.5.1.

We show the results from this procedure in Figure 9. With enough unique samples, we
expect g(F) to provide a less skewed prior (as compared to p(F)), and maximizing expected
information gain under q(F) to better resolve the disjunctive vs. conjunctive differences.
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Figure 9: Hypothesis sampling agent in the 8 objects environment.

Indeed, we see that with more initial unique samples, the LM agents both explore better, and
do better in Q&A, showing no decrease in performance in conjunctive vs. disjunctive set-
tings. Additionally, the hypothesis sampling agent no longer shows a (disjunctively) biased
exploration pattern initially observed in Section 4.2. We report this result in Appendix C.5.4.

6 Conclusion

Our study reveals that language model agents exhibit systematic biases in causal reasoning,
particularly a “disjunctive bias” that resembles the reasoning patterns of human adults
rather than children. Our test-time hypothesis sampling method significantly reduces
this bias, advancing LMs toward more scientifically rigorous causal reasoning—a crucial
capability for autonomous decision-making systems. Future work should explore whether
our hypothesis sampling approach generalizes to more complex causal structures beyond
Blicket tests, and to what extent it can be integrated with other reasoning techniques. Finally,
additional human data, specifically detailing exploration patterns, can further shed light on
the priors adults and children bring to discovering causal relationship.

Source of human-like bias We speculate that the “disjunctive bias” exhibited by LM
agents may stem from the way they are trained. LMs are pre-trained on vast corpora
of human-generated text, fine-tuned using human instructions, and/or aligned through
human preferences. Through language, any systematic tendencies and cognitive heuristics
in human reasoning may be baked into the models’ internal priors. Future work should
investigate whether a causal link exists between human-generated training texts and an
LM'’s disjunctive bias.

Construct validity of the Blicket task for LMs The Blicket task has an objectively correct
answer and an information-theoretically optimal exploration strategy, making it a useful
testbed for causal reasoning in LMs. Nevertheless, observing similar behaviours between
LMs and humans does not imply identical internal cognitive mechanisms; rather, it suggests
that the two may have overlapping capabilities. Drawing strong conclusions about inter-
nal mechanisms of cognitive capabilities would require models with human-like sensory
modalities, embodiment, and developmental learning trajectories—a direction that is out
of reach with current LM systems (Frank, 2023). In its absence, we approximate the core
structure of the task in a text-based format. As with any evaluations, these are approximate
measures of some aspects of the overall capabilities of an intelligent system. The goal is
that such benchmarks—whether in math, coding, or causal inference-would shed light on
where the current system is from being “generally intelligent”.
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Appendix

A Related Works

The Blicket-detecting Machine The Blicket detector task has a long history in develop-
ment psychology extending back to seminal studies in causal reasoning and categorization
(Gopnik & Sobel, 2000a; Gopnik et al., 2004a; Sobel et al., 2004a; Gopnik et al., 2001; Sobel
& Kirkham, 2007; Lucas et al., 2014a; Walker & Gopnik, 2014; Bonawitz et al., 2010). The
core premise of the Blicket detector is a machine that activates under specific conditions,
challenging an agent (in the original setting a child) to discover which objects (called “Blick-
ets”) trigger the machine and according to what rule (also known as “over-hypothesis”). A
disjunctive rule will activate the machine when any Blicket is present, whereas a conjunctive
rule requires multiple Blickets to activate the machine. By exploring object combinations
and/or observing machine activation, agents must generate and test hypotheses about
causal relationships. While simple, it reveals profound insights into how intelligent sys-
tems—whether humans or Al—discover and reason about causal structures. In our study,
we translate this experimental paradigm into a text-based interaction, probing LM'’s capacity
to explore, infer, and reason about causal relationships.

Reasoning and Exploration in LMs Recent advancements in LMs have significantly
expanded their applications in autonomous decision-making settings Brown et al. (2020);
OpenAl (2023); Bubeck et al. (2023). Particularly, LMs have been successfully applied in
tasks requiring exploration and reasoning, such as interactive decision-making Yao et al.
(2022); Shinn et al. (2023); Wang et al. (2023a) and scientific discovery Boiko et al. (2023). For
example, Yao et al. (2022) proposed ReAct, enabling LMs to interleave reasoning and acting,
thus improving decision-making capabilities Yao et al. (2022). More recent frameworks like
Reflexion (Shinn et al., 2023) and Voyager (Wang et al., 2023a) further leverage iterative
exploration and reflection to boost autonomous exploration performance. However, existing
literature also points to significant limitations in the exploratory capabilities of LMs. Osband
et al. (2016) highlight that effective exploration remains a fundamental challenge even in
traditional reinforcement learning agents (Osband et al., 2016). Recent work by Liu et
al. (2023) further underscores the insufficient exploratory behaviours of LMs, suggesting
that their tendency to imitate human-generated text leads to suboptimal decision-making
strategies Liu et al. (2023). Our work complements these findings by systematically studying
whether LMs exhibit biases specifically in causal inference contexts, thus bridging a gap in
current understanding of LM exploration and inference.

A closely related work to our hypothesis sampling agent is Piriyakulkij et al. (2024), which
similarly study a Blicket-like environment and samples hypotheses from an LM. Our work
is complementary to theirs, though we focus much more on investigating the LM’s ability
(and failure) to do causal exploration and reasoning, in a task where the LM needs to
perform more actions, and evaluate over a greater range of models. Another related work is
Wang et al. (2023b) which similarly generates code as hypotheses, although focusing on the
inductive reasoning ARC task rather than agentic causal discovery tasks.

Biases in Human and Machine Reasoning Psychological research extensively documents
systematic biases in human causal reasoning Tenenbaum et al. (2007); Griffiths & Tenenbaum
(2009); Lucas et al. (2014b). Among these, the Blicket paradigm introduced by Gopnik and
Sobel (2000) Gopnik & Sobel (2000b) has emerged as a canonical method for investigating
causal inference in humans, particularly children. Crucially, research using Blicket tests
shows a robust disjunctive bias, where humans, especially adults, systematically favour
simpler disjunctive causal hypotheses over conjunctive ones, even when evidence supports
the latter equally or more strongly Lucas et al. (2014b); Bonawitz et al. (2012); Sobel et al.
(2004b). These biases likely arise from human reliance on cognitive heuristics or simplicity
priors during causal reasoning

Previous studies indicate that LMs internalize human-like cognitive biases from their
training data, including reasoning shortcuts or heuristics (Hagendorff, 2023; Dasgupta
et al., 2022). Our study directly addresses whether these biases also manifest in LMs
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performing causal reasoning tasks, using the Blicket paradigm to rigorously quantify such
tendencies.

B Experimental Details

B.1 The Oracle InfoGain Agent

For objects’ states x € &', machine state y € Y, and the set of all hypotheses f € F, the
InfoGain agent maximizes expected information gain G(x) at each step. It iterates through
the following:

1. Generating a set of candidate next observations x to reach,
2. For each candidate, compute G(x),
3. Go to x that maximizes G(x).

The set of candidate next observations are all results of single actions. We represent it as a
binary vector. E.g. if the current state is [0, 1, 1], one candidate next state could be [0, 0, 1],
another is [0, 1, 0], and so on. For N objects, there are N such candidates at each step.

Concretely, we have the space of hypotheses f € F which is all possible items being the
Blicket / not a Blicket, and the two rules (disj / conj). There are 2N*! hypotheses total for N
objects. Algorithmically we represent them as boolean masks (for which objects are Blicket)
and numpy operations. E.g. a conjunctive rule where the last two objects are Blicket is:

def func(x):
mask = np.array([0, 1, 1], dtype=bool)
return np.all(x[mask])

For each candidate x, we compute:

G(x) = H(F) _]Ep(y|x) [H(F|x/y)] 3)
Below we show all components of G(x) are computable quantities. First, H(F) is the prior
entropy:
= ) p(f)logp(f @
feF

where p(f) is uniformly distributed over all f’s consistent with all observations so far.

The second term is,

E,yx) [H(Flx,y)] = ZP y|x) [—;P(fly,x)bgp(fly,x)] ®)

Note the summation over y amounts to iterating over all values of y, which in our case is
binary y € {0,1} (machine off or on).

Finally, we can write using Bayes,

pWlf, x)p(f)
YrpWlf, x)p(f)

where p(f) is from the prior as defined above. p(y|f, x) = 1if f(x) =y, and 0 otherwise.

p(fly,x) = (6)

B.2 Language Model Access

We select a mix of models to span several key axes—reasoning capability, capacity, openness,
and architectural family—to explore how each factor may influence hypothesis elimination
and exploration behaviour. The GPT family represents some of the highest-performing,
state-of-the-art LMs available. Within this family, we include both gpt-40 and gpt-4o0-mini,
enabling a comparison of model size effects within similar architectures. The DeepSeek
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family offer a complementary point of comparison: it includes state-of-the-art LMs in their
own right, allowing us to compare reasoning model vs. non reasoning model, along with
full access to intermediate reasoning content. We also study a few small-to-medium sized
models, including QwQ (medium sized reasoning model from Qwen), and the gemma3
series of models (< 30B).

We accessed the GPT models and DeepSeek models using the OpenAl and DeepSeek
APISs, respectively. Specifically, we use gpt-40-2024-08-06 and gpt-40-mini-2024-07-18.
As DeepSeek does not provide reproducible access specifications that we are aware of, we
report we access the DeepSeek-V3 (deepseek-chat) and DeepSeek-R1 (deepseek-reasoner)
models over the course of March 23 to March 28, 2025. Otherwise, we use Ollama (Ollama,
2025).

B.3 Statistical Validation

We evaluate all LMs in the “Blicket Test” text environment detailed in Section 2.1. For
experiments in Section 3.1-3.3 and Section 5, we run the agent in the game with either 4 or 8
objects, where 2 of them are Blickets (randomly assigned at the start of each episode). All
objects start off on the floor or on the machine with 0.9 or 0.1 independent probability. The
agent is allowed up to 32 actions in the environment before the game transitions to the Q&A
phase where the agent is asked binary questions about the identity of the Blickets.

For the main results (Figure 2), we use a minimum of 16 independent trials per combination
of model + prompt variant + system prompt. Specifically for Figure 2a, we plot the best
system message and prompt for each model, averaging over random seeds to compute the
95 standard error of mean.

B.4 System Message

We carefully design three different system message variants based on how information
is presented to human participants historically in Blicket Test experiments (Lucas et al.,
2014a). The first is human default, which is based on a common-sense explanation of the
task. The second is human conjunctive, which makes use of the description “Blickets have
blicketness”. As Lucas et al. (2014a) notes, this induces more conjunctive semantics. Finally,
the variant math definition provides a rigorous math definition to describe Blickets which
maximally avoid ambiguity.

The general system message prompt template follows the following format:

[## INITIAL MESSAGE ##]

Your goals are:

- Identify which objects are blickets.

- Infer the underlying rule for how the machine turns on.

Here are the available commands:

look: describe the current room

put ... on ...: put an object on the machine or the floor
take ... off ...: take an object off the machine

exit: exit the game

[## TIPS ##]

You have #HORIZON# steps to complete the task. You can also exit the task
early if you think you understand the relationship between the
objects and the machine. After the task is done, you will be asked
which objects are blickets, and the rule for turning on the machine.

You will be prompted at each turn to choose actions.
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B.4.1 Human Default Variant

Initial Message:

You are an intelligent, curious agent. You are playing a game where you
are in a room with different objects, and a machine. Some of these
objects are blickets. You can't tell which object is a blicket just
by looking at it. Blickets make the machine turn on, following some
hidden rule.

Tips:

Tips:

- All objects can be either on the machine or on the floor.

- You should think about how to efficiently explore the relationship
between the objects and the machine.

B.4.2 Human Conjunctive Variant

Initial Message:

You are an intelligent, curious agent. You are playing a game where you
are in a room with different objects, and a machine. Some of these
objects are blickets. You can't tell which object is a blicket just
by looking at it, but they have blicketness inside of them.
Blicketness makes the machine turn on, following some hidden rule.

Tips:

Tips:

- All objects can be either on the machine or on the floor.

- You should think about how to efficiently explore the relationship
between the objects and the machine.

B.4.3 Math Definition Variant

Initial Message:

You are an intelligent, curious agent. You are playing a game where you
are in a room with different objects, and a machine. Some of these
objects are blickets. You can't tell which object is a blicket just
by looking at it, but they have blicketness inside of them.
Blicketness makes the machine turn on, following some hidden rule.

Tips:

Tips:
- All objects can be either on the machine or on the floor.
- You should think about how to efficiently explore the relationship
between the objects and the machine.
- A blicket is defined as an object whose state is not independent of the
state of the machine (in other words, the object's state
distribution and the machine's state distribution have nonzero mutual
information)

B.5 Prompting Techniques

For non-reasoning models, we also use a number of standard prompting techniques, includ-
ing ReAct (Yao et al., 2022), Reflexion (Shinn et al., 2023), and Chain-of-Thought (CoT) (Wei
et al., 2022). As the point of the Blicket Test is to discover knowledge, we do not provide
it with few-shot examples, but ask the LMs to do exploration zero-shot, based on generic
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prompts. The prompting technique is applied both during exploration (where agent is
prompted to act), and Q&A (where the agent answers True/False). Details below.

Default Prompt

Directly output the command in the format '> command'. Ensure only one
command is included.

ReAct Prompt

First briefly reason and think about your plan to solve the task. Then,
output the command in the format '> command'. Ensure only one command
is included.

Reflexion Prompt

Please first reflect on your plan to solve the task. Explain your
reasoning and self-evaluate any potential issues before outputting
the final command in the format '> command'. Ensure only one command
is included.

Chain-of-Thought Prompt

Please provide a detailed chain-of-thought outlining all intermediate
steps leading to your decision, and then output the final command in
the format '> command'. Ensure only one command is included.

B.6 Example Trajectory

Here we provide an example full trajectory in an environment with 3 object, with conjunctive
(AND) rule. This is the full prompt given to the agent during the Q&A phase, which contains
the entire exploration interaction history as context. In this environment, objects 1 and 2 are
Blickets.

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them:
object @ is on the floor, object 1 is on the floor, object 2 is on
the floor.

The machine hums softly in front of you, seemingly waiting. The light on
the machine is currently off. You wonder if there is a relationship
between the objects and the machine.

> put object @ on machine

You put object @ on the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
of f.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is now on.

> take object @ off machine

You took object @ off of the machine. The light on the machine is now on.

> take object 1 off machine

You took object 1 off of the machine. The light on the machine is
currently off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is now on.

> take object 2 off machine

You took object 2 off of the machine. The light on the machine is
currently off.

> take object 1 off machine
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You took object 1 off of the machine. The light on the machine is
currently off.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is now on.

> exit

Exiting the episode.

Based on the information you have gathered, answer the following question
Is object 2 a blicket?

Directly output the answer in the format '> True/False'. Ensure only one
answer is included.

B.7 Example intermediate tokens during Q&A

We provide qualitative examples of intermediate tokens below. While intermediate tokens
have been used as a proxy for “reasoning” in the literature, we do not wish to draw strong
conclusions here. Recent evidence suggests their role in the LM’s computation is illusive,
for instance, they may not necessarily have to be correct for the final answer to be correct
(Stechly et al., 2025).

B.7.1 GPT-4o, react prompting (correct answer)

Q: Is object 1 a blicket? (true blicket indices: [1, 4])

From the observations, the machine turns on when object 1 and object 4
are on the machine together. When object 1 is on the machine alone,
the light is off. When object 4 is on the machine alone, the light is

off. However, when both objects 1 and 4 are on the machine, the
light turns on. This suggests that the rule for the machine to turn
on requires both objects 1 and 4 to be present, indicating that both
are blickets.

Therefore, object 1 is a blicket.

> True

B.7.2 GPT-4o, react prompting (incorrect answer)

Q: Is object 5 a blicket? (true blicket indices: [2, 5])

From the observations, we can see that:

- When object 5 is on the machine alone, the light is off.
- When object 5 is on the machine with object 2, the light is on.
- When object 2 is on the machine alone, the light is on. [incorrect]

This suggests that object 2 is a blicket because it can turn the machine
on by itself. Object 5 does not turn the machine on by itself,
indicating it is not a blicket. The machine turns on when object 2 is

present, regardless of whether object 5 is also present.

Therefore, object 5 is not a blicket.

> False
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B.7.3 DeepSeek-R1 (correct answer)

Q: Is object 2 a blicket? (true blickets: [2, 3] conjunctive)

Okay, let's try to figure out if object 2 is a blicket. So, the machine
turns on when certain objects (blickets) are placed on it. From the
steps taken, let's recap what happened.

First, when objects 5 and @ were placed on the machine, the light stayed
off. Then adding 1, 2, and 3 caused the light to turn on. When
objects 5 and 1 were removed, the light stayed on. But when object 3
was removed, the light turned off. Then removing 2 also left it off.

[omitted "1k characters]

Then removing 3 turned it off. Then putting 3 back alone didn't help, but
adding 2 again made it work. So yes, 2 and 3 together activate the
machine. Therefore, object 2 is a blicket because when combined with
3, the machine turns on. So the answer should be True.

B.7.4 DeepSeek-R1 (incorrect answer)

Q: Is object 5 a blicket? (true blickets: [5, 7] conjunctive)

Okay, let's try to figure out if object 5 is a blicket. From the actions
taken in the game, here's what happened:

Initially, all objects except object @ were on the floor, and the machine
was off. The user started by putting objects 1 through 7 one by one
onto the machine. Each time, the machine's light stayed off until
object 7 was added. When all objects (1-7) were on the machine, the
light turned on. Then, removing object 7 caused the light to turn off
, and putting it back on turned it on again.

This suggests that the machine's rule requires the presence of object 7
to activate. Since adding all other objects (1-6) didn't trigger the
light until 7 was added, it's likely that object 7 is a blicket.
However , the other objects (including 5) were on the machine both
when the light was off (before 7 was added) and when it was on (after

7 was added). Since the presence of 5 alone (without 7) didn't
activate the machine, and removing 7 deactivates it regardless of 5's

presence, it seems that 5 isn't a blicket. The rule might be that
the machine only needs at least one blicket, which is 7 here.
Therefore, object 5 is not a blicket.

B.8 Human inference experiments

To study whether LMs are biased by prior assumptions during inference, we conducted
a direct textual replication of the inference experiment used in Lucas et al. (2014b) and
Gopnik et al. (2017), designed to probe causal reasoning under uncertainty. First, in the
“training” phase, the participants (in our case, LMs) are presented with trials that provide
evidence suggesting one of three scenarios: (1) A disjunctive causal rule governs the machine;
(2) a conjunctive causal rule governs the machine; (3) the evidence is ambiguous and
insufficient to definitively determine which causal structure governs the machine (the
“baseline” condition). Below is the full trajectory of one training trial for each of the 3
scenarios: (1) disjunctive evidence:

You are in a room. You see a machine at the center of this room.
There are also 3 objects scattered around the room. You observe them:

object @ is on the floor, object 1 is on the floor, object 2 is on
the floor. The machine hums softly in front of you, seemingly waiting
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The light on the machine is currently off. You wonder if there is a
relationship between the objects and the machine.

> put object @ on machine

You put object @ on the machine. The light on the machine is now on.

> take object @ off machine

You took object @ off the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
off.

> take object 1 off machine

You took object 1 off the machine. The light on the machine is currently
off.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is now on.

> take object 2 off machine

You took object 2 off the machine. The light on the machine is currently
off.

> put object @ on machine

You put object @ on the machine. The light on the machine is now on.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is now on.

> take object 1 off machine

You took object 1 off the machine. The light on the machine is now on.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is now on.

> take object @ off machine

You took object @ off the machine. The light on the machine is now on.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is now on.

(2) conjunctive evidence:

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them:
object @ is on the floor, object 1 is on the floor, object 2 is on
the floor. The machine hums softly in front of you, seemingly waiting

The light on the machine is currently off. You wonder if there is a
relationship between the objects and the machine.

> put object @ on machine

You put object @ on the machine. The light on the machine is currently
off.

> take object @ off machine

You took object @ off the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
off.

> take object 1 off machine

You took object 1 off the machine. The light on the machine is currently
off.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is currently
of f.

> take object 2 off machine

You took object 2 off the machine. The light on the machine is currently
off.

> put object @ on machine

You put object @ on the machine. The light on the machine is currently
of f.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
off.
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> take object 1 off machine

You took object 1 off the machine. The light on the machine is currently
off.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is now on.

> take object @ off machine

You took object @ off the machine. The light on the machine is currently
of f.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
off.

(3) ambiguous evidence:

You are in a room. You see a machine at the center of this room.

There are also 3 objects scattered around the room. You observe them:
object @ is on the floor, object 1 is on the floor, object 2 is on
the floor. The machine hums softly in front of you, seemingly waiting

The light on the machine is currently off. You wonder if there is a
relationship between the objects and the machine.

> put object @ on machine

You put object @ on the machine. The light on the machine is currently
of f.

> take object @ off machine

You took object @ off the machine. The light on the machine is currently
off.

> put object @ on machine

You put object @ on the machine. The light on the machine is currently
of f.

> take object @ off machine

You took object @ off the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
of f.

> take object 1 off machine

You took object 1 off the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
of f.

> take object 1 off machine

You took object 1 off the machine. The light on the machine is currently
off.

> put object 1 on machine

You put object 1 on the machine. The light on the machine is currently
off.

> take object 1 off machine

You took object 1 off the machine. The light on the machine is currently
of f.

> put object @ on machine

You put object @ on the machine. The light on the machine is currently
off.

> put object 2 on machine

You put object 2 on the machine. The light on the machine is now on.

Next, in the “test phase”, the participants (or LMs) are presented with a test trial with new
objects and the same machine governed by the causal rule introduced in the training trials.
Below is the full trajectory for the test trial:

You are in a new room. You see the same machine as the one you previously
saw at the center of this room.
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You now have 3 different objects scattered around the room. You observe
them: object A is on the floor, object B is on the floor, object C is
on the floor. The machine hums softly in front of you, seemingly
waiting. The light on the machine is currently off. You wonder if
there is a relationship between the objects and the machine.

> put object A on machine

You put object A on the machine. The light on the machine is currently
off.

> take object A off machine

You took object A off the machine. The light on the machine is currently
off.

> put object A on machine

You put object A on the machine. The light on the machine is currently
off.

> take object A off machine

You took object A off the machine. The light on the machine is currently
of f.

> put object A on machine

You put object A on the machine. The light on the machine is currently
off.

> take object A off machine

You took object A off the machine. The light on the machine is currently
of f.

> put object B on machine

You put object B on the machine. The light on the machine is currently
off.

> take object B off machine

You took object B off the machine. The light on the machine is currently
off.

> put object A on machine

You put object A on the machine. The light on the machine is currently
of f.

> put object C on machine

You put object C on the machine. The light on the machine is now on.

> put object B on machine

You put object B on the machine. The light on the machine is now on.

> take object B off machine

You took object B off the machine. The light on the machine is now on.

Based on the information above, is object A a blicket?

Directly output the answer in the format '> True/False'. Ensure only one
answer is included.

The test trial is intentionally designed such that the ground truth can be one of the two
possibilities: either both A and C are Blickets, and the machine follows a conjunctive rule,
or only C is a Blicket, and the machine follows a disjunctive rule. Participants (or LMs) are
then asked whether each test object (A, B, C) is a Blicket. In particular, the answer to the
identity of the test object A as a potential Blicket (causal agent) depends on the what the
participant (or LM) believes the underlying rule of the causal system is. As such, we quantify
the model’s propensity to classify A as a Blicket, which serves as a proxy for identifying
cognitive bias. The experimental setup mirrors the original psychological study, translated
into a text-based interaction format that allows LMs to reason about causal relationships.

C Additional Results

C.1 Causal Exploration Progress

For more comprehensive interpretations of each model’s exploration efficiencies, we plot ad-
ditional visualizations of the results in Figure 4. Figure 10a plots the hypotheses elimination
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by the baseline random agent’s mean progress.
Normalized progress can be negative, see Equa-
tion 8.

(a) Hypothesis elimination progress, measured
between 0 (no hypotheses eliminated) and 1 (all
but one eliminated). Higher is better.

Figure 10: Raw and normalized hypothesis elimination progress. Error bars denote standard
error.

as a progress between 0 and 1. Denote the total number of hypotheses as N, and number of
hypotheses model m has eliminated at time ¢ as 1, (t). The hypotheses elimination progress
o is measured as,

N — np(t)
N-1 '

which goes to 1 when all but one hypotheses are eliminated.

Pm(t) = )

We also consider the possibility that due to bounded computational resources, one task
may be harder. We account for this potential difference in search difficulties by normalizing
the performance relative to a baseline that takes random actions in each environment
(Figure 10b). This normalized progress is measured by,

Pm(t) - Prandom(t)
1- prandom(t) ’

pm(t) = 8)

which shows the progress of a model relative to progress made by the random action
baseline. Intuitively, the normalized progress measures where the model progress pm (t) is
between the random baseline’s progress prandom () and 1. Note that this progress can be
negative if the progress a model makes is slower than that of a baseline. We further observe
that for the best performing models, LM agents still show a disjunctive bias in exploration
efficiencies when normalized by the random action baseline. For completeness, we also
report the end-of-episode progress of the performant models in Table 1.

C.2 Effect of reasoning effort on exploration

To investigate the effect of “reasoning” on the models’ abilities to explore, we run additional
evaluation using the GPT-o-mini series of reasoning models on the 8-objects environments.
We report the results in Figure 12. In the conjunctive setting (left panels), models with higher
reasoning effort consistently lag behind both lower-reasoning variants and the infoGain
oracle. We hypothesize this could be due to: (1) the reasoning models evaluated here were
overfitted to the verifiable tasks they were trained on; (2) reasoning amplifies existing priors
in these models that favours disjunctive interpretations. Future works are needed to address
these open questions.
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# Objs | Model | Disj. Conj. | Norm. Disj.  Norm. Conj.
baseline random | 0.968 +0.049 0.964 + 0.068 0 0
infoGain oracle 1.000 £ 0.000  1.000 = 0.000 | 1.000 +0.000  1.000 + 0.000
4 gpt-4o 1.000 + 0.000 0.991 + 0.033 | 1.000 +0.000 0.756 + 0.900
gpt-40-mini 0.982 +0.073 0.911 +£0.113 | 0.439+2.297 -1.444 +3.109
deepseek-chat 0.995+0.011 0.975+0.046 | 0.857+0.356  0.319 + 1.255
deepseek-reasoner | 0.934 +0.224 0.895+0.236 | -1.085+ 7.063 -1.881 + 6.509
baseline random | 0.944 +0.098 0.877 +0.183 0 0
infoGain oracle 1.000 £ 0.000  1.000 = 0.000 | 1.000 +0.000  1.000 + 0.000
8 gpt-4o 0.999 + 0.005 0.924 + 0.125 | 0.983 £0.085  0.383 + 1.019
gpt-4o-mini 0.812 £ 0.357 0.798 +0.307 | -2.342 + 6.346 -0.647 + 2.499
deepseek-chat 0.976 +£0.092 0.935+0.138 | 0.581+1.634 0.472+1.121
deepseek-reasoner | 0.956 +0.174 0.875+0.215 | 0.226 +3.091 -0.014 + 1.752

Table 1: Absolute and normalized exploration progress (+ stdev) across models and object
counts, at the end of each of episode. Disj and Conj denote absolute progress, while Norm
Disj and Norm Conj denote random-normalized progress. Higher is better.
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Figure 11: All models’ disjunctive and conjunctive accuracies. Colours indicate model type,
while point shapes indicate the prompt. This is an extension of the result in Figure 2b.

C.3 Inference on causal relationships

We report the trajectory statistics of the exploration data used in Section 3.4 in Table 2.

Data Source Rule Type  Traj Length (+ Stdev)
LLM (GPT-40) Conjunctive 18.94 +5.04
LLM (GPT-40) Disjunctive  18.06 +2.35
Oracle Conjunctive 12.70 +4.79
Oracle Disjunctive ~ 14.58 + 4.28
Object Count  Conjunctive  32.00 + 0.00
Object Count  Disjunctive ~ 32.00 + 0.00
Random Conjunctive  32.00 + 0.00
Random Disjunctive  32.00 + 0.00

Table 2: Trajectory lengths (mean + standard deviation) across exploration data sources and
rule types. Used in Figure 5.
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Figure 12: Hypotheses elimination efficiency for the GPT-o-mini series of reasoning models
at varying reasoning efforts. Lower is better. Error bar denotes standard error of mean.

C.4 Human exploration characteristics

Time (s) Time to Success (s)
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Figure 13: Additional exploration statistics in children, reproduced from Table 1 of Kosoy
et al. (2022b) aggregating “given hypothesis” and “not given hypothesis” conditions. Left:
Number of times children checked if state of the Blicket-detecting machine. Right: Average
time children played before seeing the Blicket detector go on for the first time. Error bar
denote standard deviation. Two-sample t-test significance level denote at the top of each
panel.

Kosoy et al. (2022a) conducted Blicket Test experiment with 4-year-old children and allowed
them to freely explore different combinations of given objects to “figure out how to make
the machine go”. Here we reproduce their results from Table 1 graphically and ran statistical
tests to have a better understanding of how well LMs explore in comparison to human
children 4.2. In summary, across different experimental conditions (whether the causal rule
of the Blicket-detecting machine can be inferred from example trials, i.e. “given hypothesis”,
vs. when the causal rule cannot be inferred, i.e. “not given hypothesis”) and measurements
(number of unique combinations attempted, number of “checks” which we use as the
equivalent for the number of actions taken before exiting, time spent exploring), children
explore similarly for conjunctive machine and disjunctive machine (Figures 13, 14).
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Figure 14: Additional exploration statistics in children, reproduced from Table 1 of Kosoy
et al. (2022b) without aggregating. Top left: Average number of times children pressed the
“check” button per trial. Top right: Average number of unique combinations attempted per
trial. Bottom left: Average total time spent exploring the Blicket-detecting machine. Bottom
right: Average time before successfully activating the machine for the first time in a trial.
Error bars denote standard deviation. Two-sample t-test significance level denote at the top
of each panel.

C.5 Hypothesis Sampling Agent

C.5.1 Details of Procedure

The sampling agent approximates the InfoGain agent to reduce the entropy of the hypothesis
distribution. Instead of iterating over candidate next observations and computing G(x),
we simply prompt the LM to take actions that minimizes H(F). The procedure is outlined
below.

1. Hypotheses sampling to form set of active hypotheses If there are zero hypotheses:
we prompt the agent to generate hypotheses as python functions.

You have seen the following observations so far:

[HISTORICAL OBSERVATIONS]

Come up with some hypothesis about how the world works. Write each one as
a python function. The function should:

- Take as input a numpy boolean vector of length #NUM_OBJECTS#,
means object is on floor, and 1 means object is on machine

where 0
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- Output a boolean, where @ means machine light is off, and 1 means
machine light is on

- First construct a boolean mask indicating which object(s) are blickets,

extract just the state of these objects, then define some function

over these states to produce the state of the machine.

- Only consider hypothesis where one or all objects that are blickets
needs to be put on the machine.

- Do not consider the "sum” operation. Only consider boolean operations.

Produce #NUM_HYPOTHESES# hypothesis, do not generate the same hypothesis.
Be diverse in both the blicket masks and the potential functions.

Do not generate the hypothesis you have already eliminated:
[ELIMINATED HYPOTHESES]

Do not generate hypothesis you have already generated:
[ACTIVE HYPOTHESES]

Directly output the answer, ensure only one answer is included. Return a
set of hypotheses as python functions.

We save all valid (python executable) hypotheses as string python code in the list of currently
active hypotheses.

2. Eliminate hypotheses based on observation history For each python function f (i.e.
hypothesis) in the currently active list, we check if it perfectly predicts all past observations:
ie. f(x;) = y;forall {(x;,y;)}izo, s If it does not, we move it to the “eliminated hypotheses”
list.

3. Prompt agent to take actions that eliminate more hypotheses We prompt the agent to
take actions conditioned on the observations and the list of active hypotheses:

You are currently entertaining the following list of hypothesis:
[ACTIVE HYPOTHESES]

You have seen the following observations so far:
[OBSERVATIONS SO FAR]

Given the observations so far, and the list of hypotheses (hypothesis
space), take an action which will disprove the existing hypothesis.

Directly output the answer, ensure only one answer is included. Output
the action in the format \'> action\'. Ensure only one action is
included.

The agent then takes the next actions and we repeat the above procedure for exploration.

Q&A Phase During the Q&A phase, we prompt the agent to answer questions condition-
ing on the remaining set of hypotheses:

You have seen the following observations so far:
[HISTORICAL OBSERVATIONS]

You have disproven the following hypothesis:
CELIMINATED HYPOTHESES]

You have not yet disproven the following hypothesis:
[ACTIVE HYPOTHESES]

Based on the information above, answer the following question: [QUESTION]

Output the answer in the format \'> True/False\'. Ensure only one answer
is included.
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In this way, the sampling agent explicitly represents its beliefs p(F) as a set of active
hypotheses, which the LM conditions on to take the most informative action.

C.5.2 Proof of Remark

Remark 1. Let p(F) be a discrete prior distribution, and we sample without replacement from
p(F) to construct empirical distribution q(F). Let q;(F) be the empirical distribution after t
unique samples, the entropy of q monotonically increases with each additional unique sample,

H(g:) < H(qi11)-

Proof. Given the already sampled set Sy = {f1, f2, ..., ft }, the empirical distribution is defined

as: .

9(f) {O otherwise . ©)
The entropy is H(q:) = —Ey,[log g;] = — log(%) = logt. log is a monotonically increasing
function in . O

C.5.3 Exploration for Both Rules

See Figure 15.
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Figure 15: Hypothesis elimination performance of the hypothesis sampling agent for 8
objects for both disjunctive (“OR”) and conjunctive (“AND”) rules.

C.5.4 Hypothesis sampling agent resolves biased exploration patterns

Additionally, we evaluated whether our method of hypothesis sampling addressed the dif-
ferences in exploration patterns between conjunctive and disjunctive causal structures that
we observed in 4.2, wherein LMs explore more extensively in the conjunctive condition than
disjunctive. We observed that sampling hypothesis significantly reduced the difference in
exploration patterns between conjunctive and disjunctive conditions (Figure 16), suggesting
that our method helps LM explore more systematically, much like a curious child.

29



Published as a conference paper at COLM 2025

# Combinations

IE_I ‘l'l |

20

15

10

5 njunctivi
Em Conjunctive 5 ClOl]u C. e
Disjunctive Disjunctive
0 0 N .
Nai M 16 32 48 64 96
ave # hypotheses generated
# Steps per trial
30 EE3
ns ns ns ns ns
30 - = = = =
20
20
10
10
E Conjunctive L C?’?Junclthe
Disjunctive Disjunctive
0 0 16 32 48 -64 96

Naive LM # hypotheses generated

Figure 16: Amount of exploration by gpt-4o in the 8-object Blicket environment with default
system prompts, measured by the number of unique combinations of objects attempted per
trial (top) and number of steps taken before exiting the trial, for agents before (left) and after
(right) inference-time hypothesis sampling, averaged across trials, error bar denote standard
deviation. Two-sample t-test: * p < 0.05, ** p < 0.01, ** p < 0.001, ns: not significant.
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