
Aioli: A unified optimization framework for language model data
mixing

Mayee F. Chen∗1 Michael Y. Hu∗2 Nicholas Lourie3 Kyunghyun Cho2,3,4

Christopher Ré1

1Department of Computer Science, Stanford University
2Center for Data Science, New York University

3Computer Science Department, New York University
4Prescient Design, Genentech

April 22, 2025

Abstract

Language model performance depends on identifying the optimal mixture of data groups to train on (e.g., law, code,
math). Prior work has proposed a diverse set of methods to efficiently learn mixture proportions, ranging from fitting
regression models over training runs to dynamically updating proportions throughout training. Surprisingly, we find that
no existing method consistently outperforms a simple stratified sampling baseline in terms of average test perplexity.
To understand this inconsistency, we unify existing methods into a standard framework, showing they are equivalent to
solving a common optimization problem: minimize average loss subject to a method-specific mixing law—an implicit
assumption on the relationship between loss and mixture proportions. This framework suggests that measuring the fidelity
of a method’s mixing law can offer insights into its performance. Empirically, we find that existing methods set their mixing
law parameters inaccurately, resulting in the inconsistent mixing performance we observe. Using this insight, we derive a
new online method named AIOLI, which directly estimates the mixing law parameters throughout training and uses them
to dynamically adjust proportions. AIOLI outperforms stratified sampling on 6 out of 6 datasets by an average of 0.27
test perplexity points, whereas existing methods fail to consistently beat stratified sampling, doing up to 6.9 points worse.
Moreover, in a practical setting where proportions are learned on shorter runs due to computational constraints, AIOLI can
dynamically adjust these proportions over the full training run, consistently improving performance over existing methods
by up to 12.012 test perplexity points.

1 Introduction
It is important to determine what data to train on for a language model (LM) to acquire a range of capabilities, from
generating code to understanding scientific literature and conversing with users [3, 34, 39]. To achieve this, practitioners
mix data from various groups (such as code files, scientific papers, and chat logs) in specific proportions to compose an
overall training dataset—a procedure known as data mixing. Identifying the optimal mixture proportions is critical to LLM
performance. However, a brute-force trial-and-error search over the proportions is computationally expensive, requiring
many training runs.

Recent work introduces two types of data mixing algorithms that learn mixture proportions: offline and online methods.
Offline methods conduct multiple training runs with varying proportions, fit a regression model to predict performance, and
use this model to determine the optimal static mixture [37, 72]. Online methods adjust the mixture proportions dynamically
throughout training using information from the model, such as its loss and gradients [2, 14, 22, 70]. All mixing methods
require at least one training run to learn the proportions but are more efficient than a brute-force search.

Given the wide range of methods available, it is important to determine which ones are effective. However, when we
evaluated existing methods, we found that no method consistently outperformed stratified sampling—a simple baseline
that uniformly mixes groups and requires zero extra training runs—across all sets of data groups in terms of average test
perplexity (Table 2). This surprising outcome suggests that all existing methods suffer from some common weaknesses. To
make progress in data mixing, we identify three objectives: 1) improve our understanding of the underlying assumptions of
existing methods, 2) assess the fidelity of these assumptions in practice to better understand performance, and 3) apply our
insights to develop principled new data mixing methods.

*Equal contribution. Contact: mfchen@stanford.edu, michael.hu@nyu.edu

1

ar
X

iv
:2

41
1.

05
73

5v
2

 [c
s.L

G
]

21
 A

pr
 2

02
5

mfchen@stanford.edu
michael.hu@nyu.edu

Our method: Aioli 🧄

minimizep∈△T×m

m

∑
i=1

LT+1
i (pT)

s.t. Lt+1(pt) lin= σ(Atpt)

Unified Framework:  
Linear Mixing Optimization

̂ADoReMi ̂ADoGE ⋯ ̂ASkill-it
+

Analyzing fidelity of existing methods 1 2 3

Data mixtures p for training language models

Lo
ss

 o
n

Ar
Xi

v

Proportion of ArXiv

Lo
ss

 o
n

St
ac

kE
xc

ha
ng

e

Proportion of StackExchange

p*
̂pAioli

̂pexisting

}Estimate ̂AAioli

Training steps

Av
er

ag
e

Lo
ss

A⋆(fitted) ̂A(existing)

Figure 1: Left: existing methods can be expressed in a unified optimization framework, in which they implicitly assume a
linear or log-linear loss-proportion relationship. Center: the (log)-linear parameterizations are well-specified, but existing
methods set their parameters incorrectly. Right: AIOLI, an online mixing method that more accurately estimates the
parameters that capture the true loss-proportion relationship.

In this paper, we improve our understanding of data mixing methods by showing that many existing methods can
be expressed in a unified optimization framework, which we call Linear Mixing Optimization (LMO) (Section 3). These
methods are equivalent to solving an optimization problem that sets proportions to minimize the average loss per data group,
subject to an implicit method-dependent mixing law—an assumption relating loss per group and mixture proportions. We
find that all current mixing laws share the same parameterization: for training round t from 1 to T ,

Lt+1(pt)
lin
= σ(Atpt),

where pt ∈ △m (the simplex) are mixing proportions over m given data groups at time t, Lt+1(pt) : △m → (R+)m are the
losses per group at the next timestep, At ∈ Rm×m is a parameter matrix, σ = Id or exp, and lin

= means equal up to linear
transformation. Existing offline methods assume a static (T = 1) log-linear parameterization of the mixing law, while online
methods assume a linear dynamic mixing law. All methods set the parameters of their mixing laws differently (Table 1), and
offline methods solve the optimization problem directly while online methods solve it greedily using exponentiated gradient
descent. Our framework reveals the underlying assumptions of each method in terms of the mixing law’s parameterization,
the values of the parameters, and how the optimization problem is solved. Furthermore, the fidelity of the mixing law and
solving strategy dictates the optimality of the method, providing us with a new tool for understanding data mixing methods.

Applying the LMO framework, we test the fidelity of existing methods’ assumptions, examining if they hold in practice
(Section 4). Both the log-linear static and linear dynamic parameterizations capture the true loss-proportion relationship
across datasets, achieving an average of 0.0005 MSE and 0.969 R2. We then show that although existing mixing laws are
well-specified, methods can set their parameters (At) inaccurately, causing poor performance. We compare each method’s
parameters to the optimal parameters, which we approximate by fitting the mixing laws to training runs. We find that the
method’s parameters can differ significantly from the optimal parameters, and the extent of these deviations is correlated with
method performance relative to stratified sampling (Figure 3), helping explain our initial observations. Finally, we validate
the assumptions used in solving the optimization problem, finding that the greedy approximation in online methods is a
reasonable proxy for the full objective. Our analysis shows that existing methods’ parameterizations and solving strategies
are of high fidelity, but their parameters are not.

To validate these insights, we develop AIOLI, a simple new online data mixing method derived from the LMO
framework (Section 5). Unlike existing online methods, AIOLI directly estimates the parameters At from the current
training run by fitting the mixing law on the history of losses and dynamic mixture proportions so far. AIOLI is thus able to
dynamically adjust proportions without requiring any extra training runs.

We evaluate AIOLI in two settings by training 160M models on various combinations of data sources from SlimPa-
jama [54] (Section 6). First, we compare AIOLI to existing data mixing methods and find that AIOLI consistently outperforms
stratified sampling on all 6 datasets, by an average of 0.274 and up to 0.439 points in test perplexity. On the other hand,
existing data mixing methods do worse than stratified on at least one dataset by up to 6.9 perplexity points, despite using
extra training runs. As we expect, the parameters of AIOLI are also more consistently close to the optimal parameters
(Figure 2). Second, we consider a scenario with limited additional computational resources, in which practitioners cannot
run experiments for learning mixture proportions for the full training duration. In this setting, mixture proportions learned
on a shorter run may not perform well on the longer final run. We find that using AIOLI to dynamically adjust these learned
proportions throughout the final training run can improve performance by an average of 1.202 perplexity points in 28 out of
30 cases, compared to using the learned proportions directly.

2

2 Problem Setup
We formalize the data mixing problem and establish notation. In data mixing, we have m data groups of text, such as
GitHub, BooksCorpus, and arXiv. We are given train, validation, and test sets for each data group, which we denote as
Di

train, D
i
val, D

i
test for the ith group. Define Dtrain = {D1

train, . . . , D
m
train}, and similarly define Dval and Dtest.

Data & Mixing. During training, we show the model a total of N examples from Dtrain over S training steps. To express
how data proportions can change throughout training, we divide training into T equal rounds. Each round t uses a mixture
proportion from the probability simplex: pt = [pt1, . . . , p

t
m] ∈ △m. Static mixtures use only a single round (T = 1):

p =
(
p1
)
, while dynamic mixtures use several (T > 1): p =

(
p1, . . . , pT

)
.

Model & Loss. Let f(p, t) refer to the language model, f , at the beginning of round t where the model has been trained
on data sampled using mixture proportions p1, · · · , pt−1 so far. Given a model f , we can compute its loss on each group
using the training data, Ltrain(f) = (Ltrain,1(f), . . . , Ltrain,m(f)), and similarly with the validation, Lval(f), and test data,
Ltest(f). In this notation, the loss at the end of training can be expressed as L(·)(f(p, T + 1)). When the f being referred to
is obvious, we simply write Lt

(·)(p), and for static mixtures we drop the superscript: L(·)(p).

Data Mixing Problem. Given a set of data groups, an LM f to train for S steps with N samples, and T rounds of training
(i.e., whether we use static or dynamic proportions), we aim to determine the p that minimizes the total test loss across
groups: minimize

p∈△T×m

∑m
i=1 L

T+1
test,i (p).

This objective aims to produce a trained model that does well on many data groups, which can serve as a proxy for
downstream performance. However, without assuming additional structure on LT+1(p), this problem can only be solved
with a brute-force search over p, which requires training many different models. In the next section, our LMO framework
imposes a constraint on Lt+(p) that allows many existing methods to be expressed as approaches to solving this problem.

3 A Unified Optimization Framework for Data Mixing
We introduce the LMO framework by stating the general optimization problem (Section 3.1). Then, we show how this
framework can express several existing methods (Section 3.2, 3.3), with a summary of our insights regarding these methods
in Section 3.3.3.

3.1 Linear Mixing Optimization (LMO) Framework
The LMO framework consists of an optimization problem that is equivalent to the data mixing minimization problem
(Section 2), subject to an additional constraint:

minimizep∈△T×m

m∑
i=1

LT+1
val,i (p) (1)

s.t. Lt+1
val,i(p) = cti + btiσ

(m∑
j=1

−At
ijp

t
j

)
∀i ∈ [m], t ∈ [T] (2)

for some At, bt, ct, and σ. At ∈ Rm×m is a matrix that encodes cross-group interactions, where At
ij intuitively describes

how much training on group j at t impacts group i’s loss. bt, ct ∈ Rm are group-specific parameters. σ : R→ R is either
the identity function (Id) or the exponential function (exp). We refer to the constraint in (2) as a mixing law that specifies the
assumed relationship between loss and proportions.

There are three components of this problem that need to be specified to yield a way to set p: a) the parameterization of
the mixing law (T , σ), b) the values of the parameters (At, bt, ct), and c) how to solve the problem. We express existing
methods in LMO by specifying these components.

3.2 Preliminaries for unifying methods
We discuss preliminaries before presenting existing methods and explaining how they can be expressed in the LMO
framework. First, we formally define what it means for a method to be expressed in the LMO framework. Then, we present
a result that allows us to convert between linear dynamic mixing laws and a way to set p, which we will to use to express
online methods in our framework in Section 3.3.

3

Method 1) Mixing Law Parameterization 2) Parameters 3) Solver

DML Lval,i(p) = ci + bi exp
(∑m

j=1 −Aijpj

)
Fit from ≥ m + 1 training runs Direct

Skill-It Lt+1
val,i(p) = Lt

val,i(p) − bt
∑m

j=1 At
ijp

t
j At

ij = Lt
val,i(p)(L

T+1
val,i (1j) − L1

val,i(1j))/L
1
val,i(1j) EGD

DoReMi Lt+1
val,i(p) = Lt

val,i(p) − bt
∑m

j=1 At
ijp

t
j At

ii = min{Lt
train,i(p) − Ltrain,i(fref), 0} EGD

DoGE Lt+1
val,i(p) = Lt

val,i(p) − bt
∑m

j=1 At
ijp

t
j At

ij = ⟨▽Lt
val,i(p),▽Lt

train,j(p)⟩ EGD

AIOLI Lt+1
val,i(p) = Lt

val,i(p) −
∑m

j=1 At
ijp

t
j Fit from history of Lval and p EGD

Table 1: Summary of how existing methods and AIOLI are expressed in the LMO framework (1).

Definition 1. We say that a data mixing method can be expressed in the LMO framework if its exact algorithm—how it sets
proportions p and trains model f in terms of p—can be equivalently constructed by specifying a mixing law and way of
solving the LMO optimization problem.

This definition allows us to cast existing methods as a way of solving the LMO optimization problem based on how they
set p and train according to p, even if the methods themselves are not originally designed to minimize average test loss.

Converting mixing laws into update rules. When T > 1, a natural way to solve the LMO optimization problem is via
exponentiated gradient descent (EGD) [5, 31], which updates pt greedily while ensuring that it remains on the probability
simplex. The following lemma presents the EGD update rule for the LMO optimization problem when σ = Id.

Lemma 1. The EGD update rule for (1) subject to Lt+1
val,i(p) = cti − bti

∑m
j=1 A

t
ijp

t
j ∀i ∈ [m] is

pt+1
j =

1

Zt
· ptj exp

(
η

m∑
i=1

btiA
t
ij

)
∀j ∈ [m], (3)

where η > 0 is the step size and Zt is a normalizing constant such that pt+1
j ∈ △m.

This lemma shows how to adjust pt dynamically to solve the LMO optimization problem. Notably, this update rule is
defined in terms of the mixing law parameters, At and bt. This gives us a way to convert between how a method sets p and
the implicit assumption it makes in the mixing law.

3.3 Unifying Existing Methods
We discuss four existing data mixing methods and express them as specific instances of the LMO framework. A summary of
our insights is provided in Section 3.3.3 and Table 1. In Appendix B.1, we comment on how several other online and offline
data mixing methods are related to our framework, and all proofs for this section are in Appendix B.2.

3.3.1 Offline methods

Data Mixing Laws (DML). Ye et al. [72] propose an offline method using a static mixing law (T = 1): Lval,i(p) =
ci + bi exp(

∑m
j=1−Aijpj) for i ∈ [m], with A, b, c learned by sweeping training runs over static proportions (≥ m + 1

runs to avoid being underdetermined). They select the proportion that minimizes the predicted validation loss. This law can
be derived from (2) with σ = exp, showing that LMO with a) log-linear static mixing law, b) fitted parameters, and c) direct
computation of p can express DML.

3.3.2 Online Methods

We provide a colloquial description and an algorithmic description of the following three online methods. Then, in
Theorem 1 we demonstrate how they all are expressed in LMO using a linear dynamic mixing law, the EGD update rule,
and method-specific mixing law parameters.

Skill-It. Chen et al. [14] is an online method motivated by curriculum learning that dynamically adjusts mixture
proportions. Data group interactions are expressed in a “skills graph,” where each edge denotes how much the loss on one
group changes when trained on another. The skills graph is learned in advance using m training runs and then used to update
proportions pt throughout training.

Concretely, the skills graph matrix ASG has entries ASG
ij = (LT+1

val,i (1j) − L1
val,i(1j))/L

1
val,i(1j) indicating the relative

decrease in loss on group i when training a model on group j only. This is used in the Skill-It update rule, pt+1
j ∝

ptj exp(η
∑m

i=1 A
SG
ij L

t
val,i(p)) for all j ∈ [m] and learning rate η > 0. This rule determines pt+1, which is then used to

sample Dtrain for training f in the next round.

DoReMi. Xie et al. [70] is an online method that applies ideas from distributionally robust optimization to data mixing,
where the training objective minimizes the worst-group excess loss over a model trained with stratified sampling. pt is

4

updated dynamically to minimize this excess loss and then averaged for the final run. DoReMi requires two additional runs
to learn a static p.

Concretely, let fref = f(Unif(m), T +1) denote a “reference model” that is first trained using stratified sampling. Then, a
“proxy model” uses dynamic proportions according to the update rule pt+1

j ∝ ptj exp(ηmax{Lt
train,j(p)− Ltrain,j(fref), 0})

for all j ∈ [m] and step size η > 0. This pt+1 is used to weight the training objective, such that the proxy model is updated
to minimize

∑m
i=1 p

t+1
i Ltrain,i(f) at the next timestep. The averaged static proportions 1

T

∑T
t=1 p

t are then used in the final
run.

DoGE. Fan et al. [22] is an online method that solves a bi-level optimization problem in which pt is updated to minimize
the average training loss at each step. By using a first-order Taylor approximation of the training loss, pt is updated using the
gradient of each data group. The dynamic proportions are then averaged for the final run. DoGE requires one additional run
to learn a static p.

Concretely, a proxy model is trained using pt+1
j ∝ ptj exp(η⟨▽Ltrain,j(f

t),
∑m

i=1 ▽Lval,i(f
t)⟩), and f is updated to

minimize the training loss weighted by pt, similar to DoReMi. The averaged static proportions 1
T

∑T
t=1 p

t are used in the
final run.

Framework expression. All three online methods use an update rule pt+1
j ∝ ptj exp(·), which is similar to (3). This

provides intuition for our main theorem, which expresses these methods in LMO.

Theorem 1. Define the following parameters for each method:

• At,Skill-It ∈ Rm×m, where At,Skill-It
ij =Lt

val,i(p)(L
T+1
val,i (1j)− L1

val,i(1j))/L
1
val,i(1j) for all i, j ∈ [m],

• At,DRM ∈ Rm×m, where At,DRM
ii = min{Lt

train,i(p)− Ltrain,i(fref), 0} and At,DRM
ij = 0 for i ̸= j,

• At,DoGE ∈ Rm×m, where At,DoGE
ij = ⟨▽Lt

val,i(p),▽L
t
train,j(p)⟩ for all i, j ∈ [m].

Instantiating the LMO framework (1) with a) a linear dynamic mixing law Lt+1
val,i(p) = Lt

val,i(p) − bt
∑m

j=1 A
t
ijp

t
j , b)

parameters At = At,Skill-It/DRM/DoGE, and c) EGD to solve for p allows for us to express Skill-It, DoReMi, and DoGE,
respectively.

3.3.3 Summary of LMO Framework Insights

Table 1 summarizes how existing methods are expressed in the LMO framework. LMO reveals the assumptions each method
makes through how the components of the framework are specified. First, all mixing laws are either linear or log-linear.
Second, the mixing laws differ in the values of the parameters used. For example, Skill-It’s At is the current loss times a
static skills graph matrix, while DoReMi’s At is diagonal. Third, offline mixing methods solve for p directly while online
mixing methods use EGD, which uses a greedy approximation. If the mixing law and solving strategy assumptions hold
true in practice, then the method yields optimal mixture proportions. In the next section, we study the fidelity of these
assumptions.

4 Analyzing Fidelity of Existing Methods with the LMO Framework
We examine the fidelity of the assumptions made by existing methods in terms of the three components of the LMO
framework: a) the mixing law parameterization, b) values of the mixing law parameters, and c) how to solve the optimization
problem for p. After providing experiment details (Section 4.1), we discuss these three components in order (Section 4.2-4.4).

4.1 Experiment Details
Data settings. We use a sampled version of SlimPajama [54, 73], a pre-processed version of the RedPajama pretraining
dataset [62]. SlimPajama consists of 7 data groups: ArXiv, Books, CommonCrawl, C4 [51], Github, StackExchange, and
Wikipedia. To develop a fine-grained understanding of data mixing, we create 6 settings by extracting combinations of these
groups. We study three settings with m = 2: Arxiv/Stackexchange, Github/C4, and Book/StackExchange. We study two
settings with m = 3: Arxiv/Book/StackExchange and CommonCrawl/Github/Wikipedia. Finally, we study mixing over the
full SlimPajama dataset with m = 7.

Models. We train 160M parameter GPT-style decoder-only LLMs with batch size 8 and context length 2048. For
m = 2, 3, we train for 5K steps, and for m = 7, we train for 40K steps.

Training sweeps. To assess the true loss-proportion relationship and compare it to the assumptions made by ex-
isting methods, we conduct training sweeps over different mixture proportions, denoted as P . For m = 2, we set

5

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

10 1

Lo
g

(L
os

s
- c

) o
n

ar
xi

v

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

10 1

100

Lo
g

(L
os

s
- c

) o
n

st
ac

ke
xc

ha
ng

e

Log-linear static mixing law on Arxiv/StackExchange

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

2.8

2.9

3.0

3.1

3.2

3.3

N
ex

t-
st

ep
 L

os
s

on
 a

rx
iv

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

3.4

3.6

3.8

4.0

N
ex

t-
st

ep
 L

os
s

on
 s

ta
ck

ex
ch

an
ge

Linear dynamic mixing law on Arxiv/StackExchange

Figure 2: Left: pi vs log(Lval,i(p) − ci) with fitted static log-linear mixing law. Right: pti vs Lval,i(p) with fitted linear
dynamic mixing law. Colors represent random seeds (left) and initial p0 ∈ P (right, blue is 0.7, 0.3). Both laws fit the true
loss-proportion relationship well.

P = {[0.1, 0.9], [0.2, 0.8], . . . , [0.9, 0.1]}. For m = 3 and 7, we set P equal to 10 p’s and 40 p’s drawn from the Dirichlet
distribution with α = 1.0 and 1.5, respectively.

4.2 Mixing law parameterization
We examine whether existing methods’ mixing law parameterizations—log-linear static and linear dynamic—capture the
true loss-proportion relationship. By empirically fitting them to loss-proportion pairs, we find that both parameterizations are
indeed well-specified. Full results for both mixing laws are in Table 5 in Appendix C.1. We discuss the generality of these
parameterizations across training scales and other datasets, as well as higher-order parameterizations, in Appendix C.1.1.

Setup. For the log-linear static mixing law, we study if there exists A, b, c such that Lval,i(p) can be expressed as
ci + bi exp(

∑m
j=1−Aijpj) for all i ∈ [m]. We fit the parameters using full training runs on P . For the linear dynamic

mixing law, we study if there exists At such that Lt+1
val,i(p) can be expressed as Lt

val,i(p)−
∑m

j=1 A
t
ijp

t
j , for all i ∈ [m] (bt is

absorbed into At). To fit At, we select a timestep t and train on a static proportion p0 ∈ P for all p1, . . . , pt until time t, and
at t+ 1 we sweep the values of pt+1 ∈ P .

Results. On average across our 6 data settings, the mean squared error (MSE) of the fitted log-linear static mixing law is
8.9× 10−4, and the R2 coefficient of determination is 0.991. The average MSE of the fitted linear dynamic mixing law is
1.0× 10−4 and the R2 is 0.947. See Figure 2 for examples. Since both parameterizations have high R2 and low MSE, we
conclude that they capture the true loss-proportion relationship well and are of high fidelity.

4.3 Values of mixing law parameters
As shown in Table 1, each method sets the parameters of its mixing law differently. We study how close the method-
specific parameters are to the optimal parameters that are obtained when fitting the method’s mixing law to the true
loss-proportion relationship, and if these parameter disparities are reflected in method performance. We find that existing
methods’ differences in mixing law parameters are largely responsible for their performance. We omit studying DML since
its parameters are fitted from full training runs and hence differ from the optimal in estimation error only.

0.0 0.2 0.4 0.6 0.8 1.0
sim(At, At)

0.15

0.10

0.05

0.00

St
ra

tif
ie

d
lo

ss
 -

m
et

ho
d

lo
ss

Skill-It
DoReMi
DoGE
Aioli (ours)

Figure 3: Improvement over stratified sampling versus
optimality of At. Each dot represents a method applied
to a dataset. The red region shows that existing methods
are worse than stratified on at least 1 dataset. The vertical
dashed line serves as a visual aid.

Setup. For Skill-It, DoReMi, and DoGE, we select a step t
and obtain the method-specific At. We then sweep P for the
next round t+ 1. This sweep is used to approximate an optimal
At⋆ that captures the true loss-mixture relationship, Lt+1

val (p) =
Lt

val(p)−At⋆pt, as well as fit a bt ∈ R used for scaling At (details
in Appendix C.2). We study the relationship between Ãt := btAt

and At⋆, and how it is related to the performance of the method.

To express similarity between Ãt and At⋆ in a way that is
reflected in performance, we observe that from Lemma 1, pt is
updated using the column sum of At, 1⊤At. Moreover, the mag-
nitude of At is not critical to performance since the step size η can
always be tuned to control this. Therefore, we compare the vectors
ãt = 1⊤Ãt/∥1⊤Ãt∥2 and at⋆ = 1⊤At⋆/∥1⊤At⋆∥2. Finally, we
note that the order of the elements of ãt determines the update
direction from pt to pt+1 in Lemma 1. Therefore, we propose
a similarity score that is an average of cosine similarity and the

6

Spearman rank correlation, sim(Ãt, At⋆) = 0.5cossim(ãt, at⋆) +
0.5Spearman(ãt, at⋆). This metric is bounded between −1 and 1,
where 1 indicates ãt = at⋆ and −1 indicates ãt = −at⋆.

Results. In Figure 3, we plot each method’s sim(Ãt, At⋆) versus each method’s improvement over the stratified sampling
baseline, which sets pi = 1/m for all i ∈ [m], for each dataset in the m = 2, 3 data settings. We find that no existing online
method works well across all datasets (also see Table 2), and that our metric and loss improvement have a moderate positive
correlation (R2 = 0.491). This suggests that At’s accuracy is critical to the performance of online methods, and that existing
methods’ At are not consistently accurate across the datasets. In Appendix C.2.1, we give more details on the structure of
At⋆, providing intuition for why existing methods’ parameters cannot express it.

4.4 Solving strategy
We study the assumptions made in how existing methods solve the LMO optimization problem. We find that the greedy
approximation used by EGD, minimizept

∑m
i=1 L

t+1
val,i(p), does not significantly compromise performance compared to full

optimization of dynamic proportions, which has an exponentially large solution space. In particular, we study if greedily
selecting pt from P at each t yields the optimal dynamic proportions in PT , and we find that this holds in 2 out of 3 data
settings (Table 10). This suggests that the greedy approximation can simplify optimization without substantial performance
loss. We also comment on other possible solving strategies in Appendix C.3.

5 AIOLI: a Method for Improved Data Mixing
To validate our insights from Section 4, we develop AIOLI, an online method derived from the LMO framework. We have
three takeaways from section 4:

a) A linear dynamic mixing law, Lt+1
val,i(p) = Lt

val,i(p) −
∑m

j=1 A
t
ijp

t
j for all i ∈ [m], can capture the loss-proportion

relationship with high fidelity (Section 4.2).

b) Existing online methods often set the parameters At to be very different from true At⋆ (Section 4.3).

c) Exponentiated gradient descent can recover near-optimal performance while simplifying the optimization problem,
avoiding an exponential solution space (Section 4.4).

We thus directly specify the linear dynamic mixing law parameterization and EGD as two out of three LMO components
of AIOLI since we found that their assumptions generally hold in practice. According to Lemma 1, the update rule given
these two components is pt+1

j ∝ ptj exp(η
∑m

i=1 A
t
ij) (bt is absorbed into At). Thus, our primary mandate in creating AIOLI

is to construct and utilize an At that is an accurate estimate of the true At⋆ in the linear dynamic mixing law, which existing
online methods fail to achieve.

Estimating At⋆. To build intuition, we first consider a high-cost naive approach. For each round, we could conduct a
training sweep of m different proportions pt,1, . . . , pt,m, and observe each resulting change in loss. We could then solve a
system of m equations for each i: Lt

val,i−Lt+1
val,i(p

t,s) =
∑m

j=1 A
t
ijp

t,s
j for s ∈ [m], obtaining vectors At

1, . . . , A
t
m. However,

this approach effectively requires m extra training runs.

AIOLI similarly solves a system of equations, but it computes loss changes per sweep mixture without requiring extra
training. First, it allocates δ fraction of the training round for learning At. Second, it partitions this δ into K = mk intervals
and trains according to an interleaved order on pt,1, . . . , pt,m. After training on each pt,j , we record the resulting change in
validation losses, and we average over all of pt,j’s intervals. Intuitively, the interleaving ensures that the model is trained
on each pt,j for several intervals throughout δ, which can approximate if we were to train on pt,j for the entire δ (which
approximates the entire round). This procedure is outlined in LEARNPARAMS (Alg. 2), with more details in Appendix D
and Figure 7.

AIOLI. First, we set p0 to be uniform. In each round, we estimate At using LEARNPARAMS and then normalize the
entries of At, producing Āt. Otherwise, At decreases along with loss over time, resulting in the first few pt updates being
much larger in magnitude than others. Then, we update the proportions using ptj ∝ pt−1

j exp(η
∑m

i=1 Ā
t
ij), as in Lemma 1,

and train for the remainder of that round using ptj .

Finally, we design AIOLI so that it can also be used to improve other data mixing methods, which we study in Section 6.2.
Mixture proportions can be updated using AIOLI either from the start of training or from the middle of a run. In the latter
case, we denote an initial static mixture pinit ∈ △m and initial number of steps Sinit. If Sinit is nonzero, AIOLI trains
according to pinit for the first Sinit steps before updating the mixture proportions. AIOLI is presented in Algorithm 1.

7

Algorithm 1 AIOLI

1: Input: data Dtrain, Dval, model f1. Initial steps Sinit, initial proportions pinit ∈ △m. T rounds over S − Sinit remaining
steps, δ fraction per round for learning parameters, learning rate η, one-hot smoothing factor ε.

2: If Sinit ̸= 0, train f1 on pinit for Sinit steps.
3: Set p0 = Unif(m).
4: for t = 1, . . . , T do
5: Set At, f t+δ ← LEARNPARAMS (Dtrain, Dval, δ, f

t, ε) (Alg. 2), and normalize At to get Āt.
6: ptj ∝ pt−1

j exp(η
∑m

i=1 Ā
t
ij) for all j ∈ [m].

7: Train model f t+δ with S
T (1− δ) steps from mixture pt over Dtrain. Obtain updated f t+1.

Algorithm 2 LEARNPARAMS

1: Input: Dtrain, Dval, δ, model f t, number of sweeps k, one-hot smoothing factor ε.
2: Split the fraction of a training round δ into K intervals, where K = mk.
3: Set β = 0m,m

4: Define pt,i = (1− ε)1i + εUnif(m) for i ∈ [m], and define P = [pt,1, . . . , pt,m] ∈ △m×m

5: Randomly shuffle k instances of each i ∈ [m] to create an order I ∈ [m]K .
6: for τ = 1, . . . ,K do
7: Let j = Iτ . Train model on mixture pt,j of Dtrain for one interval, obtain f t+τδ/K .
8: for i ∈ [m] do
9: Update βij ← βij + Lval,i(f

t+(τ−1)δ/K)− Lval,i(f
t+τδ/K) with loss difference on Di

val.
10: Update β ← β

k .
11: Set At

i = P−1βi for each i ∈ [m].
12: Return At ∈ Rm×m, f t+δ

6 Experimental Results
We evaluate all methods in the LMO framework, including AIOLI, in two settings. First, we consider an unrestricted
additional training budget setting to assess how AIOLI compares to other methods in their original form, since each method
uses a different number of extra training runs to learn proportions (Section 6.1). Second, we consider a restricted training
budget setting to assess if AIOLI can enhance existing methods in practical, budget-constrained conditions, where existing
methods have less than a full training run to learn mixing proportions (Section 6.2). Hyperparameters and experimental
details, including proportion trajectories are available in Appendix E. Downstream evaluation, ablations, experiments on
larger models, and results adapting AIOLI to an out-of-domain setting are in Appendix F.

Data settings and models. We use the same data settings and models as in Section 4.1, where we train for S = 5K steps
for m = 2, 3-group settings and S = 40K steps for the full SlimPajama.

Baselines and evaluation. We consider three online methods (Skill-It, DoGE, DoReMi) and one offline method (DML).
We also consider grid search (GS), which sweeps training runs and selects p with the lowest average validation loss, and
stratified sampling, which sets pi = 1

m for all i ∈ [m]. For each method, we report the average test perplexity per group of
the trained model. This metric is considered a proxy for downstream performance [22] and also represents the objective in
the data mixing problem.

6.1 Unrestricted Setting
Setup. We allow methods up to 10S additional training steps to learn the mixture proportions. Approaches like grid search
and DML can use the entire budget (searching and fitting over 10 full runs), while Skill-It, DoReMi, and DoGE use mS, 2S,
and S extra training steps, respectively (see Section 3.3). Stratified sampling and AIOLI use no extra training steps. We
evaluate AIOLI with Sinit = 0.

Results. In Table 2, we find that AIOLI robustly outperforms stratified sampling in all 6 data settings by an average of
0.274 perplexity points, while all other methods do worse than stratified sampling on at least 1 set of data groups by up
to 6.9 points. The performance of AIOLI and other online methods is additionally reflected in Figure 3, in which we find
that AIOLI’s At similarity with At⋆ is correlated with performance. While AIOLI’s parameter similarity is not always the
highest, we note that its lowest similarity score is much higher than that of other methods, providing evidence that AIOLI’s
parameter estimation procedure is more consistently accurate than that of other methods. Lastly, regarding offline methods,

8

Table 2: Difference in average test perplexity compared to stratified sampling in the unrestricted setting, where all meth-
ods can use ≤ 10 extra runs to learn p. Negative values (green) = improvement. A=Arxiv, B=Books, GH=GitHub,
SE=StackExchange, W=Wikipedia.

Method A/SE GH/C4 B/SE A/B/SE CC/GH/W SlimPajama # < stratified # extra runs

Stratified 16.532 35.991 47.192 35.114 41.583 26.426 - 0

GS −0.399 −0.407 −0.645 −0.247 0.298 0.490 4 10
DML −0.241 −0.110 −0.644 −0.599 0.242 1.641 4 10

Skill-It −0.326 0.551 −0.728 −0.568 −0.195 −0.184 5 m
DoReMi −0.307 5.303 −0.217 −0.393 6.898 0.703 3 2
DoGE 0.419 0.184 −0.678 1.843 0.604 0.949 1 1
AIOLI −0.205 −0.340 −0.439 −0.226 −0.196 −0.240 6 0

Table 3: Average test perplexity in the restricted setting, where each method learns p on shortened runs, and AIOLI +method
dynamically adjusts p throughout training. green=AIOLI +method outperforms method.

Method Arxiv/SE GH/C4 Books/SE Arxiv/Books/SE CC/GH/Wiki SlimPajama

GS 16.573 36.345 47.063 35.174 42.767 27.741
AIOLI + GS 16.388 35.925 46.667 34.705 41.378 25.654

DML 16.659 36.658 46.846 34.585 42.731 37.696
AIOLI + DML 16.277 35.856 46.710 34.529 41.595 25.654

Skill-it 16.246 37.255 46.667 34.539 42.069 26.734
AIOLI + Skill-it 16.261 36.153 46.586 34.565 41.732 26.073

DoReMi 16.522 37.812 46.489 34.934 42.738 28.762
AIOLI + DoReMi 16.347 35.626 46.163 34.770 41.800 26.587

DoGE 16.853 35.795 46.743 35.775 41.790 32.301
AIOLI + DoGE 16.473 35.632 46.145 34.771 41.378 26.073

we hypothesize that their poor performance on settings with larger m is due to the training budget being limited to 10S, and
that increasing this budget would eventually allow them to perform well.

6.2 Restricted Setting
Motivation. We introduce the restricted setting because practitioners may not have the resources or desire to complete
multiple full training runs, especially as recent LLMs are trained for longer and on more data [45]. As a result, practitioners
may only use data mixing methods on shortened runs, producing learned proportions that may be suboptimal on the full run.
We study if AIOLI is able to improve performance by dynamically adjusting previously learned proportions throughout the
full training run.

Setup. We allow all existing methods up to 0.5S additional training steps to learn the mixture proportions. This requires
methods to learn pmethod over shorter runs of Smethod steps each. For instance, grid search will conduct 10 runs of length
S/20 (see Table 11). We evaluate each method by using pmethod learned from shorter runs to train the model on the full run
of S steps. We use AIOLI to dynamically adjust each pmethod throughout the full run. That is, for each existing method, we
run AIOLI with pinit = pmethod and Sinit = Smethod, referring to this as AIOLI +method.

Results. In Table 3, we find that adding AIOLI to any existing method that learns proportions over shorter runs improves
average test perplexity per group in 28 out of 30 settings, by an average of 1.202 and a maximum of 12.012 points.
Furthermore, AIOLI can help methods that initially underperform stratified sampling surpass it, such as DoGE across
all settings. In some settings, such as Books/StackExchange, AIOLI improves methods that already outperform stratified
sampling. This shows that AIOLI can enhance a wide variety of static proportions, regardless of their initial performance.
For the two settings where AIOLI underperforms the base method, the base method already outperforms stratified, and
adding AIOLI maintains this trend, worsening perplexity by at most 0.025 points.

7 Related Work
Data mixing. Beyond the data mixing methods explored in our framework, Albalak et al. [2] frames online data mixing
as a multi-armed bandit problem with loss as the reward function. In concurrent work, Jiang et al. [28] also set data mixtures
online and adaptively by using a credit assignment score that predicts how data from each domain affects loss on that
domain. In our language, Jiang et al. [28] use a diagonal At matrix, and the values on the diagonal are defined by their credit

9

assignment function and the per-group losses. Recent works have also studied how to mix data on smaller models and use
these learned proportions on larger models [24, 30, 37]. In a similar vein, Na et al. [46] show that one can simulate a model
trained on a particular data mixture by averaging together models trained on different (possibly disjoint) partitions of data
groups. Thrush et al. [60] mixes data to optimize performance on downstream tasks, constructing an At-like interaction
matrix by using pretrained model perplexities.

Curriculum Learning. Bengio et al. [6] initially introduced curriculum learning as training models over samples from
easiest to hardest. While early work focused on manually designed curricula, later work emphasizes model-driven ones
[21, 26, 41, 65]. Curricula can encourage skills-based generalization [27], or emphasize high quality data to improve
downstream task performance [10]. Online mixing methods can be also viewed as curriculum learning over data groups.

Data Selection. A common way to curate datasets besides mixing is to select data at the per-sample level [3]. Techniques
here can be broadly classified as data filtering, data matching, and data condensation. In data filtering, low-quality samples
are removed using simple heuristics, such as GitHub file lengths [62, 64], or via deduplication [1, 32, 61]. In data matching,
samples that are most similar to a reference dataset are selected. Similarity can be defined in terms of embeddings [71],
gradients [20, 69], or directly using machine learning models to score samples [11, 25, 44]. Lastly, data condensation aims to
identify a subset of samples that captures the full training dataset’s properties. Selection mechanisms include using gradients,
model predictions, and embedding distances [50, 56, 63].

Hyperparameter Optimization and Truncation Bias. Many data mixing methods utilize extra training runs to learn the
static mixture proportions before the final training run. This allows us to view data mixing as a hyperparameter optimization
problem in p. [72] and [37] mitigate the inefficiency of grid search in higher dimensions by combining it with data mixing
laws to impose additional structure. However, both grid search and these offline methods can have poor performance when p
is searched for or fitted on shorter runs, as in the restricted setting. To understand these results, we note that many popular
hyperparameter optimization methods carefully control truncation, and some runs are allowed to continue longer than others
[19, 35, 57]. Thus, generic hyperparameter optimization methods may also prove effective for tuning data mixes.

8 Discussion
We introduce the LMO framework, which unifies existing data mixing methods by viewing them as solutions to a common
optimization problem involving an implicit method-dependent mixing law. Using this framework, we find that existing
methods perform poorly on some datasets due to inaccurate mixing law parameters. This insight inspires AIOLI, whose
performance gains are rooted in its ability to estimate parameters At of the linear dynamic mixing law throughout training.

Limitations and Future Work AIOLI incurs extra inference cost via the repeated evaluations in LEARNPARAMS
(Alg. 2). This can be reduced by computing Lval over a subset of Dval, and by using each At for longer (decreasing T).
Another direction is understanding the role of data group partitions. For example, C4 is a subset of CommonCrawl, and it is
unclear if disjoint groups could improve performance.

The LMO framework itself is an invitation for future work. It shows that data mixing methods can be improved and
analyzed by studying their assumptions on how models learn from data. By exposing such assumptions, LMO identifies key
axes for improvement (mixing law parameterization, parameter estimation, and how to solve for p), which we hope will
inspire new principled data mixing methods.

8.1 Reproducibility Statement
See Appendix B.2 for the full proofs on how to express Skill-it, DoReMi, and DoGE using the LMO framework. See
Appendix C for details on how to reproduce our analyses of mixing law parametrization validity, At parameter fit, and
assessing whether greedy optimization is sufficient for data mixing. Finally, to reproduce the experimental results, please see
Appendix E.

Code release. Code for reproducing our results is available at https://github.com/HazyResearch/aioli.

8.2 Ethics Statement
Our work focuses on improving the efficiency and performance of language model training. While our research does not
directly address ethical concerns, it can contribute to more responsible AI development by optimizing training, which can
reduce computational costs and energy consumption.

10

https://github.com/HazyResearch/aioli

9 Acknowledgments
We thank Sabri Eyuboglu, Neel Guha, Ben Viggiano, Dan Biderman, Dan Fu, Michael Wornow, Jon Saad-Falcon, Alyssa
Unell, Owen Dugan, Jerry Liu, and Gautam Machiraju for their feedback. We thank Stanford NLP for providing compute and
research support. This work was supported in part through the NYU IT High Performance Computing resources, services,
and staff expertise. This research project has benefited from the Microsoft Accelerate Foundation Models Research (AFMR)
grant program.

We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF under Nos. CCF2247015
(Hardware-Aware), CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity), 1937301 (RTML), and 1922658
(NRT-HDR: FUTURE); US DEVCOM ARL under Nos. W911NF-23-2-0184 (Long-context) and W911NF-21-2-0251
(Interactive Human-AI Teaming); ONR under Nos. N000142312633 (Deep Signal Processing); Stanford HAI under No.
247183; NXP, Xilinx, LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for Research program, the
Stanford Data Science Initiative (SDSI), the Samsung Advanced Institute of Technology (under the project Next Generation
Deep Learning: From Pattern Recognition to AI), the NSF Graduate Research Fellowship (MYH), and members of the
Stanford DAWN project: Meta, Google, and VMWare. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do not necessarily reflect the views, policies, or
endorsements, either expressed or implied, of NIH, ONR, or the U.S. Government.

11

References
[1] Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos. Semdedup: Data-efficient learning at

web-scale through semantic deduplication. arXiv preprint arXiv:2303.09540, 2023.

[2] Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing for language model
pre-training, 2023. URL https://arxiv.org/abs/2312.02406.

[3] Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert, Xinyi Wang, Niklas Muennighoff,
Bairu Hou, Liangming Pan, Haewon Jeong, Colin Raffel, Shiyu Chang, Tatsunori Hashimoto, and William Yang Wang.
A survey on data selection for language models. arXiv preprint arXiv:2402.16827, 2024. https://arxiv.org/
abs/2402.16827.

[4] Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Hajishirzi. Mathqa:
Towards interpretable math word problem solving with operation-based formalisms. In Proceedings of the 2019
Conference of the North, page 2357–2367. Association for Computational Linguistics, 2019. doi: 10.18653/v1/
n19-1245. URL http://dx.doi.org/10.18653/v1/N19-1245.

[5] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and
applications. Theory of computing, 8(1):121–164, 2012.

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings of the
26th Annual International Conference on Machine Learning, ICML ’09, page 41–48, New York, NY, USA, 2009.
Association for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553380. URL https:
//doi.org/10.1145/1553374.1553380.

[7] Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug
Downey, Scott Wen tau Yih, and Yejin Choi. Abductive commonsense reasoning, 2019.

[8] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric Hallahan,
Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia: A suite for analyzing
large language models across training and scaling. In International Conference on Machine Learning, pages 2397–2430.
PMLR, 2023.

[9] Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about physical
commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2019. URL https://api.
semanticscholar.org/CorpusID:208290939.

[10] Cody Blakeney, Mansheej Paul, Brett W. Larsen, Sean Owen, and Jonathan Frankle. Does your data spark joy?
performance gains from domain upsampling at the end of training. In First Conference on Language Modeling, 2024.
URL https://openreview.net/forum?id=vwIIAot0ff.

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL https://arxiv.org/
abs/2005.14165.

[12] Luis F. Chaparro and Aydin Akan. Chapter 8 - sampling theory. In Luis F. Chaparro and Aydin Akan, editors, Signals
and Systems Using MATLAB (Third Edition), pages 449–485. Academic Press, third edition edition, 2019. ISBN 978-0-
12-814204-2. doi: https://doi.org/10.1016/B978-0-12-814204-2.00019-3. URL https://www.sciencedirect.
com/science/article/pii/B9780128142042000193.

[13] Angelica Chen, Sadhika Malladi, Lily H. Zhang, Xinyi Chen, Qiuyi Zhang, Rajesh Ranganath, and Kyunghyun Cho.
Preference learning algorithms do not learn preference rankings, 2024. URL https://arxiv.org/abs/2405.
19534.

[14] Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue WANG, Ce Zhang, Frederic Sala, and Christopher Ré. Skill-it! a
data-driven skills framework for understanding and training language models. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages
36000–36040. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf.

12

https://arxiv.org/abs/2312.02406
https://arxiv.org/abs/2402.16827
https://arxiv.org/abs/2402.16827
http://dx.doi.org/10.18653/v1/N19-1245
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380
https://api.semanticscholar.org/CorpusID:208290939
https://api.semanticscholar.org/CorpusID:208290939
https://openreview.net/forum?id=vwIIAot0ff
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://www.sciencedirect.com/science/article/pii/B9780128142042000193
https://www.sciencedirect.com/science/article/pii/B9780128142042000193
https://arxiv.org/abs/2405.19534
https://arxiv.org/abs/2405.19534
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/70b8505ac79e3e131756f793cd80eb8d-Paper-Conference.pdf

[15] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang,
Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing gpt-4
with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

[16] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova. BoolQ:
Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 2924–2936, Minneapolis,
Minnesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL https:
//aclanthology.org/N19-1300.

[17] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord.
Think you have solved question answering? try arc, the AI2 reasoning challenge. CoRR, abs/1803.05457, 2018. URL
http://arxiv.org/abs/1803.05457.

[18] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-efficient exact
attention with io-awareness. Advances in Neural Information Processing Systems, 35:16344–16359, 2022.

[19] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up automatic hyperparameter optimization of
deep neural networks by extrapolation of learning curves. In Twenty-fourth international joint conference on artificial
intelligence, 2015.

[20] Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection with datamodels. In
Forty-first International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=GC8HkKeH8s.

[21] Simin Fan and Martin Jaggi. Irreducible curriculum for language model pretraining. arXiv preprint arXiv:2310.15389,
2023.

[22] Simin Fan, Matteo Pagliardini, and Martin Jaggi. Doge: Domain reweighting with generalization estimation, 2024.
URL https://arxiv.org/abs/2310.15393.

[23] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason
Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang,
Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 07 2024. URL https:
//zenodo.org/records/12608602.

[24] Ce Ge, Zhijian Ma, Daoyuan Chen, Yaliang Li, and Bolin Ding. Data mixing made efficient: A bivariate scaling law
for language model pretraining, 2024. URL https://arxiv.org/abs/2405.14908.

[25] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. Learning word vectors for 157
languages. In Nicoletta Calzolari, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Koiti Hasida,
Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Hélène Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis,
and Takenobu Tokunaga, editors, Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan, May 2018. European Language Resources Association (ELRA). URL
https://aclanthology.org/L18-1550.

[26] Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in training deep networks. In Interna-
tional Conference on Machine Learning, 2019. URL https://api.semanticscholar.org/CorpusID:
102350936.

[27] Yuncheng Huang, Qianyu He, Yipei Xu, Jiaqing Liang, and Yanghua Xiao. Laying the foundation first? investigating
the generalization from atomic skills to complex reasoning tasks, 2024. URL https://arxiv.org/abs/2403.
09479.

[28] Yiding Jiang, Allan Zhou, Zhili Feng, Sadhika Malladi, and J. Zico Kolter. Adaptive data optimization: Dynamic
sample selection with scaling laws, 2024. URL https://arxiv.org/abs/2410.11820.

[29] Sham Kakade. Lecture 22: Exponentiated gradient descent. https://homes.cs.washington.edu/~sham/
courses/stat928/lectures/lecture22.pdf, n.d. Accessed: September 29, 2024.

13

https://lmsys.org/blog/2023-03-30-vicuna/
https://aclanthology.org/N19-1300
https://aclanthology.org/N19-1300
http://arxiv.org/abs/1803.05457
https://openreview.net/forum?id=GC8HkKeH8s
https://openreview.net/forum?id=GC8HkKeH8s
https://arxiv.org/abs/2310.15393
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2405.14908
https://aclanthology.org/L18-1550
https://api.semanticscholar.org/CorpusID:102350936
https://api.semanticscholar.org/CorpusID:102350936
https://arxiv.org/abs/2403.09479
https://arxiv.org/abs/2403.09479
https://arxiv.org/abs/2410.11820
https://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf
https://homes.cs.washington.edu/~sham/courses/stat928/lectures/lecture22.pdf

[30] Feiyang Kang, Yifan Sun, Bingbing Wen, Si Chen, Dawn Song, Rafid Mahmood, and Ruoxi Jia. Autoscale: Automatic
prediction of compute-optimal data composition for training llms, 2024. URL https://arxiv.org/abs/2407.
20177.

[31] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.
Information and Computation, 132(1):1–63, 1997. ISSN 0890-5401. doi: https://doi.org/10.1006/inco.1996.2612.
URL https://www.sciencedirect.com/science/article/pii/S0890540196926127.

[32] Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-Burch, and Nicholas
Carlini. Deduplicating training data makes language models better, 2022. URL https://arxiv.org/abs/
2107.06499.

[33] Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length on the reasoning
performance of large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15339–15353,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.818.
URL https://aclanthology.org/2024.acl-long.818.

[34] Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash Guha, Sedrick
Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel, Jean Mercat, Mayee Chen,
Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-
Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal,
Gabriel Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen,
Igor Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle
Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini,
Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and
Vaishaal Shankar. Datacomp-lm: In search of the next generation of training sets for language models, 2024. URL
https://arxiv.org/abs/2406.11794.

[35] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18(185):1–52, 2018.

[36] Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better downstream: Implicit bias
matters for language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 22188–22214. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/liu23ao.html.

[37] Qian Liu, Xiaosen Zheng, Niklas Muennighoff, Guangtao Zeng, Longxu Dou, Tianyu Pang, Jing Jiang, and Min Lin.
Regmix: Data mixture as regression for language model pre-training, 2024. URL https://arxiv.org/abs/
2407.01492.

[38] Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le, Barret Zoph,
Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective instruction tuning, 2023.

[39] Shayne Longpre, Gregory Yauney, Emily Reif, Katherine Lee, Adam Roberts, Barret Zoph, Denny Zhou, Jason Wei,
Kevin Robinson, David Mimno, and Daphne Ippolito. A pretrainer’s guide to training data: Measuring the effects of
data age, domain coverage, quality, & toxicity. In Kevin Duh, Helena Gomez, and Steven Bethard, editors, Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers), pages 3245–3276, Mexico City, Mexico, June 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.179. URL https://aclanthology.org/2024.
naacl-long.179.

[40] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity? a new
dataset for open book question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii,
editors, Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2381–2391,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1260.
URL https://aclanthology.org/D18-1260.

[41] Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Winnie Xu, Benedikt
Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized training on points that are learnable,
worth learning, and not yet learnt. In International Conference on Machine Learning, pages 15630–15649. PMLR,
2022.

14

https://arxiv.org/abs/2407.20177
https://arxiv.org/abs/2407.20177
https://www.sciencedirect.com/science/article/pii/S0890540196926127
https://arxiv.org/abs/2107.06499
https://arxiv.org/abs/2107.06499
https://aclanthology.org/2024.acl-long.818
https://arxiv.org/abs/2406.11794
https://proceedings.mlr.press/v202/liu23ao.html
https://arxiv.org/abs/2407.01492
https://arxiv.org/abs/2407.01492
https://aclanthology.org/2024.naacl-long.179
https://aclanthology.org/2024.naacl-long.179
https://aclanthology.org/D18-1260

[42] Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization via natural
language crowdsourcing instructions. In ACL, 2022.

[43] D.C. Montgomery, E.A. Peck, and G.G. Vining. Introduction to Linear Regression Analysis. Wiley Series in Probability
and Statistics. Wiley, 2021. ISBN 9781119578727.

[44] Robert C. Moore and William Lewis. Intelligent selection of language model training data. In Jan Hajič, Sandra
Carberry, Stephen Clark, and Joakim Nivre, editors, Proceedings of the ACL 2010 Conference Short Papers, pages 220–
224, Uppsala, Sweden, July 2010. Association for Computational Linguistics. URL https://aclanthology.
org/P10-2041.

[45] Niklas Muennighoff, Alexander M Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra Piktus, Sampo
Pyysalo, Thomas Wolf, and Colin Raffel. Scaling data-constrained language models. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=j5BuTrEj35.

[46] Clara Na, Ian Magnusson, Ananya Harsh Jha, Tom Sherborne, Emma Strubell, Jesse Dodge, and Pradeep Dasigi.
Scalable data ablation approximations for language models through modular training and merging, 2024. URL
https://arxiv.org/abs/2410.15661.

[47] Avanika Narayan, Mayee F. Chen, Kush Bhatia, and Christopher Ré. Cookbook: A framework for improving llm
generative abilities via programmatic data generating templates, 2024.

[48] Shashi Narayan, Shay B. Cohen, and Mirella Lapata. Don’t give me the details, just the summary! Topic-aware
convolutional neural networks for extreme summarization. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, 2018.

[49] Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi, Sandro Pezzelle,
Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset: Word prediction requiring a broad
discourse context. CoRR, abs/1606.06031, 2016. URL http://arxiv.org/abs/1606.06031.

[50] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding im-
portant examples early in training. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages 20596–20607. Curran
Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf.

[51] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv e-prints, 2019.

[52] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for machine
comprehension of text. In Jian Su, Kevin Duh, and Xavier Carreras, editors, Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing, pages 2383–2392, Austin, Texas, November 2016. Association
for Computational Linguistics. doi: 10.18653/v1/D16-1264. URL https://aclanthology.org/D16-1264.

[53] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd
schema challenge at scale. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05):8732–8740, Apr. 2020.
doi: 10.1609/aaai.v34i05.6399. URL https://ojs.aaai.org/index.php/AAAI/article/view/6399.

[54] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey. SlimPa-
jama: A 627B token cleaned and deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, June 2023.
URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

[55] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and Christopher Potts.
Recursive deep models for semantic compositionality over a sentiment treebank. In David Yarowsky, Timothy Baldwin,
Anna Korhonen, Karen Livescu, and Steven Bethard, editors, Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association
for Computational Linguistics. URL https://aclanthology.org/D13-1170.

[56] Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari S. Morcos. Beyond neural scaling laws:
beating power law scaling via data pruning, 2023. URL https://arxiv.org/abs/2206.14486.

[57] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization. arXiv preprint
arXiv:1406.3896, 2014.

15

https://aclanthology.org/P10-2041
https://aclanthology.org/P10-2041
https://openreview.net/forum?id=j5BuTrEj35
https://arxiv.org/abs/2410.15661
http://arxiv.org/abs/1606.06031
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ac56f8fe9eea3e4a365f29f0f1957c55-Paper.pdf
https://aclanthology.org/D16-1264
https://ojs.aaai.org/index.php/AAAI/article/view/6399
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://aclanthology.org/D13-1170
https://arxiv.org/abs/2206.14486

[58] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and Tatsunori B.
Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/tatsu-lab/
stanford_alpaca, 2023.

[59] Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Chung, William Fedus, Jinfeng Rao, Sharan Narang, Vinh Tran,
Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures: How does inductive bias influence scaling?
In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Findings of the Association for Computational Linguistics:
EMNLP 2023, pages 12342–12364, Singapore, December 2023. Association for Computational Linguistics. doi: 10.
18653/v1/2023.findings-emnlp.825. URL https://aclanthology.org/2023.findings-emnlp.825.

[60] Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using perplexity correlations,
2024. URL https://arxiv.org/abs/2409.05816.

[61] Kushal Tirumala, Daniel Simig, Armen Aghajanyan, and Ari Morcos. D4: Improving llm pretraining via doc-
ument de-duplication and diversification. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Processing Systems, volume 36, pages 53983–53995. Curran
Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf.

[62] Together.ai. Redpajama: an open dataset for training large language models, October 2023. URL https://github.
com/togethercomputer/RedPajama-Data.

[63] Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J.
Gordon. An empirical study of example forgetting during deep neural network learning. In International Conference
on Learning Representations, 2019. URL https://openreview.net/forum?id=BJlxm30cKm.

[64] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume
Lample. Llama: Open and efficient foundation language models, 2023. URL https://arxiv.org/abs/2302.
13971.

[65] Neeraj Varshney, Swaroop Mishra, and Chitta Baral. Let the model decide its curriculum for multitask learning. In
Colin Cherry, Angela Fan, George Foster, Gholamreza (Reza) Haffari, Shahram Khadivi, Nanyun (Violet) Peng, Xiang
Ren, Ehsan Shareghi, and Swabha Swayamdipta, editors, Proceedings of the Third Workshop on Deep Learning for
Low-Resource Natural Language Processing, pages 117–125, Hybrid, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.deeplo-1.13. URL https://aclanthology.org/2022.deeplo-1.13.

[66] Cunxiang Wang, Shuailong Liang, Yili Jin, Yilong Wang, Xiaodan Zhu, and Yue Zhang. Semeval-2020 task 4:
Commonsense validation and explanation. In Proceedings of the Fourteenth Workshop on Semantic Evaluation.
International Committee for Computational Linguistics, 2020. doi: 10.18653/v1/2020.semeval-1.39. URL http:
//dx.doi.org/10.18653/v1/2020.semeval-1.39.

[67] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar,
Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik, David Stap, et al. Super-naturalinstructions:generalization via
declarative instructions on 1600+ tasks. In EMNLP, 2022.

[68] Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen, Luke Zettlemoyer,
and Veselin Stoyanov. Training trajectories of language models across scales. In Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki, editors, Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 13711–13738, Toronto, Canada, July 2023. Association for Computational Linguistics.
doi: 10.18653/v1/2023.acl-long.767. URL https://aclanthology.org/2023.acl-long.767.

[69] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less: Selecting influential data
for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.

[70] Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang, Quoc V Le, Tengyu
Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up language model pretraining. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
lXuByUeHhd.

[71] Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy Liang. Data selection for language models via importance
resampling, 2023. URL https://arxiv.org/abs/2302.03169.

16

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://aclanthology.org/2023.findings-emnlp.825
https://arxiv.org/abs/2409.05816
https://proceedings.neurips.cc/paper_files/paper/2023/file/a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/a8f8cbd7f7a5fb2c837e578c75e5b615-Paper-Datasets_and_Benchmarks.pdf
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://openreview.net/forum?id=BJlxm30cKm
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://aclanthology.org/2022.deeplo-1.13
http://dx.doi.org/10.18653/v1/2020.semeval-1.39
http://dx.doi.org/10.18653/v1/2020.semeval-1.39
https://aclanthology.org/2023.acl-long.767
https://openreview.net/forum?id=lXuByUeHhd
https://openreview.net/forum?id=lXuByUeHhd
https://arxiv.org/abs/2302.03169

[72] Jiasheng Ye, Peiju Liu, Tianxiang Sun, Yunhua Zhou, Jun Zhan, and Xipeng Qiu. Data mixing laws: Optimizing data
mixtures by predicting language modeling performance, 2024. URL https://arxiv.org/abs/2403.16952.

[73] Dongkeun Yoon. Slimpajama-6b. https://huggingface.co/datasets/DKYoon/SlimPajama-6B,
2023. Accessed: September 24, 2024.

[74] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a machine really finish your
sentence? In Anna Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 4791–4800, Florence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

[75] Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu,
Susan Zhang, Gargi Ghosh, Mike Lewis, Luke Zettlemoyer, and Omer Levy. Lima: Less is more for alignment, 2023.

17

https://arxiv.org/abs/2403.16952
https://huggingface.co/datasets/DKYoon/SlimPajama-6B
https://aclanthology.org/P19-1472

Appendix
In Appendix A, we provide a glossary of notation used in the paper. In Appendix B, we discuss how additional data mixing
methods are related to the LMO framework and provide proofs that existing methods can be expressed in our framework.
In Appendix C, we provide additional results on our analysis of existing data mixing methods. In Appendix E we provide
additional details for our results in Section 6, and in Appendix F we provide additional results, including downstream
evaluation and ablations.

A Notation
The glossary is given in Table 4 below.

Symbol Used for

m The number of data groups. Examples of data groups include a pre-training domain or an instruction-tuning task.
Dtrain/val/test Training, validation, and test datasets comprised of m groups, where Di

(·) is group i’s training/validation/test data.
N Total number of samples from Dtrain to train on.
S Number of steps to train for (i.e., S = N × batch size).
T Number of rounds to divide training into, where each round is S

T
steps.

p Mixture proportions are p = (p1) for T = 1 (static) and p = (p1, . . . , pT) for T > 1 (dynamic),
where pt = [pt1, . . . , p

t
m] ∈ △m is a probability distribution.

f A language model (can be either pre-trained or initialized from scratch).
f(p, t) The model f at the beginning of round t after being trained on p1, . . . , pt−1 so far.
Ltrain/val/test(f) Ltrain(f) = (Ltrain,1(f), . . . , Ltrain,m(f)) is the vector of f ’s training losses over each data group;

similarly defined for validation and test losses.
Lt

(·)(p) Shorthand for L(·)(f(p, t)). When dealing with static mixtures, we also use L(·)(p).
At Parameter matrix At ∈ Rm×m used in mixing laws (2), capturing cross-group interactions.

See Table 1 for instantiations.
bt, ct Group-specific parameters bt, ct ∈ Rm used in mixing laws 2. Note that the value of ct does not impact the

LMO framework, and neither does bt when all bti are equal.
σ Either σ : R → R = Id or exp.
Zt Used for normalization in proportion update rule.
η Step size η > 0 used in proportion update rule.
P The set of mixture proportions that comprises a training sweep.
At⋆ Approximately optimal At for the linear dynamic mixing law, obtained by fitting

Lvalt+1(p) = Lvalt(p)−At⋆p over training sweeps.
Ãt Method-specific Ãt = btAt, where At is obtained directly from the method and

bt ∈ R is learned from training sweeps.
sim(Ãt, At⋆) Similarity between method-specific and optimal At, defined as an average of cosine similarity and

Spearman rank correlation over At’s normalized column sums.
ε one-hot smoothing factor used to define pt,i = (1− ε)1i + εUnif(m), smoothed one-hot distributions

we use to learn At in AIOLI.
δ The fraction per round dedicated to learning At in AIOLI.
k Number of sweeps per group to average At estimates over in AIOLI.
pinit Initial mixture pinit ∈ △m that AIOLI can dynamically adjust.
Sinit Number of steps to train according to pinit.

Table 4: Glossary of variables and symbols used in this paper.

B LMO framework details

B.1 Additional existing methods
We comment on two other popular data mixing methods, Online Data Mixing (ODM) [2] and RegMix [37].

In ODM [2], data mixing is framed as a multi-armed bandit problem, where each arm is a data group that a batch is
trained on, and the reward function is defined in terms of the training loss of each group. ODM uses the EXP3 algorithm to
explore training on different data groups. pt, which is used to determine which group the entire training batch is comprised

of, is updated according to pt+1
j = (1 −mεt)

exp(εt−1R
t
j)∑m

i=1 exp(εt−1Rt
i)
+ εt. εt is an exploration rate, and the reward function is

18

Rt
j = αRt−1

j + (1− α)
Lt

train,j(p)

pt
j

if the jth group is selected at time t; otherwise, Rt
j = Rt−1

j . While the exploration and

the smoothing of pt and Rt make this method not directly expressible in our framework, we note that the update rule can
be loosely interpreted as allocating larger proportions to groups that have high loss. This update rule does not consider
cross-group interactions and is thus similar to DoReMi’s update rule, which utilizes a diagonal At defined in terms of current
loss.

RegMix [37] conducts many training runs on smaller models at shorter scales. Similar to DML [72], a regression model
is fit to these runs and used to predict mixture proportions for a longer run on a larger model. They consider using a linear
regression model, i.e., the mixing law Lval,i(p) = ci −

∑m
j=1 Aijp

t
j , but find that the R2 is relatively low (0.87). Instead,

their main approach uses LightGBM, a tree-based gradient boosting approach, i.e., using an ensemble of non-linear decision
trees as a mixing law. We note that AIOLI could be used in conjunction with RegMix in their settings, an exciting direction
for future work.

B.2 Proofs for section 3.3
B.2.1 Background on Exponentiated Gradient Descent

We provide background on exponentiated gradient descent (EGD) taken from Kakade [29]. In EGD, we have a sequence of
decisions w1, . . . , wT , where wt = [wt

1, . . . , w
t
m] ∈ △m. We also have a sequence of cost functions c1, . . . , cT : △m → R.

To minimize the total cost
∑T

t=1 c
t(wt), the EGD update rule sets w0 = Unif(m), and updates according to wt+1

j =
wt

j exp(−η▽jc
t(wt))

Zt
. Zt ensures that wt+1 ∈ △m, η is a step size, and ▽jc

t(wt) denotes ∂ct(wt)
∂wt

j
. EGD is known to have

certain regret guarantees on the value of costs incurred by playing w1, . . . , wT versus always playing the best fixed point in
hindsight:

∑T
t=1 c

t(wt)− infw∈△m

∑T
t=1 c

t(w).

We now are ready to prove Lemma 1.

Lemma 1. The EGD update rule for (1) subject to Lt+1
val,i(p) = cti − bti

∑m
j=1 A

t
ijp

t
j ∀i ∈ [m] is

pt+1
j =

1

Zt
· ptj exp

(
η

m∑
i=1

btiA
t
ij

)
∀j ∈ [m], (3)

where η > 0 is the step size and Zt is a normalizing constant such that pt+1
j ∈ △m.

Proof. The cost function at each timestep in our setting is
∑m

i=1 L
t+1
val,i(p), and the decision we make is pt. The mixing law

constraint in (2) with σ = Id is Lt+1
val,i(p) = cti − bti

∑m
j=1 A

t
ijp

t
j for all i ∈ [m], so our objective (1) can be written as

m∑
i=1

(
cti − bti

m∑
j=1

At
ijp

t
j

)
. (4)

The gradient of this expression with respect to ptj for j ∈ [m] is −
∑m

i=1 b
t
iA

t
ij . Plugging this into the EGD update rule,

we obtain the update pt+1
j = 1

Zt
ptj exp(η

∑m
i=1 b

t
iA

t
ij).

B.2.2 Proof of Theorem 1

To prove Theorem 1, we write out individual propositions 1, 2, 3 for expressing each online method in the LMO framework.

By our definition of what it means to express a method in LMO, we must consider how each method 1) trains f and 2)
sets pt. We must see if this procedure can be replicated by solving some specification of the LMO optimization problem in
our data mixing setup.

Critically, note that this definition of “expression” does not claim that the optimization problems proposed in existing
methods are exactly the same as the LMO optimization problem. Instead, we are stating that the training procedures used in
their methods can be equivalently viewed as a way of solving the LMO optimization problem subject to certain assumptions
on the loss-proportion relationship.

Proposition 1 (Skill-It Derivation). Using a) a linear dynamic parameterization Lt+1
val,i(p) = Lt

val,i(p)− bt
∑m

j=1 A
t
ijp

t
j , b)

parameters At
ij = Lt

val,i(p) · (L
T+1
val,i (1j)− L1

val,i(1j))/L
1
val,i(1j), and c) exponentiated gradient descent (EGD) to solve

for p, the LMO framework (1) can express Skill-It.

19

Proof. The Skill-It algorithm sets pt in each round and then samples from Dtrain according to pt to train f for a round. This
training procedure is directly specified in our data mixing problem setup (Section 2). Therefore, we simply need to show
that the Skill-It update rule can be converted into a linear dynamic mixing law. By comparing Lemma 1 and the Skill-It
update rule pt+1

j = 1
Zt
· ptj exp

(
η
∑m

i=1 A
SG
ij L

t
val,i(p)

)
, we can match At

ij in the lemma with ASG
ij in Skill-It, and we can

match bti in the lemma with Lt
val,i(p). Therefore, Lemma 1 tells us that using Lt+1

val,i(p) = cti − bt
∑m

j=1 L
t
val,i(p)A

SG
ij p

t
j in

the LMO framework with exponentiated gradient descent recovers Skill-It (since the bt and cti can be dropped and are only
used for scaling At).

Using the definition of ASG
ij , we can rewrite the mixing law as Lt+1

val,i(p) = cti − bt
∑m

j=1 A
t,Skill-It
ij ptj where At,Skill-It

ij =

Lt
val,i(p)(L

T+1
val,i (1j)− L1

val,i(1j))/L
1
val,i(1j). Lastly, note that we can replace cti with any other value, including Lt

val,i(p),
due to the fact that pt has m− 1 degrees of freedom (see Lemma 2).

We note that [14] explicitly specify their mixing law in equation 2 of their paper, along with the same objective function
as ours in the LMO framework.

Proposition 2 (DoReMi Derivation). Using a) a linear dynamic parameterization Lt+1
val,i(p) = Lt

val,i(p)− bt
∑m

j=1 A
t
ijp

t
j ,

b) parameters At
ij = min{Lt

train,i(p)− Ltrain,i(fref), 0} for i = j and Aij = 0 otherwise, and c) EGD to solve for p, the
LMO framework (1) can express DoReMi’s proxy model.

Proof. When training the proxy model for DoReMi, pt is set in each round, and then f is updated to minimize
∑m

i=1 p
t
iLtrain,i(f).

Using Lemma 3, we establish that DoReMi’s weighted training objective at each timestep is equal in expectation to the ob-
jective of training on data sampled from pt, which is what our problem setup focuses on. Having established that the training
procedure is the same in expectation, we now need to show that the DoReMi pt update rule can be converted into a linear dy-
namic mixing law. By comparing Lemma 1 and the DoReMi update rule pt+1

j ∝ ptj exp(ηmax{Lt
train,j(p)−Ltrain,j(fref), 0}),

we can match At
ij in the lemma with 0 for i ̸= j, and At

ii with max{Lt
train,j(p)−Ltrain,j(fref), 0}. Therefore, Lemma 1 tells

us that using Lt+1
val,i = cti − bt

∑m
j=1 A

t
ijp

t
j with At

ii = max{Lt
train,j(p) − Ltrain,j(fref), 0} can express the DoReMi proxy

model training. We include bt to allow for scaling At, but since this does not impact the optimal p, it is not in the update
rule. Lastly, applying Lemma 2 lets us write the mixing law as Lt+1

val,i = Lt
val,i(p)− bt

∑m
j=1 A

t
ijp

t
j .

We comment on the fact that DoReMi’s proxy model is trained with a DRO (distributionally robust optimization) min-max
objective, namely, minimizef maximizep

∑m
i=1 piL

T+1
train,i(f). This objective, which differs from our data mixing objective,

yields the pt gradient ascent and f t gradient descent updates. However, we are still able to express this training procedure in
the LMO framework, since our claim is: if we assume that the Lt+1

val,i = Lt
val,i(p)− bt

∑m
j=1 A

t,DRM
ij ptj mixing law captures

the relationship between Lt
val and pt, then training according to the DoReMi proxy run should not only guide f and p to

optimize the DRO objective, but also to optimize the average validation loss per group.

Proposition 3 (DoGE Derivation). Using a) a linear dynamic parameterization Lt+1
val,i(p) = Lt

val,i(p) − bt
∑m

j=1 A
t
ijp

t
j ,

b) parameters At
ij = ⟨▽Lt

val,i(p),▽L
t
train,j(p)⟩ for all i, j ∈ [m], and c) EGD to solve for p, the LMO framework (1) can

express DoGE’s proxy model.

Proof. When training the proxy model for DoGE, pt is set in each round, and then f is updated to minimize
∑m

i=1 p
t
iLtrain,i(f).

Using Lemma 3, we establish that DoGE’s weighted training objective at each timestep is equal in expectation to the
objective of training on data sampled from pt. Next, we show that the DoGE update rule can be converted into a linear dy-
namic mixing law. By comparing Lemma 1 and the DoGE update rule pt+1

j ∝ ptj exp(η⟨▽Ltrain,j(f
t),

∑m
i=1 ▽Lval,i(f

t)⟩),
we can see that At

ij in the Lemma can be matched with ⟨▽Ltrain,j(f
t),▽Lval,i(f

t)⟩. Therefore, using the mixing law
Lt+1

val,i = cti − bt
∑m

j=1 A
t
ijp

t
j with At

ij = ⟨▽Ltrain,j(f
t),▽Lval,i(f

t)⟩ allows LMO to express DoGE proxy model training.
Again, bt is included for scaling but does not impact optimization, and by applying Lemma 2, we can replace cti with
Lt

val,i(p).

Lemma 2. Let Lt+1
i (p) = cti −

∑m
j=1 A

t
ijp

t
j for some ct and At. Then, there exists an Bt

ij such that Lt+1
i (p) =

Lt
i(p)−

∑m
j=1 B

t
ijp

t
j .

20

Proof. Since pt ∈ △m, we can write the probability ptm as 1−
∑m−1

j=1 ptj . Then, the first equation can be written as

Lt+1
i (p) = cti −

m−1∑
j=1

At
ijp

t
j −At

im

(
1−

m−1∑
j=1

ptj

)
(5)

= cti −
m−1∑
j=1

(At
ij −At

im)ptj −At
im

= Lt
i(p)−

m−1∑
j=1

(At
ij −At

im)ptj − (At
im − cti + Lt

i(p))

= Lt
i(p)−

m−1∑
j=1

(At
ij −At

im +At
im − cti + Lt

i(p))p
t
j − (At

im − cti + Lt
i(p))(1−

m−1∑
j=1

ptj)

= Lt
i(p)−

m−1∑
j=1

(At
ij − cti + Lt

i(p))p
t
j − (At

im − cti + Lt
i(p))(1−

m−1∑
j=1

ptj).

Let Bt
ij = At

ij − cti + Lt
i(p) for all j ∈ [m]. Then, this equation becomes

Lt+1
i (p) = Lt

i(p)−
m−1∑
j=1

Bt
ijp

t
j −Bt

im(1−
m−1∑
j=1

ptj) (6)

= Lt
i(p)−

m∑
j=1

Bt
ijp

t
j .

Lemma 3. Let Lt
B(f, p) be the total training loss of f on a batch of size B sampled from Dtrain according to p ∈ △m,

and let Lt
B,i(f, p) be the total training loss on samples from group i in that batch. Then, the average loss over a uniformly

sampled batch weighted by pt is equal in expectation to the average loss per group over a batch sampled according to pt:

E

[
m∑
i=1

ptiL
t
B,i(f,Unif(m))

]
= E

[
Lt
B(f, p

t)

m

]
(7)

Proof. Let each group i consist of samples x from the distribution Pi, and let L̃train, i(f) = Ex∼Pi
[ℓ(f, x)] be the population-

level loss on group i, where ℓ(f, x) is f ’s loss on sample x.

If a batch is uniformly sampled, each group has B/m samples. We can then write Lt
B,i(f,Unif(m)) =

∑B/m
k=1 ℓ(f, xi

k),
where xi

k is the kth sample of group i. Then,

E

[
m∑
i=1

ptiL
t
B,i(f,Unif(m))

]
= E

 m∑
i=1

pti

B/m∑
k=1

ℓ(f, xi
k)

 =
m∑
i=1

ptiB

m
L̃train, i(f). (8)

Next, if a batch is sampled according to pt, then group i has Bpti samples in the batch. We can then write Lt
B(f, p

t) =∑m
i=1

∑pt
iB

k=1 ℓ(f, x
i
k). Then,

E
[
Lt
B(f, p

t)

m

]
= E

 m∑
i=1

pt
iB∑

k=1

ℓ(f, xi
k)

m

 =
m∑
i=1

ptiB

m
L̃train, i(f). (9)

This hence establishes the equivalence in expectation between a weighted training objective and training on data sampled
according to p.

21

Table 5: Comparison of log-linear static and linear dynamic mixing law parameterizations across different data settings with
MSE and R2 metrics. Both log-linear and linear dynamic mixing laws fit the relationship between mixing proportions and
losses well.

Parameterization Arxiv/SE GH/C4 Books/SE
MSE R2 MSE R2 MSE R2

Log-linear static 2e-4 0.990 5e-4 0.989 6e-4 0.987
Linear dynamic 2e-4 0.936 1e-4 0.948 4e-5 0.926

Arxiv/Books/SE CC/GH/Wiki SlimPajama
MSE R2 MSE R2 MSE R2

Log-linear static 6e-4 0.991 0.001 0.989 0.002 0.997
Linear dynamic 6e-5 0.957 1e-4 0.975 5e-6 0.938

C Analysis Details

C.1 Mixing Law Parameterization
We describe how we performed the linear and log-linear parameterization experiments. For the log-linear static parame-
terizations, we train our model on p ∈ P sweeps and fit the parameters using code provided in Ye et al. [72] (i.e., using
PyTorch and L-BFGS to minimize the Huber loss of the mixing law). We do this over 5 random seeds for k = 2, 3 and over
3 seeds for the full SlimPajama.

For the linear dynamic parameterizations, for k = 2, 3 we train the model for 2000 steps according to some p0 ∈ P ,
and then sweep over P for the next 100 steps. We do this for one random seed, performing |P|2 total runs. For the full
SlimPajama setting, we train the model for 10000 steps using stratified sampling, and then sweep over P for the next 5000
steps. We fit the parameters using Pytorch and L-BFGS.

C.1.1 Additional parameterization experiments

Parameterization across checkpoints. We investigate whether the log-linear static and linear dynamic mixing laws
remain well-specified in later stages of training and on other datasets. To do so, we take various Pythia 160M checkpoints
[8], sweep mixing proportions, and fit the linear dynamic and log-linear static mixing laws. We train for 2000 steps according
to the learning rates and learning rate scheduler reported in [8]. We fit the static mixing law on full runs of 2000 steps,
and the linear dynamic mixing law at t = 500, after which we do a training sweep over the next 500 steps. In Tables 6
and 7, we find that the strong fit for log-linear static mixing laws continues to hold during pre-training at checkpoint 72K
(roughly halfway through training Pythia-160M) and after pre-training, with an average R2 of 0.982 and 0.991, respectively.
However, the linear dynamic mixing law’s R2 coefficient is lower, averaging 0.815 at checkpoint 72K and 0.830 at the end
of pre-training. It thus may be interesting to further study if the dynamics of the loss-proportion relationship evolve in a
structured way throughout training, or if these results are due to more noise in how models learn at later stages of training.

Parameterization across other sets of data groups. In Figure 4, we identify an example set of data groups that exhibits a
non-linear relationship between loss and proportion: Books/C4 from SlimPajama. For these two data groups, we see that
as the proportion of Books increases while C4 decreases, the loss on Books starts increasing past a certain p, suggesting
quite counterintuitively that performance on Books is optimized by allocating some proportion to C4. In this case, neither
log-linear static or linear dynamic mixing laws have good fit to the proportion-loss relationship, as neither can represent the
non-linearity. In particular, the average MSE and R2 for the log-linear static mixing law is 0.003 and 0.558, respectively,
and the average MSE and R2 for the linear dynamic mixing law is 0.0002 and 0.721.

Fortunately, because these nonlinearities exist on the boundary of the simplex and tend to incur high loss, they tend to
have little impact on the optimization of p, which strives to minimize the average loss. For instance, we found that the
optimal proportion according to Ye et al. [72]’s log-linear static mixing law on one random seed was [0.176, 0.824], and the
true optimal from grid search was [0.2, 0.8]. However, it is important to further investigate this non-linear phenomenon on
additional data groups and training regimes, which we defer to future work.

22

Table 6: Comparison of log-linear static and linear dynamic mixing law parameterizations when training from the 72K
Pythia-160M checkpoint.

Parameterization Arxiv/SE GH/C4 Books/SE
MSE R2 MSE R2 MSE R2

Log-linear static 2e-4 0.975 7e-5 0.992 2e-4 0.981
Linear dynamic 4e-4 0.834 7e-4 0.815 6e-4 0.796

Table 7: Comparison of log-linear static and linear dynamic mixing law parameterizations when training from the pre-trained
Pythia-160M.

Parameterization Arxiv/SE GH/C4 Books/SE
MSE R2 MSE R2 MSE R2

Log-linear static 3e-6 0.994 4e-6 0.992 6e-6 0.986
Linear dynamic 5e-5 0.896 8e-5 0.824 1e-4 0.769

C.1.2 Parameterization on instruction-tuning mixtures

Previously, we studied if training on SlimPajama (from scratch, at a pre-training checkpoint, and at the end of pre-training)
exhibited linear dynamic or log-linear static mixing. We now study if supervised fine-tuning on a mixture of task types
exhibits similar mixing laws. The data mixing groups we consider are instruction-following tasks. It is important to know
how to optimally mix these groups so that the model can follow a variety of instructions, as shown by how existing datasets
consist of a diverse set of commands [15, 38, 47, 58, 67, 75].

We select m = 9 tasks from Natural Instructions [42, 67]: AbductiveNLI, BoolQ, HellaSwag, MathQA, PIQA, SemEval,
SQuAD 1.1, SST2, and XSum. We selected tasks with many samples, prioritizing diversity of capabilities and formats. We
construct validation and test splits that are 100 samples per group. More information is provided in Table 8.

To conduct the sweeps, we set P to be 50 mixing proportions drawn from the Dirichlet distribution with α = 1.5. For the
static parameterization, we conduct 50 training runs over P , for 1000 steps each, and we do this over 5 random seeds. For
the dynamic parameterization, we train on 10 proportions from P for 500 steps and then sweep over the entire P for the
next 100 steps. We do this over 1 random seed. We ensure there are no repeated samples in training. We use a pre-trained
Pythia-160M model [8], consistent with the rest of our experiments, and use a linear scheduler with learning rate 1e-5 and
100 warmup steps.

Our results are in Table 9. In addition to displaying the averaged MSE and R2 across all 9 groups, we also display
per-group results. We find that the log-linear static mixing law attains an average R2 of 0.888 over these instruction tasks.
However, the linear dynamic mixing law only attains an average R2 of 0.419. Interestingly, we observe that the 4 instruction
tasks that involve open-ended generation have higher R2 (average of 0.73) while the binary and multiple choice tasks have
a lower R2 (average of 0.17) for the linear dynamic law. We hypothesize that this is because tasks that do not require
open-ended generation are easier to learn and more susceptible to overfitting. We observed that their validation losses often

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of book

10 5

10 4

10 3

10 2

10 1

Lo
g

(L
os

s
- c

) o
n

bo
ok

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of c4

10 1

100

Lo
g

(L
os

s
- c

) o
n

c4

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of book

4.25

4.30

4.35

4.40

4.45

4.50

N
ex

t-
st

ep
 L

os
s

on
 b

oo
k

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of c4

5.0

5.1

5.2

5.3

5.4

5.5

N
ex

t-
st

ep
 L

os
s

on
 c

4

0.4 prior
0.1 prior
0.2 prior

0.3 prior
0.5 prior

0.6 prior
0.7 prior

0.8 prior
0.9 prior

Figure 4: Top: Log-linear static mixing law fit on Books/C4 across 5 random seeds. Bottom: Linear dynamic mixing law
fit on Books/C4 on 1 random seed. Each color is a different initial mixture p0 ∈ P trained for 2000 steps, and the fitting
sweeps are done over 100 additional steps.

23

Table 8: Overview of Instruction Tasks

Task Task number in Natural Instructions # Samples Output Format
AbductiveNLI [7] task067 6499 Open-ended
BoolQ [16] task380 6500 Yes/No
HellaSwag [74] task1389 6494 Multiple choice
MathQA [4] task1420 6452 Multiple choice
PIQA [9] task080 6500 Open-ended
SemEval [66] task295 5996 Multiple choice
SQuAD 1.1 [52] task075 6498 Open-ended
SST2 [55] task363 6495 Pos/Neg
XSum [48] task1290 6493 Open-ended

plateau before 500 steps, and increasing the proportions after this point does not consistently decrease loss. Finally, we also
include a log-linear dynamic mixing law—that is, log(Lt

val,i(p)) = log(Lt−1
val,i(p))−

∑m
j=1 A

t
ijp

t
j . This can be thought of as

a piecewise version of the log-linear static mixing law, and we find that this slightly improves MSE and R2 compared to the
linear dynamic mixing law.

Table 9: Comparison of log-linear static, linear dynamic, and log-linear dynamic mixing law parameterizations over
instruction-tuning tasks in terms of MSE and R2.

Task Log-linear static Linear dynamic Log-linear dynamic
MSE R2 MSE R2 MSE R2

AbductiveNLI 3e-4 0.939 4e-4 0.586 4e-5 0.599
BoolQ 1e-3 0.941 8e-2 0.215 2e-2 0.276
HellaSwag 6e-4 0.848 6e-3 0.225 2e-3 0.256
MathQA 8e-4 0.787 6e-3 0.090 2e-3 0.115
PIQA 5e-4 0.916 3e-4 0.754 2e-5 0.761
SemEval 9e-4 0.974 4e-3 0.239 3e-3 0.254
SQuAD 1.1 8e-3 0.947 4e-3 0.742 9e-4 0.766
SST2 3e-3 0.662 2e-2 0.082 4e-2 0.118
XSum 1e-4 0.977 1e-4 0.838 1e-5 0.841

Average 2e-3 0.888 1e-2 0.419 8e-3 0.443

Checking for interactions among groups. It is natural to ask whether a linear mixing law is sufficient to model how
mixing proportions affect the loss. In linear regression, such assumptions are often evaluated using visual diagnostics called
residual plots [43]. Residual plots graph the prediction error from each data point (the residuals) in order to reveal different
kinds of structure. For example, it is common to plot the residual against the predicted value to check for nonlinearity.

Figure 5 shows several such residual plots for the dynamic mixing law experiments with 3 domains (Arxiv, Books, and
Stackexchange). The figure checks for interactions when predicting Arxiv’s loss. The corresponding plots for the other
domains look similar.

The top row visualizes the residuals inside the simplex. If strong interactions were present, then they would cause
clustered patterns in the residuals—regions where the linear model consistently gives predictions that are too low or too
high. Strong patterns do not seem apparent.

The bottom three rows plot the residuals against different interaction terms. A consistent trend in the residuals above or
below zero would suggest the term captures a meaningful interaction. The scatter plots show no consistent trend. The first
three charts on the bottom row hint that a small interaction could be present in those cases; however, it is difficult to say
without larger samples. Considering the linear model’s excellent fit and high R2, if such an interaction is present then it is
likely small.

To summarize: the linear model seems sufficient. While we can not rule out the possibility of small interactions, the
diagnostics do not reveal any major departures from linearity that might compel us to use a more complex model.

24

Figure 5: Residuals plots to check for interactions in the dynamic mixing law experiments with 3 domains (Arxiv, Books,
and StackExchange). The target loss is Arxiv. Columns correspond to different initial mixing proportions. Data points show
the (externally studentized) residuals of different mixing proportions after fitting the linear mixing law. Top row: Each point
in the simplex corresponds to a different mixture of the 3 domains, with its color giving the residual’s value at that point
(red is positive, blue is negative). Bottom 3 rows: each row shows the residual plotted against a different interaction term:
P1P2, P1P3, and P2P3. Dotted gray lines show upper and lower 99% confidence limits for the residuals, assuming the linear
regression assumptions hold.

25

C.2 Values of mixing law parameters
We explain how to compare method-specific At’s to an approximation of the true At⋆. First, after performing method-specific
initialization, such as training reference models, we run each online method (Skill-It, DoReMi’s proxy model DoGE’s proxy
model, Skill-it, and AIOLI) for t steps. For Skill-It, DoReMi, and DoGE, we use the unrestricted setting configuration of
hyperparameters presented in Section E. For AIOLI, we analyze the parameters of AIOLI +GS from the restricted setting,
since we found that this had less noisy fluctuation in the weights than in the unrestricted setting. For m = 2, we set t = 1000
for Skill-It and t = 500 for DoGE, DoReMi, and AIOLI since Skill-It is updated less frequently. For m = 3, we set t = 1000
for DoGE, DoReMi and Skill-It, and t = 1500 for AIOLI. We then checkpoint the language model and the method’s At. For
DoGE and DoReMi, we compute a smoothed At = 1

100

∑100
i=1 A

t−100+i because each At is computed at the batch level,
and can thus be noisy. For AIOLI, we also smooth the At by averaging the previous timestep parameters.

To approximate At⋆, we then run a training sweep of pt over P for 100 steps on the checkpoint. We use this training
sweep to fit At⋆ from the dynamic mixing law Lt+1

val,i(p) = Lt
val,i(p)−

∑m
j=1 A

t⋆
ijp

t
j .

Before we compare parameters, we scale At by some bt where Lt+1
val,i(p) = Lt

val,i(p) − bt
∑m

j=1 A
t
ijp

t
j for all i ∈ [m].

This is allowed since bt does not influence the optimal p and does not need to be in the update rule. We fit a single bt

across each group’s mixing law and set Ãt = btAt. We can then compare At and At⋆ using the metric sim(Ãt, At⋆) =
0.5cossim(ãt, at⋆) + 0.5Spearman(ãt, at⋆), which we proposed in Section 4.3.

C.2.1 Properties of At⋆

We discuss some properties of At⋆, finding that 1) At⋆ can vary significantly across time, and 2) At⋆ needs to be modeled as
a full matrix. To do this, for each initial mixture p0 ∈ P , we train for t = 2000 steps and then sweep over P for the next 100
steps. We repeat this setup for t = 4000 to obtain A2000⋆ and A4000⋆. We do this experiment for Arxiv/Stackexchange and
Github/C4.

Extent of time variation of At. We find that the column sums of At can change order over time, meaning that the pt

“changes direction” in terms of which group has the largest proportion. In particular, for p0 = [0.5, 0.5] and Github/C4, we
have that

A2000⋆ =

[
0.148 0.011
−0.013 0.087

]
A4000⋆ =

[
0.015 0.001
0.001 0.015

]
(10)

The column sums are 1⊤A2000⋆ = [0.135, 0.098] and 1⊤A4000⋆ = [0.016, 0.017], showing that the ordering of
proportions of the groups changes. This suggests that the optimal pt can change significantly across time, prioritizing Github
initially and later C4, which is also reflected for Github/C4 in the greedy row of Table 10.

However, for Arxiv/Stackexchange, the column sums of A2000⋆ and A4000⋆ never change in terms of the ordering of
proportions of the data groups, across all p0 ∈ P . As a result, the optimal pt never changes direction. This suggests that
how much At varies in ordering over time depends on the data groups. As a result, methods like Skill-It, which use a
time-invariant ASG multiplied by validation loss, may not be able to match the true At⋆ if the groups’ validation losses do
not change in ranking across time, which we observe in Github/C4.

Modeling At⋆ as a full vs diagonal matrix. We find that modeling the off-diagonal entries of At,⋆ is important. For
each sweep, we fit both At⋆ as described above and a diagonal matrix At⋆

d . We compare if the column sums of At⋆ and At⋆
d

differ in the order of elements.

We find that for Arxiv/StackExchange, p0 = 0.4, and both t = 2000 and t = 4000, setting pt based on the full matrix
would put a larger proportion on StackExchange, while setting pt based on the diagonal matrix would put a larger weight on
ArXiv. In particular, the full and diagonal matrices for t = 2000 are

A2000⋆ =

[
0.249 0.058
0.025 0.224

]
A2000⋆

d =

[
0.284 0
0 0.238

]
(11)

The second column sum is larger for A2000⋆ and smaller for A2000⋆
d . We also have similar findings on Github/C4; for

p0 = 0.6 and t = 2000, we have

A2000⋆ =

[
0.119 0.027
−0.010 0.104

]
A2000⋆

d =

[
0.135 0
0 0.098

]
(12)

Using the diagonal matrix for Github/C4 would result in prioritizing training on Github, even though the full matrix
suggests that C4 should be prioritized. Therefore, it is important to model At⋆ as a full matrix. As a result, methods like
DoReMi, which use a diagonal At, can perform suboptimally.

26

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

2.8

2.9

3.0

3.1

3.2

3.3

3.4

N
ex

t-
st

ep
 L

os
s

on
 a

rx
iv

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

3.4

3.6

3.8

4.0

4.2

N
ex

t-
st

ep
 L

os
s

on
 s

ta
ck

ex
ch

an
ge

0.7 prior
0.1 prior
0.2 prior

0.3 prior
0.4 prior

0.5 prior
0.6 prior

0.8 prior
0.9 prior

Figure 6: The linear dynamic parameterization results from Figure 2 (right), with pt = [0, 1] and [1, 0] also plotted. We see
that the linear dynamics are misspecified at pti = 0 for both i.

C.3 Solving strategy
We present our results on examining the assumptions made in how existing methods solve the LMO optimization problem.
All online methods use exponentiated gradient descent, which updates pt using the gradient at the current timestep. This
involves a greedy approximation of the objective function. We study if the greedy approximation yields a p is close to the
true optimal p.

For m = 2 data settings, we take our S = 5000 steps and split it into T = 2 rounds. We perform a brute-force sweep at
each round over P , which sweeps p1 = 0.1, 0.2, . . . , 0.9. In total over one random seed, we conduct 81 training runs for
each of Arxiv/Stackexchange, Github/C4, and Books/Stackexchange.

We determine the greedy-approximate p by selecting the best p1. Then, conditioning on this p1, we select the best p2. We
report what the greedy p and its performance is in the first row of Table 10, and we report the optimal p and its performance
in the second row. Note that this protocol does not depend on the mixing law or a method for setting p.

We find that for Arxiv/StackExchange and Books/StackExchange, the greedy proportions and the optimal proportions are
identical. However, for Github/C4, the greedy approximation fails to recover the optimal proportions. Therefore, the greedy
approximation recovers the optimal dynamic proportions in 2 out of 3 cases.

Table 10: Comparison of the greedily selected p1, p2 versus the optimal p1, p2 for a T = 2 rounds data mixing problem.
On 2 out of 3 datasets, the greedily selected proportions match the optimal proportions.

Solving Arxiv/SE GH/C4 Books/SE
p11, p

2
1 Avg test PPL p11, p

2
1 Avg test PPL p11, p

2
1 Avg test PPL

Greedy 0.4, 0.4 16.039 0.6, 0.4 36.525 0.3, 0.6 45.513
Optimal 0.4, 0.4 16.039 0.3, 0.6 34.709 0.3, 0.6 45.513

Beyond exponentiated gradient descent, one may wonder if exactly solving the greedy objective could suffice. For the
linear dynamic mixing law Lt+1(p) = Lt(p)−Atpt, the optimal pt is 1j , where j = argmax

∑m
i=1 A

t
ij . However, we find

in Figure 6 that the loss-proportion relationship can be nonlinear at the edge of the simplex where pt = 1j . Exponentiated
gradient descent, which uses entropy regularization, is hence able to implicitly avoid extreme p where the linear mixing law
is misspecified and thus is a practical technique for LMO.

D Additional Algorithmic Details
In AIOLI, LEARNPARAMS is used in each round to learn At. Then, At is used to compute pt, which is used for training
during the round. We provide a derivation of LEARNPARAMS by first presenting a naive, high-cost method for estimating
At (Appendix D.1). This involves checkpointing the model at each round, running a training sweep over the round and
observing the changes in validation losses, and fitting At to these changes. Then, we layer on two modifications that compute
slightly different loss changes, helping lower the cost of estimation. First, we shorten the training sweep to be only over a
fraction of the round, δ, and use these shortened changes in validation losses to fit At (Appendix D.2). Second, we simulate
a simultaneous training sweep by partitioning the δ fraction of the round into many small parts, interleaving the different
sweep mixtures at a fine granularity and averaging the loss changes for each sweep mixture (Appendix D.3). This idea, with

27

p1
,1

p 1,3

pT,
1

p1 p2 pT

p2
,1

p1
,1

p 1,3

p
2,1

pT
,1

p1 p2 pT

δ δ

p1 p2 pT

δ δ δ

I = {1, 3, 2, 3, …, 3}
k = 3

p1,2

p1
,2

LearnParams

I = {1, 2, 3}
k = 1

1. Naive approach with full training sweeps

2. Shorten training sweeps

3. Aioli: interleave training sweeps

δ

Figure 7: Derivation of AIOLI. Top: a naive high-cost approach where training sweeps are conducted to fit At at each round
(Appendix D.1). Middle: a modification that shortens the training sweeps used to learn At (Appendix D.2). Bottom: a
final modification that interleaves the sweep mixtures at a high frequency (large k) in one single run, enabling AIOLI’s
LEARNPARAMS to require no additional training (Appendix D.3).

similarity to concepts like time-division multiplexing in signal processing [12], enables AIOLI to require no extra training
while trading off accuracy of the estimate. We provide a sketch of our derivation in Figure 7.

D.1 Naive training sweep approach
This approach is depicted in Figure 7 (top). By conducting a training sweep over round t, we can use a linear system of
equations to estimate At from the linear dynamic mixing law Lt+1

val,i(p) = Lt
val,i(p)−

∑m
j=1 A

t
ijp

t
j . Let pt,1, pt,2, . . . pt,m ∈

△m comprise a training sweep over the duration of round t. First, we checkpoint the model f t, and for simplicity denote
f t’s validation loss on group i as Lt

val,i. For each pt,j , we train f t for the entire round using pt,j . We then record how much
the validation loss on each group changes, Lt

val,i − Lt+1
val,i(p

t,j) for all i ∈ [m]. By the end of this procedure on each pt,j , we
have the following system of equations for each i ∈ [m]:

m∑
j=1

At
ijp

t,1
j = Lt

val,i − Lt+1
val,i(p

t,1) (13)

m∑
j=1

At
ijp

t,2
j = Lt

val,i − Lt+1
val,i(p

t,2)

...
m∑
j=1

At
ijp

t,m
j = Lt

val,i − Lt+1
val,i(p

t,m)

28

This is a system of linear equations with m unknowns: Ai1, . . . , Aim. We can write it in matrix form as:
pt,11 pt,12 . . . pt,1m

pt,21 pt,22 . . . pt,2m
...

pt,m1 pt,m2 . . . pt,mm



At

i1

At
i2
...

At
im

 =


Lt

val,i − Lt+1
val,i(p

t,1)

Lt
val,i − Lt+1

val,i(p
t,2)

...
Lt

val,i − Lt+1
val,i(p

t,m)

 (14)

Let P ∈ Rm×m be the leftmost matrix and βi ∈ Rm be the vector on the right hand side. Then, we can write At
i = P−1βi.

We solve this system for each i ∈ [m] to obtain At.

The advantage of this method is that it directly estimates the optimal At⋆ that is used in the mixing law. However, it
requires m sweeps per round, because the key quantity we must observe to learn At is Lt

val,i − Lt+1
val,i(p): the change in loss

after training through the entire round t. As a result, this approach requires m extra full training runs to learn At. Below, we
will describe how we can compute cheaper alternatives to Lt

val,i − Lt+1
val,i(p).

D.2 Modification 1: shortening training sweeps
This modification is depicted in Figure 7 (middle). A simple way to reduce the number of extra training runs needed to
estimate At is to train on each mixture pt,j for less than a round. Let δ denote the fraction of the round we use for the
training sweep. Then, our system of equations in 14 uses Lt

val,i − Lt+δ
val,i(p

t,j); we simply record the loss difference over δ of
the round rather than the entire round, and use this to solve for At. Now, this approach effectively requires mδ extra training
runs; however, this cost is still linear in the number of data groups. Moreover, there is some inaccuracy incurred by using δ
of a round to approximate the entire round.

D.3 Modification 2: “interleaving” training sweeps
This modification is depicted in Figure 7 (bottom). Our final modification to derive LEARNPARAMS is to convert the training
sweep—where we checkpoint the model and execute m separate runs for δ of a round—into one round without requiring
any checkpointing or rolling back of training. Our intuition is that if we interleave different mixtures sequentially at a
high frequency, we can simulate executing these mixtures simultaneously. This is similar to a concept in signal processing
called time-division multiplexing, in which two or more signals or bit streams are transferred appearing simultaneously as
sub-channels in one communication channel, but are physically taking turns on the channel1.

Formally, we break down the δS/T steps allocated for learning At into K intervals, where K = mk and k is the number
of sweeps per mixture. We construct an interleaved order of pt,1, . . . , pt,m over these K intervals, and we denote their
index order as I ∈ [m]K . Let Iτ denote the mixture at the τ th position in I. We can denote the model at the end of each
interval as t + δ/K, t + 2δ/K, . . . , t + δ. During the τ th interval, we train on one pt,Iτ and observe the change in loss,
Lval,i(f

t+(τ−1)δ/K)− Lval,i(f
t+τδ/K) for each validation group i. Let Tj = {τ : Iτ = j} be all the intervals where pt,j is

assigned. We approximate Lt
val,i−Lt+1

val,i(p
t,j) with 1

|Tj |
∑k

τ∈Tj
Lval,i(f

t+(τ−1)δ/K)−Lval,i(f
t+τδ/K). These approximated

loss differences are then used to recover At from the system of linear equations.

Lastly, note that the choice of k controls the interleaving frequency and the bias of the estimated At. Suppose that k = 1.
This means that each mixture is only assigned to one interval, and this could be at the beginning, middle, or end of the δ
round. Then, the change in loss is a poor approximation of the original quantity Lt

val,i −Lt+1
val,i(p) due to dependence on time.

However, as we increase k, the mixture pt,j will be trained on in the beginning, middle, and end of the δ round, allowing for
a less time-biased estimate of the loss change.

With this modification, LEARNPARAMS now requires no extra training. However, there are still some performance
tradeoffs. First, in order to save compute, our estimate of At via the shortened interleaved sweeps is less accurate than the
naive approach. Second, without rolling back training, AIOLI has both an “explore” and “exploit” phase, where the former
learns At over δ of the round and the latter uses At to set pt and mix data accordingly for the remainder of the round. If δ is
large, the estimate of At may be relatively more accurate. However, training for longer on the sweep mixtures pt,1, . . . pt,m

may be suboptimal for the performance of the model. Moreover, the training duration that utilizes the pt that is updated
using the more accurate At is now shortened. Therefore, adjusting δ is key to ensuring that At is accurate and the model
performs well.

1https://en.m.wikipedia.org/wiki/Time-division_multiplexing

29

https://en.m.wikipedia.org/wiki/Time-division_multiplexing

E Experimental Details

E.1 Data
To obtain a test set, we shuffle and split the validation set from SlimPajama-6B [54, 73] in half.

To perform training sweeps and emulate grid searches in static settings for m = 3, 7, we oversampled from the Dirichlet
with α = 1 by 4x the number of points and then hierarchically merged closest points into a centroid until we obtained x
points. For example, to obtain 10 points in the 7-dimensional simplex for SlimPajama-full, we would sample 40 points in
the simplex and hierarchically merge closest points until 10 points remain. This is to ensure that near-duplicate p’s are not
included in the sweep. This procedure is used in Grid Search (GS) and DML in Section 6 and in our analysis in Section 4

E.1.1 Training

Here, we discuss the training setups for the restricted and unrestricted settings. For the m = 2, 3 settings, we train a 160M
model using Pythia-160M’s configuration for S = 5000 steps and results are averaged over 5 random seeds. For m = 7,
we train a 160M model using Pythia-160M’s configuration for S = 40000 steps results are averaged over 3 random seeds.
All settings use FlashAttention [18], batch size of 8, context size of 2048, and cosine learning rate decay from a starting
learning rate of 5e-5 to 1e-5 with 500 steps of learning rate warmup.

For the m = 2, 3 settings, experiments were run on a NVIDIA RTX 6000 Ada Generation GPU. For the m = 7 setting,
experiments were run on a NVIDIA A100 80 GB GPU.

Restricted versus unrestricted. Both the restricted and unrestricted settings share the same length of the final training
runs (5000 and 40000 steps, as above). The unrestricted setting gives all methods up to 10 training runs to initialize mixing
algorithm parameters, or 10S steps, while the restricted setting give 0.5S steps. See Table 11 for training budget allocations
in each setting. AIOLI and stratified sampling do not use extra training runs.

Table 11: Training budget allocations for restricted and unrestricted settings.

Setting m Method Runs within training budget

Unrestricted 2 DML 10 runs, 5000 steps
Skill-it 2 runs, 5000 steps

DoReMi 2 runs, 5000 steps
DoGE 1 run, 5000 steps

3 DML 10 runs, 5000 steps
Skill-it 3 runs, 5000 steps

DoReMi 2 runs, 5000 steps
DoGE 1 run, 5000 steps

7 DML 10 runs, 40000 steps
Skill-it 7 runs, 40000 steps

DoReMi 2 runs, 40000 steps
DoGE 1 run, 40000 steps

Restricted 2 DML 10 runs, 250 steps
Skill-it 2 runs, 1250 steps

DoReMi 2 runs, 1250 steps
DoGE 1 run, 2500 steps

3 DML 10 runs, 250 steps
Skill-it 3 runs, 833 steps

DoReMi 2 runs, 1250 steps
DoGE 1 run, 2500 steps

7 DML 10 runs, 2000 steps
Skill-it 7 runs, 2814 steps

DoReMi 2 runs, 10000 steps
DoGE 1 run, 20000 steps

30

E.2 Data mixing methods
AIOLI-specific hyperparameters In the unrestricted setting, we found it sometimes helpful to use an exponential moving
average with proportion γ over At for AIOLI. Formally, the standard pt update rule in Algorithm 1 can be unrolled as
pt+1
j ∝ p0j exp(η

∑t
τ=1

∑m
i=1 A

τ
ij), which places equal weight on every Aτ

ij . To incorporate the EMA, we define A1
ema = Ā1

and At
ema = (1− γ)Āt + γAt−1

ema . We then use the update rule pt+1
j ∝ p0j exp(ηA

t
ema). This allows AIOLI to gradually decay

the contributions of At, such that the value of pt is less dependent on earlier proportions in the training.

We summarize the hyperparameters used in AIOLI, providing their default values as well as guidelines for how to set
them. Refer to Algorithm 1 and 2 to see how they are used:

• Number of rounds T : we set this to 20 in all experiments. Larger T means more frequent updates to the mixture
proportions.

• Sweeps k: we set this to be 4 for m = 2, 3 and 2 for the full SlimPajama experiments. We did not adjust this hyperparameter
otherwise. Intuitively, a larger k will give a more accurate At, because this means that each pi,t will be trained on more
frequently throughout the δ proportion of the round; however, this will also result in less of the round being allocated to
exploiting At via using pt.

• ε one-hot smoothing factor: we set this to be 0.75 in all experiments. In general, ε must be set between 0 and 1, where 0
results in the training sweep using one-hot mixture proportions to learn At, which means that each batch only consists of
one data group and can result in poor learning dynamics. ε = 1, on the other hand, means that our training sweep would
only consist of uniform proportions.

• EGD step size η: we sweep {0.1, 0.2, 0.3, 0.5}, with higher η resulting in greater magnitude of the proportion update.

• Proportion of round δ dedicated to learning At: We use δ = 0.128, 0.288, 0.007 for m = 2, 3, 7, respectively. Intuitively,
a larger δ will give more accurate At because the parameter is learned on more data, but this will also result in less of the
round being allocated to exploiting At via using pt.

• EMA parameter γ: we sweep None, 0.1, 0.5. Intuitively, None means that the pt update is equally dependent on all
previous pt’s, while a small γ = 0 means that the pt update is only a function of the current At.

For the last three hyperparameters, η, δ, γ, we used different values of them in different experiments. Tables 12, 13, 14, 15, 16,
and 17 list exact values for the unrestricted and restricted settings for m = 2, 3, 7. In addition, Appendix F.3 provides results
on hyperparameter sensitivity for η, δ, and γ.

Table 12: Unrestricted hyperparameter values for each data mixing algorithm for experiments where m = 2 (corresponding
to Table 2 results).

Data groups Hyperparameter Value

arXiv/SE · proportion of round δ 0.128
· EGD learning rate η 0.2
· EMA parameter γ 0.1

GitHub/C4 · proportion of round δ 0.128
· EGD learning rate η 0.3
· EMA parameter γ 0.5

Books/SE · proportion of round δ 0.128
· EGD learning rate η 0.1
· EMA parameter γ None

Baseline hyperparameters. We consulted the original papers and implementations to determine how to set the hyperpa-
rameters for each baseline, ensuring that the updated proportions were changing significantly but not oscillating under these
configurations.

• Skill-It: the hyperparameters are the number of rounds T , the EGD learning rate η, and the multiplicative weights window
w. Our default configuration was T = 10, η = 0.2, and w = 3. However, we made two exceptions in the unrestricted
setting after conducting a sweep over T ∈ {5, 10} and η ∈ {0.1, 0.2, 0.5, 0.8}; for GitHub/C4, we used T = 5 and
η = 0.1, and for Books/StackExchange, we used η = 0.8.

• DoReMi: the hyperparameters are the EGD learning rate η and a smoothing factor ε (0 = no smoothing). For all
experiments, we set η = 0.01 and ε = 1e− 3.

31

Table 13: Restricted hyperparameter values for each data mixing algorithm for experiments where m = 2 (corresponding to
Table 3 results).

Data groups Hyperparameter Value

arXiv/SE · proportion of round δ 0.128
· EGD learning rate η 0.2
· EMA parameter γ None

GitHub/C4 · proportion of round δ 0.128
· EGD learning rate η 0.2
· EMA parameter γ None

Books/SE · proportion of round δ 0.128
· EGD learning rate η 0.2
· EMA parameter γ None

Table 14: Unrestricted hyperparameter values for each data mixing algorithm for experiments where m = 3 (corresponding
to Table 2 results).

Data groups Hyperparameter Value

arXiv/Books/SE · proportion of round δ 0.288
· EGD learning rate η 0.5
· EMA parameter γ None

CommonCrawl/GitHub/Wiki · proportion of round δ 0.288
· EGD learning rate η 0.3
· EMA parameter γ 0.5

Table 15: Restricted hyperparameter values for each data mixing algorithm for experiments where m = 3 (corresponding to
Table 3 results).

Data groups Hyperparameter Value

arXiv/Books/SE · proportion of round δ 0.288
· EGD learning rate η 0.2
· EMA parameter γ None

CommonCrawl/GitHub/Wiki · proportion of round δ 0.288
· EGD learning rate η 0.2
· EMA parameter γ None

Table 16: Unrestricted hyperparameter values for each data mixing algorithm for experiments where m = 7 (corresponding
to Table 2 results).

Data groups Hyperparameter Value

SlimPajama, full · proportion of round δ 0.07
· EGD learning rate η 0.2
· EMA parameter γ 0.1

• DoGE: the hyperparameters are the EGD learning rate η, the smoothing factor ε, and the proportion of the training batch
that is allocated for the validation dataset r; this is needed to compute the gradient dot-product at each step. We use ε = 0
for all experiments. For m = 2, we set r = 0.25 and for m = 3, 7, we set r = 0.5. For all experiments besides Github/C4
and SlimPajama, we use η = 0.01. For Github/C4, we use η = 0.1 and for SlimPajama we used η = 0.1 and η = 0.03
for unrestricted and restricted settings, respectively.

Weight trajectories. In Table 18, we provide the mixture proportions for each method (averaged across training steps)
for each dataset on one random seed. In Figure 8, we provide all of AIOLI’s proportion trajectories throughout training

32

Table 17: Restricted hyperparameter values for each data mixing algorithm for experiments where m = 7 (corresponding to
Table 3 results).

Data groups Hyperparameter Value

SlimPajama, full · proportion of round δ 0.07
· EGD learning rate η 0.2
· EMA parameter γ 0.1

in both the unrestricted and restricted settings on one random seed for the m = 2 settings. In Figure 9 and Figure 10, we
provide AIOLI’s trajectories in the unrestricted and restricted settings on one random seed for Arxiv/Books/StackExchange
and CommonCrawl/Github/Wikipedia, respectively. All of our trajectories demonstrate that AIOLI can significantly adjust
proportions over time, and that conditioning on different initial proportions can drastically change the behavior of AIOLI.2

0 1000 2000 3000 4000 5000
checkpoint

0.30

0.35

0.40

0.45

0.50

0.55

st
ep

s

Arxiv/Stackexchange

Aioli Unrestricted
Aioli+GS
Aioli+DML
Aioli+Skill-it
Aioli+DoReMi
Aioli+DoGE

0 1000 2000 3000 4000 5000
steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

pr
op

or
tio

n
(G

ith
ub

)

Github/C4

0 1000 2000 3000 4000 5000
steps

0.30

0.35

0.40

0.45

0.50

0.55

pr
op

or
tio

n
(B

oo
k)

Book/Stackexchange

Figure 8: AIOLI’s proportions throughout training for both unrestricted and restricted settings on Arxiv/StackExchange,
Github/C4, and Book/StackExchange. These trajectories show that AIOLI meaningfully alters the mixture proportions over
time.

F Additional Experiments

F.1 Downstream Tasks
We find that lower perplexity is positively correlated with worse performance on downstream tasks. We evaluated all models
trained on SlimPajama on ARC-Challenge, ARC-Easy [17], BoolQ [16], HellaSwag [74], LAMBADA [49], OpenBookQA
[40], PiQA [9], and WinoGrande [53] using the Language Model Evaluation Harness [23] (Table 19). The correlation
between perplexity and the macroaverage of our downstream tasks is 0.529, indicating that lower perplexity is predictive of
worse downstream performance. In fact, DML obtains the best overall performance, even though it omits three out of seven
datasets in SlimPajama (see the average proportions in Table 18).

One potential reason for this disparity is the distribution shift between pre-training data and downstream evaluation data;
for example, the DML results suggest that training on Books, C4, and Github is not needed to do well on the above selection
of downstream tasks. Many recent works have also noted that perplexity and downstream performance are uncorrelated
[36, 59, 68]. Furthermore, Levy et al. [33] proposes a question answering dataset where the perplexity of the pretrained
model is positively correlated with performance, similar to our results. This mismatch between training objective and
downstream evaluations also extends to post-training, where better learning of human preferences does not translate to better
win-rate against other post-trained models [13].

Resolving the disconnect between training objective and downstream evaluations is an area of active research. In the case
of data mixing, AIOLI remains the only algorithm in our tests that robustly minimizes average test perplexity–essentially,
AIOLI achieves what it sets out to achieve in the LMO framework in (1). Conversely, other data mixing algorithms might
be implicitly doing something else with respect to minimizing downstream evaluations. Considering how to incorporate
downstream evaluations into data mixing is a fruitful area for future work.

2Note that for the restricted setting, AIOLI’s trajectory consists of using the base method for a certain amount of steps, and then roughly reverting to the
uniform distribution before adjusting the proportions. This is expected behavior, since our initial proportions p0 are uniform in Algorithm 1; this avoids a
“biased” proportion update.

33

1000 2000 3000 4000 5000

0.25

0.30

0.35

0.40

0.45

pr
op

or
tio

n

Aioli Unrestricted

Arxiv
Books
StackExchange

1000 2000 3000 4000 5000
0.275

0.300

0.325

0.350

0.375

0.400

0.425
Aioli+GS

1000 2000 3000 4000 5000

0.30

0.32

0.34

0.36

0.38

0.40
Aioli+DML

0 1000 2000 3000 4000 5000
steps

0.25

0.30

0.35

0.40

0.45

0.50

pr
op

or
tio

n

Aioli+Skill-it

1000 2000 3000 4000 5000
steps

0.275

0.300

0.325

0.350

0.375

0.400
Aioli+DoReMi

1000 2000 3000 4000 5000
steps

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Aioli+DoGE

Figure 9: AIOLI’s proportions throughout training for both unrestricted and restricted settings on Arxiv/Book/StackEx-
change.These trajectories show that AIOLI meaningfully alters the mixture proportions over time.

F.2 Ablations
We ablate AIOLI by studying performance when two key properties of At (Appendix C.2.1) are changed: when T = 1 (i.e.,
At is only learned once at the beginning of training and used throughout), and when At is assumed to be diagonal. We
evaluate these two ablations in the unrestricted setting presented in Section 6.1 and Table 2:

• AIOLI-STATIC: We set T = 1 in Algorithm 1. That is, we learn A1 at the beginning of training. We use this A1 to set
p1, and use this p1 for the remainder of the training run. This approach tests if At needs to be adjusted throughout
training.

• AIOLI-DIAGONAL: We assume that each At is diagonal in this ablation. In particular, in LEARNPARAMS we do
At

ii = βii/p
t,i rather than At

i = P−1βi for each i ∈ [m] in line 11. This approach tests if it is sufficient to not model
cross-group interactions and instead only capture how much group i’s performance improves when trained on group i
itself.

For both AIOLI-STATIC and AIOLI-DIAGONAL, we use the same set of hyperparameters as AIOLI as described in
Appendix E. For AIOLI-STATIC, we additionally sweep over EGD learning rates {η, 2η, 3η, 4η} where η is the EGD
learning rate used by AIOLI.

Our results are in Table 20. We find that AIOLI outperforms both ablations in 3 out of 6 settings, and obtains the lowest
test perplexity on average over these settings. This suggests that both T > 1 and modeling off-diagonal entries are important
to AIOLI’s consistent performance across datasets.

F.3 Hyperparameter sensitivity
We study how robust AIOLI is to changes in its hyperparameters. From the experimental details in Appendix E, the main
hyperparameters that we modify are η (EGD step size), δ (proportion of round allocated for learning At), and γ (the EMA
parameter). In Tables 21, 22, and 23, we report results on AIOLI in the unrestricted setting for Arxiv/StackExchange and
Arxiv/Books/StackExchange. We sweep η ∈ {0.1, 0.2, 0.3, 0.5}, δ/m ∈ {0.064, 0.096, 0.128}, and γ ∈ {None, 0.1, 0.5}.
We find that AIOLI still yields lower test perplexity than stratified sampling across all η, δ, and γ we evaluated.

F.4 Results on Larger Models
We examine if our findings—both in terms of the mixing law and in terms of AIOLI’s performance—hold on larger models.
We train 1.4B-parameter models. We use a learning rate of 3e-4 and keep all other training details the same. We use a

34

0 1000 2000 3000 4000 5000

0.32

0.33

0.34

0.35

pr
op

or
tio

n

Aioli Unrestricted

CommonCrawl
Github
Wikipedia

1000 2000 3000 4000 5000

0.1

0.2

0.3

0.4

0.5

0.6
Aioli+GS

1000 2000 3000 4000 5000

0.2

0.3

0.4

0.5

Aioli+DML

0 1000 2000 3000 4000 5000
steps

0.20

0.25

0.30

0.35

0.40

pr
op

or
tio

n

Aioli+Skill-it

1000 2000 3000 4000 5000
steps

0.20

0.25

0.30

0.35

0.40

0.45
Aioli+DoReMi

1000 2000 3000 4000 5000
steps

0.25

0.30

0.35

0.40

0.45

Aioli+DoGE

Figure 10: AIOLI’s proportions throughout training for both unrestricted and restricted settings on Common-
Crawl/Github/Wikipedia.These trajectories show that AIOLI meaningfully alters the mixture proportions over time.

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

10 1

Lo
g

(L
os

s
- c

) o
n

ar
xi

v

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

10 1

100

Lo
g

(L
os

s
- c

) o
n

st
ac

ke
xc

ha
ng

e

Log-linear static mixing law on Arxiv/StackExchange (1.4B model)

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of arxiv

3.2

3.4

3.6

3.8

N
ex

t-
st

ep
 L

os
s

on
 a

rx
iv

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of stackexchange

3.8

4.0

4.2

4.4

4.6

N
ex

t-
st

ep
 L

os
s

on
 s

ta
ck

ex
ch

an
ge

Linear dynamic mixing law on Arxiv/StackExchange (1.4B model)

Figure 11: Left: log-linear static mixing law fit on Arxiv/Stackexchange on 1.4B parameter model, in which each color
represents a different random seed. Right: linear dynamic mixing law fit on Arxiv/Stackexchange on 1.4B parameter model
on 1 random seed. Each color is a different initial mixture p0 ∈ P trained for 2000 steps, and the fitting sweeps are done
over 100 additional steps.

subsample of our data settings, focusing on when we mix Arxiv/StackExchange (m = 2) and Arxiv/Book/StackExchange
(m = 3).

First, we measure if the log-linear static and linear-dynamic mixing laws are well-specified for 1.4B models. We use
the same fitting procedure as described in Section 4.1 and Appendix C.1. Figure 11 describes the fit of the static and
dynamic mixing laws on Arxiv/StackExchange. The full results are in Table 24, which show that the average R2 for the
static and dynamic mixing laws for the 1.4B model are 0.989 and 0.929, respectively. This accuracy of the mixing law
parameterization on the 1.4B model is a prerequisite for AIOLI’s performance, which we evaluate next.

Second, we evaluate AIOLI in the unrestricted setting on the 1.4B models. We compare AIOLI to stratified sampling and
DoGE. Our results on three random seeds are in Table 25. Similar to our results on the 160M models, we find that AIOLI
outperforms stratified sampling in both data settings. Moreover, from Table 2, we see that DoGE originally performed worse
than stratified sampling at the 160M scale. Our results here confirm that even at the 1.4B model scale, DoGE continues to
underperform stratified sampling. Altogether, we see that AIOLI consistently outperforms stratified sampling while existing
methods do not—at both the 160M and 1.4B scale.

35

F.5 Out-of-domain setting
We consider the out-of-domain setting, in which the training data groups are disjoint from the groups that the model will
be evaluated on. This is a practical scenario where we have access to a separate validation dataset that we wish our model
to perform well on [14, 20, 22, 69, 71]. We will demonstrate how 1) the LMO framework can be adjusted to capture this
setting, recovering the out-of-domain versions of Skill-It and DoGE proposed in their respective papers; 2) the linear mixing
laws are still well-specified in this setting; and 3) AIOLI adjusted for this setting can still more consistently outperform
out-of-domain baselines.

LMO framework for OOD setting. Concretely, we suppose we have m training data groups such that Dtrain is still
{D1

train, . . . , D
m
train}, and we have one separate out-of-domain data group that we do not train on; we have IID validation and

test datasets for this out-of-domain data group. Let Lval, OOD be the validation and test loss on the out-of-domain data group,
respectively. Then, the LMO framework can be slightly modified:

minimizep∈△T×mLT+1
val, OOD(p) (15)

s.t. Lt+1
val, OOD(p) = ct + btσ

(m∑
j=1

−At
OOD,jp

t
j

)
∀t ∈ [T], (16)

where At
OOD,j ∈ Rm is now a vector representing how much each training group influences the validation group.

There are two changes to the optimization problem: first, the objective is now to minimize the out-of-domain validation
loss; second, the mixing law captures the relationship between the validation loss and the mixture proportions over
the training data groups. Note that the DML method can still be applied in the OOD setting by directly minimizing
c + b exp(

∑m
j=1−AOOD,jpj). More importantly, applying Lemma 1 to this optimization problem, we get the update

rule pt+1
j ∼ ptj exp(ηA

t
OOD,j) ∀j ∈ [m]. This expression recovers the Skill-It and DoGE OOD update rules, and can be

incorporated into AIOLI as demonstrated in Algorithms 3 and 4. These algorithms are identical to AIOLI (Alg 1) and
LEARNPARAMS (Alg 2), with the exception of lines 6 and lines 3, 8, and 11 respectively, which reflect that At

OOD is now a
vector rather than an m×m matrix.

Algorithm 3 AIOLI-OOD

1: Input: data Dtrain, Dval, model f1. Initial steps Sinit, initial proportions pinit ∈ △m. T rounds over S − Sinit remaining
steps, δ fraction per round for learning parameters, learning rate η, one-hot smoothing factor ε.

2: If Sinit ̸= 0, train f1 on pinit for Sinit steps.
3: Set p0 = Unif(m).
4: for t = 1, . . . , T do
5: Set At

OOD, f
t+δ ← LEARNPARAMS-OOD(Dtrain, Dval, δ, f

t, ε) (Alg. 4), and normalize At to get Āt.
6: ptj ∝ pt−1

j exp(ηĀt
OOD,j) for all j ∈ [m].

7: Train model f t+δ with S
T (1− δ) steps from mixture pt over Dtrain. Obtain updated f t+1.

Algorithm 4 LEARNPARAMS-OOD

1: Input: Dtrain, Dval, δ, model f t, number of sweeps k, one-hot smoothing factor ε.
2: Split the fraction of a training round δ into K time segments, where K = mk.
3: Set β = 0⃗ ∈ Rm.
4: Define pt,i = (1− ε)1i + εUnif(m) for i ∈ [m], and define P = [pt,1, . . . , pt,m] ∈ △m×m

5: Randomly shuffle k instances of each i ∈ [m] to create an order I ∈ [m]K .
6: for τ = 1, . . . ,K do
7: Let j = Iτ . Train model on mixture pt,j of Dtrain for one time segment, obtain f t+τδ/K .
8: Update βj ← βj + Lval,OOD(f

t+(τ−1)δ/K)− Lval,OOD(f
t+τδ/K) with loss difference on OOD validation dataset.

9: Update β ← β
k .

10: Set At
OOD = P−1β.

11: Return At
OOD ∈ Rm, f t+δ

Mixing law parameterization results. We study a setting where our training data groups are Arxiv, Book, and Github from
SlimPajama and our validation data group is StackExchange. Using the same setup as other m = 3 settings in Section 4.2
(160M model, 5K steps, sweep over 9 runs), we measure the MSE and R2 of the log-linear static mixing law, Lval, OOD(p) =

36

c+ b exp
(∑m

j=1−AOOD,jpj

)
, and of the linear dynamic mixng law, Lt+1

val, OOD(p) = ct + bt
∑m

j=1−At
OOD,jp

t
j . The MSE

and R2 for the log-linear static mixing law are 1.5× 10−3 and 0.964, respectively. The MSE and R2 for the linear dynamic
mixing law are 1.1×10−4 and 0.796. The linear dynamic mixing law fits the true loss-proportion relationship less accurately
than the log-linear static law. Nevertheless, both MSEs are low, and the R2 still suggests that at least 79% of the variability
in validation loss can be explained by the mixing law.

AIOLI results. We evaluate stratified sampling, and OOD versions of AIOLI, Skill-It, DoGE, and DML in the unrestricted
setting on 3 random seeds. We train on Arxiv, Books, and Github and evaluate on StackExchange. Our results are in Table 26.

We find that all methods, including AIOLI, attain lower test perplexity than the stratified sampling baseline, which both
the Skill-It and DoGE papers use as a comparison point for the OOD setting. AIOLI is the only method that achieves this
improvement without requiring additional training runs. This improvement over stratified sampling across OOD methods is
expected, since stratified sampling can include irrelevant data due to the distribution shift between training and evaluation.
On the other hand, stratified sampling is a strong baseline in the in-distribution scenarios studied in the rest of this work.

G Why the method is called AIOLI

An aioli is an emulsion, where individual components remain chemically separate from each other, despite being combined
into one mixture. Similarly, our At matrix is formed from separate test runs (the pt,1, . . . , pt,m in Section 5), despite being
combined into one update for pt.

37

Table 18: Average proportions over the entire training trajectory for the unrestricted setting, on one random seed.

Data groups Method Average Proportions

arXiv/SE Grid search [0.4, 0.6]
DML [0.404, 0.596]

Skill-it [0.437, 0.563]
DoReMi [0.37, 0.63]
DoGE [0.624, 0.376]
AIOLI [0.507, 0.493]

GitHub/C4 Grid search [0.3, 0.7]
DML [0.46, 0.54]

Skill-it [0.583, 0.417]
DoReMi [0.858, 0.142]
DoGE [0.352, 0.648]
AIOLI [0.505, 0.495]

Books/SE Grid search [0.3, 0.7]
DML [0.381, 0.619]

Skill-it [0.316, 0.684]
DoReMi [0.286, 0.714]
DoGE [0.325, 0.675]
AIOLI [0.456, 0.544]

arXiv/Books/SE Grid search [0.291, 0.306, 0.403]
DML [0.245, 0.277, 0.477]

Skill-it [0.292, 0.238, 0.469]
DoReMi [0.318, 0.180, 0.502]]
DoGE [0.592, 0.132, 0.276]
AIOLI [0.342, 0.275, 0.383]

CC/GitHib/Wiki Grid search [0.291, 0.306, 0.403]
DML [0.157, 0.472, 0.371]

Skill-it [0.275, 0.3, 0.425]
DoReMi [0.101, 0.714, 0.185]]
DoGE [0.536, 0.220, 0.244]
AIOLI [0.342, 0.325, 0.333]

SlimPajama, full Grid search [0.202, 0.022, 0.28, 0.038, 0.018, 0.376, 0.064]
(A/B/C4/CC/G/SE/W) DML [0.042, 0, 0, 0.579, 0, 0.249, 0.013]

Skill-it [0.098, 0.111, 0.204, 0.103, 0.138, 0.266, 0.076]
DoReMi [0.08, 0.047, 0.057, 0.11, 0.467, 0.078, 0.157]
DoGE [0.056, 0.162, 0.343, 0.28, 0.038, 0.067, 0.051]
AIOLI [0.142, 0.143, 0.143, 0.144, 0.140, 0.144, 0.143]

Table 19: Downstream evaluation metrics for various data mixing methods after training on SlimPajama across three random
seeds in the unrestricted setting.

Method Average ARC-C ARC-E BoolQ HellaSwag LAMBADA OpenBookQA PiQA WinoGrande

Stratified 0.305 0.176 0.314 0.394 0.261 0.116 0.117 0.563 0.499
AIOLI 0.311 0.172 0.315 0.447 0.264 0.114 0.111 0.559 0.504
GS 0.322 0.176 0.329 0.502 0.262 0.117 0.124 0.568 0.500
DML 0.333 0.181 0.330 0.608 0.261 0.109 0.128 0.554 0.490
Skill-it 0.316 0.182 0.322 0.462 0.261 0.124 0.122 0.559 0.492
DoReMi 0.324 0.177 0.323 0.507 0.264 0.127 0.122 0.574 0.499
DoGE 0.314 0.173 0.313 0.471 0.262 0.116 0.115 0.557 0.504

38

Table 20: Ablations on AIOLI. The table reports the difference in average test perplexity compared to stratified sampling.
Negative values (green) = improvement, and bolded = best performing method for given data setting. A=Arxiv, B=Books,
GH=GitHub, SE=StackExchange, W=Wikipedia. AIOLI outperforms ablations in 3 out of 6 settings and attains the lowest
test perplexity on average.

Method A/SE GH/C4 B/SE A/B/SE CC/GH/W SlimPajama Average

Stratified 16.532 35.991 47.192 35.114 41.583 26.426 33.806

AIOLI −0.205 −0.340 −0.439 −0.226 −0.196 −0.240 −0.274
AIOLI-STATIC −0.065 −0.333 −0.226 −0.117 0.092 −0.330 −0.140

AIOLI-DIAGONAL −0.182 −0.178 −0.354 −0.246 −0.215 −0.202 −0.230

Table 21: The difference in average test perplexity of AIOLI with varying η step size hyperparameter compared to stratified
sampling. Bolded result is the original number reported in Table 2.

Method A/B A/B/SE

Stratified 16.532 35.114

AIOLI (η = 0.1) −0.110 −0.212
AIOLI (η = 0.2) −0.205 −0.221
AIOLI (η = 0.3) −0.155 −0.186
AIOLI (η = 0.5) −0.166 −0.226

Table 22: The difference in average test perplexity of AIOLI with varying δ/m, the fraction of each round for learning At,
compared to stratified sampling. Bolded result is the original number reported in Table 2.

Method A/B A/B/SE

Stratified 16.532 35.114

AIOLI (δ/m = 0.064) −0.205 −0.152
AIOLI (δ/m = 0.096) −0.283 −0.226
AIOLI (δ/m = 0.128) −0.003 −0.296

Table 23: The difference in average test perplexity of AIOLI with varying γ, the hyperparameter for computing pt with an
exponential moving average, compared to stratified sampling. Bolded result is the original number reported in Table 2.

Method A/B A/B/SE

Stratified 16.532 35.114

AIOLI (γ = None) −0.11 −0.226
AIOLI (γ = 0.1) −0.205 −0.185
AIOLI (γ = 0.5) −0.141 −0.213

Table 24: Comparison of log-linear static and linear dynamic mixing law parameterizations when training a 1.4B model.

Parameterization Arxiv/SE Arxiv/Books/SE
MSE R2 MSE R2

Log-linear static 2e-4 0.995 1e-3 0.984
Linear dynamic 7e-5 0.916 2e-4 0.943

Table 25: Difference in average test perplexity compared to stratified sampling in the unrestricted setting for 1.4B models.
For AIOLI, we use η = 0.5, δ/m = 0.096, γ = 0.1 for A/SE and η = 0.1, δ/m = 0.096, γ = 0.5 for A/B/SE.

Method A/SE A/B/SE

Stratified 15.799 34.733

DoGE 0.551 0.922
AIOLI −0.276 −0.403

39

Table 26: Out-of-domain data evaluation, in which we mix training data from Arxiv, Books, and Github and evalute on
StackExchange data. The table reports the difference in average test perplexity compared to stratified sampling on the
training data groups. For AIOLI, we use η = 0.8, δ/m = 0.096, γ = None.

Method Arxiv/Book/Github → StackExchange # extra runs

Stratified 39.644 0

GS −7.244 10
DML −6.316 10

Skill-It (OOD) −5.786 3
DoGE (OOD) −7.626 1
AIOLI (OOD) −4.028 0

40

	Introduction
	Problem Setup
	A Unified Optimization Framework for Data Mixing
	Linear Mixing Optimization (LMO) Framework
	Preliminaries for unifying methods
	Unifying Existing Methods
	Offline methods
	Online Methods
	Summary of LMO Framework Insights

	 Analyzing Fidelity of Existing Methods with the LMO Framework
	Experiment Details
	Mixing law parameterization
	Values of mixing law parameters
	Solving strategy

	Aioli: a Method for Improved Data Mixing
	Experimental Results
	Unrestricted Setting
	Restricted Setting

	Related Work
	Discussion
	Reproducibility Statement
	Ethics Statement

	Acknowledgments
	Notation
	LMO framework details
	Additional existing methods
	Proofs for section 3.3
	Background on Exponentiated Gradient Descent
	Proof of Theorem 1

	Analysis Details
	Mixing Law Parameterization
	Additional parameterization experiments
	Parameterization on instruction-tuning mixtures

	Values of mixing law parameters
	Properties of At

	Solving strategy

	Additional Algorithmic Details
	Naive training sweep approach
	Modification 1: shortening training sweeps
	Modification 2: ``interleaving'' training sweeps

	Experimental Details
	Data
	Training

	Data mixing methods

	Additional Experiments
	Downstream Tasks
	Ablations
	Hyperparameter sensitivity
	Results on Larger Models
	Out-of-domain setting

	Why the method is called Aioli

