

Illinois State University

ISU ReD: Research and eData

Senior Theses – Biological Sciences

Biological Sciences

Spring 2025

Determining the Effects that Deletion of i386 and i408 have on Sk-3-Type Spore Killing

Kole Damkoehler

Illinois State University, kdamkoe@ilstu.edu

Follow this and additional works at: <https://ir.library.illinoisstate.edu/stbs>

Part of the [Genetics Commons](#), and the [Molecular Genetics Commons](#)

Recommended Citation

Damkoehler, Kole, "Determining the Effects that Deletion of i386 and i408 have on Sk-3-Type Spore Killing"

(2025). *Senior Theses – Biological Sciences*. 10.

<https://ir.library.illinoisstate.edu/stbs/10>

This Senior Thesis is brought to you for free and open access by the Biological Sciences at ISU ReD: Research and eData. It has been accepted for inclusion in Senior Theses – Biological Sciences by an authorized administrator of ISU ReD: Research and eData. For more information, please contact ISUReD@ilstu.edu.

DETERMINING THE EFFECTS THAT DELETION OF *i386* AND *i408*
HAVE ON SK-3-TYPE SPORE KILLING

Kole Damkoehler

50 Pages

May 2025

Neurospora crassa is a genus of fungus that exhibits a phenomenon called *Sk-3* spore killing. *Sk-3* spore killing occurs when an *Sk-3* killer strain mates with an *Sk-3* sensitive strain, and it results in the death of half of the offspring. A DNA interval called *i350*, located on *N. crassa* Chromosome III, has previously been identified as critical for spore killing. Here, to obtain a more detailed understanding of this DNA interval, the effects of the deletion of related DNA intervals *i386* and *i408* on spore killing has been studied. Deletion of *i386* resulted in no disruption of spore killing while deletion of *i408* disrupted spore killing. These results provide a better understanding of the DNA sequences required for the spore killing process.

DETERMINING THE EFFECTS THAT DELETION OF *i386* AND *i408*
HAVE ON SK-3-TYPE SPORE KILLING

KOLE DAMKOEHLER

School of Biological Sciences

ILLINOIS STATE UNIVERSITY

2025

Copyright 2025 Kole Damkoehler

DETERMINING THE EFFECTS THAT DELETION OF *i386* AND *i408*
HAVE ON SK-3-TYPE SPORE KILLING

KOLE DAMKOEHLER

COMMITTEE MEMBERS

Dr. Thomas Hammond (Chair)

Dr. Kevin Edwards

ACKNOWLEDGEMENTS

I thank Sabiha Sultana, Parham Jazireian, and other members of the Hammond Laboratory for helping with this project. I also thank Diana Segerstrom, a former Hammond Laboratory undergraduate research assistant, for constructing strain TDMS1.1. The work presented here was supported by the National Science Foundation (1615626 / 2005295).

CONTENTS

	Page
ACKNOWLEDGEMENTS	i
CONTENTS	ii
TABLES	iii
FIGURES	iv
CHAPTER	
I. INTRODUCTION	1
II. METHODS	4
III. RESULTS	12
IV. DISCUSSION	14
REFERENCES	15

TABLES

Table	Page
1. Strains used in this study.	18
2. Primers used in this study.	20

FIGURES

Figure

1. Research Progression.	21
2. Transformation vector left flanks.	22
3. Transformation vector right flanks.	23
4. Transformation vector center fragment.	24
5. Sequence of DNA interval <i>i386</i> .	25
6. Sequence of DNA interval <i>i408</i> .	26
7. <i>i386</i> and <i>i408</i> locations.	28
8. Genotyping assay PCR product: <i>Sk-3 i386Δ::hph</i> ⁺ genotype.	29
9. Genotyping assay PCR product: <i>Sk-3 i386</i> ⁺ genotype.	31
10. Genotyping assay PCR product: <i>Sk-3 i408Δ::hph</i> ⁺ genotype.	32
11. Genotyping assay PCR product: <i>Sk-3 i408</i> ⁺ genotype.	33
12. Ascus phenotype summary for <i>i386</i>	36
13. Ascus phenotypes of RKD10.2 × RTH1623.2.	37
14. Ascus phenotypes of RKD10.3 × RTH1623.1.	38
15. Ascus phenotypes of RKD10.4 × RTH1623.1.	39
16. Ascus phenotypes of RKD10.5 × RTH1623.1.	40
17. Ascus phenotypes of RKD10.10 × RTH1623.1.	41
18. Ascus phenotypes of RKD10.X × RTH1623.2.	42
19. RKD10 genotyping.	43
20. Ascus phenotype summary for <i>i408</i> .	44

21. Ascus phenotypes for RKDam11.101 × RTH1623.2.	45
22. Ascus phenotypes for RKDam11.102 × RTH1623.2.	46
23. Ascus phenotypes for RKDam11.103 × RTH1623.1.	47
24. Ascus phenotypes for RKDam11.104 × RTH1623.2.	48
25. Ascus phenotypes for RKDam11.105 × RTH1623.2.	49
26. RKDam11 genotyping.	50

CHAPTER I

INTRODUCTION

The genus *Neurospora*, a group of ascomycete fungi, is found all over the world in nearly all climates except subtropic and tropical environments (Davis 2000). Species *N. crassa* presents itself as an excellent model for eukaryotic genetics. *N. crassa* produces spores either sexually or asexually. Asexual spores, also called conidia, are genetically identical and grow to form hyphae. These hyphae are branches that undergo apical growth from the conidium and are divided into compartments called septa. Sexual spores (ascospores) are produced when hyphae transform to produce protoperithecia. Conidia from a strain of a different mating type sense this and undergo cellular fusion with the extensions (trichogyne) of the protoperithecium. After this occurs the nuclei then move to the perithecium (previously protoperithecium) and end up in a cell type known as a crozier hook. This hook contains one nucleus from each parent. The nuclei then fuse and go under a meiotic split to form two haploid nuclei containing dyad chromosomes. These nuclei undergo another meiotic split to form 4 haploid nuclei containing monad chromosomes. Mitosis then occurs to form 8 total nuclei with half of their genetic content coming from each parent. Ascosporegenesis then occurs where cell walls and membranes are formed around each nucleus to produce 8 ascospores within each ascus (Raju 1994).

A phenomenon called *Sk-3* type spore killing has been discovered within *N. crassa* (Turner and Perkins 1979). *N. crassa* *Sk-3* strains carry a genetic element that causes crosses between *Sk-3* and *Sk-S* strains (*Sk-3* susceptible) to produce asci with 4 viable ascospores and 4 inviable ascospores. When this cross occurs, nearly all viable ascospores have the *Sk-3* genotype, meaning that *Sk-3* is a selfish genetic element.

Gene *ncu09151 (rsk)* on Chromosome III has been found to confer resistance to spore killing (Hammond et al. 2012). It is present within the *Sk*-genetic element and in non-killer *Sk-3* resistant strains (*Sk-R*). If this gene is deleted from an *Sk-3* strain, and a cross is performed between the *Sk-3 rskA* strain and an *Sk-S* strain, no viable ascospores are produced (Hammond et al. 2012). This finding has led to development of the *Killer Neutralization Model of Spore Killing* (Hammond et al. 2012; Zanders and Johannesson 2021). This model states the *Sk-3* strains produce both a poison and antidote to the poison. Both the poison and antidote are produced through the entire sexual reproduction process, but it is not until ascosporegenesis, when the antidote is confined to the ascospores that produce it, that spore killing can occur.

While the gene that produces the antidote (*rsk*) has been identified, the gene that produces the poison and is required for killing has not. However, a recent work has identified a mutation that disrupts *Sk-3*-type spore killing (Velazquez et al. 2022). This mutation, called *rfk-2^{UV}* has been mapped to Chromosome III, within the *Sk-3* genetic element. Efforts to further refine the position of *rfk-2^{UV}* led to the discovery of a 1.3 kb DNA interval on Chromosome III called *i350*. Preliminary results suggest that deletion of this interval disrupts spore killing (Rhoades and Hammond, unpublished). This could indicate that *i350* spans or partially overlaps the poison production gene or is a regulatory element that controls the expression of that gene. It is also possible that the genetic element connected to *i350* is independent of *rfk-2*. This latter possibility would suggest that there are at least two genes that control poison production.

To gain more insight into the role of *i350* in spore killing, I aimed to delete other intervals within and around *i350*, to see what effect these intervals have on spore killing. Specifically, I examined intervals *i386* and *i408*. Based on the locations of *i386* and *i408* relative to *i350*, I hypothesized that deletion of *i386* would have no effect on spore killing while deletion of *i408*

would disrupt spore killing.

CHAPTER II

METHODS

An overview of the methods that I used to examine *i386* and *i408* is provided in **Figure 1**.

1. The first step was to create, amplify, and purify transformation vectors to replace target DNA sequences. The transformation vectors were constructed using Q5 High-Fidelity DNA Polymerase (New England Biolabs). This was done using the DJ-PCR method (Yu et al. 2004). To begin, the left flank (**Figure 2**) and right flank (**Figure 3**) for Vectors v386 and v408 were amplified. This was done using RDGR170.3 (**Table 1**) genomic DNA as the template for amplification. Left flank primers for v386 were V0359-A and V0359-B, and for v408 they were V0394-A and V0394-B (**Figure 2**). Right flank primers for v386 were V0386-C and V0386-D, and for v408 they were V0358-C and V0358-D (**Figure 3**). Flanks were purified with a gel extraction kit (IBI Scientific). The center fragment (**Figure 4**) for v386 and v408 was amplified from plasmid pTH1256.1 (GenBank MH550659.1) with Primer Set HPH-CEN-F/HPH-CEN-R before gel purification. Fusion via DJ-PCR was then completed as previously described (Yu et al. 2004), resulting in the left flanks and right flanks on either side of a hygromycin resistance gene (*hph*⁺). The fusion products for both v386 and v408 were then amplified with nested primers. Transformation vector v386 was created to replace *i386* (**Figure 5**) and transformation vector v408 was created to replace *i408* (**Figure 6**). These intervals are shown relative to *i350* in **Figure 7**. The nested primers V0359-E and V0386-F were used to amplify v386, resulting in the PCR product shown in **Figure 8**, and column purified with a PCR cleanup kit (IBI Scientific). The nested primers V0394-E and V0358-F were used to amplify v408, resulting in the PCR product shown in **Figure 10**, and column purified with a PCR cleanup kit.

The purified products were analyzed by gel electrophoresis. A total of 1.8 g of agarose was added to a 1 L flask with 200 ml of 1× TAE buffer. This was heated at 100% power in a microwave for 1 minute. The mix was swirled and then reheated for a minute. This process was repeated until the agarose had completely dissolved. Next, 10 μ l of 10 mg/ml ethidium bromide was added to the flask and mixed. The flask rested until the heat level was not painful to the touch. A thin layer was poured into a gel tray (13×15 cm) with a 12-tooth comb set in it and allowed to sit for 20 seconds. The rest of the mix was then poured into the tray and allowed to solidify. The comb was then removed and the gel moved to an electrophoresis chamber containing 1× TAE, with more 1× TAE added until the buffer level rose above the gel. The purified PCR products were then prepared for the gel. A total of 5 μ l of the column purified DNA for v386 was added to an MCT tube with 5 μ l of 6× loading buffer and 20 μ l of sterile water, and the contents of the tube were mixed slowly up and down by pipetting. A 10 μ l aliquot of a DNA ladder was then loaded into well #1, and 30 μ l of the DNA sample mix was loaded into another well. The gel was then run at 120 V for 90 minutes before imaging over UV light. This process was repeated for the column purified v408 PCR product. The lengths of the predicted PCR amplification products for v386 (**Figure 8**) and v408 (**Figure 10**) were used to accurately assess if vector construction was successful. The next step was to use the purified vectors to transform *N. crassa*.

To begin, conidia of strain RDGR170.3 (containing the *Sk-3* genotype) were generated. This was done by preparing a 50 ml Vogel's Minimal Medium (VMM; Vogel 1956) in a 250 ml volumetric flask for each transformation (2 in total). Strain RDGR170.3 was obtained from cryogenic storage and thawed between gloved fingers. Using sterile technique under a biosafety hood, 20 μ l of RDGR170.3 was transferred to the flasks. These flasks were labeled and capped

with a glass beaker, using a wood applicator between the flask and cap to prevent a tight seal from forming. The flasks were then incubated at 32 °C for 2 days before being moved to a clean 1020 tray for later use in the transformation step.

N. crassa was then transformed through the process of electroporation. The method used followed the protocol recommended by Margolin et al. (1997) with modification as suggested by Rhoades et al. (2020). Two transformations were performed, one with v386 and one with v408. The next step was to select hygromycin-resistant transformants.

An ethanol candle and two syringes with needles were placed on a sterilized lab bench. The needles were passed through the ethanol produced flame then cooled before being used to isolate and cut hygromycin-resistant colonies from the transformation plates. A total of 10 colonies were selected for each transformation (20 total) and transferred to Vogel's slants containing VMM and 200 µg/ml hygromycin. The slants were then incubated at 30 °C for 1–2 days, then placed at room temperature, and used for the next step within a month of the incubation. The next step was to cross transformants to obtain homokaryotic offspring.

A total of 40 (20 for v386 transformants and 20 for v408 transformants) 60 mm petri dishes were filled with 18 ml of Westergaard and Mitchell's synthetic crossing agar (SCA) (Westergaard and Mitchell 1947) with 1.5% sucrose and a pH of 6.5. This process was performed with a 25 ml serological pipette and an automatic pipettor under a biosafety cabinet that had been sterilized with UV light for approximately 5 minutes.

Unidirectional crosses, as described by Samarajeewa *et al.* (2014), were performed on these plates. Strain RTH1005.2 (**Table 1**) was inoculated onto SCA and the plates were incubated at room temperature for 6–8 days. Conidial suspensions were produced for 6 of each transformant type (v386 and v408). Using sterile technique, 500 µl of sterile water was

transferred to MCT tubes totaling the number of conidial suspensions to be produced. Sterile wood applicators were used to transfer conidia from transformants to MCT tubes. This process was repeated for each transformant. These conidial suspensions were then used as the male in unidirectional crosses by fertilizing the female RTH1005.2 strains as previously described (Samarajeewa et al. 2014).

Ascospores were harvested from two crosses: RKD10 (v386; TDMS1.1 × RTH1005.2) and RKDam11 (v408; TKDam1.1 × RTH1005.2). Ascospore harvesting involves transferring ascospores from the lids of the crossing plates to sterile water and storing for at least 16 hours at 4 °C. Three 100 mm plates with Vogel's Minimal Agar (VMA) plus hygromycin (200 µg/ul) were used for each ascospore solution (three for RKD10 ascospores and three for RKDam11 ascospores). A working suspension of the ascospores was created by adding 500 µl of sterile water to a sterile MCT tube. Estimations of the amount of ascospores in the stock suspension were made by dropping 10 µl of stock ascospore suspension to a microscope slide. After estimating how many ascospores were present on the slide, the approximate concentration was determined. For the working suspension, stock suspension was added to create a working suspension of 1–5 ascospores per µl of working suspension. The stock suspension was then placed back into cold storage at 4 °C. The working suspension was vortexed for 5 seconds. The working suspension was then placed on a heat block at 60 °C for 30 minutes. After 30 minutes, the tubes were inverted multiple times. Under a sterilized fume hood, 50 µl of the RKD10 working suspension was transferred to a 100 mm plate, followed by 100 µl to another plate, and 200 µl to a final plate. This was repeated for three different plates with the RKDam11 working suspension. Autoclaved spreaders were used to spread ascospores across the plates. The plates were incubated overnight in a sterilized 1020 flat right-side up.

After approximately 16 hours, syringe needles and a dissecting microscope were used to transfer germinating ascospores to 125 mm culture tubes containing VMA with hygromycin (200 µg/ml). If germlings with abundant hyphal growth were identified, they were picked using a syringe whose needle had been flame sterilized and cooled, then carefully placed into one of the culture tubes. This process was completed for 12 RKD10 germlings and 12 RKDam11 germlings, with the goal of isolating at least three hygromycin resistant offspring (not all germlings are expected to survive the transfer process). The culture tubes were incubated at 30–32 °C for two days and at room temperature for at least one week to allow conidia to develop.

A total of 40 (20 for RKD10 offspring and 20 for RKDam11 offspring) 60 mm petri dishes were obtained. Each was filled with 18 ml of SCA with 1.5% sucrose and a pH of 6.5 as described above. Half the plates were inoculated with strain RTH1623.1 and the other half were inoculated with RTH1623.2. The plates were incubated for 6–8 days at room temperature to allow protoperithecia production. A male control strain of RDGR170.3 was used to fertilize two plates of 1623.1 and two plates of 1623.2 (one of each for the RKD10 control and one of each for the RKDam11 control). Additionally, a second male control strain of RZS27.10 was used on two plates of 1623.1 and two plates of 1623.2 (one of each for the RKD10 control and one of each for RKDam11 control). The male test strains for RKD10 included RKD10.2, RKD10.3, RKD10.4, RKD10.5, RKD10.10, and RKD10.X. The male test strains for RKDam11 included RKDam11.101, RKDam11.102, RKDam11.103, RKDam11.104, and RKDam11.105. The remaining plates were used as no fertilization controls.

On Day 17 post fertilization, the RKD10 test crosses and associated control crosses were dissected and imaged. On Day 12 post fertilization, the RKDam11 test crosses and associated control crosses were dissected and imaged. Two 1 ml syringes with 23-gauge 1-inch needles

were placed on a petri dish lid. The plates were analyzed to determine which crosses produced fruiting bodies. Each cross that produced fruiting bodies was selected for dissection. To do this 100 μ l of 25% glycerol was pipetted onto a microscope slide. A perithecial clump from the cross was then transferred to the slide. Another slide with 100 μ l of 25% glycerol was prepared. Surface hyphae and agar were removed from the perithecia with the syringe needs while working under a dissecting microscope. Approximately ten cleaned perithecia were transferred from this slide to the glycerol solution on the second slide. The cleaned perithecia were sliced opened and the rosettes of asci were pushed out using the needles. After the rosettes were clearly visible, they were pushed to the center of the slide and the perithecial debris was removed. A coverslip was then placed over the rosettes. A Kimwipe was used to wick excess liquid from beneath coverslip. The coverslip was then sealed to the slide along its edges with clear nail polish. Digital images of the rosettes were obtained with a Leica DMBRE microscope and Zeiss imaging system. This process was performed for all crosses that produced fruiting bodies (**Figures 12–18 and 20–25**).

The final step was to confirm the genotypes of the RKD10 and RKDam11 strains. To conserve resources, only a few of the RKD10 and RKDam11 strains were genotyped (RKD10.2, RKD10.3, RKD10.4, RKD10.5, RKDam11.101, RKDam11.102, and RKDam11.105). To do this, small liquid cultures of each strain were incubated at 150–180 rpm, 32 °C, for 24–48 hours. Mycelia were harvested with 6-inch wood applicators, placed on a sheet of filter paper, and partially dried with a stack of clean paper towels. The mycelium was then stored in MCTs at -80 °C before drying by lyophilization. The tissue was lyophilized for 3–5 hours and then the tissue was stored in a dry cabinet at room temperature for later use in DNA isolation. Genomic DNA was then isolated from each mycelial sample with a plant/fungi genomic DNA isolation kit (IBI Scientific) according to the manufacturer's recommendations.

The genomic DNA was then used in a PCR-based genotyping assay. Specifically, for RKD10 strains and the control strain RDGR170.3, primers V0359-E (nested forward) and V0386-F (nested reverse) were used. For the RKDam11 strains and the control strain RDGR170.3, Primers V0394-E (nested forward) and V0358-F (nested reverse) were used. These primers were thawed at 60 °C, vortexed, briefly centrifuged, and placed on ice. Genomic DNA templates that had been isolated previously were thawed at 60 °C, vortexed, briefly centrifuged, and placed on ice. Q5 DNA polymerase buffer was thawed at 60 °C, vortexed, briefly centrifuged, and placed on ice. Next, the dNTP solution (10 mM) was thawed between gloved fingers, vortexed, briefly centrifuged, and placed on ice. Finally, the Q5 DNA polymerase enzyme was briefly centrifuged and placed on ice. Sterile water was poured into a 50 ml conical tube and placed on ice. For each vector, a primer mix was made in a 1.5 ml MCT tube where 6.25 μ l of the nested forward primer (100 pmol/ μ l) , 6.25 μ l of the nested reverse primer (100 pmol/ μ l), and 487.5 μ l sterile water was added. The mix was vortexed, centrifuged, and placed on ice. Next, a PCR tube rack was placed on ice with a PCR tube in the rack for each test strain and an additional tube for the RDGR170.3 control template. A 5 μ l aliquot of primer mix was added to each PCR tube. A 1 μ l aliquot of each genomic DNA sample (approximately 10 ng/ μ l) was added to each tube. An enzyme master mix was created in a 1.5 ml MCT tube by adding 67.0 μ l of sterile water, 25.0 μ l of Q5 reaction buffer solution, 2.5 μ l dNTP mix, and 0.5 μ l Q5 enzyme which was mixed by gently pipetting (this master mix is sufficient for five reactions). A 19 μ l aliquot of the master mix was then transferred to each PCR tube and the reactions were mixed by careful pipetting. The PCR reactions were cycled according to the manufacturer's recommendations for Q5 DNA polymerase. The PCR tubes were stored at -20 °C for later analysis by gel electrophoresis.

The next step was to check the products by gel electrophoresis. A 1.8% agarose gel was prepared as described above. The PCR products were prepared for the gel by adding 5 μ l of 6 \times loading buffer to each PCR sample, and 10 μ l of each PCR sample/loading dye mix was loaded into a well. Additionally, a 10 μ l aliquot of a DNA ladder was loaded into the leftmost well. The gel was then run at 120 V for 90 minutes, then imaged over UV light. This process was completed separately for PCR products from RKD10 strains (v386; **Figure 20**) and RKDam11 strains (v408; **Figure 26**)

CHAPTER III

RESULTS

I predicted that deletion of *i386* would not disrupt *Sk-3*-type spore killing while deletion of *i408* would disrupt *Sk-3* type spore killing. My prediction was based on the location of the intervals relative to *i350* (**Figure 7**).

For deletion of *i386* with v386, spore killing was not disrupted (**Figure 12**). The RKD10.2 × RTH1623.2 cross displayed asci with 4 viable and 4 inviable ascospores indicating spore killing was not disrupted (**Figure 13**). The RKD10.3 × RTH1623.1 cross displayed asci with 4 viable and 4 inviable ascospores indicating spore killing was not disrupted (**Figure 14**). The RKD10.4 × RTH1623.1 cross displayed asci with 4 viable and 4 inviable ascospores indicating spore killing was not disrupted (**Figure 15**). The RKD10.5 × RTH1623.1 cross displayed asci with 4 viable and 4 inviable ascospores indicating spore killing was not disrupted (**Figure 16**). The RKD10.10 × RTH1623.1 cross displayed asci with 4 viable and 4 inviable ascospores indicating spore killing was not disrupted (**Figure 17**). The RKD10.X × RTH1623.2 cross displayed asci with 4 viable and 4 inviable ascospores indicating spore killing was not disrupted (**Figure 18**). The genotype of each transformed *N. crassa* used in these crosses was confirmed to carry the transformation vector (**Figure 19**).

In contrast to the results obtains for *i386*, deletion of *i408* appears to disrupt spore killing (**Figure 20**). For example, the RKDam11.101 × RTH1623.2 cross displayed asci with 8 viable ascospores indicating spore killing was disrupted (**Figure 21**). The RKDam11.102 × RTH1623.2 cross displayed asci with 8 viable ascospores indicating spore killing was disrupted (**Figure 22**). The RKDam11.103 × RTH1623.1 cross displayed asci with 8 viable ascospores indicating spore

killing was disrupted (**Figure 23**). The RKDam11.104 × RTH1623.2 cross displayed asci with 8 viable ascospores indicating spore killing was disrupted (**Figure 24**). The RKDam11.105 × RTH1623.2 cross displayed asci with 8 viable ascospores indicating that spore killing was disrupted (**Figure 25**). The genotype of each transformed *N. crassa* used in these crosses was confirmed to carry the transformation vector (**Figure 26**).

CHAPTER IV

DISCUSSION

Two major results were obtained in this study. Deletion of *i386* does not disrupt *Sk-3* type spore killing, and deletion of *i408* does disrupt *Sk-3* type spore killing. These results offer insight into a broader effort being conducted in the investigation of the importance of *i350*. Disruption of spore killing by *i408* likely reaffirms the importance of *i350* in the *Sk-3* spore killing process as this DNA crosses over much of *i350*. These results are also able to be used in the context of other DNA interval deletions. As the effects that deletion of more intervals of DNA within and around *i350* have on spore killing are determined, the picture of how *Sk-3* spore killing is genetically driven will become clearer. It seems that *i350* either contains the poison production gene for spore killing or operates as a regulator for this gene. Deletion of additional intervals around *i350* should help us understand if other locations are involved. The lack of disruption to spore killing due to deletion of *i386* is a valuable result as it eliminates this region as a possible location for the killer gene or regulatory element. Intervals within *i350* can be analyzed to determine if the key portion of DNA to spore killing is more precise than all *i350*. Ultimately, as the picture for the intervals of DNA that effect *Sk-3* spore killing become clearer, so will the understanding of what drives *Sk-3* spore killing.

Because *N. crassa* is an excellent model for eukaryotic genetics, understanding the complexities behind the genetic components that drive phenomena exhibited by it, may offer a greater understanding of eukaryotic genetics as a whole.

REFERENCES

Davis RH. 2000. *Neurospora: Contributions of a Model Organism*. Oxford University Press, USA.

Freitag M, Williams RL, Kothe GO, Selker EU. 2002. A cytosine methyltransferase homologue is essential for repeat-induced point mutation in *Neurospora crassa*. *Proc Natl Acad Sci USA* 99(13):8802–8807.

Hammond TM, Rehard DG, Xiao H, Shiu PKT. 2012. Molecular dissection of Neurospora Spore killer meiotic drive elements. *Proc Natl Acad Sci USA* 109(30):12093–12098.

Margolin BS, Freitag M, Selker EU. 1997. Improved plasmids for gene targeting at the *his-3* locus of *Neurospora crassa* by electroporation. *Fungal Genet News*. 44:34–36.

Ninomiya Y, Suzuki K, Ishii C, Inoue H. 2004. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. *Proc Natl Acad Sci USA* 101(33):12248–12253.

Perkins DD, Radford A, Sachs MS. 2000. *The Neurospora compendium: Chromosomal loci*. Academic Press.

Raju NB. 1994. *Ascomycete Spore Killers: Chromosomal elements that distort genetic ratios*

among the products of meiosis. *Mycologia* 86(4):461–473.

Rhoades NA, Webber EK, Hammond TM. 2020. A nonhomologous end-joining mutant for *Neurospora sitophila* research. *Fungal Genet Rep.* 64:Article 1.

Samarajeewa DA, Sauls PA, Sharp KJ, Smith ZJ, Xiao H, Groskreutz KM, Malone TL, Boone EC, Edwards KA, Shiu PKT, Larson ED, Hammond TM. 2014. Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins. *Genetics* 198(3):895–904.

Shiu PKT, Zickler D, Raju NB, Ruprich-Robert G, Metzenberg RL. 2006. SAD-2 is required for meiotic silencing by unpaired DNA and perinuclear localization of SAD-1 RNA-directed RNA polymerase. *Proc Natl Acad Sci USA* 103(7):2243–2248.

Smith Z, Bedore S, Spingler S, Hammond TM. 2016. A *mus-51* RIP allele for transformation of *Neurospora crassa*. *Fungal Genet Rep.* 62:1–7.

Turner BC, Perkins DD. 1979. Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. *Genetics* 93(3):587–606.

Velazquez A, Webber E, O’Neil D, Hammond T, Rhoades N. 2022. Isolation of *rfk 2^{UV}*, a mutation that blocks spore killing by Neurospora *Spore killer-3*. *MicroPubl Biol.* 17:2022:10.17912/micropub.biology.000604.

Vogel HJ. 1956. A convenient growth medium for Neurospora (Medium N). *Microb Genet Bull.* 13:42–43.

Westergaard M, Mitchell HK. 1947. Neurospora V. A Synthetic Medium Favoring Sexual Reproduction. *Am J Bot.* 34(10):573–577.

Yu J-H, Hamari Z, Han K-H, Seo J-A, Reyes-Domínguez Y, Scazzocchio C. 2004. Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. *Fungal Genet Biol.* 41(11):973–981.

Zanders S, Johannesson H. 2021. Molecular Mechanisms and Evolutionary Consequences of Spore Killers in Ascomycetes. *Microbiol Mol Biol Rev.* 85(4):e0001621.

Table 1 Strains used in this study

Strain name	Genotype
F2-23 (RTH1005.1)	<i>rid; fl A+</i>
F2-26 (RTH1005.2)	<i>rid; fl a+</i>
FGSC 10340 (RZS27.10)	<i>rid; mus-5I^{RIP70} a+</i>
ISU-3036 (RTH1623.1)	<i>rid; fl; sad-2Δ::hph+ A+</i>
ISU-3037 (RTH1623.2)	<i>rid; fl; sad-2Δ::hph+ a+</i>
ISU-3291 (RDGR170.3)	<i>rid; Sk-3+; mus-5IΔ::bar+ A+</i>
TDMS1.2	<i>v386</i> -based hygromycin resistant transformant of ISU-3291
TKDam1.1	<i>v408</i> -based hygromycin resistant transformant of ISU-3291
RKD10.2	<i>rid; Sk-3+ i386Δ::hph+; mus-5I? A+</i> (offspring of TDMS1.2 × F2-26)
RKD10.3	<i>rid; Sk-3+ i386Δ::hph+; mus-5I? a+</i> (offspring of TDMS1.2 × F2-26)
RKD10.4	<i>rid; Sk-3+ i386Δ::hph+; mus-5I? a+</i> (offspring of TDMS1.2 × F2-26)
RKD10.5	<i>rid; Sk-3+ i386Δ::hph+; mus-5I? a+</i> (offspring of TDMS1.2 × F2-26)
RKD10.10*	<i>rid; Sk-3+ i386Δ::hph+; mus-5I? a+</i> (offspring of TDMS1.2 × F2-26)
RKD10.X*	<i>rid; Sk-3+ i386Δ::hph+; mus-5I? A+</i> (offspring of TDMS1.2 × F2-26)
RKDam11.101*	<i>rid; Sk-3+ i408Δ::hph+; mus-5I? A+</i> (offspring of TKDam1.1 × F2-26)
RKDam11.102*	<i>rid; Sk-3+ i408Δ::hph+; mus-5I? A+</i> (offspring of TKDam1.1 × F2-26)
RKDam11.103	<i>rid; Sk-3+ i408Δ::hph+; mus-5I? a+</i> (offspring of TKDam1.1 × F2-26)
RKDam11.104	<i>rid; Sk-3+ i408Δ::hph+; mus-5I? A+</i> (offspring of TKDam1.1 × F2-26)
RKDam11.105*	<i>rid; Sk-3+ i408Δ::hph+; mus-5I? A+</i> (offspring of TKDam1.1 × F2-26)

*Predicted genotype (Interval deletion allele was not checked by PCR). The *rid*, *fl*, *mus-5I*, and *sad-2* alleles have been described by others (Freitag et al. 2002; Ninomiya et al. 2004; Perkins et

al. 2002; Shiu et al. 2006; Smith et al. 2016).

Table 2 Primers used in this study.

Name (Alias)	Sequence (5' > 3')	Purpose
HPH-CEN-F	AACTGATATTGAAGGAGCATTGG	Center fragment amplification from Plasmid pTH1256.1 (GenBank: MH550659.1)
HPH-CEN-R	AACTGGTCCCGGTCGGCAT	
V0359-A	ATCGCCGCAAACAGGACAATAGA	Left flank amplification for v386 from RDGR170.3 genomic DNA
V0359-B	AAAAAAATGCTCCTCAATATCAGTTGAACGACTTCCC CAGAACCCAGAA	
V0386-C	GAGTAGATGCCGACCGGGAACCAAGTTGGGCTGGCT CAAGCAAGGAACCT	Right flank amplification for v386 from RDGR170.3 genomic DNA
V386-D	TCAACACGAGGCAGACGCCACTC	
V0359-E	CGCTGGCTCCGTTCTCAGCTC	Nested amplification of v386 left flank, center fragment, and v386 right flank fusion product; <i>i386+</i> and <i>i386Δ</i> genotyping
V0386-F	TGTGCCCGGTCCCTCCCTTGGAA	
V0394-A	TCCAAAGGAAAGGACCGGGCACA	Left flank amplification for v408 from RDGR170.3 genomic DNA
V0394-B	AAAAAAATGCTCCTCAATATCAGTCGTGAGCCGGAG CAGTCGTCGTA	
V0358-C	GAGTAGATGCCGACCGGGAACCAAGTTATAAATTGCTG GGCTAGGGAAGGTG	Right flank amplification for v408 from RDGR170.3 genomic DNA
V0358-D	GGTGATGAATGGCGGATAGGTTCTT	
V0394-E	GGGACAGAGAGTGGCGTCTGCCT	Nested amplification of v408 left flank, center fragment, and v408 right flank fusion product; <i>i408+</i> and <i>i408Δ</i> genotyping
V0358-F	AGTTAGTTGGCTCTGGATGACTGC	

Figure 1 Research Progression

A >v386 left flank

```
ATCGCCGAAACAGGACAATAGATTGTATTCAATTGGTCTCCCTCGCAAGTGGAACTTC  
TGGCGCTGGCTCCGTTCTCAGCTCGCTGGCAGGTGTCGCGATTCCGGCGTCAAGTTGTGAAG  
GGTGTAGTGTAGTCGTTGACAGATCCTCGATGCGCGTCTCAGATTGTCGTACCCCTCGGC  
AAAGAGAGTGAATAGTACGATTGGATGCTCATGCAAGGAGCGTTGGATCGCATCAAGCAT  
TGTCTGTGCGTTCTGCACTAGTGGAACTGGCATGCTCTGTCGCCATTTGGCGC  
TTGATTGCTGGGCTGGTGGCGGGGTGAGGAAATTGATGAGGTACACCAGATGGATAAT  
TGTGGTGTGCGCAAGAAATTCAAGGGTACGGACTATCGAGAGACAAATTCCATTTGTTG  
GATGTCCGTGGACCGTGCCCTGCCCTGGAATCCTCGCTGACTTGTCAATTCACTGGTACTCC  
ATGGCGAGCGCGAAAGGGCCAGAGGGGGGGCGGCCTCTTCTGGCATCTGGACAACTGC  
GCCTTAGCGAACAAATGATTGATCAAGAGTTCATGATATCAAACAGCCAGCTTACGTTGATT  
GCGTGGCCTCCTACTGAGATGGGTGACCAAGGAAAGATATTGCGACCATAAGGTGTCGGAA  
AGGAGGAGTGCAGAGAACAAAAGCTGCAGTAAAGTGCACACTACTAGGAAACATTAGGCAC  
AATGCCCTGCGCGAAACAGAGTCACAAAGGGAAAGGCACATTCTGAGGTCGGACATTGATG  
AGAAATTGGTTGTGGAATCTTCTGGTTCTGGGAAGTCGTC
```

>v408 left flank

B TCCAAAGGGAAAGGACCGGGCACATACCTCTAGCCTTACCAAGACGGAAACACTAACGAGCGATTT
TGCCACCTAGAAGTATAACCTCTATGCTAACAGTAGGTAGACATCCTACCACGCTTCTTTTC
CGTCACCGGCTCTGGAGTACCGTACATACCTCAAACACTCATTCCACCCCTGTTCTGGAAAT
TGTGGGACAGAGAGTGGCGTCTGCCTCGTGTGAATCAAGACCGGATGTTGGTACTTCAGG
AAGGAGGAGAGGTACGGTGGGTGCGTTAGTGTATCTTGATCATGATAAAGGGCAATCACGGGG
ACTTGGCTCCATGCCAAAAATGAAAGGGTCACCAGTCACGAAAGGCCGTTTGCTCGAACATT
ACGATGACGAAGTGCCTCACAGCAACTTGAGGTTGGTTAGGCTGCCCTGGTAATACCAACCT
CATGTCGGTGAAGGGGCCCTTCGATGAAAGACTTTCACTGGAAAGTGCACGGTTAAC
CCTTCCTTCTTGGGATTACGTCCCCACTCACGTATGAAACAAGCCAAGAAAGCTGAG
GCCTTGAGGAGGAACCTCCGTCTTGTCTTTGAATGTGAAATGAGCGTTCCCGATAA
AGGAGCATGAACAGGCAACTGCGTTAGGCCATGAAACATGTGCAGCTCGTCCAGTCCCC
AGCCGAATGATAGACGGATGAGTAAGGAGTGTCCGGCTGCACTGGAAAAGAGAATTGGAT
GGCTCCATGCGCACTGCACATCATGATGACACCATAAACACAGTAGGCAATGGGA
TGTCCAGACGAGGGCAACTTGGAACATCGATACGACGACTGCTCCGGCTCACG

Figure 2 Transformation vector left flanks. **(A)** The 863 bp sequence of the v386 left flank is shown in the 5' to 3' direction. This sequence was PCR-amplified with primers V0359-A and V0359-B from RDGR170.3 genomic DNA. **(B)** The 872 bp sequence of the v408 left flank is shown in the 5' to 3' direction. This sequence was amplified with primers V0394-A and V0394-B from RDGR170.3 genomic DNA.

A >v386 right flank

```
GGGCTGGGCTCAAGCAAGGAACCTCCTGGCCCCATATCGAACCTCGATACTCGCATCTGG
GTGCAGCTTCTTCCACGTCGATAGCAACTGTATGCCAAAGGTGTATTGTACTTGACCGCGTAA
CTGAAGGTGTCTGGTCATTTTGACTTAGATGAGCCCTTATCGAACGCTGACGCCGGTTAG
CGTTGTAAGTGTAGTGGTGTAAAGCCCTGCCGCCGACCACAGATCCGAGTCCCGCTTCT
TCTCCGCTGCCCTGCAATTGCGGGCGTTGCACACTGCATTGAGTCAGTCGGTCAATGGTATTGA
TCAATCATTAGATTGACAGTAACGTGTTCCCGCCGATCGAGTGAAGGCTTAATTCAAGGTCC
CACGGTCCCACCGGGTCTAGGGGGAGACTCTGGTAGGGGTATGGAACATGACTCCGGCTTC
ATGAGAGAACCAAGGGAGGCAGGGCCCTGTCGGAGAAGCTAACCTGAAGGCACCCATAGTT
TTCTTCCCTGATGATGCCTGACATATTATTGTAGAGTTCCTTCTCAACGTACCGGATCGT
GTTCTCACTCTAAGATAGAAAGGGCGAGGAAGGACTTGGTGTCAATTGGTACTGAACCTCC
ACAACACAAAGCTGTCGCAAAGGGAGGACCGGGCACATACTCTAGCCTTACCAAGACGGA
ACACTAACGAGCGATTTGCCACCTAGAAGTATAACCTCTATGCTCAACAGTAGGTAGACATCC
TACCACTGCTTTCCGTCCACCGGCTTGGAGTACCGTACATACTCAAACACTTCATT
CCACCCCTGTTCTGGAATTGTTGGACAGAGAGTGGCGTCTGCCTCGTGTGA
```

B >v408 right flank

```
ATAAATTGCTGGGCTAGGGAGGTGGATTGTGGTTAGGGAGCGGGCTTTCTGTAGT
TGTTGTACCATTCAGTTGACTCACGGATACGATACTCTTCTTTCTTACCGAA
AAATTGTCATTACGCATCGTCACTTGTGGAGGACTGATTGTGTCAGCGGAATCGA
ATGGAGAATGGGGATGAGGAATGGGGAGAGGAAGAAAGTCAGGGAGCAGGAGGGCAG
CAGAGCAGGATTATAGAAAGTAAGTATGATATGCTGCGCAAGGGATTCTCTATT
GATGCTGATATGTGCTTCATATGCATTGTCGAAAGGGATCTCTAAGGGACGAGTCAGG
GGTAAGCATCCTGCCTCGTAATCATTGAACCTCAAGTACCAACTATTGAAGTTATTATCC
TACCGTTACGCGGTTCAAGGCTCTCTCTGTAGCTAGTTATC
TATCACTGGTCCCATAAGGGCTCGGACAGATACTGCCACGAGAAAAGGTGTAAAGGGGGAGGAT
ATGAAGAACATACTGTATTCAAGCCATATAAGACACACATATGTCCAACAAGACCAATTGAGGTA
TCAGCAAAATATATATACAGTAAATGATCATCTGCCAGGCAGTCATCCAGAGCCAAACTA
ACTTACAACCTATCTAACAAAGAACCTATCCGCCATTCACTCACC
```

Figure 3 Transformation vector right flanks. **(A)** The 871 bp sequence of the v386 right flank is shown. This sequence was PCR-amplified with primers V0386-C and V0386-D from RDGR170.3 genomic DNA. **(B)** The 736 bp sequence of the v408 right flank is shown. This sequence was amplified with primers V0358-C and V0358-D from RDGR170.3 genomic DNA.

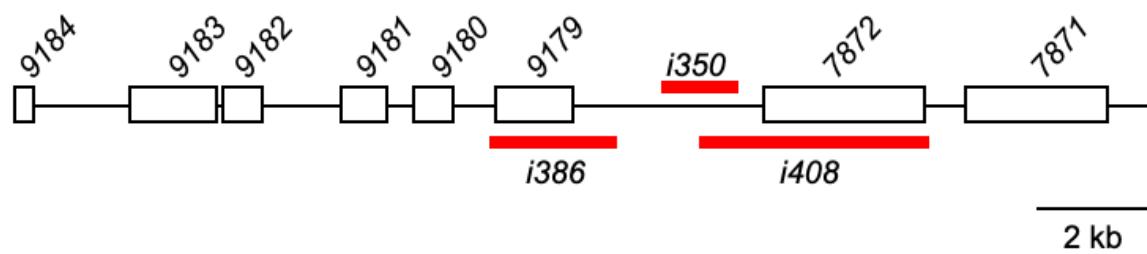
>v386 and v408 center fragment

```
AACTGATATTGAAGGAGCATTGGCTGGCTGGAGCTAGTGGAGGTCAACAATGAATGC
CTATTTGGTTAGTCGTCCAGGCGGTGAGCACAAAATTGTGTCGTTGACAAGATGGTCA
TTAGGCAACTGGTCAGATCAGCCCCACTTGTAGCAGTAGCGGCGGCGCTCGAAGTGTGACTC
TTATTAGCAGACAGGAACGAGGACATTATTATCATCTGCTGCTGGTGCACGATAACTTGGTG
CGTTGTCAAGCAAGGTAAGTGGACGACCCGGTCATACCTCTTAAGTTCGCCCTCCCT
TTATTCAGATTCAATCTGACTTACCTATTCTACCAAGCATCCAAATGAAAAAGCCTGAAC
CACCGCGACGTCTGTCGAGAAGTTCTGATCGAAAAGTTGACAGCGTCTCCGACCTGATGCA
GCTCTCGGAGGGCGAAGAATCTCGTCTTCAGCTCGATGTAGGAGGGCGTGGATATGTCCT
CGGGTAAATAGCTGCGCCGATGGTTCTACAAAGATCGTTATGTTATCGGCACCTTGATGCA
GGCCGCGCTCCGATTCCGGAAAGTCTGACATTGGGAGTTCAGCGAGAGCCTGACCTATTG
CATCTCCCGCGTGCACAGGGTGTACGTTGCAAGACCTGCCTGAAACCGAACTGCCGCTGT
TCTCCAGCCGGTCGGAGGCCATGGATGCGATCGCTGCGCCGATCTAGCCAGACGAGCGG
GTTCGGCCATTCTGGACCGCAAGGAATCGGTCAATAACACTACATGGCGTGATTCATATGCGC
GATTGCTGATCCCCATGTGTATCACTGGCAAACGTGATGGACGACACCGTCAGTGCCTCGT
CGCGCAGGCTCTCGATGAGCTGATGCTTGGCCGAGGACTGCCCGAAGTCCGGCACCTCGT
GCATGCGGATTCGGCTCCAACAATGTCCTGACGGACAATGGCCGATAACAGCGGTATTGA
CTGGAGCGAGGCCATGGTCTGGGATTCCAATACGAGGTGCCAACATCCTCTGGAGGCC
GTGGTTGGCTTGTATGGAGCAGCAGACGCGCTACTCGAGCGGAGGCATCCGGAGCTTGCAGG
ATCGCCGCGCTCCGGCGTATATGCTCCGATTGGTCTTGACCAACTCTATCAGAGCTTGGT
TGACGGCAATTGATGAGCTGGCGCAGGGTCATGCGACGCAATCGTCCGATCCGG
AGCCGGGACTGTCGGCGTACACAAATGCCCGCAGAAGCGCGGCCGTCTGGACCGATGGCTG
TGTAGAAGTACTCGCCGATAGTGGAAACCGACGCCAGCACTCGTCCGAGGGCAAAGGAATA
GAGTAGATGCCGACCGGGAACCGAGTT
```

Figure 4 Transformation vector center fragment. The 1412 bp sequence of the v386 and v408 center fragment is shown. This sequence was amplified with primers HPH-CEN-F and HPH-CEN-R from plasmid pTH1256.1 (GenBank: MH550659.1). The positions of the *hph* start and stop codons are underlined.

>Interval i386

CTTTCTTGTAGATAACAAAACGAAACATTCTCCTCTCGTCAGTGTGACCTAACGCCGAAA
ACCACTGCGCCAACGTGAAGCTGTCTGCTTCTCCAAACTATCGCTCGGGAAACTGATTAC
CCGCTTGGGAGGGGAGTCATTATTCCCTGCTGAATCATGCTGCTCAATCAGTCCTTT
GCTCCGTCTCCCTCTCTTCCGGCTTCTCGCTTCGCTGAGACTGTTGAGGCCAG
ACCACTGGTATACGATACTATCGAGTGTACCTCCACCGTCAAGGTCTGATTCAAGGAGAGTCC
ACAATGGGATTCATAGGCCTCTGTAGGAAAGGCTCCCGCAAAGCGATCTTGAGCCCT
CAACAAGGCGCGCCTCTTTCTAGGCAGTGTGCGTAATGTCAGGAAAGTCCCAGCCTT
GTCGCACTCATTACCCAGCTGGTCCCTCGTCTTCATTGAAGCGTGCCTCAACTATGCAGAG
AAGGTGGATGACTTCACAGTCTGGGGTCTGAACCCACATCCACCGAGCAGCCTGTTGA
AGGACGGTTCGTCTACAGCCAGCTTCTTGAGTTCTGCGCTCTCATTGGCTCAGAG
CGTGGCACGGCCCTACAGCTAGTCAGGGCTTGTCCAAGCCACTCTCATTGGTCAACTG
GAACAGTGTTCACAGTCGCGCTAGAATGCACTGGTCCTCCGTTCTGAAGTCCTCA
CTAAATCTCTCGATATCGCCTATCGATAAAAGCTATCGTGTCTCCTGCTATGAAGCAATT
CAATGAAGCAATTCAATGAAGGAATGAACCAATGAAGCAAGGAAGTAATGAAGTAAGGAAGC
AAGGAAGTTAGGGAGTAAGGGAGTAATACGGTATAGGAGTAGAGTGGAAAGAAAGAACAGCGA
AGCAATTGGGTGAGGACGGCTGTAGCCGTCCAATAAGAGATGCATCTAGATATAGGTAGTAG
TCTCGGTAGTATCCACGCTCAACAAATACAGCGGGCGTTGCTGAACTAGGGATCCAGCAGTC
CATCGATGTCTGAAAACTAATTAAATTATCTTGCCTCGTATTGGCGACGTCTGGATCTG
GGTGTGTTGGCGGTGGTCTCGTAACGGGGTAGACCTGTCCGAATGTCTGTGGC
TGGAGTGGAGTCGACTCTCCGCATCGGAATCAGAATCTACGGCATTGAGGCTTGTGCG
GAGAGCGATGCAATGAGCCTCCATGACAACATGTCTCTTCTGGTACACCCATAGCCTC
CTGAAAAGCCTCGTAGCTTCCAGCCATCGAGGTCTTCTCCGACTCCATCAGCGCTCT
ATGCGGACCTAGCCTGCACCCGAGCTTGTGCGTCCCCACTGTTGACAGCAGGGAAACCA
GTATCCTGGCTTGTACTTAATGGAAGAAGAAGAAAGAGGAAATGAAGGAAGGGGGGG
GGGGGGGGGGGGGGGGGGCCTCTGTAACTGTACATTGAGACGCGAGTACCTCTAAGAATCCATG
TGTGGATCGAAAATCGAGCAGTACCTCCTCAACAAACGGCCTGGTACATTGACAGCGAA
AATCACATTCTGTTCAAGTTGCTCTCAGAGCTGGCGCAAGTTGAAGTGGAAAGTTACGATT
AGACTGCTGGTCTTACCGTGCAATACCGGGCAACTGACCTGCTATGATTCAACCCACA
CCCGGAATACGTCACTGTCAACTCCATTGCACTTGCTACTCGTGTGACCAGGACAGTCGA
GGTACATAGAGTAATGCGATGGACACCCGCAGGTCTCAACAAAGTGCCTCCATCTCAGATG
GCAATGCTGGCTATTGGACACAACCGTTACTACCTAGGTACCTAGACTGCGGCTGTTAC
AAAAGACAAGAACGGTAAGTAATGGCATCTCTCGGCTGATCGGATGGGGAAAGGCAAGTGAA
TCGGTCACGACAGATCCTCCGCCAAGATGAGTTCTTGTGACAGAAGGTGTCAGGCAAGA
GGCAGGAAGAGACAGCATGCCGGGACCGAACATCGGAATGACTCCATTGAAACGCTGAGAA
CGCGCCCCGGCCTACTACTAGGTACCATCGAGCTGAGTGGTCCCTCCCAAGCTTGA


Figure 5 Sequence of DNA interval *i386*. The 2202 bp sequence of *i386*+ is shown.

>Interval i408

CCCGTCTCGCTCTCCGGCCTTGTCAAGGCAGATGCCAGTTCTCCTGCCTGTCAGGT
GGCCATCTTCTGCCCGCCATGCCACGGCAGTAAAAAAAGTCAGGACAACATGAATTGACCCGTCG
GGTCCGAGAAGGCCGAGCGTGAAGCGCTCACGTTGAATTGAAGAAGGCCAGGCTAGTTCCGCAC
TACCAAGATACTAGAGGTACTACGTACCACTCCGTTGAAGGAGGTTATGACGGGAAGGGAAAGGG
AAAGAGGGGACGGAGAAAACGACTGAGCTACAGCACGCTTCCAGCTCAGTTGGGCACCCAGAAA
GCTATAAGATTCCCTTCCCCGGCCAAACTCTCGTTAGATTTCTCTCCAACATCGTTAAG
GACTTTGTTCTTTTTGGAATATCATCCCTCTTCATCCCAACATGTTAGCATTCACTCTAA
TGCTCTGGGCCGAGAGCCCTACAAGGTGGCATGTGCGGCGTTGGCTTGTATTCGGAATACA
CATGCTGGCGCTGTCGCGGCCAGCCATGGCGGCCAGCTAGTGGGTGCTGTAAGTCTACTTATA
TTCTCATTGTTGGTTCTTCTTCTTCTCTCATTCCTCGACGGCTACCTGTCTCT
CGGTCCCTCTGTTTCGCTAACAGAACAGCGGTGGCCACCTCCCCCGACGGGATGAC
CTTGCCCTGTCCGTACCGCGGCAGGGGCTGCTGGGCCAGCCCCCACGCCCTGGTGGCGGT
TGTGGTCCCGCAGCAGTGAATCCATGCTAGGTATTCTCAGGTTATGAAATCTACGATCGCTG
ACAGTTGCACACCAGTGCCTTCCGGCAGTGGCGCCTCCGTCCAGGCGGCCACAGAGGTCGTTCAA
TTAATCACCCTCTAAACGAATTCCACCATTCTCAGCAGTATCAGCGAAACACCACCCACC
CAGGTTAGTGCCTCCATCGCTTCGAAAGCTCAAACCCCTCCCTCCTCCCCCTCGCGCT
GACGACACCACCGGCCACCGCAACAGAACATTGCCAACACCAGACCGCAACAGCCCCGAGCCA
TCCCAGCAGCTGGCTTCGCCCTGCCAGCAGCCATGGAGCAGCAATGGCAACCGTACTCTGACTCTG
CCGCCAGCGCTCGTCCAGGAGATAACAACACGGTCCGGCAAATGTCCATGTCCCCCTCGAGACTA
CGCCAGCAACAGCAGGTCCAGGCGCAGCAGCAGCCGGCGGATAACAAGTATGATTACCA
GCCGGTCTGAACCCGAGCGCGCAACCACAGTCCTCCATTCCCCAATGACGTCGCTCCAGTCG
GCGACGCCAACGGGACGTCGCTATGAGGATGCCATGATCCACACTCATCCCAGAACGCTACCAT
CAAGTACCCCTGAGGCCGATCACTCGCTCTCCGGTGGTCGCCCGGCCAGCGTCAAGCATCCAA
CAGCTTCCCCCATCAACCCATACGCACCCGCTCAACACGCCAGCTATCCAAACTCGGCAATCA
GCTCTACCATGGACGGCTTTATGGACCCCAAGTCGCCGCCAGGCGCATGAACTCTCAGTCGCA
ACAGATGCCCATGCCGAGAGGAGGCCAGTCCGAATTAGGAAATGCGAGGACCCAGGACCTT
CGACCAAAGATTAACAAGCAGCCGGCTATCGACGAGCTAACCGGAAGGCGTTATCAGTGTAT
GTACATGTTCGCAGGCCATAGCTTGGCAAGCCTGCTGACGAACCACGATAGCCCCCTCAAGCGCT
AACAGTTCACCTCCCCGCCACCTACCGAATATGCAACCCGGCTCAAGTACGAGTCGCTTAGGAAT
CCTCGGCGCGTCTTACCAAGCCTAGCAAGGGAGTGAAGAATGATGGCTATGACAACGAGGACAGCG
ATTATATCCTCTATGTGAATGATATCCTGGGCTCAGAGGAGGCTGGTCATAAGTAAGTTGCTGCCA
CCACGAGTCGAGAACAGCTACTTACATGTTGTACCAAGGAAACCGCTACCTGATTCTCGATGTCCTT
GGCCAGGGTACCTCGGCCAGGTCGTAAAGTGCCAAAACCTGAAGACGCAAGAGGTCGTTGCGGTCA
AGGTCAAGAACCGAACAGCTTACTCAACCAAAGCATGATGGAAGTGTCTGTTGGATTGGT
TCGTACACCAGCATTGTTGACTTGATTGTTGCGACACCGCTAACCTCCGTTCAAGCTCAATACAA
AGCTCGACAAAACGACGATCACCATCTGTTGCGACTAAAGGACACGTTCATCCATGCCAACACTT
GTGCTTGGTATTGAGTTGCTTAGTGTCAACCTATACGAGCTGATCAAGCAAAACCAAGTCCGAGGC
TTGAGCACGACACTGGTTCGCGTCTTGCAGCAGCTGCTGAATGGCTTCTGCTCAACAAGG
CGAGACTGATCCATTGCGACCTGAAACCCGAGAACATTCTCCTGAAGAACCTCGAGAGGCCGATCAT
CAAATTATCGATTGCGATCCGCTTGCAGCAGGAGACTGTCTATACGTACATCCAGTCCAGA
TTCTACCGATCCCCCTGAAGTGTGCTTGGCTTGCCTATTCTCGGCTATTGATATGTTGCTTGG
GATGCATTGTTGAGCTTCTGGGCTTCCCCGGTTCTCCGAGTACAACCAGGT

GTCACGAATCGTCGAGATGCTGGCAATCCTCAAACCTGGATGATCGAGATGGCAAGCAGGCAGGA
GAATTCTCGAGAAGAGGCAAGATGAGTCGGCAGAAAAACCTACCACCTGAAGTCTATGGAGCAAT
ACTCTCGGGAGCATGGCACGAAGGAACAACCTAGCAAGAAATACTTCCAAGCCAACACACTGCCCGA
GATTATCAAGACGTACCCGATGCCGAGGAAGAACATGAAGCAGTCAGAGATTGACAGAGGTGAGTCG
AGCGCATTCGGTGTGTTGTGCTCTGAAAGCTGACCTGTCCTAGAAATGAACAAACCGTATCGCTT
CATCGATTTGTCAGGGTCTGTTGACGATCAATCCCTGGAACGATGGTCGCCTAACAAAGCCAAG
CTACATCCTTCATCACCCAAATCGAAGTTACTGGACCGTTGTACCGCCATGAACCTCAAGTCAA
GTTCGCTCAACAGATCACCAGCCCCGGAACTCAACAGCAGATAACAGGCCGAGGCATTCAAGCA
AAAGGCAGCAACAAGCGCAAGCCAACGCCATTGGCGCAAACCAACAGGCCAAACCCCTACGGGTGATG
GCCACTGGCAGCAATATCCCCAGCAGCACCCACCGCAACCTCCGCTTGTATTCCAACAACAACA
TTTACGCTCCTGGTGGCAGCAGCAGTCACGCTAGCGCGCCTCCACCGTACGGCTCTCAGCAGGGCGC
ATACCCCTCAACAAGGTATGCCCAACAAACAGCAGCCGAGGTACCGCAAGTACAGATGCCTCAGCG
AACTACGCGGGCGTGTCCCAGTCAAATCTGTACGCCACAGCAACAGGCAGCAGCGGGCGCGCCAGA
GGCAACGGTCCTCGACAATGGAGCAGCAGCAAAGTGGTATTCCCGTGTCCATCCAGCGCGTCGCGAG
CCATCTTGATCCCACCCAGCCAATTGCTCTGCAACCGAGCCCCGCTACTACCCGCCACCAGAC
GGCCTCATGGGAATGGACTCGCAGCCCAGCCAAGGATGCCGAGGGAGGGAAAGCCGTGCTCAGGCGT
CTGGACGGGTCAAGGGCAACAAACCGTGACTTCATCAGGAACTTGGAGGAGAGGACGTTGGAGGAAGG
GTTTATGGCGGGAACGGTGGAGGTCAAGGTCAAAGTCAATGGCATTGAGC

Figure 6 Sequence of DNA interval *i408*. The 4004 bp sequence of *i408+* is shown.

Figure 7 *i386* and *i408* locations. A diagram of Chromosome III, positions 320,000 to 340,000, in *Sk-3* strain FGSC 3194 is shown. White rectangles mark the positions of likely protein coding genes. *N. crassa* gene database numbers are shown for each predicted gene. The locations of *i350*, *i386*, and *i408* are indicated with red bars.

>i386A::hph+ PCR product, predicted sequence, primers V359-E and V386-F
CGCTGGCTCCGTTCTCAGCTCGCTGGCAGGTGTCGCGATTCCGGCGTCAAGTTGTGAAGGGTGATAGTGT
AGTCGTGGACCAGATCCTCGATGCGCGTCTTCAGATTGTCGTACCCCTCGGAAAGAGAGTGAATAGTACG
ATTGGATGCTCATGCAAGGAGCGTTGATCGCATCAAGCATTGTCCTGTCGTTCGTCCACTAGTGG
AACTGGCATGCTCTGGCCATTGGGCCCTGATTGCTGGGCTGGTGGCGGGGTGGAAGGG
AATTGATGAGGTACACCAGATGGATAATTGTTGGTGTGCGCAAGAAATTCAAGGGTACGGACTATCGAG
AGACAAATTCCATTGTTGGATGTCGGACCGTGCCTGCCCTGGAATCCTCGCTGACTTGTCAATT
CACTGGTACTCCATGGCGAGCGCGAAAGGGCCAGAGGGGGGGCGCTCTCTTGGCATCTGGACAA
CTGCGCCTTAGGCGAACAAATGATTGATCAAGAGTTCATGATATCAAACAGCCAGCTTACGTTGATTGCGT
GGCCTTCACTGAGATGGGTGACCAAGGAAAGATATTGGCACCATAAGGTGTCGGAAAGGGAGTGC
AAGGAACAAAAGCTCAGTAAAGTCACACTACTAGGGAACATTAGGGCACAATGCCTGCGCAAACGA
GTCACAAAGGGAAAGGCACATTCTGAGGTCGGACATTGATGAGAAATTGTTGGTGGTAATCTTCTGGT
TCTGGGAAGTCGTTCACTGATATTGAAGGAGCATTGGGCTTGGCTGGAGCTAGTGGAGGTCAACA
ATGAATGCCTATTGGTTAGTCGTCAGGCGGTGAGCACAAAATTGTCGTTGACAAGATGGTTCA
TTAGGCAACTGGTCAGATCAGCCCCACTTGTAGCAGTAGCGGCGCGCTCGAAGTGTGACTCTTATTAGC
AGACAGGAACGAGGACATTATTATCATCTGCTGCTTGGTGCACGATAACTTGGTGCCTTGTCAAGCAAGG
TAAGTGGACGACCCGGTCATACCTCTTAAGTCGCCCTCCCTTATTTCAGATTCAATCTGACTTA
CCTATTCTACCCAAAGCATCCAAATGAAAAAGCTGAACTCACCGCGACGTCTGCGAGAAGTTCTGATCG
AAAAGTCGACAGCGTCTCCGACCTGATGCAGCTCTCGGAGGGCGAAGAATCTCGTCTTCAGCTCGAT
GTAGGAGGGCGTGGATATGTCCTGCGGGTAAATAGCTGCGCCGATGGTTCTACAAAGATCGTTATGTTA
TCGGCACATTGCACTGGCCGCGCTCCGATTCCGGAAGTGCCTGACATTGGGAGTTCAGCGAGAGCTGA
CCTATTGCATCTCCGCGTGCACAGGGTGTACGTTGCAAGACCTGCCCTGAAACCGAAGTGCCTGTT
CTCCAGCCGGTCGGAGGCCATGGATGCGATCGCTGCCGATCTAGCCAGACGAGCGGGTCGGGCC
ATTGGACCGCAAGGAATCGGTCAATACACTACATGGCGTGATTCATATGCGCGATTGCTGATCCCCATG
TGTATCACTGGCAAACGTGATGGACGACACCGTCAGTGCCTCGCGCAGGCTCTCGATGAGCTGATG
CTTGGGGCGAGGACTGCCCGAAGTCCGGCACCTCGTGCATCGGATTCTGGCTCCAACATGTCCTGAC
GGACAATGGCCGCATAACAGCGGTATTGACTGGAGCGAGGCATGTTGGGGATTCCAACATCGAGGT
CCAACATCCTCTTGGAGGCCGTGGTGGCTATGGACGAGCAGACGCCACTTCGAGCCGGAGGCAT
CCGGAGCTTGCAAGGATGCCCGCCTCCGGCGTATATGCTCCGATTGGCTTGACCAACTCTATCAGAG
CTTGGTTGACGGCAATTGATGATGCAGCTGGCGCAGGGTCATGCGACGCAATCGTCCGATCCGGAG
CCGGACTGTCGGCGTACACAAATGCCCGCAGAACGCGCCGCTGGACCGATGGCTGTTAGAAGTA
CTGCCGATAGTGGAAACCGACGCCCGACACTCGCCGAGGGCAAAGGAAATAGTAGATGCCGACCGGG
AACCAAGTGGCTGGCTCAAGCAAGGAACCTGGCCCATATCGTAACCTCGATACTCGCATCTGG
GTGCAGCTTCTCCACGTCGATAGCAACTGTATGCCAAAGGTGATTGACTTGACCGCGTAACTGAAGGT
GTCTGGTTCATTTTGACTTAGATGAGCCCTATCGAAGCTGACGCCGTTAGCCTGTAAGTGTAGT
GGTGTAAAGCCCTGCCGCCGACCACAGATCCCGAGTCCCGCTTCTCCGCTGCCGCAATTGCGGGC
GTTGCACACTGCATTCACTGCGTTGGTCAATGGTCAATTGATCAATCATTAGATTGACAGTAACGTT
CCGATCGAGTGAAGGCTTAAATTCAAGGTTCCACGGTCCCACCGGGCTAGGGGGAGACTTCTGGTAGGG
TATGGAACATGACTCCGGCTTCATGAGAGAACCAAGGGAGGCAGGCCCTGTCGGAGAACGTAACCTG
AAGGCACCCATAGTTCTTCCCTGATGATGCTGACATATTATTGAGAGTCCCTCTCAACGTACC
GGATCGTGTCTCACTCTAACAGATAGAAAGGGCGAGGAAGGACTTGGTCAATTGGTACTGAACCT
CAACACAAAGCTGTCGTCACAGGAAAGGACCGGGCACA

Figure 8 Genotyping assay PCR product: *Sk-3 i386A::hph+* genotype. The predicted sequence of a DNA molecule amplified with primers V0359-E and V0386-F from a template consisting of genomic DNA from a strain with the *Sk-3 i386A::hph+* genotype is shown. The start and stop

codons of *hph*⁺ are shown with white font on black background. The length of the sequence is 2879 bp.

>i386+ PCR product, predicted sequence, primers V359-E and V386-F

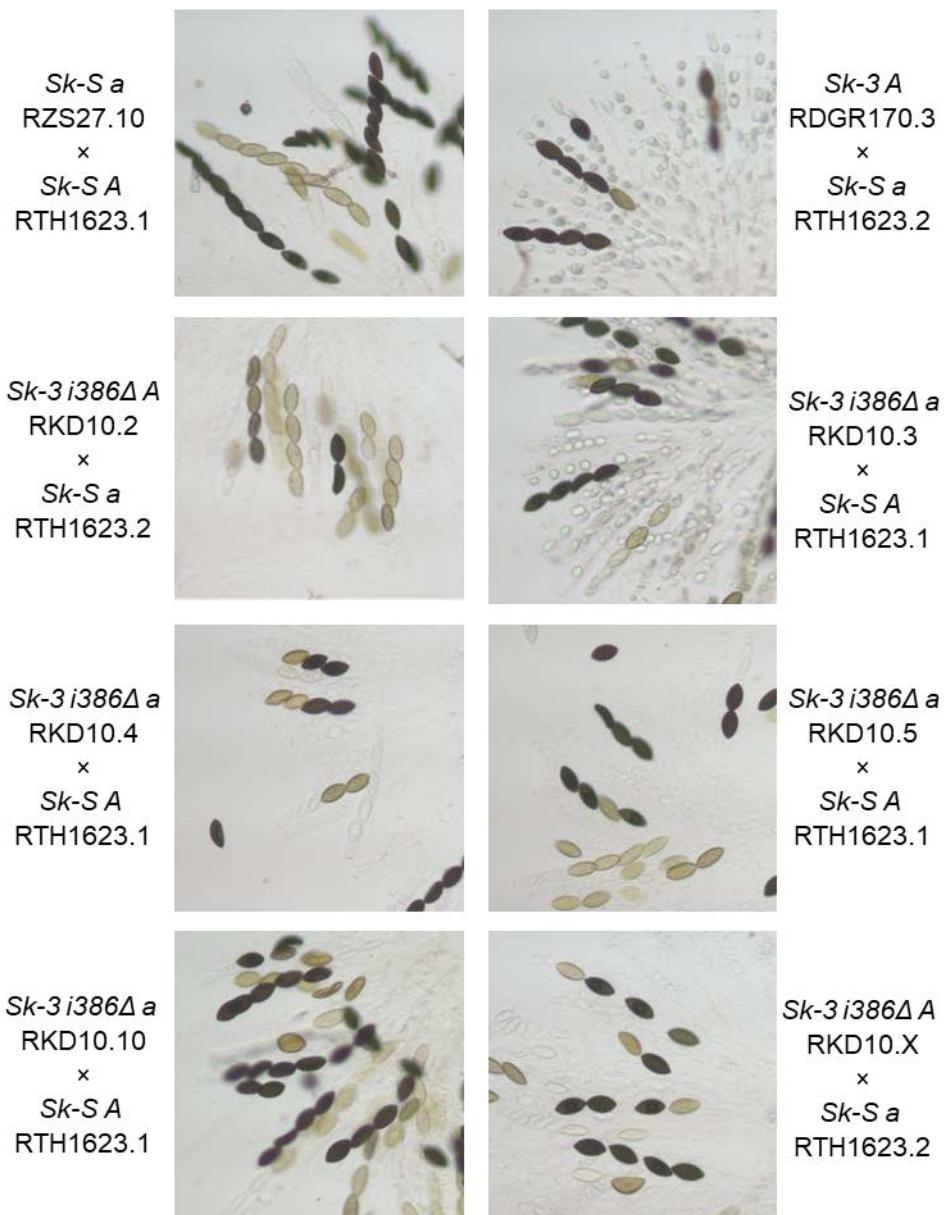
CGCTGGCTCCGTTCTCAGCTCGCTGGCAGGTGTCGCGATTCCGGCGTCAAGTTGTGAAGGGTGATAGTGT
 AGTCGTGGACCAGATCCTCGATGCGCGTCTCAGATTGTCGTCAACCTCGCAAAGAGAGTGAATAGTACG
 ATTTGGATGCTCATGCAAGGAGCAGTGGATCGCATCAAGCATTGTCCTGTCGTTCTCGACTAGTGG
 AACTGGCATGCTCTGTCGCACTTGGCGCTTGATTGTCGCTGGGCTGGTGGCGGGGTGTGAAGGG
 AATTGATGAGGTACACCAGATGGATAATTGTTGGTGGCGAAGAAATTCAAGGGTACGGACTATCGAG
 AGACAAATTCCATTGGTGGATGTCGTGGACCGTGCCTGCCCTGGAATCCTCGCTGACTTGTCAATT
 CACTGGTACTCCATGGCGAGCGCAGAGGGGGGGCGCTCTTCTGGGCATCTGGACAA
 CTGCGCCTTAGGCGAACAAATGATTGATCAAGAGTTCATGATATCAAACAGCCAGCTTACGTTGATTGCGT
 GGCCTTCCTACTGAGATGGGTGACCAAGGAAAAGATATTGCGACCATAGGTGTCGAAAGGAGGAGTGC
 AAGGAACAAAAGCTGAGTAAAGTCACACTACTAGGGAACATTAGGGACAATGCGCTGCGAAGAACGA
 GTCACAAAGGGAAAGGCACATTCTGAGGTGCGGACATTGATGAGAAATTGGTTGTTAATCTCTGGT
 TCTGGGAAAGTCGTTCTTCTGTAGATAACAAAACGAAACATTCTCCTCTCGTCAGTGTGACCTAAC
 GCCCGAAAACCCTGCGCCAACGAAGCTGTCTTCTCCAAACTATCGCTCGGGAAACTGATTAC
 CCGCTTGGGAGGGAGTCATTATTCCCTGCTGAATCATGCGCTGCTCAATCAGTCCTTGTCCGTC
 TTCCCTCTCTTCCGGCTTCTTCGCTTGAGACTGTTGAGCCCAGACCACTGGTATACGAT
 ACTATCGAGTGTACCTCCACCGTCAAGGTCTGATTCAAGGAGGTCACAATGGGATTCAAGGCCTCT
 TGTAGGAAAGGCCTCCCGAAAGCGATCTTGTGCGACTCATTACCCAGCTGGTCCCTCGTCTTCATTG
 GCGTAATGTCAGGAAAGTCCCGCCAGCTTGTGCGACTCATTACCCAGCTGGTCCCTCGTCTTCATTG
 AAGCGTGTCAACTATGCAAGAGAAGGTGGATGACTTCACAGTCTGGGTTCTGAACCCACATCCACC
 GGAGCGGCCTGTTGAAGGACGGTCTGCTACAGCAGCTTCTTGTGAAGTTCTTGCCTCTCATTGG
 CTCAGAGCGTGGCACGGCCCTACAGCTAGTCAGGGCGTTTGCAGCCACTCTCATTGGTCAACTTGC
 AACAGTGTTCACAGTCGCGCTAGAATGCACTGGTCCTCCGTTCTGAAGTCCTCACTAAATCTC
 TCGATATCGCCTATCGATAAAAGCTATCGTCGCTCCCTGCTATGAAGCAATTCAATGAAGCAATTCCAA
 TGAAGGAATGAACCAATGAAGCAAGGAAGTAATGAAGTAAGGAAGCAAGGAAGTTAGGGAGTAAGGGAGTA
 ATACGGTATAGGAGTAGAGTGGAAAGAAAAGAACAGCGAAGCAATTGGGTGAGGACGGCTGTAGCCGTC
 ATAAGAGATGCATCTAGATATAGGTAGTAGTCGGTAGTATCCACGCTTCAACAATACAGCGGCCTG
 TTGAACTAGGGATCCAGCATCGATGTCTGAAACTAATTATCTTGCCTCGTACGGGCTATGGC
 ACGTCTGGGATCTGGGTGTCGTGTTGGCGGTTGCTCCGTAACGGGGTAGACCTGTCCGAATGTCT
 TGTGGCTGGAGTGGAGTCCGACTCCTCCGCATCGAATCAGAATCTACGGCATTGAGGCTGCTTGC
 GAGCGATGCAATGAGCCTCCCATGACAACATGTCTCTTCTGGTACACCCATAGCCTCCTGAAAAGCC
 TCGTAGCTTCCAGCCATCGAGGTCTTCTCCGCACTCCATCAGCGGCTCTATCGGGACCTAGCCTG
 CCCGAGCTTGTGCGTCCCCACTGTTGACAGCAGGGGAACCACTGCTGGCTGTACTTAATGG
 AGAAGAAGAAAAGAGGAAATGAAGGAAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 TGAGACGCGAGTACCTCTAAGAATCCATGTTGGAATCGAAAATCGAGCAGTACCTCTCAACAAACGGCCT
 GTTACATTGCCAGCGAAAATCACATTGCTCAGTTGCTCAGAGCTGGCGCAAGTTGAAGTG
 GAAGTTACGATTCAACTGCTGGGTCTTACCGTCAATACCGGGCAATCTGGACCTGCTATGATTCA
 CCACACCCGGAATACGTCACTGCAACTCCATTGCACTTGCTACTCGCTGACCAGGCACAGGTGAGG
 ACATAGAGTAATGCGATGGACACCCGCAAGGTCTCAACAAGTGCCTCCATCTCACAGATGGCAATGCT
 CTATTGGACACAACCGTTACTACCTAGGTACACTGCGGCTGTTACAAAAGACAAGAACGGTAAG
 TAATGGCATCTCGGCTGATCGGATGGGGAAAGGCAAGTGAATCGGTACAGCACAGATCTCCGCC
 AGAATGACTCCATTGAAACGCTGAGAACGGCGCCCGGCTACTACTAGGTACCATCGAGCTGAGTGG
 CTCCCTCCCAAGCTGAGGGCTCAAGCAAGGAACCTTGGCCCCATATCGAACCTTCGATACTC
 GCATCTGGGTGCACTCTCCACGTCGATAGCAACTGTTGCAAGGCTTATCGAACGCTGACGCC
 ACTGAAGGTGTCTGGTTCAATTGACTTAGATGAGCCCTATCGAACGCTGACGCC
 AGTGTAGTGGTGTAAACGCCCTCGCCGCCGACCACAGATCCGAGTCCGCTTCTCCGCTG
 ATTGCGGGCGTTGCAACTGCACTGAGTCAGTGGCAATGGTCAATTGATCAACATTAGATTGACAGTA
 TGTTCCCGCCGATCGAGTGAAGGCTTAATTCAAGGTTCCACGGTCCACCGGGCTAGGGGGAGACTTC
 TGGTAGGGGTATGGAACATGACTTCCGGCTCATGAGAGAACCAAGGGAAGGCAGGGCC
 GCTAACCTGAAGGCACCCATAGTTTCTTCCCTGATGATGCGCTGACATATTATTG
 CAACGTACCGGATCGTGTCTCACTCTAACAGATAGAAAGGGCGAGGAAGGACTTGGTGT
 AACCTCCAAACAAAGCTGTCGCAAGGGAAAGGACGGGGCACA

Figure 9 Genotyping assay PCR product: *Sk-3 i386+* genotype. The predicted sequence of DNA amplified with primers V0359-E and V0386-F from a template consisting of *Sk-3 i386+* is shown in FASTA format. The sequence is 3669 bp long. Interval *i386* is indicated with red font.

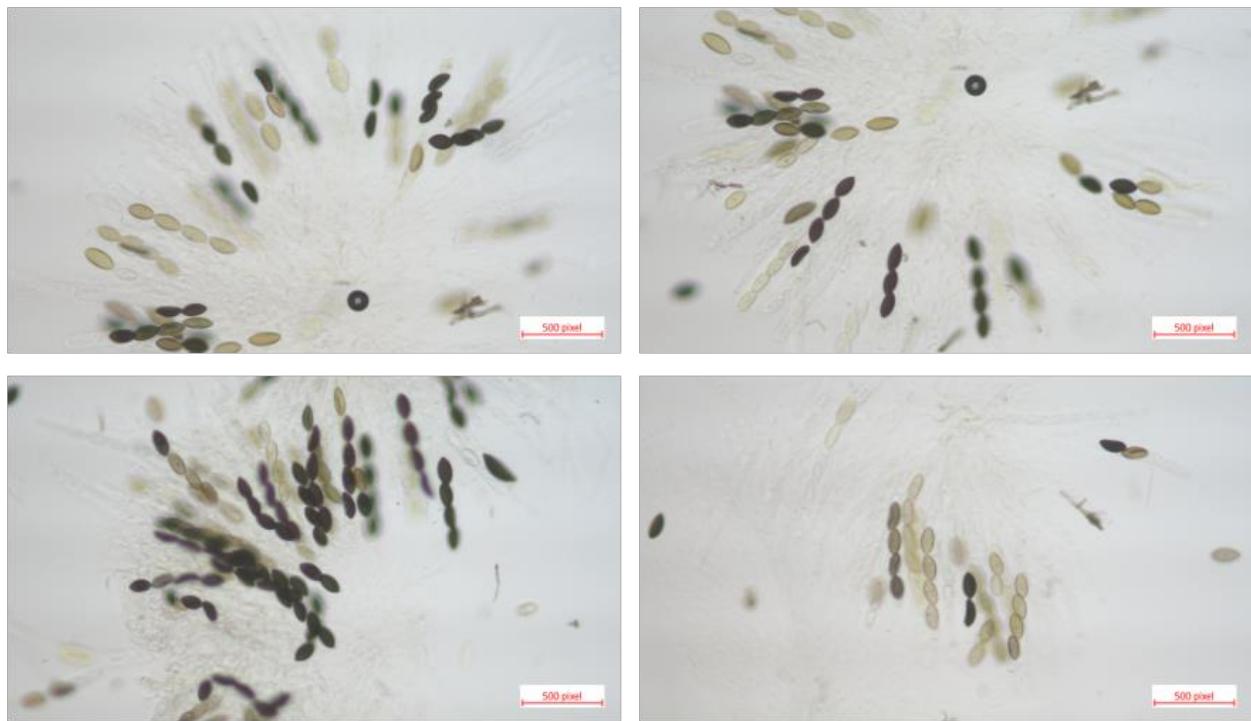
>*i408Δ::hph* PCR product, predicted sequence, primers V394-E and V358-F
 GGGACAGAGAGTGGCGTCTGCCTCGTGTGAATCAAGACCGCATGTTGGTACTTCAGGAAGGAGGAGG
 TACGTTGGTGCCTAGTGTATCTGATGATAAAGGGCAATCACGGGACTTGGCTCCATGCCAAAA
 ATGAAAGGGTCAACAGTCACGAAAGGCCGTTTGTCAATTACGATGACGAAGTGCCTCACAGCAACT
 GAGGTTGGTAGGCTGCCCTGTAATACCAACCTCATGTCGGTGAAGGGGCCCTTCGATGAAAGA
 CTTTTCACTGGAAGTGACGGTTAACCTTCTTCTTGCCTACGTCCTGTGTTGAATGTGAAATGAGCG
 ACAAGCCAAGAAAGCTGAGGCCCTTGAGGAGGAACCTCCGCTCTGTGTTGAATGTGAAATGAGCG
 TTCCCCGATAAAGGAGCATGAACAGGAACACTGCTTGGCATGAAACATGTGAGCTTCGTTCCAGTCC
 CCAAGCCCAGATGATAGACGGATGAGTAAGGAGTGTCCGGCTGCACCTGGAAAAGAGAATTGGATGGCTC
 CCATGCGCACTTGACATCATGATCATGACACCATATTAACAACAGTAGGCAATGGATGTCCAGACGAGG
 GCAACTTGGAACATCGATACGACTGCTCCGGTCACGAACTGATATTGAAGGAGCATTGGGCTT
 GGCTGGAGCTAGTGGAGGTCAACAATGAATGCCTATTTGGTTAGTGTCCAGGGGTGAGCACAAAATT
 TGTGTCGTTTGACAAGATGGTCATTAGCAACTGGTCAGATCAGCCCCACTTGTAGCAGTAGCGGGCGC
 GCTCGAAGTGTGACTCTTATTAGCAGACAGGAACGGAGGACATTATTATCATCTGCTGCTGGTGCACGATA
 ACTTGGTGCCTTGCAAGCAAGGTAAGTGGACGACCCGGTCATACTCTTAAGTTCGCCCCCTCCTCC
 TTATTCAGATTCAATCTGACTTACCTATTCTACCAAGCATTCAAAATGAAAAAGCCTGAACCTACCGCGA
 CGTCTGCGAGAAGTTCTGATCGAAAAGTTCGACAGCGTCTCGACCTGATGCACTCGGAGGGCGAA
 GAATCTCGTCTTCAGCTCGATGTAGGAGGGCGTGGATATGTCCTGGGGTAAATAGCTGCGCCGATGG
 TTTCTACAAAGATCGTTATGTTATCGGCACTTGCATCGGCCGCGCTCCGATTCCGGAAGTGTGACA
 TTGGGGAGTTCAGCGAGAGCCTGACCTATTGCATCTCCCGCGTGCACAGGGTGTACGTTGCAAGACCTG
 CCTGAAACCGAACTGCCGCTGTTCTCCAGCCGGTCGCGAGGCCATGGATGCACTCGTCCGCGATCT
 TAGCCAGACGAGCGGGTTCGGCCATTGGACCGCAAGGAATCGTCATAACACTACATGGCGTATTCA
 TATGCGCGATTGCTGATCCCCATGTGTATCACTGGCAAACACTGTGATGGACGACACCGTCAGTGCCTCG
 GCGCAGGCTCTCGATGAGCTGATGCTTGGCGAGGACTGCCCGAAGTCCGGCACCTCGTGCATGCGGA
 TTTCGGCTCCAACAATGTCCTGACGGACAATGGCCGATAACAGCGGTCAATTGACTGGAGCGAGGCGATGT
 TCGGGGATTCCCAATACGAGGTGCCAACATCCTCTCTGGAGGCCGGTTGGCTGTATGGAGCAGCAG
 ACGCGCTACTTCGAGCGAGGCATCCGAGCTTGCAGGATGCCGCGCTCCGGCGTATATGCTCCGCAT
 TGGCTTGACCAACTCTATCAGAGCTTGGTTGACGGCAATTGATGATGCACTGGCGCAGGGTCGAT
 GCGACGCAATCGTCCGATCCGGAGCCGGACTGTCGGCGTACACAAATGCCCGCAGAAGCGCGCCGTC
 TGGACCGATGGCTGTTAGAAGTACTGCCGATAGTGGAAACCGACGCCAGACTCGTCCGAGGGCAA
 GGAATGAGTAGATGCCGACCGGAACCAAGTTATAAATTGCTGGCTAGGGAAAGGTGGATTGTGGTTGTTA
 GGGAAAGCGGGCTTTCTGTTGAGTTGTTGACCAATTGAGCTTGTACTCACGGATACTACCTCTTCT
 TTTTCTCTTACCGAAAATTGTCATTACGCATCGTCACCTTGTGAGGACTGATTTGTTGTCGAGC
 GGAATCGAATGGAGAATGGGGATGAGGAATGGGGAAAGAGGAAGAAAGTCAGGGAGCAGGAGGGCAG
 CAGAGCAGGATTATAGAAAGTAACGTGATATGATGTCGCGAAGGGATTCTTCTATTGATGCTGA
 TATGTCCTCATATGCATTGTCGAAAGGAATCTCAAGGGAAACGAGTTCAAGGGTAAGCATCCTGCC
 TCGTAATCATGAACTCTCAAGTACCAACTATTGAAGTTATTACCTACGTTACGCGGTTCACTGTATT
 TTTGCCGTCAGGGCTCTCTCTGTAGCCTAGTTATCTACACTGGTCCCATAGGGCTGGACAGATA
 TGCCACGAGAAAAGGTGAAAGGGGAGGATATGAAGAACATACTGTATTCAAGCCATATAGACACACAT
 GTCCAACAAGACCAATTGAGGTATCAGAAAAATATATACAGTAAATGATCATCTGCCAGGCAGTCA
 TCCAGAGCCAAACTAACT

Figure 10 Genotyping assay PCR product: *Sk-3 i408Δ::hph* genotype. The predicted sequence of a DNA molecule amplified with primers V0394-E and V0358-F from a template consisting of genomic DNA from a strain with the *Sk-3 i408Δ::hph* genotype is shown. The start and stop codons of *hph* are shown with white font on black background. The length of the sequence is 2787 bp.

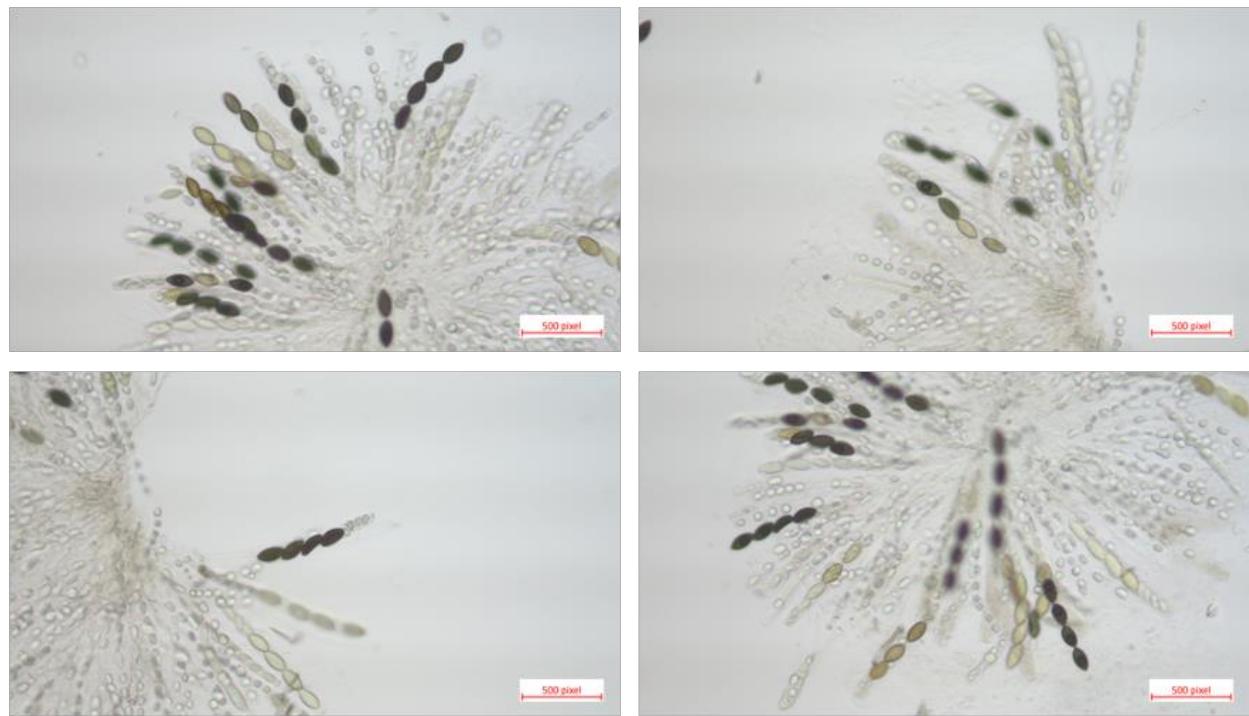
>i408+ PCR product, predicted sequence, primers V394-E and V358-F

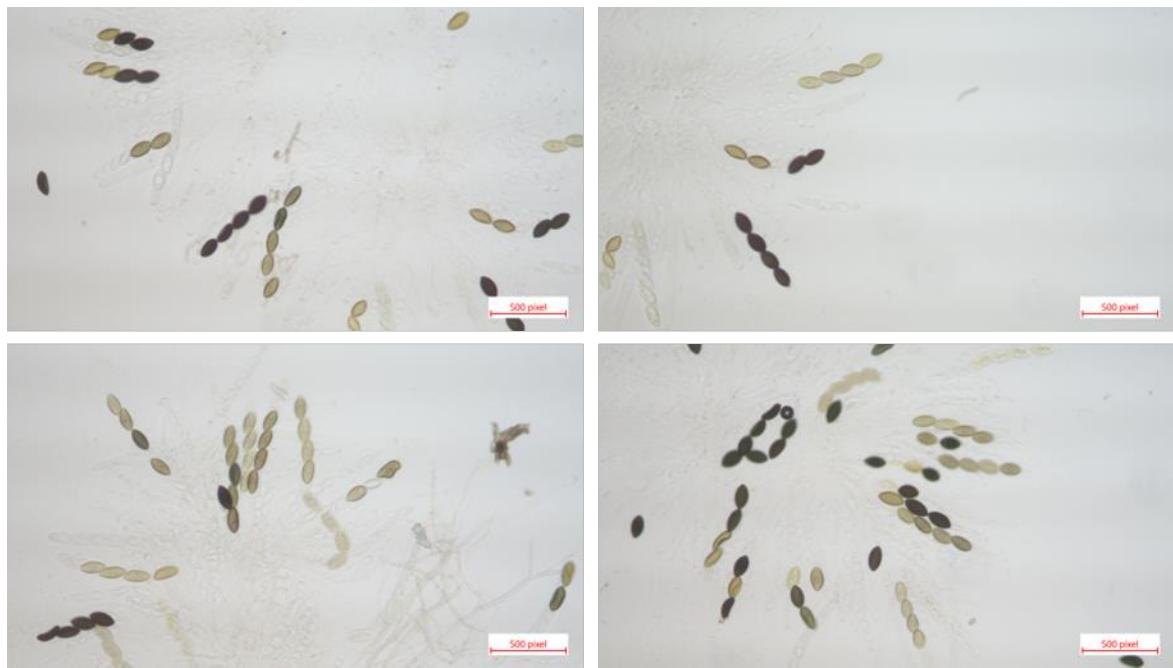

GGGACAGAGAGTGGCGTGCCTCGTGTGAATCAAGACCGCATGTTGACTTCAGGAAGGAGGAGG
 TACGTTGGGTGCGTTAGTGTATCTTGTATGATAAAGGGCAATCACGGGACTTGGCTCATGCCAAAA
 ATGAAAGGGTCAACCAGTCAGAAAGGCCGTTTGTGCGAATTACGATGACGAAGTGCCTCACAGCAACTT
 GAGGTTGGTTAGGCTGCCCTGGTAATACCAACCTCATGTCTCGGTGAAGGGCGCCCTTCGATGAAAGA
 CTTTTCACTGGAAAGTACGGTTAACCTTCCCTTGTGCGGATTACGTCCCCACTCACGTATGAA
 ACAAGCCAAGAAAGCTGAGGCCTTGAGGAGGAACCTCCGTCCTTGTGCTTTGAATGTGAAATGAGCG
 TTCCCCGATAAAGGAGCATGAACAGGCAACTGCGTAGGGCCATGAAACATGTGCGAGCTCGTCCAGTCC
 CCAAGCCGAATGATAGACGGATGAGTAAGGAGTGTCCGGCTGACTGGAAAAGAGAATTGGATGGCTC
 CCATGCGCACTTGCACATCATGATGACACCATTAACAACAGTAGGCAATGGATGTCCAGACGAGG
 GCAACTTGGAACATCGATACGACACTGCTCCGGCTCACGCCGCTCTTGTCAAGCTCGCTCTTGTCA
 GCAGATGCCCAAGTCTCTGCGCTGTCAAGGTGGCATCTCTGCCCCGCCATGCCACGGCACTAA
 AAAAAGTCCAGGACAACCTGAATTGACCGCTGGGTCGAGAAGGCCGAGCGTGAACGCTCACGTTGAAT
 TGAAGAAGGCGCAGGCTAGTTCCGCACTACCAAGATACTAGAGGTACTACGTACCACTCCGTTGAAGG
 AGGTTATGACGGGAAAGGGAAAGGGAAAGAGGGACGGAGAAACGACTGAGCTACAGCACGCTTTCCAGC
 TCAGTTGGGGCACCCAGAAAGCTATAAGATTCTCTCCCCGCCAAACTCTCGTAGATTCTTTCTTCT
 CTCCAACATGTTAAGGACTTGTGTTCTTTGGAAATATCATCCCTCTTCATCCCAACATGTTAG
 CATTCACTCTAATGCTCTGGCCGCAAGGCCCTACAAGGTGCCATGTGCGGCGTTGGCTTGTGTTACT
 GGAATACACATGCTGGCGCTGTCGCGTGCAGCCATGGCGGCCAGCTTCTCCGACGGCTTACCTGTCCT
 CGGCTCTCTGTTTCGCTAACAGAAACAGGGCGTGGCCACCTCCCCCCCCACCGCCCTGGTGGCGTTGG
 CCCCTGCTCCGTACCGCGCCAGGGCTGCTGGGCCAGCCCCCACCGCCCTGGTGGCGTTGG
 CGCGACCAGTGAGTCATGCCAGTCTAGGTATTCTCAGGTTATGAAATCTACGATGCTGACAGTTGCACAC
 CAGTGCCTTCCGGCAGTGGCGGCTCCGTCAGGCCACAGAGGTGCTCAATTAAATCACCACCTCT
 AAACGAATTCCCACCATTCTCCAGCATTATCAGCGAAACACCACCCACCCAGGTTAGTGCCTGCA
 GTCTTGAAAGCTTCAAACCCCTCCCTCCCTCCCCCTCTCGCGCTGACGACACCACGGCCACCGCAAC
 AGAATTCAATTGCCAAACCAAGACCCAGCAACAGCCCCGAGCCATCCCGAGCTGGCTTCCG
 CAGCCATGGAGCAGCAATGGCAACCGTACTCTGACTCTGCCAGCGCTCGTCCAGGAGATAACAAAC
 GGTTCCGGCAAATGTCATGTCCTCGAGACTACGCCAGCAACAGCCAGGTCCAGGCGCAGCAGGCC
 GCCGGCGGATAAGTATGATTCAACCAGGCCGCTGAACCGAGCGCGAACACAGTCCCTCCA
 TTTCCCAATGACGTCGCTCCAGTCGCGGACGCCAACGGCAGTCGCTATGCAAGGATGCCATGATCCA
 CACTCATCCCAGAACGCTACCATCAAGTACCCCTGAGGCCATCACTCGCTCTCCGGTGGTGC
 CAGCCGTCAAGCATCCAAACAGCTCCCCCATCAACCCATACGCCACCGCTCAACACGGCCACAGCTATC
 CAAACTCGGCAATCAGCTTACCATGGACGGCTTATATGGACCCCAAGTCGCCCAAGGCGCATGAA
 TCTCAGTCGCAACAGATGCCCATGCCAGAGGGAGGCCAGTCCCGAATTAGGAAATGCGAGGACCCCA
 GGACCTTCGACCAAAGATTAAACAGCAGCCGCTCATCGACGGCTAACCCGGAAAGGCCGTTATCAGT
 TATGTACATGTCGCGAGCCATAGCTTGGCAAGCCTGCTGACGACACCACGATAGCCCTCCAAGCGCT
 ACAGTTCACCTCCCCGCCACCTACCGAATATGCAACCCCGGCTCAAGTACGAGTCGCTAGGAATCCTCG
 GCGCGTTCTACCAAGCCTAGCAAGGGAGTGAAGAATGATGGCTATGACAACGAGGACAGCGATTATATCC
 TCTATGTGAATGATATCCTGGCTCAGAGGAGGCTGGTCAATAAGTAAGTTGCTGCCACCACGAGTCGAGA
 AGCAGTCACTTACATGTTGACCGAACCGCTACCTGATTCGATGTCCTGCCAGGGTACCTTCGG
 CCAGGTCGAAAGTGCCAAACCTGAAAGACGCAAGAGGTGTTGCGGTCAGGTCATCAAGAACCGAACAG
 CTTACTCAACCAAAGCATGATGGAAAGTGTCTGGTGGATTGGTCAACCGACATTGTTGACTTGA
 TTGTTGCGACACCGCTAACCTCCGTTCAAGCTCAATACAAAGCTGACAAAAACGACGATACCACATCT
 TTGCGACTAAAGGACACGTTCATGCCAACACTTGTGCTGGTATTGAGCTTGTCAACCT
 ATACGAGCTGATCAAGCAAACCAAGTCCGAGGCTTGAGCAGCACACTGGTTCGCGTCTTGC
 CAGCAGCTGCAATGGCTTCTGCTCAACAAAGGCGAGACTGATCCATTGCGACCTGAAACCCGAGAACATTCT
 CTGAAGAACCTCGAGAGGCCGATCATCAAAATTATCGATTTCGGATCCGCTTGCAGCAACGGCAGACTGT
 CTATACGTACATCCAGTCCAGATTCTACCGATCCCTGAAGTGTGCTGGCTTGCCTTATTCTCGGCTA
 TTGATATGTGGCTTGGATGCAATTGTTGAGCTTGGTCTTGGGCTTCCCTTCCCCGGTTCT
 GAGTACAACCAGGTGTCAGCAATGTCGAGATGCTGGCAATCCTCAAACGGATGATGAGGAGATGG
 GCAGGAGGAGAATTCTCGAGAAGAGGCAAGATGAGTTGCCAGAAAACCTACCAACCTGAAAGTATGG
 AGCAATACTCTGGGAGCATGGCACGAAGGAACAACCTAGCAAGAAATACTTCAAGCCAACACACTGCC

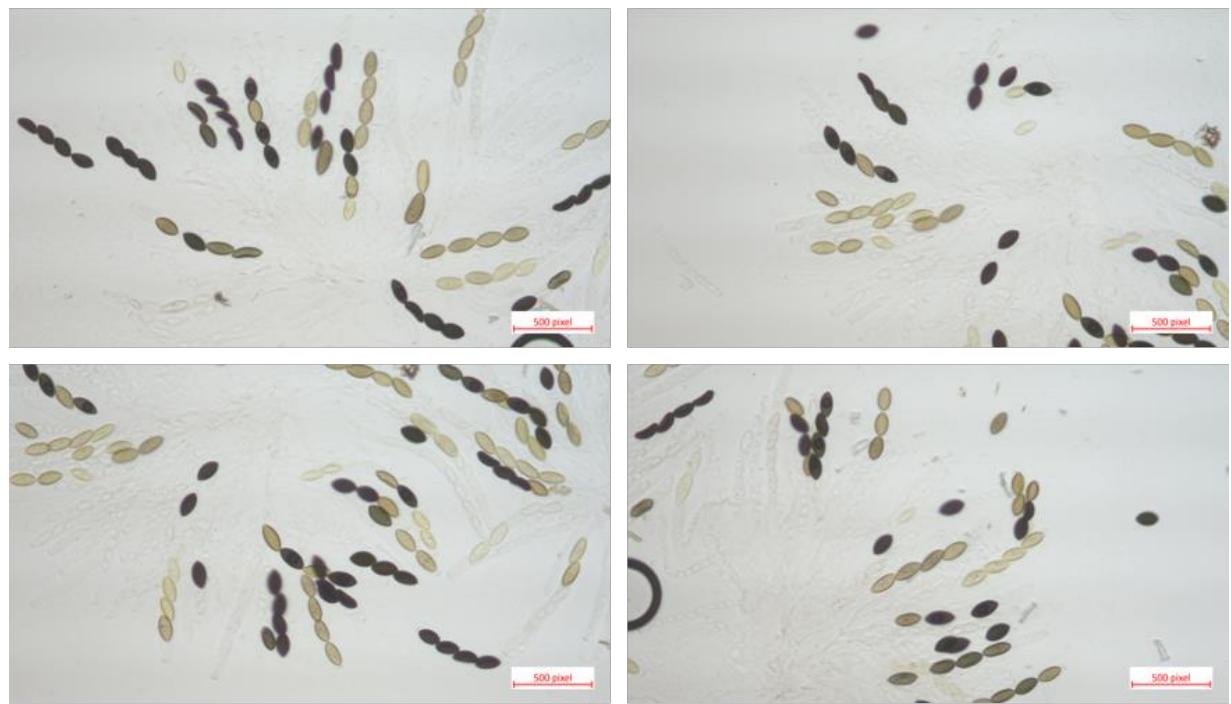
```

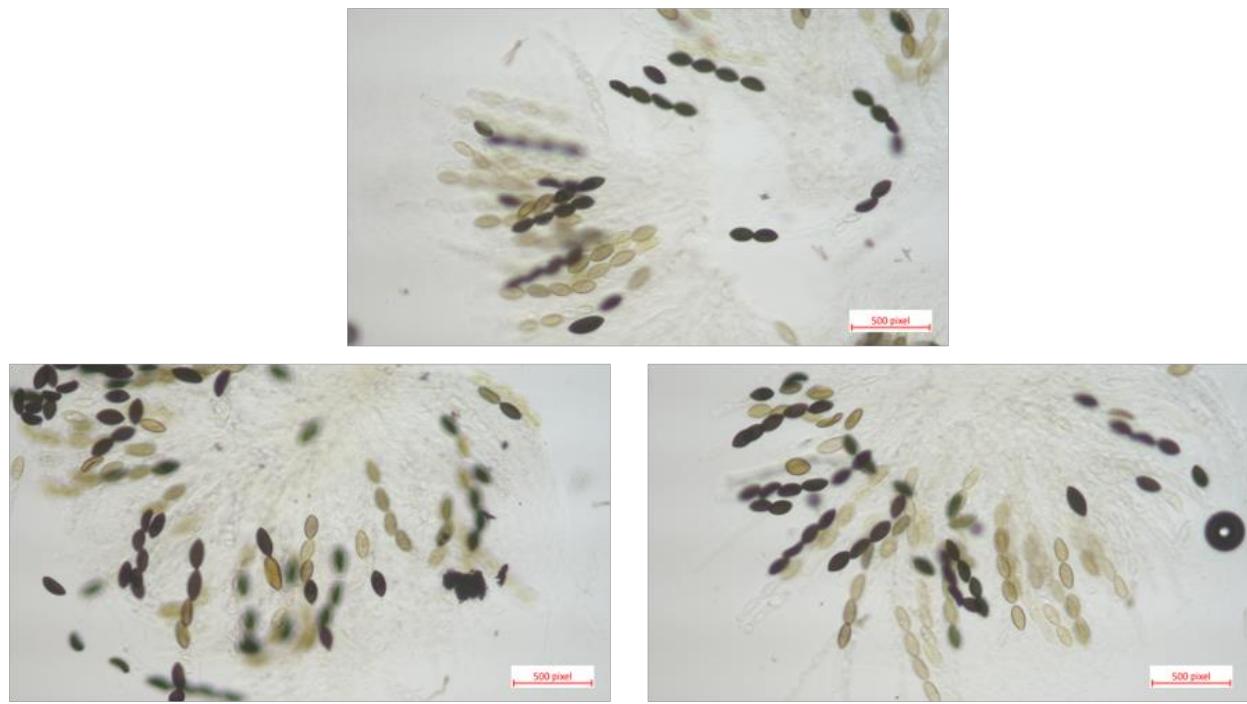

GAGATTATCAAGACGTACCGATGCCGAGGAAGAACATGAAGCAGTCAGAGATTGACAGAGGTGAGTCGAG
CGCATTGGTGTGCTCTGAAAGCTGACCTTGTCTAGAAATGAACAACCGTATCGCTTCATCGA
TTTGTCAAGGGTCTGTTGACGATCAATCCCTGAAACGATGGTCGCCCTCAACAAGCCAAGCTACATCCTT
TCATCACCCAATCGAAGTTACTGGACCGTTGTACCGCCCATGAACCTCAAGTCAAGTCGCTAACAGA
TCACCAAGCCCCGGAACTCAACAGCAGATAACAGGGCAGGCAATTCAAGCAAGCAAAAGGCCAACAGCGCA
AGCCAACGCCATTGCGCAAACCCAGGCCAAACCCCTACGGGTGATGCCACTGGCAGCAATATCCCC
AGCAGACCCACACGCAACCTCCGCCCTGTATTCCAACAACACATTACGCTCCTGGTGGCAGCAGCAGT
CACGCTAGCGCGCCTCCACCGTACGGCTCTCAGCAGGGCGCATACCCTCAACAAGGTATGCCCAACAACA
GCAGCCGCAAGGTACCGCAAGTACAGATGCCCTCAGCGAACTACGCCGGGTGTCCTCAGTCAAATCTGTACG
CCCAGCAACAGGGCGCAGCGCGCGCCAGAGGCAACGGTCTCGACAATGGAGCAGCAGCAAAGTGGT
ATTCCCGTGTCCATCCAGCGCTCGCAGGCCATCTTGTATCCCACCCAGCCAATTGCTCTGCAACCGAGCCC
CGCCTACTACCCCGCCACAGACGGCTCATGGGAATGGACTCGCAGCCCAGCCAAGGATGCCGAGGA
GGGAAGCCGTGCTCAGGCGTCTGGACGGGTCAAGGCAACAACCGTGAATTCAAGGAACCTGGAGGAG
AGGACGTTGGAGGAAGGGTTATGGGCGGAACGGTGGAGGTCAAGGTCAAAGTCAATGGCATTGAGCATA
AATTGCTGGCTAGGGAAGGTGGATTGTGGTTTAGGGAAGCGGGCTTTCTGTTGAGTTGTTGACCAT
TCAGTTGTAACGATACCTCTTCTTCTTCTTACCGAAAAATTGTCATTACGCATCG
TCACTTTGTTGGGAGGACTGATTTGTTGTCAGCGGAATCGAATGGAGAATGGGGATGAGGAATGGGG
GAAGAGGAAGAAAGTCAGGGAGCAGGCAGAGGGCAGCAGAGCAGGATTATAGAAAGAAGTGAATGATATG
ATATGCTGCGCGAAGGGATTCTTCTATTGATGCTGATATGTGCTTCATATGCATTGTCGAAAGGAATC
TCTAAGGGAACGAGTTCAAGGGGTAAGCATCCTGCCCTGCGTAATCATTGAACTCTCAAGTACCAACTATTG
AAGTTATTATCCTACCGTTACCGGTTCACTGCTGAGGACTCTCTCTTGTAGCCTAGT
TATCTATCACTGGTCCCATAAGGCTCGACAGATACTGCCACGAGAAAAGGTGAAAGGGGGAGGATATGA
AGAACATACTGTATTCAAGCCATATAGACACACATATGTCCAACAAGACCAATTGAGGTATCAGCAAAATA
TATATATACAGTAAATGATCATCTGCCAGGCAGTCATCCAGAGCCAACACTAACT

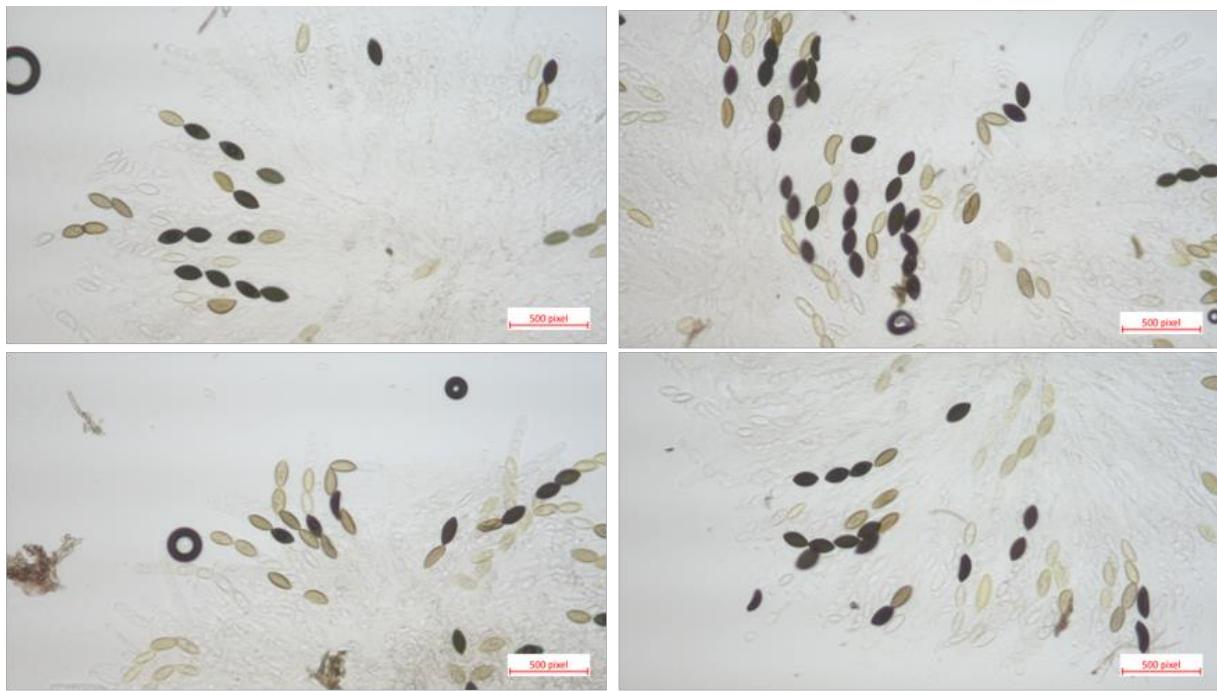
```

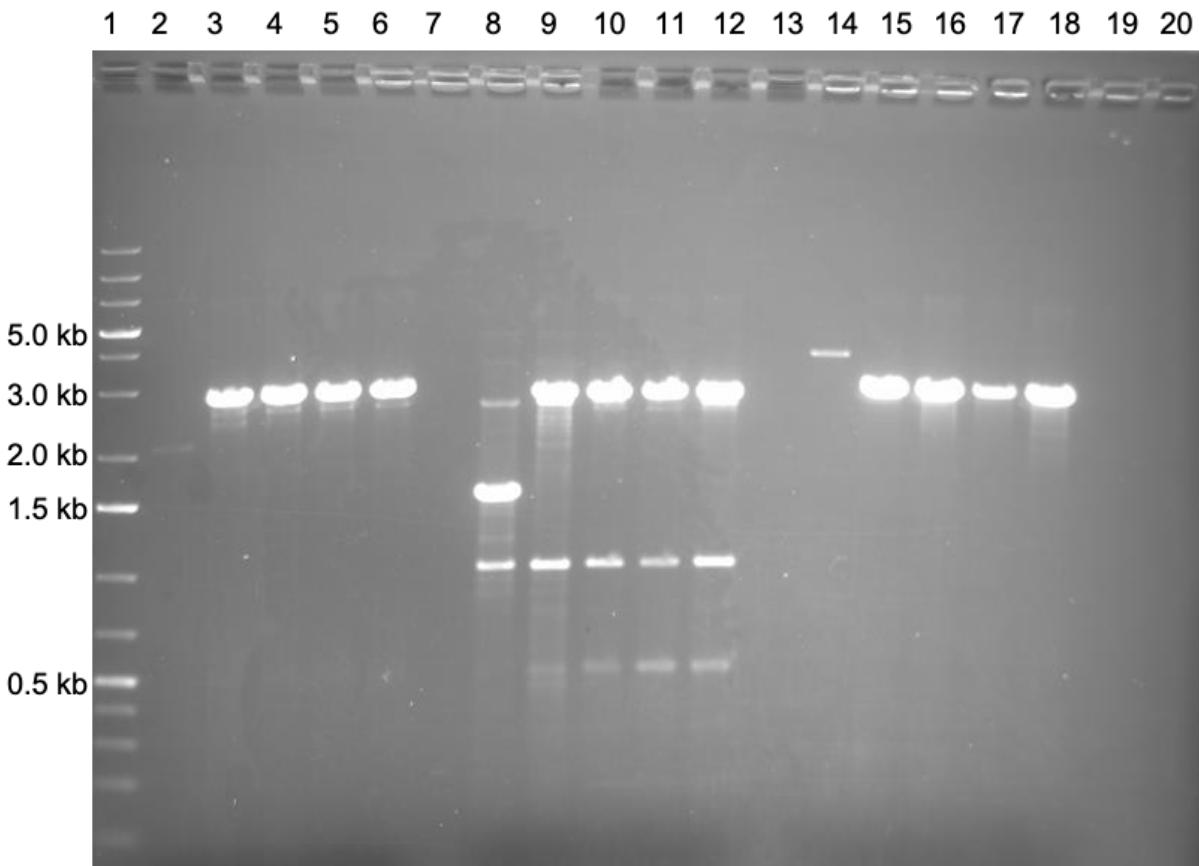

Figure 11 Genotyping assay PCR product: *Sk-3 i408+* genotype. The predicted sequence of DNA amplified with primers V0394-E and V0358-F from a template consisting of *Sk-3 i386+* is shown in FASTA format. The sequence is 5379 bp. Interval *i408* is indicated with red font.

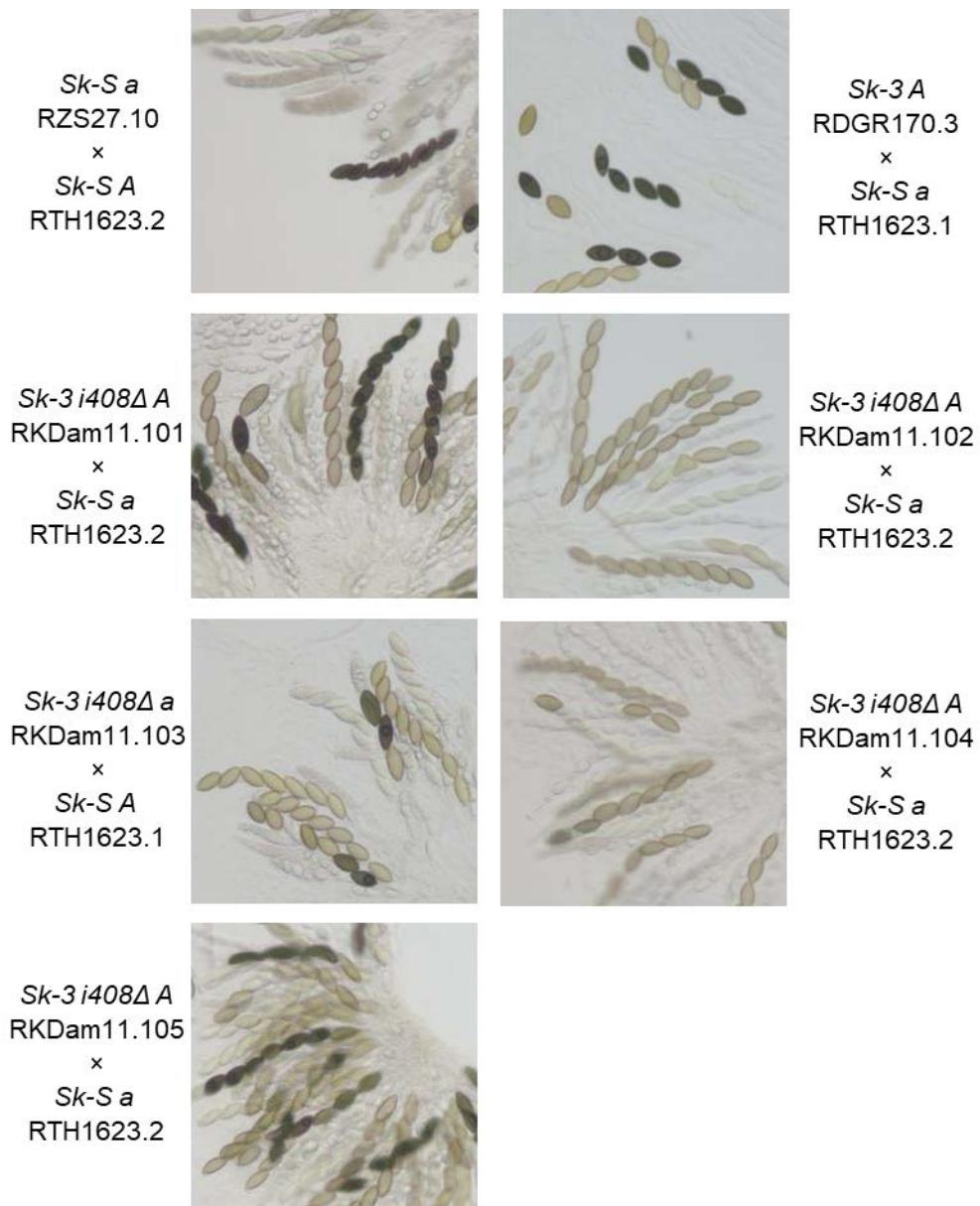

Figure 12 Ascus phenotype summary. Asci were dissected from perithecia of eight crosses 17 days post fertilization (dpf) and imaged under magnification. Strain names and genotypes are indicated. These results demonstrate that deletion of interval *i386* does not disrupt spore killing.


Figure 13 Ascus phenotypes. Ascii were dissected from perithecia of RKD10.2 × RTH1623.2 on Day 17 post fertilization and imaged under magnification.


Figure 14 Ascus phenotypes. Ascii were dissected from perithecia of RKD10.3 × RTH1623.1 on Day 17 post fertilization and imaged under magnification.


Figure 15 Ascus phenotypes. Ascii were dissected from perithecia of RKD10.4 × RTH1623.1 on Day 17 post fertilization and imaged under magnification.


Figure 16 Ascus phenotypes. Asci were dissected from perithecia of RKD10.5 × RTH1623.1 on Day 17 post fertilization and imaged under magnification.


Figure 17 Ascus phenotypes. Asci were dissected from perithecia of RKD10.10 × RTH1623.1 on Day 17 post fertilization and imaged under magnification.

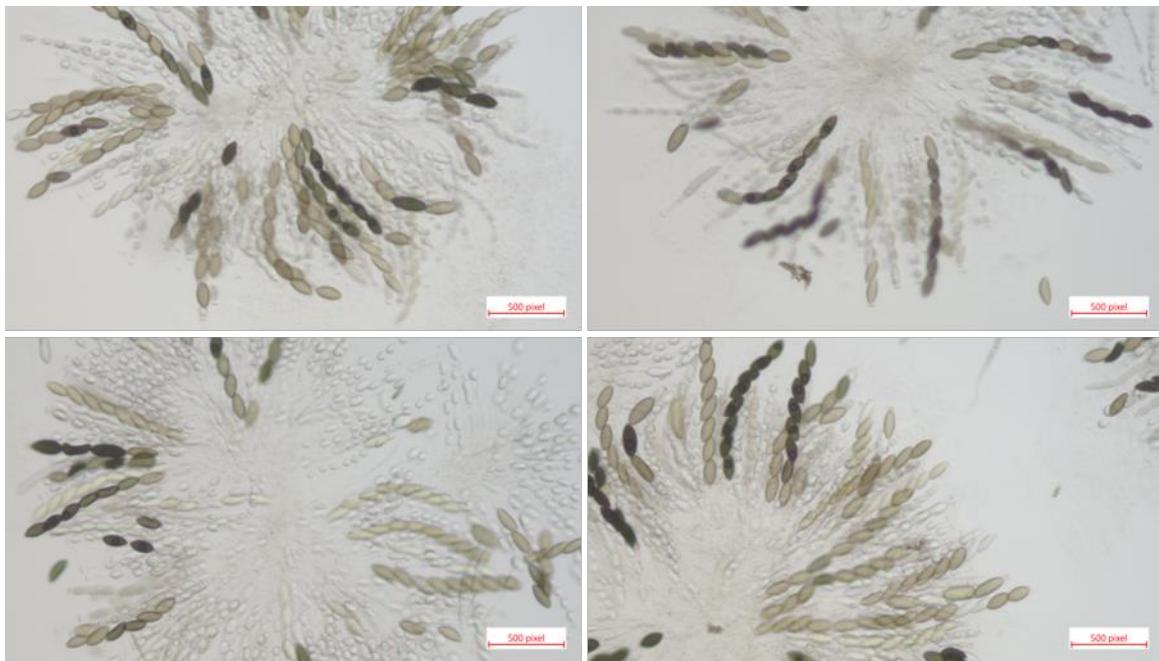

Figure 18 Ascus phenotypes. Ascii were dissected from perithecia of RKD10.X \times RTH1623.2 on Day 17 post fertilization and imaged under magnification.

Figure 19 RKD10 genotyping. DNA was isolated from test strains and used in a PCR-based genotyping assay with primers V0359-E and V0386-F. PCR products were examined by gel electrophoresis with ethidium bromide staining. An image of the gel with UV transillumination is shown. The predicted PCR product lengths for the *i386*⁺ and *i386*^Δ genotypes are 3669 bp and 2879 bp, respectively. Lane 1 contains 0.5 μ g of GeneRuler 1 Kb Plus DNA ladder (ThermoFisher). DNA templates for each PCR reaction are as follows: Lanes 2–13, not applicable; Lane 14, RDGR170.3; Lane 15, RKD10.2; Lane 16, RKD10.3; Lane 17, RKD10.4; Lane 18, RKD10.5. These results indicate that RKD10.2, RKD10.3, RKD10.4, and RKD10.5 have the *i386*^Δ::*hph*⁺ genotype.

Figure 20 Ascus phenotype summary. Asci were dissected from perithecia and imaged under magnification. Strain names and genotypes are indicated. These results demonstrate that deletion of *i408* disrupts spore killing.

Figure 21 Ascus phenotypes. Ascii were dissected from perithecia of RKDam11.101 × RTH1623.2 and imaged under magnification.

Figure 22 Ascus phenotypes. Ascii were dissected from perithecia of RKDam11.102 × RTH1623.2 and imaged under magnification.

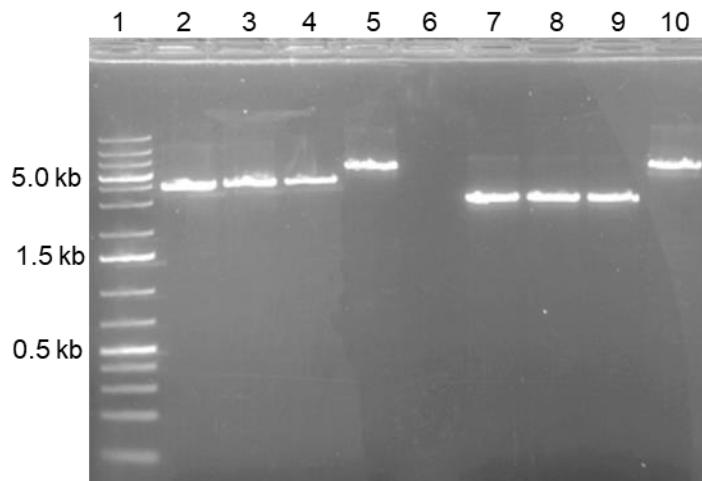

Figure 23 Ascus phenotypes. Asci were dissected from perithecia of RKDam11.103 × RTH1623.1 and imaged under magnification.

Figure 24 Ascus phenotypes. Ascii were dissected from perithecia of RKDam11.104 × RTH1623.2 and imaged under magnification.

Figure 25 Ascus phenotypes. Ascii were dissected from perithecia of RKDam11.105 × RTH1623.2 and imaged under magnification.

Figure 26 RKD11 genotyping. DNA was isolated from test strains and used in a PCR-based genotyping assay with primers V0394-E and V0358-F. PCR products were examined by gel electrophoresis with ethidium bromide staining. An image of the gel with UV transillumination is shown. The predicted PCR product lengths for the *i408+* and *i408Δ* genotypes are 5379 bp and 2787 bp, respectively. Lane 1 contains 0.5 μ g of GeneRuler 1 Kb Plus DNA ladder (ThermoFisher). DNA templates for each PCR reaction are as follows: Lanes 2–6, not applicable; Lane 7, RKDam11.105; Lane 8, RKDam11.101; Lane 9, RKDam11.102; and Lane 10, RDGR170.3. These results show that RKDam11.101, RKDam11.102, and RKDam11.105 have the *i408Δ* genotype.