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Abstract

Networks in sectors like telecommunications
and transportation often contain sensitive
user data, requiring privacy enhancing tech-
nologies during data release to ensure pri-
vacy. While Di!erential Privacy (DP) is rec-
ognized as the leading standard for privacy
preservation, its use comes with new chal-
lenges, as the noise added for privacy intro-
duces inaccuracies or biases. DP techniques
have also been found to distribute these bi-

ases disproportionately across di!erent pop-

ulations, inducing fairness issues. This pa-
per investigates the e!ects of DP on bias and
fairness when releasing network edge weights.
We specifically examine how these privacy
measures a!ect decision-making tasks, such
as computing shortest paths, which are cru-
cial for routing in transportation and commu-
nications networks, and provide both theo-
retical insights and empirical evidence on the
inherent trade-o!s between privacy, accuracy,
and fairness for network data release.

1 INTRODUCTION

Networks underlie many important application do-
mains, such as telecommunications, social networks,
energy grids, and transportation. Therefore, it is nec-
essary to publish network information to better under-
stand their properties and serve a multitude of pur-
poses like routing (transportation and computer net-
works), understanding (mis-)information propagation
(social networks), for research and development (e.g.,
energy grids), or to inform public policy.

However network data often contains sensitive infor-
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mation and its release thus poses a key challenge. For
example, releasing energy data can provide malicious
entities insights into system vulnerabilities; data from
social network and telecommunication can expose per-
sonal information about individuals’ preferences, so-
cial interactions, and activities; transportation data
can inadvertently reveal sensitive personal details like
home addresses, healthcare-related visits, and other
personal information (NYT, 2018, 2019).

Therefore, when releasing network data, it is crucial
to protect potentially sensitive information. To this
end, Di!erential Privacy (DP) (Dwork et al., 2006)
has emerged as the leading paradigm for preserving
individual privacy in aggregate-level data release. No-
tably, this privacy framework has been adopted in var-
ious deployments, including the 2020 U.S. Census (Bu-
reau, 2023), Apple’s device data collection and feder-
ated learning frameworks (Apple, 2017), and Google’s
location data and maps services (Google, 2024).

In a nutshell, DP relies on calibrated noise addition
on the outputs of a computation to provide strong pri-
vacy guarantees. However, while this process ensures
that the amount of sensitive information that can be
“leaked” remain bounded, the added noise can intro-
duce biases, potentially impacting the reliability of the
data. While bias is a natural consequence of any pri-
vate method, a concerning issue with DP is that it can
distribute errors and biases unevenly across di!erent
groups, leading to concerns about fairness.

This work investigates the implications of DP on bias
and fairness in network data release, focusing on rout-
ing recommendations. This constitutes a departure
from previous research that primarily centered on the
release of population histograms (e.g., in the U.S. Cen-
sus) absent such network structure. Specifically, we ex-
amine the common scenario where the network struc-
ture is known but the edge weights need to be released
privately. Our analysis shows how these perturbations
influence tasks such as computing the shortest path
and recommending optimal routes. Figure 1 presents
an overview of our privacy model and data release,
which we introduce in more detail in Section 3.
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Figure 1: Schematic of privacy model: The network
administrator privatizes graph G by adding calibrated
noise to each edge weight we and publishes privatized
graph G̃, which is used to run downstream tasks.

Summary of contributions. In this work, we: (1)
propose a model for di!erentially private network data
release, assuming common knowledge of graph topol-
ogy but requiring protection of sensitive edge weights
through calibrated noise addition. This setup is de-
tailed in Section 3. (2) investigate the bias and unfair-
ness e!ects of using private (noisy) graph data to solve
downstream optimization problems – particularly, the
problem of computing shortest paths on the graph and
recommending best routes to users. To the best of our
knowledge, we are the first who seek to understand
the tradeo! between privacy and fairness in the con-
text of private graph data release. (3) develop a the-
oretical framework explaining how DP-induced biases
could disproportionately a!ect certain groups, particu-
larly through the mechanics of noise accumulation over
di!erent path lengths and the availability of alternate
routes (Section 4). (4) finally, through extensive simu-
lations on diverse network topologies, we demonstrate
how privacy-related disruptions can vary by network
type (Section 5). Importantly, this analysis also iden-
tifies network structures that are inherently more re-
silient to privacy-induced biases.

Literature Review. Observations that algorithms
can mimic and amplify data biases have led to a
new research area focusing on defining, analyzing,
and mitigating unfairness (see Barocas et al. (2023);
Mehrabi et al. (2021a); Pessach and Shmueli (2022)).
The source of unfairness is often attributed to either
data properties or model properties. For example,
group size imbalance can create performance dispar-
ities (Mehrabi et al., 2021b). Additionally, constrain-
ing the model’s hypothesis space to satisfy privacy
(Bagdasaryan et al., 2019; Tran et al., 2021a), spar-
sity (Hooker et al., 2019, 2020; Tran et al., 2022), or
robustness (Xu et al., 2021; Nanda et al., 2021; Tran
et al., 2024) can also lead to disparate outcomes.

Particularly relevant is the study of disparate impacts
caused by privacy-preserving algorithms, which has
seen important developments (Fioretto et al., 2022).

Much of this research, like ours, focuses on di!erential

privacy (Dwork et al., 2006, 2014) as the formal notion
leading to unfairness.

In particular, in the context of private data release
(which involves revealing a full, privatized version of a
dataset as opposed to simply releasing targeted statis-
tics), Pujol et al. (2020) empirically showed that de-
cision tasks made using DP datasets may dispropor-
tionately a!ect some groups of individuals over oth-
ers. They noticed that the use of DP census data
to allocate funds to school district produces unbal-
anced allocation errors, with some school districts sys-
tematically receiving more (or less) than what war-
ranted. Later, Tran et al. (2021b) theoretically at-
tributed these observations to two main factors: (1)
the “shape” of the decision problem and (2) the pres-
ence of non-negativity constraints in post-processing
steps Zhu et al. (2021, 2022).

To the best of our knowledge, no other work has stud-
ied the tension between privacy and fairness in down-
stream tasks on di!erentially-private network data.
Related works like Sealfon (2016); Chen et al. (2023)
do study DP computation of shortest paths but fo-
cus on releasing shortest path statistics, not the entire
network, and do not address bias and fairness. Our pa-
per builds on the intersection of privacy and fairness,
providing an analysis of unfairness in a new context
involving complex network structures.

2 PRELIMINARIES:
DIFFERENTIAL PRIVACY

Di!erential Privacy (DP) (Dwork et al., 2006, 2014)
provides a framework to safeguard individual data pri-
vacy by ensuring that the inclusion or exclusion of a
single individual’s data does not significantly a!ect the
outcome of any analysis. Thus, an adversary cannot
reliably determine whether an individual’s data is part
of the dataset based on the output of a computation.

Consider a mechanism M operating on a dataset x =
(x1, . . . , xn), where each xi represents an individual’s
data. Two datasets x and x

→ are called neighboring if
they di!er in exactly one individual’s data: formally,
if →j ↑ [n] such that xj ↓= x

→
j , and xi = x

→
i for all i ↓= j.

Formal definition. A randomized mechanism M
satisfies (ω, ε)-DP if, for all neighboring datasets x and
x
→, and for all subsets of outputs O ↑ Range(M):

Pr [M(x) ↑ O] ↔ exp(ω) Pr [M(x→) ↑ O] + ε.

The privacy parameter ω controls the level of privacy:
smaller ω implies stronger privacy but may reduce util-
ity due to increased noise. As ω ↗ 0, we approach
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perfect privacy as the output becomes independent of
any single data point.

Let f be a query or computation applied to the data.
DP mechanisms add noise to the computation based
on the query sensitivity ”f = maxneighbors x,x→ ↘f(x)≃
f(x→)↘, where ”f quantifies the maximum potential
change in the function’s output across two neighboring
databases. Lower sensitivity indicates small changes
between outputs for neighboring databases, and thus
require less noise to achieve privacy.

Numerical queries (which output real numbers) can be
made di!erentially private by adding calibrated Gaus-
sian noise to their true outputs. Given query f ,

Lemma (Gaussian mechanism). The mecha-

nism M(f, x, ω, ε) = f(x) + Z where Z ⇐
N

(
0,
√
2 ln(1.25/ε) ·”f/ω

)
, satisfies (ω, ε)-DP.

In practice, there is a trade-o! between privacy and
utility: stronger privacy (smaller ω) requires adding
more noise, which can reduce the accuracy of the out-
put. This paper focuses on understanding how this re-

duction in utility may be disproportionately distributed

among di!erent populations in the context of networks.

Post-processing invariance. Di!erential privacy
satisfies several key properties Dwork et al. (2014). In
particular, it is immune to post-processing:

Theorem (Dwork et al. (2014)). Let M be a (ω, ε)-
DP mechanism and f any randomized function. Then

the composition f ⇒M also satisfies (ω, ε)-DP.

3 MODEL: SETTINGS & GOALS

We consider the problem of di!erentially private graph

data release. Formally, letG = (V,E,w) be a weighted
graph with vertex set V , edge set E, and weights
w : E ↗ R↑0. For each edge e ↑ E, w(e) is used
to denote the its weight, here used to represent the
“time” or “cost” it takes to traverse it. Without loss
of generality, we consider connected graphs G in which
any two nodes are reachable from each other. Impor-
tantly, in this work we consider weights w that are
functions of sensitive user data and whose values must
be protected. For instance, the weights might repre-
sent tra#c congestion based on commuter locations or
the strength of private social relationships in a net-
work. We write w(e) = fe(x1, . . . , xn) where the xi

denotes the sensitive users information, i ↑ [n].

Graph release model under DP. Consider a net-
work administrator releasing a weighted graph G to a
third party while preserving data privacy. To achieve
this, a modified graph G̃ = (V,E, w̃) is produced,
keeping the nodes and edges the same but altering

the edge weights w̃ to ensure di!erential privacy. This
privatized graph retains the public network topology
but safeguards sensitive weight information.

The administrator uses the Gaussian mechanism to re-
lease the weights w̃. For each edge e ↑ E, produces
a private weight: w̃(e) = max (0, w(e) + Z(e)) , where
Z(e) ⇐ N (0,ϑ2) is a centered Gaussian random vari-
able1. The max function ensures all weights remain
non-negative, note that this step retains di!erential
privacy due to post-processing guarantees. If the sensi-
tivity ”f of the function fe(·) is bounded for all e ↑ E,
the released graph with ϑ =

√
2 ln(1.25/ε)·”f/ω guar-

antees (ω, ε)-di!erential privacy. A higher ϑ provides
stronger privacy guarantees. In this paper, we focus on
ϑ as the main parameter controlling noise and privacy.

Impact of DP on bias and fairness. Adding noise
for privacy and the subsequent post-processing (to en-
sure non-negativity of edge weights) can introduce bias
in outcomes of tasks performed on the privatized graph
G̃. This paper aims to (1) characterize such bias both
theoretically and experimentally, and (2) understand
how di!erent segments of the network may be dispro-

portionately a!ected, leading to unfairness.

Our primary task is the computation of the shortest

path. For any two vertices i, j ↑ V , let Pij be the
set of all paths between them. The length of a path
P ↑ Pij is wG(P ) =

∑
e↓P w(e). The shortest path in

the original graph G is:

P
↔
ij = arg min

P↓Pij

wG(P ) = arg min
P↓Pij

∑

e↓P

w(e).

Our goal is to evaluate the extent to which DP mech-
anisms, when applied to graph G to produce graph G̃,
impact this computation. In the privatized graph G̃,
the perceived shortest path is computed as:

P̃ij = arg min
P↓Pij

wG̃(P ) = arg min
P↓Pij

∑

e↓P

w̃(e).

Although users compute paths using G̃, the actual cost
they incur corresponds to the original weights in G.
Therefore, our evaluation metric is based on wG(P̃ij)=∑

e↓P̃ij
w(e). The realized bias or error is:

Bij(P̃ij) =
∑

e↓P̃ij

w(e)≃
∑

e↓P↑
ij

w(e).

1Weights on adjacent edges may be correlated due to
uneven distribution of an individual’s data along their
path. While adding correlated noise could be an option, we
avoid this for a key reason: it requires assumptions about
the functional form of edge weights or their correlation. If
these assumptions are wrong, the privacy guarantee can
fail. It is standard for DP guarantees to hold in the worst-
case with minimal assumptions, which is the approach we
adopt here.
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Figure 2: Evaluation Framework: Given node pair
(i, j) and privatized graph G̃, a user computes the
shortest path on the set Pij . Computation returns P̃ij

as the perceived shortest path, but the user decision
is evaluated on original graph G incurring a cost of
wG(P̃ij) and realizing bias Bij = wG(P̃ij)≃ wG(P ↔

ij).

Given the stochastic nature of w̃, the perceived short-
est path P̃ij varies. We thus define expected bias as:

E[Bij ] = Ew̃




∑

e↓P̃ij

w(e)≃
∑

e↓P↑
ij

w(e)



 . (1)

In the numerical section, we will often work with rel-
ative errors or bias, defined as

Rij =
E[Bij ]∑
e↓P↑

ij
w(e)

, (2)

which represents the percentage change in the length of
the recommended path compared to the true shortest
path. Figure 2 summarizes the evaluation framework.

4 BIAS: A THEORETICAL
PERSPECTIVE

This section presents the main theoretical insights of
our work. Our primary contribution is characterizing
the bias of the shortest path computation due to pri-
vacy noise and understanding how it drives unfair out-
comes across di!erent types of source-destination pairs
on graphs. We introduce our first result in Claim 4.1
which provides insights about the sign or direction of
the bias (proof in Appendix Section A.1).

Claim 4.1. The realized bias of the shortest path com-

putation due to privacy noise is always greater than or

equal to zero.

A direct consequence of the above claim is that the ex-
pected bias and expected relative bias are non-negative.
Note that all our numerical results in Section 5 plot
empirical probabilities for incurring di!erent levels of
expected relative bias.

When it comes to fairness impacts of privacy, there are
two main competing e!ects that drive which groups

of node pairs will unfairly face more disruptions (on
average) due to privacy:

1. The first of those is the e!ective relative noise e!ect

which is explored in Section 4.1: when the num-
ber of path alternatives is fixed, we show that node
pairs which are farther apart have a lower likelihood
of being a!ected by privacy noise.

2. On the other hand, we also demonstrate the path

cardinality e!ect in Section 4.2, i.e., the higher the
number of di!erent paths available to travel be-
tween the source and destination, the higher is the
likelihood of shifting to a worse path due to privacy
noise and incurring a large bias. This e!ect favors
node pairs which are closer because they usually
have a smaller number of alternate path options.

The trade-o! between these two e!ects explains most
of our observations in the numerical experiments sec-
tion. We also provide a dual interpretation of our main
theorem in Section 4.2 which helps us to derive high
probability bounds on the realized bias of any shortest
path computation.

Before we present our main results, we need to intro-
duce some additional notation for ease of exposition.
From now on, we drop the subscript “ij” whenever it
is clear from context to simplify notations.

Definition 4.1. For any two paths P1 and P2 in Pij,

we define SP1,P2 ⇑ E as follows:

SP1,P2 := {e ↑ E : e ↑ (P1 \ P2) ⇓ (P2 \ P1)},

i.e., SP1,P2 is the set of those edges which belong in

exactly one of the two paths P1 and P2.

If nP1 and nP2 denote the number of edges in paths
P1 and P2 respectively, then |SP1,P2 | ↔ nP1 +nP2 with
equality when P1 and P2 have no overlapping edges.

4.1 E!ective Relative Noise E!ect

In this segment, we are interested in understanding
the disparate impacts that privacy noise has on node
pairs which are close by versus node pairs which are
far apart, when the number of alternate path options
is kept fixed for each pair. We measure the impact of
noise by estimating the probability that for any two
given paths, the worse one is perceived to be better

when computations are done using privatized graph
G̃. Higher the value of this probability, higher is the
impact of noise. We make the following conjecture:

Conjecture 4.2. Node pairs which are closer incur,

on average, larger levels of relative noise and hence

are more impacted by privacy as opposed to node pairs

which are farther apart.
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In order to gain intuition about why the above con-
jecture may be true, we will start by presenting the
following technical result. Let P ↔ be the true shortest
path between nodes i and j and P

→ ↓= P
↔ be any other

alternate path. Define the gap ϖP →,P↑ as ϖP →,P↑ =
wG(P →)≃ wG(P ↔). We assume that ϖP →,P↑ > 0 which
means that P ↔ is strictly better than P

→. Then,

Lemma 4.3. The probability that path P
→
is perceived

to be shorter than the true best path P
↔
on a privatized

graph G̃, i.e., P
[
wG̃(P

→) < wG̃(P
↔)
]
, is given by:

q = $c

(
ϖP →,P↑

ϑ
√
|SP →,P↑ |

)
,

where $c(·) is the complementary CDF of a standard

normal random variable. We call “q” the path devi-
ation probability.

Proof. The proof is in Appendix A.2.

Intuition about Conjecture 4.2: We can obtain
valuable insights about our earlier conjecture from
Lemma 4.3. Suppose for a given pair of nodes, there
are exactly 2 paths which have |S| distinct edges be-
tween them and they di!er in weight by amount ϖ.
This implies that the gap ϖ is contributed by exactly
|S| edges on which the e!ective privacy noise has stan-

dard deviation ϑ
√

|S|. Therefore, the ratio ω
⇔

|S|
ε rep-

resents the e!ective relative noise (e!ective noise rela-
tive to the weight gap between paths). Now, suppose
we scale the number of edges by a factor of M > 1
to represent a node pair which are farther apart than
the first pair. Assuming that all edge weights are i.i.d.
samples from some distribution D and this new pair
of nodes also have exactly 2 paths, the path gap be-
tween them should also scale by M in expectation. In

this case, the e!ective relative noise is 1↗
M

· ω
⇔

|S|
ε .

Because of the additional 1↗
M

factor, the e!ective rel-

ative noise is smaller on average for the pair of nodes
farther apart. Therefore by Lemma 4.3, node pairs
which are farther apart have on average, a lower like-
lihood of picking the worse path and hence are less
a!ected by privacy noise.

Other observations from Lemma 4.3: Recall
that the standard deviation of the privacy noise ϑ de-
pends on the privacy parameter ω and the sensitivity
of the weight function ”f . The dependence is of the
following form: ϑ ↖ !f

ϑ . This implies that at higher
levels of privacy (smaller ω), the probability q would
be larger. This is intuitive: stronger privacy requires
more perturbation to the edge weights and therefore
there is a higher chance that the order is flipped, i.e., a
previously longer path is perceived to be shorter. We

can argue similarly for the case where the sensitivity
of f(·) is high. Higher sensitivity of f(·) implies we
need more noise to achieve the same level of privacy.
This leads to higher q. We plot these dependencies in
Figure 8 in Appendix Section C.

4.2 Path Cardinality E!ect

In this segment, we are interested in understanding the
disparate impacts that privacy noise has on node pairs
which have many alternate path choices as opposed to
node pairs which have fewer paths. We call this e!ect
the path cardinality e!ect. In this case, we measure
the impact of noise by estimating the probability of
realizing bias at least as large as ϱ, given some ϱ > 0.
Again, a higher probability indicates a higher impact
of noise. We now make the following conjecture:

Conjecture 4.4. Node pairs which have a large path

cardinality are, on average, more impacted by privacy

noise as opposed to node pairs which have fewer alter-

nate path options.

We present our main technical result that supports our
conjecture in Theorem 4.5. Before stating the theo-
rem, we need to introduce the following definition and
set notations:

Definition 4.2. (ϱ-worse paths) Any path P ↑ Pij is

said to be ϱ-worse, if:

wG(P ) ↙ wG(P
↔) + ϱ,

where P
↔
is the least weight path between nodes i and

j on graph G.

Therefore, given ϱ > 0, we can partition set Pij into

two sets P↑ϖ
ij and P<ϖ

ij :

P↑ϖ
ij := {P ↑ Pij : wG(P ) ↙ wG(P

↔) + ϱ}

P<ϖ
ij := {P ↑ Pij : wG(P ) < wG(P

↔) + ϱ}

We are now ready to present our theorem:

Theorem 4.5 (Upper Bound on Bias Probability).
Let qϖ be the probability that the realized bias of short-

est path computation using a privatized graph G̃ is at

least ϱ. Then qϖ is upper bounded as follows:

qϖ ↔
∑

P↓P↓ω
ij

$c

(
ϖP,P↑

ϑ
√

|SP,P↑ |

)
↔

∣∣∣P↑ϖ
ij

∣∣∣·$c


ϱ

ϑ
⇔
Smax


,

where Smax = maxP↓P↓ω
ij

|SP,P↑ |.

Proof. The proof is in Appendix A.3.
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Observations from Theorem 4.5: We can derive
useful insights from the expression of the upper bound.
It is immediate that it depends on the cardinality of
the set P↑ϖ

ij . I.e., the higher is the number of ϱ-worse
candidate paths, higher the probability that the short-
est path changes to one such path which is exactly the
intuition for Conjecture 4.4. The dependence on ϱ

is actually two-fold: firstly, as ϱ increases, the term

$c
(

ϖ
ω
↗
Smax

)
decreases. Additionally, a higher ϱ de-

creases the cardinality of P↑ϖ
ij . Essentially, this means

that if ϱ is large, the probability that we end up shift-
ing to a ϱ-worse path decreases very quickly (refer to
Figure 9 in the Appendix). This idea will be explored
in greater depth in Corollary 4.7.

Remark 4.1. Note that the upper bound is tight when

|P<ϖ
ij | = 1 and |P↑ϖ

ij | = 1. In this case, we recover the

exact expression we derived in Lemma 4.3, implying

that our results are consistent.

Theorem 4.6 (Lower Bound on Bias Probability).
Fix any ϱ > 0 and any |Pij

↑ϖ |. There exists a

graph instance G and a pair of nodes i, j where i)

all paths between i and j are comprised of exactly k

edges and ii) there are |P↑ϖ
ij | paths P ↓= P

↔
ij with

wG(P ) = wG(P ↔
ij) + ϱ such that for any ε > 0:

qϖ ↙ (1≃ ε)

(
1≃


1≃ $c


ϱ ≃ g(ε)

ϑ
⇔
k

|P↓ω
ij |)

,

where g is a function of ε.

Proof. The proof is in Appendix A.5.

When ϱ grows large, $c
(

ϖ↘g(ϱ)

ω
↗
k

)
grows to 0. In that

case, we can use the binomial approximation of (1≃x)n

as x ↗ 0 to note that

qϖ ↙ (1≃ ε)
∣∣∣P↑ϖ

ij

∣∣∣ · $c


ϱ ≃ g(ε)

ϑ
⇔
k


.

This recovers the dependency of Theorem 4.5 up to a
1≃ε multiplicative factor and a small linear shift in the
$c term, showing that our upper bound is essentially
tight. We note that we recover a linear dependency
in the number of alternative paths that are at least
ϱ-worse, as in Theorem 4.5.

Note: There is an alternate interpretation of Theorem
4.5 in terms of high-probability bounds on the realized
bias, which leads to the following corollary:

Corollary 4.7. Suppose, Bij is the realized bias while

computing the shortest path between nodes i and j us-

ing a privatized graph G̃. Then,

P

Bij <

⇔
2
(
ϑz

↔⇔
S

)
↙ 1≃ ς,

where z
↔ = z1↘ ε

|Pij |
is the value at which the standard

normal CDF evaluates to 1 ≃ ς
|Pij | and S denotes the

maximum number of edges in any path in Pij.

Proof. The proof can be found in the Appendix Sec-
tion A.4 and follows directly from Theorem 4.5.

Theorem 4.5 showed that as ϱ increases, the probabil-
ity of incurring a bias at least as large as ϱ decreases
sharply. This implies that the probability of incurring
a large bias is very “small”. This is exactly what Corol-
lary 4.7 claims. Thus, Theorem 4.5 and Corollary 4.7
are duals of each other.

5 EXPERIMENTS: BIAS AND
UNFAIRNESS

Next, we provide experimental results that extend and
empirically validate our theoretical findings. The goal
is to simulate the behavior of a DP release task on
graphs that closely mimic real-world networks focus-
ing on the impact of privacy on bias and fairness.
We present the experimental setup in Section 5.1, and
present a flavor of the results on 2 classes of graphs—
grid graphs and scale-free graphs in Section 5.2. We
provide additional experiments in Appendix B on a
third class of graphs called “wheel graphs”.

5.1 Experimental setup

The experiments investigate three classes of graphs:
i) 2-dimensional grid graphs, ii) scale-free graphs, and
iii) wheel graphs (defined and studied in Appendix B).
While 2-D grids and wheel graphs closely emulate
transportation networks in the real world (for example,
Chicago and New York City have road networks laid
out in an orthogonal grid pattern), scale-free graphs
are often used to model other widely prevalent net-
works like social networks, the world wide web, etc.
Thus, these graph classes cover a large variety of real-
world networks. We use the following sets of parame-
ters to generate synthetic networks for each graph class
(Figure 3):

• 2-D grid graphs: A grid graph of size N has N
2

nodes and 2N2 +N edges.
• Scale-free graphs: These graphs have a de-
gree distribution following a power law and are
parametrized by their size (number of nodes N) and
the exponent of the power law (ς). A higher ς in-
dicates very few high-degree nodes, characteristic
of many real-world networks like social networks.
Unlike grid graphs, scale-free graphs are random,
meaning that even with the same parameters, graph
topologies may vary from one instance to another.
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(a) N = 5 (b) N = 10, ω = 2 (c) N = 10

Figure 3: Schematics of di!erent graph classes

Given a ground truth graph, we generate 100 private
realizations by independently adding standard Gaus-
sian noise to each edge (noise variance depends on
privacy parameters φ and ε), followed by the post-
processing step (Section 3). We report results that
are averaged over all private realizations.

5.2 Results & Insights

5.2.1 Metrics

Given graph G, we aim to empirically estimate the
probability that a randomly chosen node-pair (i, j) ex-
periences a certain level of relative bias in its shortest
path computation under privacy noise.

Path classification through relative bias. We
consider the following levels of relative bias: i) 0%
(indicating the shortest path remains unchanged), ii)
0≃ 10%, iii) 10≃ 20%, iv) 20≃ 40%, v) 40≃ 60%, vi)
60 ≃ 100%, and vii) > 100%. We classify node-pairs
by first computing the shortest path weight between
all pairs of distinct nodes on G and constructing the
weight distribution of these paths. Each node-pair is
then categorized based on the quartile of the weight
distribution in which its true shortest path weight lies.
We will index these categories 1 through 4. Category
1includes node-pairs whose shortest path weight lies
in the first quartile (nodes are very close), while Cat-
egory 4 includes those in the last quartile (nodes are
very far apart). This categorization allows us to inves-
tigate whether privacy noise impacts node pairs dif-
ferently based on their distance. When presenting
our observations, we often compare Category 1 and
Category 4 pairs because they represent the two ex-
tremes of the spectrum and are expected to have the
maximum amount of disparity.

Impact of sparsity. We also study a variant of 2D
grid graphs parametrized by a sparsity factor (Sp),
which is the percentage of edges with a ground-truth
weight of zero.2 The motivation is that real-life trans-

2Note that even at a sparsity of 0, there may be a sig-
nificant amount of edges with a low ground truth weight,
albeit not zero. For example, about 5 percent of edges are

portation networks often have a significant proportion
of edges with zero or near-zero tra#c.

5.2.2 2D grid graphs

First, we study the 2≃D grid graph. For each ground
truth graph instance, the edge weights are drawn in-
dependently from a Uniform[0, 1] distribution. We
generate results for di!erent grid sizes (N = 10, 40)
and di!erent levels of noise (level of noise mea-
sured as the standard deviation relative to mean edge
weight)(Figure 4). We make the following observa-
tions:

As the level of noise increases, node-pairs across all cat-
egories are more likely to incur a strictly positive rel-
ative bias. This follows directly from Lemma 4.3: for
any node pair (i, j) and any path P , a higher noise level
leads to a higher probability that wG̃(P ) < wG̃(P

↔).
Aggregating over all paths in Pij , the overall proba-
bility of a strictly positive relative bias increases.

However, there is a clear disparity between the source-
destination pairs in Category 1 and those in Category
4. At any noise level, Category 1 pairs are much more
likely to remain una!ected compared to Category 4
pairs. Category 4 pairs usually represent nodes that
are very far apart. On 2-D grid graphs, pairs of nodes
that are farther apart have a larger set of alternative
paths (higher |Pij |) and a higher number of edges on
these paths (higher Smax), thus facing a higher risk of
being a!ected by privacy noise. Here, the path car-

dinality e!ect explained in Section 4.1 overtakes the
e!ective relative noise e!ect, in favor of shorter paths.

These trends are consistent across graph sizesN . How-
ever, as the grid size increases, the bar plots become
increasingly right-heavy. This indicates that for the
same noise level, a larger graph is more likely to induce
higher magnitudes of relative bias across all categories
of node pairs. This is again a consequence of the path

cardinality e!ect which is amplified on large graphs.

Sparsity analysis. To further shed light on the dis-
parities introduced by privacy, we present results on
a grid graph of size N = 20 for di!erent sparsity fac-
tors and at di!erent levels of noise. (Figure 5). Here,
sparsity introduces two interesting e!ects that are in
tension with each other:

Impact on the number of bad paths: As Sp increases,
most paths have low total weight. Also, there are fewer
bad paths whose weight is significantly worse than that
of the best path, which makes it less likely across all

categories of node pairs to switch to a worse-o! path;
for example, in the extreme case where the sparsity

expected to have weight < 0.05 under a uniform distribu-
tion.
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(a) N = 10, Std 20% (b) N = 40, Std 20%

(c) N = 10, Std 50% (d) N = 40, Std 50%

(e) N = 10, Std 200% (f) N = 40, Std 200%

Figure 4: 2D grid graphs - Empirical probability es-
timates of incurring di!erent levels of relative bias on
shortest path computation.

factor is 1, all paths have weight 0 and are equiva-
lent. Further, longer paths are disproportionately af-

fected and more likely to switch to a worse path than

shorter paths: this is because node pairs which are far-
ther apart are more likely to have a short alternative
due to sparsity.

Impact on path weight estimation bias: The post-
processing step means that noisy weights, if negative,
are rounded up to 0—this introduces positive bias on
edge weights. However, this bias a!ects edges dis-
proportionately. In particular, edges whose weights
are closer to 0 experience more positive bias (as these
edges have a high probability of needing to be rounded
up after noise addition). This means that paths with
fewer edges are disproportionately more likely to be
overestimated compared to paths with more edges.

Figure 5 shows the tension between these two e!ects.
For a noise level of 20 %, the first e!ect dominates,
leading to less overall relative bias, and this bias seems
to a!ect Category 4 node pairs more than Category 1
pairs. As the noise level increases to 50 %, the second
e!ect starts becoming important. However, at very
high levels of sparsity (Sp 0.75), the first e!ect again

seems to take over with Category 1 node pairs becom-
ing extremely robust to privacy noise and Category 4
pairs being more a!ected.

(a) Std 20%, Sp 0.25 (b) Std 50%, Sp 0.25

(c) Std 20%, Sp 0.50 (d) Std 50%, Sp 0.50

(e) Std 20%, Sp 0.75 (f) Std 50%, Sp 0.75

Figure 5: 2D grids graphs: E!ects on privacy noise on
path change statistics when graphs are sparse

5.2.3 Scale-free graphs

We conclude this section with a study of scale-free
graphs where the parameter of interest is the power
ς of the underlying degree distribution. Note that
scale-free graphs can often have multiple disconnected
components (including many singleton nodes of degree
zero). However, for our simulation, we always pick its
largest connected component. All ground truth edge
weights are drawn independently from Uniform[0, 1].
The main observations from Figure 6 are:

Similar to earlier results, higher levels of noise lead to a
higher likelihood of incurring large relative bias across
all categories of node pairs. At low levels of noise,
Category 1 node pairs still continue to be more robust
to noise compared to their Category 4 counterparts (a
consequence of Theorem 4.5).

A striking observation is that at low values of ς (ς ↔
2), Category 1 node pairs are much more likely to incur
significant amounts of relative bias (> 100 %) com-
pared to Category 4 pairs at moderate to high levels of
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(a) Std 20%, ω = 1.5 (b) Std 50%, ω = 1.5

(c) Std 20%, ω = 3 (d) Std 50%, ω = 3

Figure 6: Results for scale-free graphs with N = 100.

noise. This is in sharp contrast with the results in 2-
D grid graphs where, typically, Category 4 pairs were
worse-o! due to privacy. This is largely because of
graph topology. When ς ↔ 2, the graph has multiple
densely connected centers that branch o! into tree-like
sub-graphs. A large proportion of Category 1 pairs are
located close to the centres and therefore have a large
number of path alternatives. The path cardinality ef-

fect increases their likelihood of incurring high bias.
Further, Category 4 pairs are predominantly located
on either side of connected centres–this means that
they have, on average, the same number of path al-
ternatives as their Category 1 counterparts, but those
paths have a high degree of overlap and only diverge
near the centre. This causes Category 4 pairs to in-
cur the same levels of absolute bias as the Category 1
pairs, but they incur much smaller levels of relative
bias because their paths are longer on average.

This trend becomes less significant for ς > 2 due to
change in the graph topology. As ς increases, the num-
ber of nodes of high degree decrease significantly and
the graph becomes less dense and more tree-like. As a
result, for most node-pairs, there exists a unique path
to go from source to destination which explains the
low levels of bias incurred across all node categories,
i.e., increased robustness to privacy noise.
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A Missing Proofs

A.1 Proof of Claim 4.1

Proof. Suppose, some path P ↑ Pij is the new perceived shortest path on privatized graph G̃ instead of the true
shortest path P

↔
ij on G. In this case, the realized bias Bij(P ) is given by:

Bij(P ) =
∑

e↓P

w(e)≃
∑

e↓P↑
ij

w(e) = wG(P )≃ wG(P
↔
ij).

Now, since P
↔
ij is the true shortest path on G, by definition, it must be that:

wG(P ) ↙ wG(P
↔
ij) ∝ P ↑ Pij ,

which directly implies that Bij(P ) ↙ 0. Since the above holds for any general path P ↑ Pij , this concludes the
proof of the claim.

A.2 Proof of Lemma 4.3

Proof. Recall that Z(e) is the amount of noise added to edge e ↑ E. We know that Z(e)’s are i.i.d. normal
mean-zero random variables with variance ϑ

2. The proof idea is to express the event of choosing the wrong
shortest path equivalently as an event when a certain linear inequality condition on Z(e)’s is satisfied. Then we
can exploit the normality and independence properties of Z(e)’s to reason about the probability. The complete
proof is presented below.

Note that the wrong path P
→ can be chosen if and only if wG̃(P

→) < wG̃(P
↔). Therefore,

q = P
[
wG̃(P

→) < wG̃(P
↔)
]

= P

wG(P

→) +
∑

e↓P →

Z(e) < wG(P
↔) +

∑

e↓P↑

Z(e)



= P




∑

e↓P →\P↑

Z(e)≃
∑

e↓P↑\P →

Z(e) < wG(P
↔)≃ wG(P

→)





= P




∑

e↓P →\P↑

Z(e)≃
∑

e↓P↑\P →

Z(e) < ≃ϖP →,P↑





= P




∑

e↓P →\P↑

Z(e) +
∑

e↓P↑\P →

Y (e) < ≃ϖP →,P↑



 .

In the last step above, we substitute Y (e) = ≃Z(e) for all e ↑ P
↔ \ P →. Note that Y (e) and Z(e) are identically

distributed (because mean-zero Gaussian random variables are symmetric). Since each Z(e), Y (e) ⇐ N(0,ϑ2)
and they are independent of each other,

∑
e↓P →\P↑ Z(e) +

∑
e↓P↑\P → Y (e) ⇐ N(0, |SP →,P↑ |ϑ2). This implies:

q = P
∑

e↓P →\P↑ Z(e) +
∑

e↓P↑\P → Y (e)

ϑ
√

|SP →,P↑ |
<

≃ϖP →,P↑

ϑ
√
|SP →,P↑ |



= $

(
≃ϖP →,P↑

ϑ
√

|SP →,P↑ |

)
= $c

(
ϖP →,P↑

ϑ
√
|SP →,P↑ |

)
.

The last step invokes the symmetry of a standard normal variable which allows, for any a > 0, $(≃a) = $c(a).
This concludes the proof of the lemma.

A.3 Proof of Theorem 4.5

Proof. The proof idea is as follows: we can express qϖ as the probability of the event that there exists a path in

P↑ϖ
ij which has the lowest weight on privatized graph G̃. Since only one path can be the shortest path on any
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realization of G̃, the above event decomposes into a union of disjoint sub-events (a specific path in P↑ϖ
ij is the

new shortest path on G̃). The technical parts of the proof deal with upper bounding the probability of each of
these sub-events for which we use Lemma 4.3.

We can express qϖ as follows:

qϖ = P

shortest path on G̃ is ϱ-worse



= P

→ P ↑ P↑ϖ

ij : wG̃(P ) < wG̃(R) ∝ R ↑ Pij \ P


(i)
=

∑

P↓P↓ω
ij

P
[
wG̃(P ) < wG̃(R) ∝ R ↑ Pij \ P

]

=
∑

P↓P↓ω
ij

P






R↓Pij\P

{wG̃(P ) < wG̃(R)}



 .

The equality in step (i) above follows from the fact that events of the type {wG̃(P ) < wG̃(R) ∝ R ↑ Pij \ P}
are disjoint since two di!erent paths cannot the best simultaneously (the event that two continuous random
variables are equal, occurs with probability 0). Now, for each P ↑ P↑ϖ

ij , note that P ↔ ↑ Pij \ P . Therefore, we
have:

P






R↓Pij\P

{wG̃(P ) < wG̃(R)}





↔ P
[
wG̃(P ) < wG̃(P

↔)
]
= $c

(
ϖP,P↑

ϑ
√
|SP,P↑ |

)
,

where the last equality follows from Lemma 4.3. It is important to note that we cannot compute the probability
of the intersection event in closed form because the individual events are not mutually independent (two paths
may have overlapping edges). Summing over all P ↑ P↑ϖ

ij , we derive the following upper bound:

qϖ ↔
∑

P↓P↓ω
ij

$c

(
ϖP,P↑

ϑ
√
|SP,P↑ |

)
.

Finally, noting that ϖP,P↑ ↙ ϱ for all P ↑ P↑ϖ
ij and from the definition of Smax, we have:

$c

(
ϖP,P↑

ϑ
√
|SP,P↑ |

)
↔ $c


ϱ

ϑ
⇔
Smax


∝ P ↑ P↑ϖ

ij .

This helps us simplify the upper bound even further and obtain the final result:

qϖ ↔
∑

P↓P↓ω
ij

$c

(
ϖP,P↑

ϑ
√
|SP,P↑ |

)
↔

∣∣∣P↑ϖ
ij

∣∣∣ · $c


ϱ

ϑ
⇔
Smax


.

A.4 Proof of Corollary 4.7

Proof. Note that showing P

Bij <

⇔
2
(
ϑz

↔⇔
S

)
↙ 1≃ ς is equivalent to showing that:

P

Bij ↙

⇔
2
(
ϑz

↔⇔
S

)
↔ ς,
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which again, is equivalent to showing qϖ ↔ ς where ϱ =
⇔
2
(
ϑz

↔⇔
S

)
. Now, recall that we have already shown

in Theorem 4.5 that for any ϱ > 0, we have:

qϖ ↔
∣∣∣P↑ϖ

ij

∣∣∣ · $c


ϱ

ϑ
⇔
Smax


.

We can construct a slightly more conservative upper bound on qϖ by noting that |P↑ϖ
ij | ↔ |Pij | and Smax ↔ 2S

(in the worst case, all paths in Pij have S edges and have no overlapping edges which leads to Smax = 2S).
Therefore,

qϖ ↔ |Pij | · $c


ϱ

ϑ
⇔
2S


. (3)

Hence, it is su#cient to show that when ϱ =
⇔
2
(
ϑz

↔⇔
S

)
, the revised upper bound in Equation 3 is ↔ ς. This

can be verified easily by plugging in the value of ϱ, as follows:

|Pij | · $c


ϱ

ϑ
⇔
2S


= |Pij | · $c

(
ϑz

↔⇔2S

ϑ
⇔
2S

)

= |Pij | · $c (z↔)

= |Pij | · (1≃ $(z↔))

= |Pij | ·
ς

|Pij |
= ς.

This concludes the proof of the corollary.

A.5 Proof of Theorem 4.6

Proof. The proof is constructive. We will construct a setting where qϖ matches the proposed lower bound.

Consider a pair of nodes (i, j) on graph G such that:

1. For any two paths P1, P2 ↑ Pij , P1 and P2 have no over-lapping edges, i.e., |SP1,P2 | = nP1 + nP2 .

2. For any two paths P1, P2 ↑ Pij such that P1 ↓= P
↔
ij and P2 ↓= P

↔
ij , P1 and P2 are identical, i.e., they have

exactly k edges, each with the same ground truth weight (this implies, wG(P1) = wG(P2)). The true shortest
path P

↔
ij also has exactly k edges. Let the common path gap with the true shortest path P

↔
ij be ϱ.

Thus, we have constructed a scenario where there is a unique shortest path and all the remaining paths are
identical and equally worse by amount ϱ. Then, our aim is to compute qϖ . Observe that:

qϖ = P

shortest path on G̃ is ϱ-worse



(i)
= 1≃ P


P

↔
ij is the shortest path on G̃



= 1≃Q.

Step (i) follows from our construction of the set Pij . Now, note that with probability 1≃ε, wG̃(P
↔
ij) ↙ wG(P ↔

ij)≃ς

where ς(ε) ↭ ≃ϑ
⇔
k · $↘1(ε). This in particular implies that:

Q = P

P

↔
ij is the shortest path on G̃



= P

wG̃(P

↔
ij) < wG̃(P ) ∝ P ↑ P↑ϖ

ij



↔ (1≃ ε) · P

wG(P

↔
ij)≃ ς < wG̃(P ) ∝ P ↑ P↑ϖ

ij


+ ε

= (1≃ ε) ·


P↓P↓ω
ij

P
[
wG(P

↔
ij)≃ ς < wG̃(P )

]
+ ε.
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where the second-to-last step follows from conditioning on wG̃(P
↔
ij) ↙ wG(P ↔

ij)≃ς for the first term and wG̃(P
↔
ij) ↔

wG(P ↔
ij)≃ ς for the second term; and the last step follows from independence because the paths do not overlap.

Since wG̃(P ) ⇐ N

wG(P ↔

ij) + ϱ, kϑ
2

, we then note that:

P
[
wG(P

↔
ij)≃ ς < wG̃(P )

]
= $c


≃ς ≃ ϱ

ϑ
⇔
k


= $


ς + ϱ

ϑ
⇔
k


.

Finally, since all paths P ↑ P↑ϖ
ij are identical, we have:

Q ↔ (1≃ ε) ·

$


ς + ϱ

ϑ
⇔
k

|P↓ω
ij |

+ ε,

which implies that:

qϖ ↙ 1≃ ε ≃ (1≃ ε) ·

$


ς + ϱ

ϑ
⇔
k

|P↓ω
ij |

= (1≃ ε)

(
1≃


1≃ $c


ς + ϱ

ϑ
⇔
k

|P↓ω
ij |)

.

B Additional Experiments

We also examine wheel graphs which closely emulate road networks in cities like Paris and Rome. These
graphs have two types of edges: i) circumference edges and ii) spoke edges. All circumference edges have their
ground truth weights drawn independently from a Uniform[0, 1] distribution. Since spoke edges are expected to
accommodate larger flows, their ground truth weights are drawn independently from Uniform[0, r] where r ↙ 1.
Thus, r represents the ratio of mean edge weights for the two groups of edges. For numerical experiments, our
parameters of interest are the following: i) size of the graph N and ii) ratio r. However, wheel graphs have
circular symmetry which means that N does not a!ect the outcomes independently. So, we fix N = 101 for all
experiments and only vary r from the following set: {1, 20, 50, 100}. Additionally, like all previous experiments,
we also consider di!erent levels of privacy noise: 20 %, 50 % and 100 %. Refer to Figure 7 for a graphical
representation of all results, based on which we make the following observations:

Similar to the observations for 2-D grid graphs, as the levels of noise increase, node pairs of all categories are more
likely to be a!ected. Once again, Category 1 pairs are significantly more robust against privacy noise compared
to Category 4 pairs, for the same reasons as highlighted earlier.

The most striking observation is that the ratio r greatly influences the degree to which bias is realized. As r

increases, all node pairs become more and more robust to privacy noise. This is a direct consequence of the
topology of a wheel graph. Note that there are only two kinds of source-destination pairs: i) between a central
node and an outer node, and ii) between two outer nodes. In both cases, with high r, there is only one candidate
path that is the most viable shortest path. For case i), it involves identifying the spoke edge with the least
weight, traversing it to reach the corresponding outer node, and then traveling along the circumference to reach
the destination. For case ii), the only feasible least-cost path is to travel along the low-weight paths on the
circumference (any trip to the center involves traversing a high-weight spoke edge and is sub-optimal). This
result follows from Theorem 4.5: in this case, the large gap ϱ between the best path and all other paths drives
the probability qϖ to very low levels, leading to a high degree of robustness.

C Missing Plots

C.1 Graphical representation of the E!ective Relative Noise E!ect

We graphically demonstrate in Figure 8 the e!ects of the path gap ϖ, sensitivity ”f and the size of the disjoint
edge set |S| on probability q, as predicted by Lemma 4.3.
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(a) Std 20%, r = 1 (b) Std 50%, r = 1 (c) Std 100%, r = 1

(d) Std 20%, r = 20 (e) Std 50%, r = 20 (f) Std 100%, r = 20

(g) Std 20%, r = 50 (h) Std 50%, r = 50 (i) Std 100%, r = 50

(j) Std 20%, r = 100 (k) Std 50%, r = 100 (l) Std 100%, r = 100

Figure 7: Statistics for wheel graphs with N = 101 nodes. In each row (from left to right), we generate results
for 3 di!erent levels of noise: i) 20%; ii) 50%; and iii) 100%. On the other hand, in each column (from top to
bottom), we plot results for di!erent values of r: i) r = 1; ii) r = 20; iii) r = 50; and iv) r = 100.

Note: q also depends on the local network topology of paths P
→ and P

↔ as we illustrate with the following
example. Let there be two users traveling between two di!erent node pairs, each of them has two path choices,
one which is the true best and another which is strictly worse. For ease of comparison, we assume that for both
node pairs, the worse path is o! the respective true best by the same amount ϖ. Now, suppose that user 1 faces
a scenario where both of her paths have a large degree of overlap, leading to a smaller |S|, while for user 2,
the paths are largely distinct. In this case, user 2 has a higher chance of deviating to the worse path, simply
because noise on shared edges a!ects both paths equally. This example demonstrates that despite the number
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(a) Variation with gap ε (b) Variation with sensitivity !f

Figure 8: Variation of probability q as a function of gap ϖP →,P↑ in (a) and sensitivity ”f in (b) for di!erent
values of |SP →,P↑ |. We set (ω, ε) = (1, 0.01). Additionally, for (a), we fix ”f = 1 and for (b), we fix ϖP →,P↑ = 15.

of alternative paths and the path gap being identical, unfairness can also arise due to network topology wherein
privacy has a much more adverse e!ect on some users compared to others.

C.2 Evolution of the Upper Bound in Theorem 4.5

We demonstrate in Figure 9 how the upper bound on qϖ derived in Theorem 4.5 evolves as a function of ϱ. We
use a wheel graph with N = 21 nodes. All ground truth edge weights drawn independently from U [0, 1]. We plot
results for two types of source-destination pairs: the blue legend is for a pair of nodes which lie on diametrically
opposite sides of the wheel graph, the red legend is for a pair of nodes consisting of the central node and a
circumference node. The noise is sampled from a mean zero Gaussian distribution with standard deviation
ϑ = 0.3. For very small values of ϱ, the bound is vacuous. However, once the bound becomes non-trivial, it
decreases rapidly and can be expected to approximate qϖ very accurately.

Figure 9: Evolution of the upper bound on qϖ as a function of ϱ for a wheel graph with N = 21.

C.3 How does the Upper Bound on Realized Bias grow in Corollary 4.7?

In Figure 10 (a), we show how the z-scores change with the cardinality of Pij . Higher values of |Pij | leads to
higher z-scores. For all cases, we use ς = 0.05, i.e., we desire 95% coverage. In (b), we illustrate how the bounds
on bias Bij calculated in Corollary 4.7 vary with S and |Pij |. The bound clearly grows as O(

⇔
S) in S.
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(a) (b)

Figure 10: Graphical representation of the upper bound in Corollary 4.7
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