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Abstract

Pretraining language models on formal language
can improve their acquisition of natural language.
Which features of the formal language impart
an inductive bias that leads to effective transfer?
Drawing on insights from linguistics and
complexity theory, we hypothesize that effective
transfer occurs when two conditions are met: the
formal language should capture the dependency
structures present in natural language, and it
should remain within the computational limita-
tions of the model architecture. We experiment
with pre-pretraining (training on formal language
before natural languages) on transformers and
find that formal languages capturing hierarchical
dependencies indeed enable language models
to achieve lower loss on natural language and
better linguistic generalization compared to other
formal languages. We also find modest support
for the hypothesis that the formal language should
fall within the computational limitations of the
architecture. Strikingly, pre-pretraining reduces
loss more efficiently than training on a matched
amount of natural language. For a 1B-parameter
language model trained on roughly 1.6B tokens
of natural language, pre-pretraining achieves the
same loss and better linguistic generalization with
a 33% smaller token budget. Finally, we also give
mechanistic evidence of transfer from formal to
natural language: attention heads acquired during
pre-pretraining remain crucial for the model’s
performance on syntactic evaluations.

1 Introduction

Language models have achieved impressive perfor-
mance on many tasks, but they remain data-hungry,
requiring five to six orders of magnitude more data
than humans to achieve human-level performance
(Warstadt et al., 2023; Paul, 2017). This high data
requirement presents challenges for training models
in low-resource settings (Zhong et al., 2024; Het-
tiarachchi et al., 2025), understanding how language

ICode is available at https://github.com/michahu/
pre-pretraining.
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Figure 1: The intersection of Chomsky and circuit hier-
archies (top), where C-RASP c FO(M) and context-free
C context-sensitive. Within this 2 X 2, we find that
pre-pretraining on k-Shuffle Dyck, a context-sensitive
language definable in C-RASP, lets 1B-parameter models
match the final baseline performance of no pre-pretraining
with 33% fewer training tokens (bottom). See §3.2.

models can serve as cognitive models of language
acquisition with human-like data constraints (Wilcox
et al., 2025), and continuing to improve models even
after most of the existing natural language data has
been used for pretraining (Villalobos et al., 2024).
Thus, data efficiency during training is an important
frontier for language models.

A recently-explored approach for increasing data
efficiency teaches models useful inductive biases by
first training them on formal languages before training
on natural language (Papadimitriou and Jurafsky,
2020; Chiang and Lee, 2022; McCoy and Griffiths,
2025). We refer to this paradigm as pre-pretraining.
What features of formal languages make transfer to
natural language effective? Papadimitriou and Juraf-
sky (2023) show that within the Chomsky hierarchy,
context-sensitive languages transfer best to natural lan-
guage compared to simpler classes of languages. We
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expand on their investigation and explore an additional
factor: the computational limitations of the language
model’s architecture. In particular, transformers—the
architecture that underlies most popular language
models—cannot learn all context-sensitive languages,
both in theory and practice (Strobl et al., 2024; Merrill
and Sabharwal, 2023). In fact, within all levels of the
Chomsky hierarchy, some languages are harder for
transformers to learn than others, and many are im-
possible for them to learn (Merrill et al., 2023, 2024).
Can a formal language give rise to positive transfer
even when it cannot be fully learned by a transformer?

In this work, we hypothesize that optimal transfer
from formal to natural language in transformer
language models occurs at the intersection of two
theoretical hierarchies: the Chomsky hierarchy
of formal languages and the circuit complexity
hierarchy that bounds transformer computational
power (see §3). Specifically, we hypothesize that
effective pre-pretraining languages should be:

1. expressive enough to capture hierarchical natural
language dependencies, and

2. learnable by transformers in a way that gener-
alizes to longer strings than observed in training.

To satisfy the second condition, we define our formal
languages in C-RASP (Yang and Chiang, 2024), a
restricted programming language whose functions
allow transformers to exhibit length generalization
(Huang et al., 2025).

Our empirical results support the first part of
the hypothesis and provide some support for the
second part (§4). Pre-pretraining on languages
with hierarchical dependencies outperforms pre-
pretraining on any of the other formal languages that
we tested—in fact, it outperforms pre-pretraining on
a matched amount of natural language. Of the formal
languages with hierarchical dependencies, those that
are definable in C-RASP generally achieve equal or
better performance, but they are only clearly superior
on some of the tasks we evaluated.

Next, we show that when positive transfer occurs,
the model reuses attention heads it learned during
pre-pretraining, suggesting that mechanisms from
pre-pretraining transfer to natural language (§5). Fi-
nally, we scale up our experiments to a 1B-parameter
language model, and show that in pre-pretraining
is effective in that size as well, increasing token
efficiency by 33% (§6). Overall, we conclude
that formal language pre-pretraining is an effective
way to improve generalization and data efficiency,

and propose a hypothesis for the particular formal
languages that are most promising for this purpose.

2 Background

2.1 The Chomsky Hierarchy

The Chomsky hierarchy (Chomsky, 1959) is a
nested classification of increasingly-complex formal
languages. This classification is based on the kinds
of computations needed to process formal structures
resembling those found in human language. For
example, regular languages, the least complex, can
be recognized by finite-state automata. While regular
languages can capture most phenomena in natural
language phonology and morphology, they are
insufficient for syntax: representing the hierarchical
structure of natural language syntax with a finite-state
automaton would require infinitely many states
(Chomsky, 1956). Subsequent works showed that
modeling some syntactic phenomena requires not
only context-free but also context-sensitive grammars
(Shieber, 1985), though the prevalence of such
phenomena may be limited.

Dyck languages. A classic context-free language
is k-Dyck: the language of well-balanced parentheses
with k bracket types. For example, ([1)[] is a valid
2-Dyck string, where rounded and square parentheses
are the two bracket types. k-Dyck is often taken
as a canonical example of context-free hierarchical
structure because any context-free language can be
reduced to Dyck via a single transformation (inverse
homomorphism) and intersection with a regular
language (Chomsky and Schiitzenberger, 1959).

Shuffle Dyck. Removing the constraint that Dyck
braces must be well-nested, but maintaining the
constraint that every opening brace must be closed and
vice versa, yields k-Shuffle Dyck,” a minimal relax-
ation of k-Dyck that is strictly context-sensitive rather
than context-free (Suzgun et al., 2019; Strobl et al.,
2024). Crossing braces in k-Shuffle Dyck can be
thought of as a formal model of the cross-serial depen-
dencies underlying aspects of language argued to be
context-sensitive (Papadimitriou and Jurafsky, 2023).

2Despite what its name might suggest, k-Shuftle Dyck does
not randomly shuffle strings from k-Dyck. Every opening brace
in k-Shuffle Dyck must still be closed by a matching closing
brace later in the string; this constraint would not in general be
satisfied by randomly shuffled k-Dyck strings. Instead, k-Shuffle
Dyck can be defined by interleaving k£ 1-Dyck strings with differ-
ent braces (Suzgun et al., 2019), as if by riffle shuffling. We use
the terminology “Shuffle Dyck" for consistency with prior work.



2.2 The Circuit Hierarchy

We focus in this work on transformer language mod-
els. There are languages at each level of the Chomsky
hierarchy that a transformer cannot recognize (Merrill
and Sabharwal, 2023; Liu et al., 2024; Strobl et al.,
2024). Thus, the Chomsky hierarchy alone does
not precisely capture how difficult a language is for
transformers to learn: for instance, transformers can
learn some context-free languages (Butoi et al., 2025)
and yet fail to learn other regular languages (Merrill
et al., 2024). To better understand the expressive
power of transformers, recent work has analyzed
formal languages within a different hierarchy: the
circuit complexity hierarchy, which better captures
the computations performed by transformers (Hao
et al., 2022; Yang et al., 2024). Here, we will focus
on two logics that emerge from the circuit complexity
viewpoint: FO(M) (Merrill and Sabharwal, 2023) and
C-RASP (Yang and Chiang, 2024).

FO(M). First-order logic with majority, or FO(M),
is a provable upper bound on the languages that
transformers can express: that is, any transformer
that recognizes a language can be converted into
an FO(M) program that defines (or recognizes)
the same language (Merrill and Sabharwal, 2023).
FO(M) programs operate by computing counts over
the number of indices in an input string that satisfy
certain predicates. For example, Q,(7) is a basic
predicate that checks whether input token i is an a.
The following FO(M) program uses Q, (i) to define
the language of strings with exactly 3 a’s:

#<n[Q.()] =3 (H

Beyond this example, FO(M) can implement a
rich variety of programs by nesting quantifiers and
building complex predicates out of logical (A,V,—)
and arithmetic operators (+, =, <). In particular,
FO(M) can define the k-Dyck language for any k > 1
(Proposition A.6 in the Appendix). For example, the
following program defines 1-Dyck:

depth(i) = #j <i[Q(())]-# <i[Q) ()]
[depth(n)=0] A #i <n[depth(i))<0]=0 (2)

To define 2-Dyck, this can be extended by modifying
depth to track two bracket types and computing the
following depth index:

dindex(i) = #j <i[depth(i)=depth(;)] (3)

To finish the definition, we add a condition to
enforce that any open and close brace paired by

depth and dindex also match in their type (i.e.,
both are parentheses or both are square braces). See
Proposition A.7 for further details.

C-RASP. While any transformer can be compiled
into FO(M), it is not necessarily the case that any
FO(M) program can be implemented by a transformer.
C-RASRP is a restriction of FO(M) designed to be
a lower bound on what transformers can express:
that is, if a language is definable in C-RASP, then
there exists a transformer that recognizes it (Yang
and Chiang, 2024).3 The most crucial restriction for
our purposes is that each C-RASP predicate can
only refer to one index variable i, whereas in FO(M)
predicates can refer to two (or more) indices i, j in-
troduced by different quantifiers (for more detail, see
Yang and Chiang, 2024). This means C-RASP can
define (1) or (2) above, but not k-Dyck for k > 2, as
C-RASP cannot express the function dindex in (3),
which compares the depth of two different indices.

Recent work has also suggested a connection
between C-RASP and transformers’ ability to
generalize to strings longer than those observed in
training (Zhou et al., 2024; Huang et al., 2025): the
definability of a language L in C-RASP predicts
whether transformers can reliably length-generalize
when trained on strings from L. One interpretation
of this finding is that mechanisms expressible
in C-RASP may be more robustly learnable by
transformers. We thus hypothesize that we will
observe more reliable transfer from pre-pretraining
transformers on formal languages that can be defined
in C-RASP compared to languages that cannot.

3 Methods

3.1 Defining Pre-pretraining

We train a language model using an optimizer
A(D, t, Opiy) which returns parameters 6, after
t timesteps (gradient updates). We apply A
sequentially:
1. Pre-pretrain for 7 steps on dataset D, to obtain
model parameters 6;,.
2. Pretrain for #; steps on dataset Dy to obtain 6y, .

Our objective is to minimize the expected
loss on the pretraining dataset, i.e. to find
argming, E[{(Dy, 6;,)]. We hold A’s hyperpa-
rameters, 71, and Dy fixed, and we transfer model
parameters directly from pre-pretraining to pretraining.

3C-RASP is a well-defined variant of the Restricted Access
Sequence Processing programming language (RASP; Weiss et al.,
2021; Lindner et al., 2023).



In other words, to minimize £(Dyy,0;, ), we can only
change the pre-pretraining dataset Dy and duration
to. We compare pre-pretraining on our proposed D
datasets (§3.2) against several baselines:

* No pre-pretraining (79 =0).

* Pre-pretraining on random binary strings.

* Pre-pretraining on random strings of k integers.

* Pre-pretraining on unseen natural language data

Z);t drawn from the same distribution as Djy.

Aside from the no-pre-pretraining baseline, we
pre-pretrained the baselines for #y = 500 steps, the
optimal number of steps for k-Shuffle Dyck (see §4).
We note that the natural language pre-pretraining
baseline is not equivalent to training on the union
of Z);t and D, for longer, since pre-pretraining on
natural language uses learning rate warmup twice,
once in pre-pretraining and once in pretraining.
Lower validation loss compared to the no-
pre-pretraining baseline would indicate that pre-
pretraining on formal languages is beneficial. The ran-
dom string baselines help establish whether this effect
is specific to the particular formal languages we study.
Finally, outperforming pre-pretraining on O, would
suggest that formal languages provide a better initial-
ization for pretraining than the pretraining data itself.

Evaluation. In addition to measuring validation loss,
we perform targeted evaluations for grammaticality
and verbatim retrieval. For grammaticality judgments,
we compare the likelihood assigned by the model
to minimal pairs of sentences that differ only in their
grammaticality (e.g., Only Bill would ever complain
is grammatical, but Even Bill would ever complain is
not). Accuracy is measured as the proportion of pairs
where the grammatical sentence is assigned higher
likelihood than the ungrammatical one (Marvin and
Linzen, 2018). We use the BLiMP grammaticality
judgment dataset (Warstadt et al., 2020a). Verbatim re-
trieval tests language modeling on text passages with
repeated lists (Armeni et al., 2022, 2024); the model is
expected to assign a very high likelihood to the words
in the second repetition of the list, such that lower loss
indicates better performance. Both evaluations assess
models’ ability to learn and apply consistent patterns—
a capability that could benefit from pre-pretraining on
formal languages might strengthen. For examples of
these evaluations, see Tables 3 and 4 in the Appendix.

Efficiency. In the regime with plentiful pretraining
data, an ideal pre-pretraining language should min-
imize the number of pre-pretraining steps #o required:
if a formal language requires very large #( for effective

transfer, then simply pretraining on natural language,
without any pre-pretraining, would be more practical
in terms of total compute (though even in this case
pre-pretraining may still be beneficial when the
amount of data available for pretraining is small, for
example in low-resource languages). We quantify
efficiency using the marginal rate of substitution
(MRS) between formal and natural language at
10,000 steps of natural language pretraining. In other
words, we ask: if we train on 500 steps of the formal
language, how many more steps does it take for the
natural-language-only baseline to catch up?

For example, let x be the number of pre-pretraining
steps and y be the number of pretraining steps, and
suppose the following two pairs (x,y) of training
steps achieve the same final loss: (0, 10,000) and
(500, 6,000). Then the marginal rate of substitution is

ly1—y2| _[10,000-6,000
|0-500]

bei—xa|
The gain in token efficiency would be

6,000+500

Tooo0 %

For a visualization, see Figure 7.

In our setting, a good pre-pretraining language
would (1) minimize the amount of pre-pretraining
steps ty (efficiency), and (2) increase the evaluation
performance of the language model.

3.2 Between Circuits and Chomsky

We hypothesize that a good pre-pretraining language
should both mimic particular aspects of the complex-
ity of natural language and be robustly learnable by
transformers in a way that generalizes to longer strings
than observed in training. Because, as we discussed
in §2, natural language is hierarchically structured and
C-RASRP is a formal model of what transformers can
learn robustly, this motivates the following hypothesis:

Expressivity hypothesis: A formal language
that confers a helpful inductive bias should be
hierarchically structured (either context-free or
context-sensitive) and definable in C-RASP.

To test this hypothesis, we pre-pretrain transformer
language models on the following formal languages:
1. 1-Dyck: the nested parentheses language. This
language is context-free and in C-RASP.
2. k-Dyck: contains k different types of parenthe-
ses. The language is context-free and in FO(M)
but not in C-RASP.



3. k-Shuffle Dyck: k-Dyck with cross-serial
dependencies. This language is context-sensitive
and in C-RASP #

4. ww: The copy language. This language is
context-sensitive and in FO(M) but not in

C-RASP.

Language Example
1-Dyck cOM
k-Dyck (0L
k-Shuffle Dyck ({3
ww 123123

Table 1: Examples of our pre-pretraining languages.

The three variants of Dyck languages model hier-
archical structure, while ww has a fixed dependency
structure that maps the first half of the string onto
the second half (Table 1). Proofs of where these
languages lie on the Chomsky and circuit hierarchies
can be found in Appendix A.

We deliberately chose languages that are similar to
each other. k-Dyck and k-Shuffle Dyck can be seen
as different extensions of 1-Dyck: k-Dyck swaps out
paired parentheses in valid 1-Dyck strings with new
parentheses pairs, while k-Shuffle Dyck effectively
interleaves several 1-Dyck sequences (Suzgun et al.,
2019). Finally, ww contrasts with k-Shuffle Dyck
as a maximally context-sensitive language, since all
the dependencies in ww are cross-serial (i.e. none are
nested within one another).

We construct 1-Dyck, k-Dyck, and k-Shuffle
Dyck corpora with matching depth distributions
by randomly opening or closing parentheses with
probability p = 0.5, which yields a harmonic
distribution over depths. We truncate the length of
the sequences at 2048. We also match the vocabulary
size: k-Dyck, k-Shuffle Dyck, and ww corpora each
have 128 unique vocabulary items, or 64 unique
parentheses pairs (k = 64) for the Dyck languages
(we explore the effect of this hyperparameter in §6).
All models are pre-pretrained on the same number
of tokens with sequence packing.

4 Testing the Expressivity Hypothesis

For natural language (D), we trained Pythia 160M
models (Biderman et al., 2023) for 10,000 steps, or

“4Figure 10 shows a minimal code snippet for C-RASP.

5The languages NEST and CROSS from Papadimitriou and
Jurafsky (2023) are instances of k-Dyck and k-Shuffle Dyck,
respectively. Their results align with our hypothesis.

roughly 665 million tokens. We use C4 as the natural
language dataset (Raffel et al., 2019). For training
hyperparameters, see Appendix B.

Efficiency. We find that the optimal amount of pre-
pretraining #; differs between formal languages. To
estimate 7;, we sweep four pre-pretraining durations
to. Figure 3 shows validation loss on natural language
after pre-pretraining for 30 to 260 million tokens of
formal language (500 to 4000 gradient updates).
While both k-Shuffle Dyck and k-Dyck outper-
form natural language pre-pretraining, k-Shuffle Dyck
is more efficient with 7, =500 compared to 7;=1000
for k-Dyck. Pre-pretraining on ww is unhelpful at
all durations. For each of the languages where pre-
pretraining is effective, there is an optimal duration
after which additional formal language pre-pretraining
leads to less effective transfer overall. k-Shuffle Dyck
has the highest MRS, indicating that it replaces tokens
on natural language most efficiently (see Table 5 in
the Appendix). Furthermore, the MRS for 1-Dyck,
k-Dyck, and k-Shuffle Dyck are all greater than 1,
indicating that exchanging natural language for these
formal languages is compute-optimal in our setting.

Performance. k-Shuffle Dyck is the best-
performing formal language on the natural language
validation set from C4, followed by k-Dyck (Figure
2). Interestingly, pre-pretraining on all four formal
languages improves accuracy in grammaticality, but
pre-pretraining on natural language does not (for
grammaticality accuracies by category, see Figure 8
in the Appendix). This indicates that formal language
pre-pretraining also changes models’ generalization
properties, in addition to driving the language
modeling loss lower. We hypothesize this is because
pre-pretraining induces representations useful for mod-
eling hierarchical structure; we revisit this point in §5.

Pre-pretraining on either random binary strings
or k-integer strings has a negative effect: it results in
higher validation loss than no pre-pretraining. This
rules out the hypothesis that any pre-pretraining is
helpful, regardless of the data being pre-pretrained on.

Summary. Hierarchical dependencies, which both
k-Dyck and k-Shuffle Dyck have, appear to be crucial
for positive transfer from formal to natural language.
Although of these two languages only k-Shuffle
Dyck is expressible by C-RASP, it only significantly
outperforms k-Dyck on verbatim retrieval. That being
said, k-Shuffle Dyck is more efficient than k-Dyck,
achieving its optimal amount of pre-pretraining 500
steps earlier. Taken together, we find modest evidence
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Figure 3: C4 validation loss as a function of pre-pretraining
tokens. For the formal languages that improve validation
loss over no pre-pretraining, there is an optimal training
duration after which additional pre-pretraining is harmful.

supporting the importance of the expressibility of the
language in C-RASP.

S Mechanistic Analysis: Subnetworks

What is the mechanism by which pre-pretraining
facilitates the learning of natural language? We
hypothesize that the model implements next-token
prediction on Dy, using a sparse subnetwork, or
some subset of the total parameters M(6;,) C 6;, (M
for short). Once we transfer 6y, to learn Dy, this
subnetwork M continues to drive the performance
of language modeling on Dy.

Subnetworks hypothesis: Attention heads
established during formal language pre-
pretraining are later used to represent the
hierarchical structure of natural language.

We test this hypothesis by ablating attention heads
of the pre-pretraining subnetwork and comparing

the drop in performance against random attention
head ablations. Concretely, we pre-pretrain on Dy
and prune the model to find the sparse subnetwork
M(6y,). We use the heuristic core pruning algorithm
from Bhaskar et al. (2024), which iteratively removes
attention heads from the transformer using structured
pruning (Xia et al., 2022) while minimizing the
tradeoff between sparsity and language modeling
loss on Dyp. After transfer and training on Dy, we
evaluate the masked model M (6;,) against a model
Muun(6y,) where a subnetwork with the same number
of randomly chosen attention heads was ablated.

Positive transfer from Dy to Dy could occur for
reasons unrelated to subnetworks (e.g., computations
are distributed across all heads or in other components
of the model). In this case, the masked model M
should perform no better than random masks My
when applied to 6;,. However, if pre-pretraining does
induce useful inductive biases, we would expect M
to be an important subnetwork even after training
on Dy. So in the alternative hypothesis, M should
significantly outperform M.

Results. After pre-pretraining on k-Shuffle Dyck,
we ablate 50% of the attention heads. Following pre-
vious work (Bhaskar et al., 2024; Zhang and Nanda,
2024), we replace an ablated head with its mean
activation. We compare M to the random subnetwork
M and to M’s complement subnetwork M€.

We find that M outperforms My,; and M°
in both language modeling and grammaticality
(Figure 4). We reject the null hypothesis that the
subnetwork M established during pre-pretraining
has the same performance as a randomly sampled
subnetwork (p < 0.001). Further supporting the
role of the heads in M, we find that M€, which
excludes all of the heads identified by the pruning
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Figure 4: Language modeling and grammaticality per-
formance for the learned subnetwork M, its complement
M€, and randomly sampled masks My,;. M outperforms
M€ and My, indicating that the subnetwork learned
during pre-pretraining continues to play a critical role
after training on natural language. Dashed lines indicate
performance of the base model without pruning.

procedure, performs much more poorly than My,
that only includes a random subset of them. That
being said, while the performance M is close to the
performance of the full network, it does not quite
match it, indicating that attention heads outside of M
also play a role in processing natural language.

A breakdown of grammaticality judgment accuracy
by grammatical phenomenon shows that only a
handful of phenomena are unaffected by masking,
some substantially (e.g., the accuracy on subject-verb
agreement drops 12 percentage points; see 9 in the
Appendix). These phenomena appear to be ones that
are syntactically simple but diagnose sensitivity to
word structure (morphology), e.g., the distinction
between broke and broken; we hypothesize that
this aspect of linguistic knowledge is less likely
to be mechanistically related to the processing of
dependencies in a formal language.

6 Additional Analyses

This section reports three additional experiments.
Due to the computational cost of pretraining, we
focus on k-Shuffle Dyck, which performed well in
our main experiments. First, we test and rule out the
hypothesis that pre-pretraining on k-Shuffle Dyck is
only effective because of its local statistical properties,
and conclude that its effectiveness stems from its
structural properties. Next, we study the impact of the
vocabulary size hyperparameter k on the effectiveness
of transfer from k-Shuffle Dyck. Finally, we perform
a larger scale training run with Pythia 1B and find that
pre-pretraining on k-Shuffle Dyck helps in this setting

as well. In all of these experiments, we used the
optimal number of pre-pretraining gradient updates
1, =500 found in our main experiment (equivalent to
30 million tokens).

Transfer is not only due to local statistical
properties. Could the successful transfer from
k-Shuffle Dyck to natural language be due to the local
statistical properties of k-Shuffle Dyck, rather than
its dependency structure? Learning local statistical
regularities is consistent with the finding that neural
networks can exhibit distributional simplicity bias
(DSB)—they learn simpler statistical patterns, such
as the mean and covariance of their representations,
before progressing to higher-order relationships
(Saxe et al., 2014; LeCun et al., 1991); in particular,
transformer language models learn n-gram statistics in
order of increasing complexity (Belrose et al., 2024).

To test this hypothesis, we create variants of
k-Shuffle Dyck that share its local statistics but
not its global, rule-based structure. Concretely, we
train unigram, bigram, and trigram models on the
pre-pretraining corpus we generated from k-Shuffle
Dyck for our main experiment, and, using these
n-gram models, we generate “metamer datasets”
(Kumar et al., 2022) of equivalent size.

We find that pre-pretraining on metamer datasets is
strictly less effective than pre-pretraining on k-Shuffle
Dyck, ruling out the hypothesis that the benefit of
pre-pretraining on k-Shuffle Dyck is due to local
statistics. That being said, pre-pretraining on the
unigram metamer performs the worst, followed by
bigram and trigram, suggesting that local statistics
may explain part of the success of pre-pretraining on
structured languages.

Larger vocabulary size may be beneficial. To
check whether better hyperparameters exist for
k-Shuffle Dyck, we sweep its vocabulary size, trying
k=32,128 and 256 in addition to our previous exper-
iments with k =64. We find that k=128 has the best
performance across all metrics instead of k =64, sug-
gesting there likely do exist better hyperparameters.
Finding good ways to optimize these hyperpa-
rameters is an interesting area for future work. The
hyperparameter tuning process for pre-pretraining is
expensive, as evaluating the hyperparameters requires
pretraining a language model. Nevertheless, various
approximations such as early truncation exist in the
hyperparameter tuning literature (Li et al., 2017; Swer-
sky et al., 2013), and one can also use scaling laws to
experiment at a smaller scale first (Yang et al., 2022).
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Figure 6: Pre-pretraining Pythia-1B on 1.6B tokens of k-Shuffle Dyck improves over the baselines, especially on language

modeling and the retrieval evaluation.

Pre-pretraining is effective at the 1B scale too.
Finally, we examine whether our results generalize to
larger settings by training Pythia-1B on 1.63B tokens
from C4 (25,000 steps). In this setting, pre-pretraining
on k-Shuffle Dyck continues to outperform the base-
lines on all evaluation metrics (Figure 6) and achieves
the final loss of the no-pre-pretraining baseline after
training for only 1.10B total tokens. This equates to a

—w), or an MRS

token efficiency gain of 33% (1 1638

of 173 (LEESLI®). k-Shuffle Dyck’s MRS is

>>1 for both 160M and 1B training runs, suggesting
that pre-pretraining could increase the efficiency of
large-scale pretraining as well.

7 Related Work

The goal of pre-pretraining is similar to that of
optimization-based meta-learning, which aims to
create a weight initialization that allows the model
to rapidly learn new tasks (Finn et al., 2017; Nichol
et al., 2018) and languages (McCoy et al., 2020a;

McCoy and Griffiths, 2025). The beneficial effect of
pre-pretraining on formal language is consistent with
the evidence of transfer from source code to natural
language, especially for structured tasks (Petty et al.,
2025; Aryabumi et al., 2025; Kim et al., 2024). In the
vision domain, Nakamura et al. (2024) show that a
thousand synthetically generated images can replace a
million images from ImageNet-1k, in a similar spirit
to our work.

Transfer in NLP has also been studied across
different languages and domains (Ruder et al., 2019;
Pruksachatkun et al., 2020; Deshpande et al., 2022).
Most relevant to our work, Mueller and Linzen
(2023) show that pretraining on child-directed speech
gives a better inductive bias for learning hierarchical
syntactic features than standard pretraining corpora.
Furthermore, introducing a small amount of synthetic,
disambiguating data into pretraining can induce a
language model to change its generalization strategy
(Warstadt et al., 2020b). Related but distinct from
our approach are studies that use synthetic data



sampled from a formal language to evaluate models’
generalization behavior in a controlled way (McCoy
et al., 2019; Kim and Linzen, 2020; Li et al., 2023).
Pre-pretraining is a form of curriculum learning
(Bengio et al., 2009), the approach of actively ad-
justing properties of the data during training. Recent
work has developed algorithms that automate the
discovery of language modeling curricula (Chen et al.,
2025; Jiang et al., 2025), and many language model
training recipes introduce different data mixtures at
different stages (Allal et al., 2025; OLMo et al., 2025;
Ouyang et al., 2022). The positive results of our
experiments contrast with the largely negative results
of the attempts to improve language models’ data
efficiency via linguistics-inspired curriculum learning,
as part of the BabyLM challenge (Warstadt et al.,
2023; Hu et al., 2024), pointing to the crucial effect of
the particular data presented as part of the curriculum.

8 Discussion

We have found that pre-pretraining on formal
languages can improve the language modeling loss
and linguistic generalization abilities of transformer
language models. In fact, pre-pretraining on some for-
mal languages was more effective than increasing the
amount of natural language training data by the same
amount: the inductive bias conferred by the formal lan-
guage was more helpful than additional in-distribution
data. While most of the experiments in this paper were
with 160M-parameter models, we also found benefits
from pre-pretraining in the 1B-parameter setting.

We hypothesized that the languages that are most
effective in this paradigm are those that, first, feature
hierarchical dependencies, and second, are repre-
sentable in C-RASP, and therefore readily learnable
by transformers. The first part of this hypothesis is
supposed by the superior performance of k-Dyck and
k-Shuffle Dyck, the languages with hierarchical de-
pendencies, relative to other languages. Our evidence
for the importance of expressibility in C-RASP is
less clear: k-Shuffle Dyck clearly outperformed
k-Dyck, which is not expressible in C-RASP, on one
of the evaluations, and also required fewer steps of
pre-pretraining than the other languages (§4). While
natural language is arguably context-sensitive, in the
Chomsky hierarchy sense, not every context-sensitive
language was beneficial in pre-pretraining: in fact,
pre-pretraining was harmful when we used the copy
language ww, which, while context-sensitive since it
contains cross-serial dependencies, does not illustrate
the notion of hierarchy and is not definable in

C-RASP. That being said, since k-Dyck performed
almost as well as k-Shuffle Dyck, there may exist
a sharper characterization of the class of formal
languages that confer a helpful inductive bias than
defined by our expressivity hypothesis; experiments
with a larger sample of formal languages would be
needed to progress towards such a characterization.

The marginal rate of substitution between formal
and natural language is greater than one (Table 5),
meaning that one token of formal language in
pre-pretraining substitutes for more than one token
of natural language in pretraining. This is a surprising
result from the perspective of statistical learning
theory (Vapnik, 2000), in that we observe faster
convergence by swapping in data from a different
distribution. We hypothesize that initialization can
have a critical effect on learning dynamics (McCoy
et al., 2020b; Sellam et al., 2022), and pre-pretraining
on formal language produces a initialization that is
favorable to natural language learning.

9 Limitations

In this work, we considered blocked training, where
we first train on formal language and then on natural
language. While blocked training has the advantage
that the initialization produced by formal language pre-
pretraining can then be distributed and easily plugged
into existing pretraining pipelines, it is possible that
the optimal training regimen involves mixing formal
and natural language during training (Korbak et al.,
2023). We also evaluated the effectiveness of pre-
pretraining in a setting where natural language pre-
training data is plentiful, as it is for English, such that
it is possible to train the model for a considerable num-
ber of tokens without processing the same data mul-
tiple times over several epochs. We hypothesize that
pre-pretraining will be even more effective for low-
resource natural languages, and may yield different
scaling properties with respect to pre-pretraining data
(Muennighoft et al., 2023). Relatedly, a natural exten-
sion to this project is establishing scaling laws for pre-
pretraining; the benefit of pre-pretraining beyond 1 bil-
lion parameters and 1.6 billion tokens is currently un-
known. Finally, our work only considers transformers.
Circuit complexity has also quantified the expressive
power of neural networks like RNN's and state-space
models (Merrill et al., 2020, 2024), and it would be
interesting to extend our results to these architectures.
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A Proofs

We make use of the following to establish that all
languages we consider are context-sensitive.

Lemma A.1. Any language definable in FO(M) can
be recognized by a context-sensitive grammar.

Proof. Mix Barrington et al. (1990) show that the
class of languages definable in FO(M) is LOGTIME-
uniform TC?, which is a subset of L=SPACE(logn).
On the other hand, the context-sensitive languages are
those languages recognizable by linear-bounded au-
tomata (Kuroda, 1964). That is, CSL=NSPACE(n).
Putting these characterizations together, we see that

TC < SPACE (logn) c NSPACE (1) =CSL.

Therefore we can conclude that any language defin-
able in FO(M) is context-sensitive. |

We will make use of the classical pumping lemma
to establish that some specific languages considered
are strictly context-sensitive, i.e., not context-free.

Lemma A.2 (Pumping Lemma, Bar-Hillel et al.,
1961). Let L be a context-free language. Then there
exists a pumping constant p >0 such that any string
s € L of length |s| > p can be written as s = uvwxy
where

1. vwx|<p;

2. |vx|=1; and

3. wwxyelL foralln>0.

Additionally, we will leverage the following
communication complexity result to prove that certain
languages are undefinable in C-RASP:

Lemma A.3 (Huang et al., 2025, Theorem 12). Let
L be a language definable in C-RASP. Fixw € L
and 1 <i<|w|. Let Alice have access to wi.; and Bob
have access to Wi.1.|w|- Then there exists a protocol
where Alice sends at most O(logn) bits to Bob and
Bob can recognize whether w e L.

Crucially, if some L requires Alice to send Bob
w(logn) bits, then it cannot be defined in C-RASP.

We will also use the equivalence between C-RASP
and the Temporal Counting Logic K; [#] to show that
languages are definable in C-RASP.

Lemma A4 (Yang and Chiang, 2024, Theorem 4.3).
A C-RASP program recognizes language L if and
only if a K, [#] formula defines L.

A.1 Language Characterizations

Proposition A.5. 1-Dyck is context-free and definable
in C-RASP.
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Proof. That 1-Dyck is context-free follows from
the fact that it can be generated by the following
context-free grammar:

S—(S)S,
S—e.
1-Dyck is defined by the following K, [#] formula
#lod=#[0) ) ##|0)]>#|o]]=0),

in C-RASP by
O

and so is
Lemma A 4.

implementable

Proposition A.6. For k > 2, k-Dyck is context-free
and not definable in C-RASP.

Proof. That k-Dyck is context-free follows from the
fact that it can be generated by a context-free grammar:
for any fixed value of k, k-Dyck is generated by

S— (;S);S, whereie[k]
S—¢
To see that k-Dyck is not definable in C-RASP,
consider Dyck strings of length 2n where tokens 1
to n are opening braces, and tokens n+ 1 to 2n are
closing braces. If Alice receives the first n tokens,
she must send €(n) bits to Bob if Bob is to correctly
recognize the input string, because each prefix has

a different unique suffix that closes it. So k-Dyck is
not in C-RASP by Lemma A.3. mi

On the other hand, k-Dyck can be defined in
FO(M).
Proposition A.7. For k > 1, k-Dyck is definable in
FO(M).

Proof. Let Q (i) check whether token i is any of the
k opening parentheses, and Q(, (i) check whether
token i is the «th opening parenthesis out of k.
Continuing the definition from Section 2.2:

depth(i) = #;j <i[Q(()]-#j <i[0)(i)]

dindex(i) = #j <i[depth(i)=depth(;)]

paired(j,i) = [depth(j)=depth(i)+1]A
[dindex (i) =dindex( )]

match(j,i) = \/[Q(K(j)/\Q)K(i)]

K

closed(i) = 3 <i[paired(;,i) Amatch(j,i)]

Having defined these macros, we are now ready
to write the recognizer for k-Dyck:

[depth(n) =0] A [#i <n[depth(i) <0] =0]A
Vi <n[closed(i)]



To understand why this construction cannot be
implemented in C-RASP, observe that paired(;,i)
and match(,i) are binary predicates, which are not
allowed in C-RASP.

Lemma A.8. For k > 2, k-Shuffle Dyck is strictly
context-sensitive and definable in C-RASP.

Proof. See Ex. 7.20 in Hopcroft et al. (2000).
Consider the case when k=2. Assume that 2-shuffle
Dyck is context-free. Then L = ("["™)"]™ is
context-free since it is the intersection of k-Shuffle
Dyck with (*[*)*]* and CFLs are closed under
intersection with regular languages.

Assume by way of contradiction that L is
context-free and so has pumping constant p. Let
s=(P[P)P]P, whichy by hypothesis can be written
as uvwxy. Since |[vwx| < p, it either (a) lies entirely
inside one of the blocks of p symbols or (b) lies
partially in one block of p symbols and lies partially
in at most one adjacent block. In the case of (a),
suppose for clarity that vwx lies entirely in the
(P block. Since vx is not empty, uv'wx%y = uwy
contains fewer (’s than )’s, and hence is not in L, a
contradiction. In the case of (b), suppose for clarity
that vwx straddles the (¥ and [? blocks. Since vx
is not empty, uv®wx"y = uwy contains either fewer
(’s than )’s or fewer [’s than ]1’s, and hence is not in
L, a contradiction. Since k-Shuffle Dyck for k > 2
contains 2-Shuffle Dyck, proving the k=2 case is suf-
ficient to establish that k-Shuffle Dyck is not context
free (but still context-sensitive by Lemma A.1).

Similar to the 1-Dyck case, we can exhibit a K, [#]
formula to define k-Shuffle Dyck:

A\ #o.]=#0),]) A #[#][0),]>#[0(]]=0)

K

So k-Shuffle Dyck is likewise definable in C-RASP
by Lemma A 4. O

Proposition A.9. ww is strictly context-sensitive and
not definable in C-RASP.

Proof. See Ex. 7.21 in Hopcroft et al. (2006). Sup-
pose by way of contradiction that ww is context-free,
and so has a pumping constant p. Let s=aPb”aPb?,
which can be written as uvwxy by hypothesis. Con-
sider then the string uvwx%y =uwy € L. We examine
two cases depending on the position of vwx in s.

In the first case, suppose vx is contained entirely
within the first block of a”. If |vx| = k then uwy
has length 4p — k and begins with the substring
alP=)pP  of length 2p—k. By assumption uwy=rt
for some ¢ of length 2p — k/2, and since k > 1 it
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follows that |¢| > 2p —k. Then the final symbol of ¢
must lie within the second block of a’s; yet since s
ends in b, ## must also end in b, a contradiction.

In the second case, suppose vx contains some a’s
and some b’s. Since [uvwxy|=4p and |[vwx| < p it
must be that |uwy|>3p and so |t|=3p/2. Since vwx
is too short to straddle more than two adjacent blocks
of symbols and 3p/2 > p it must be the case that ¢
must end in b”. Yet there since |vx| > 1, there is only
a single block of b? within |uwy|, so the b? block
cannot be repeated, a contradiction.

By symmetry, these two cases straightforwardly
extend to the cases when vx is contained entirely
within the first block of b’s, the second block of
a’s, or the second block of b’s (analogous to case
1); or when it is split between the blocks of a’s and
b’s (case 2). Then ww is not context-free, but still
context-sensitive by Lemma A.1.

From a communication complexity perspective, if
Alice has the first half of some string, and Bob has
the second half, Alice must send Bob €(n) bits to
verify whether the string is of the form ww. Thus, by
Lemma A.3, ww cannot be defined in C-RASP. O

11K
(x1,¥1)
10K A
9K -
8K -

7K A

Pretraining steps

6K -
(x2,¥2)

SK T T T T T T
100 200 300 400 500
Pre-pretraining steps

Figure 7: The indifference curve contains points with

equal training loss. Marginal rate of substitution is the
ratio between the red and black lines (%) The token
efficiency increase from applying pre-pretraining can be

calculated as 1—2222,

B Hyperparameters

All experiments were done on NVIDIA A100 or
H100 80GB GPUs. We warm up the learning rate
both during pre-pretraining and pretraining. The
below hyperparameters hold for both pre-pretraining
and pretraining. That is, for simplicity, even if we
only pre-pretrain for 500 steps, we still keep the



learning rate warmup at 1,000 steps. To achieve
50% attention head sparsity when pruning, we set
the target sparsity to 70%. We used Huggingface
transformers==4.47.0 and datasets==3.2.0.

Hyperparameter Value
Training Configuration

Batch size 16
Gradient accumulation 2
Effective bsz 32
Sequence length 2048 tokens
Learning rate 5x107*
LR schedule Cosine w/ warmup
Min. LR 5%107°
Warmup Steps 1000
Weight Decay 0.1
Gradient Clipping 1.0
Optimization

Optimizer AdamW
Bi.p2 0.9, 0.999
€ le-6
Mixed Precision bf16
Pruning (see Bhaskar et al. (2024))
Learning rate 0.1
Regularization LR 1

Target sparsity 0.7
Warmup steps 1000

Table 2: Training hyperparameters.
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Positive Example Negative Example

v Only Bill would ever complain. X Even Bill would ever complain.
v’ Diane watched Alan. X Diane screamed Alan.
v Who should Derek hug after shocking Richard? ~ X Who should Derek hug Richard after shocking?

Table 3: Examples from the BLIMP dataset (Warstadt et al., 2020a): matched pairs of grammatical (positive, left) and
ungrammatical (negative, right) sentences. We expect the language model to assign a higher probability to the grammatical
sentence in each pair.

Examples

Before the meeting, Mary wrote down the following list of words: window, door, roof.
After the meeting, she took a break and had a cup of coffee. When she got back, she
read the list again: window, door, roof.

Before the meeting, John wrote down the following list of words: nothing, riches, paper.
After the meeting, he took a break and had a cup of coffee. When he got back, he read
the list again: nothing, riches, paper.

Table 4: Verbatim in-context retrieval (Armeni et al., 2022, 2024) examples. We expect a good language model to
recognize based on the context that the list is repeated, retrieve the appropriate items from the first repetition of the list,
and assign these items a very high probability.

k-Shuffle Dyck
k-Dyck
1-Dyck

ww

Languages

No pre-pretraining

C4 pre-pretraining

Figure 8: Accuracy on BLiMP by grammatical phenomenon. The full names of the phenomena are: anaphor agreement,
argument structure, binding, control/raising, determiner-noun agreement, ellipsis, filler-gap dependencies, irregular forms,
island effects, negative polarity item licensing, quantifiers, and subject-verb agreement.

N\

&
\\Q/

9 v

Accuracy(eh)f 71.8 86.7 72.3 73.6 71.6 86.8 73.5 68.9 92.1 57.1 58.3 72.1 77.5 75.8

Accuracy(M(6:)) 15 7 03  -08 02
- Accuracy(6,)

Figure 9: Performance changes on BLiMP after pruning half the attention heads from the model trained on k-Shuffle Dyck
(see §5). The largest declines are on subject-verb agreement, irregular forms, and anaphor agreement. These categories
require knowledge about word forms, and the sentences within these categories are generally simple (around 4 words).
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Language LM Loss Documents| MRS Grammaticality Retrieval

1-Dyck 37600016  0.978 x0.021 3.01 0.717 +0.004 3.373 z0014
k-Dyck 3.743 x0016  0.998 +0.001 3.57 0.719 +0.003 3.338 +0.019
Formal  k-Shuffle Dyck 3.741 r0014  0.998 +0.001 7.15 0.718 +0.007 3.297 +0.012
ww 3792008 0.557x0247  —0.25 0.714 +0.003 3.341 z0.021
No pre-pretraining  3.780 0018 — — 0.710 zo.011 3.393 +0.003
Controls C4 pre-pretraining ~ 3.754 z0017  0.992 x0.007 6.65 0.710 0.003 3.354 +0.005
Random binary 3.810 20015 00 —-6.60 0.712 +0.004 3.416 o016
Random ints 3.798 x0015  0.042 0041 -5.97 0.712 +0.006 3.409 +0.006

Table 5: Evaluating models at the optimal amount of pre-pretraining 7; for each formal language (see §4). “Documents
17 is the proportion of documents in the C4 validation set where the model has a lower loss than the model trained
without pre-pretraining. 1-Dyck, k-Dyck, and k-Shuffle-Dyck all have marginal rates of substitution (MRS) greater than 1,
indicating that pre-pretraining is more efficient than not pre-pretraining. k-Shuffle-Dyck performs the best overall on
our evaluation metrics.
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Figure 10: Implementation of a k-Shuffle Dyck sequence generator.

import random

def generate_shuff_dyck(k,

nnn

Generate a k-shuffle Dyck sequence,

max_length=2048,

When max depth is reached,

Args:

p_open=0.5, max_depth=16):

truncated at max_length.

close one bracket and continue.

k (int): Number of different types of brackets
max_length (int): Target maximum length of the sequence
p_open (float): Probability of opening a new bracket
max_depth (int): Maximum nesting depth allowed

Returns:

list: Generated sequence where
and i+k represents closing bracket i

Note: the final Dyck word may be
we didn’t find this to be an

nnn

sequence = []

issue

i represents opening bracket i

invalid due to truncation,

in practice.

counts = [@] * k # Track open brackets of each type

while len(sequence) < max_length:

depth = sum(counts)

# Must open if all brackets are closed

if depth == 0:

bracket = random.randint (0, k -
sequence. append(bracket)
counts[bracket] +=

continue
# If at max depth,

open_brackets =

counts[bracket]
continue

1

force a close
if depth >= max_depth:
[i for i,
bracket = random.choice(open_brackets)
sequence. append(bracket + k)

1

count

# Randomly choose to open or close
if random.random() < p_open and depth < max_depth:
bracket = random.randint(@Q, k -
sequence . append(bracket)
counts[bracket] +=

else:

1

# Close an existing bracket
[i for i,
bracket = random.choice(open_brackets)
sequence . append(bracket + k)

open_brackets =

counts[bracket]

return sequence

1

count
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