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ABSTRACT

Multi-Agent Path Finding (MAPF) is a fundamental problem in robotics, requiring the computa-
tion of collision-free paths for multiple agents moving from their respective start to goal positions.
Coordinating multiple agents in a shared environment poses significant challenges, especially in con-
tinuous spaces where traditional optimization algorithms struggle with scalability. Moreover, these
algorithms often depend on discretized representations of the environment, which can be impracti-
cal in image-based or high-dimensional settings. Recently, diffusion models have shown promise in
single-agent path planning, capturing complex trajectory distributions and generating smooth paths
that navigate continuous, high-dimensional spaces. However, directly extending diffusion models to
MAPF introduces new challenges since these models struggle to ensure constraint feasibility, such
as inter-agent collision avoidance. To overcome this limitation, this work proposes a novel approach
that integrates constrained optimization with diffusion models for MAPF in continuous spaces. This
unique combination directly produces feasible multi-agent trajectories that respect collision avoid-
ance and kinematic constraints. The effectiveness of our approach is demonstrated across various
challenging simulated scenarios of varying dimensionality.

1 Introduction

Multi-agent path finding (MAPF) is a critical problem in robotics and autonomous systems, where the goal is to
compute collision-free paths for multiple agents navigating from their respective start positions to designated goals
in a shared environment |Stern et al. [2019]. This problem finds formulation in numerous domains, such as gaming,
automated warehouses, and aircraft taxing L1 et al.|[2021a]. The problem is inherently challenging due to the high-
dimensional joint configuration space and the need for coordination among multiple agents to avoid collision. The
complexity increases exponentially with the number of agents, making scalability a significant issue for traditional
MAPF algorithms. Additionally, existing studies typically consider discrete environments |Stern et al.|[2019]], Hopcroft
et al.|[[1984], thus further limiting their applicability in scenarios in-the-wild.

The complexity of MAPF in continuous or high-dimensional environments calls for approaches that move beyond
traditional discretized methods. Within this context, trajectory optimization has recently been tackled using diffusion
models, a powerful class of generative models originally developed for tasks in image and signal processing |Song
and Ermon| [2019], Ho et al. [2020]]. These models approximate high-dimensional probability distributions by itera-
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tively denoising sampled trajectories, leveraging strong inductive biases that provide effective heuristics even for very
complex distributions. Their adaptability has accelerated their adoption across diverse engineering domains, including
single-agent robotic path planning |Carvalho et al.|[2023]], (Christopher et al. [[2024]. By learning the underlying dis-
tribution of (feasible) trajectories, diffusion models can produce diverse solutions that may be missed by traditional
planners due to inductive bias. Additionally, these models possess the ability to generate smooth trajectories that effec-
tively navigate high-dimensional spaces with complex obstacles while directly processing real-world representations
of the environment.

However, despite their potential, current diffusion models face significant challenges in generating feasible trajectories.
Existing approaches often rely on costly rejection sampling methods, which attempt to identify a feasible subset from
a larger set of initially generated trajectories, if such a subset exists at all |Carvalho et al.| [2023]], |Christopher et al.
[2024]). Additionally, despite their adoption in single-agent scenarios, extending diffusion models to MAPF presents
additional challenges. The introduction of multiple agents requires the consideration of collision avoidance among
agents, as well as kinematic constraints.

To address this limitation, this paper proposes a novel integration of constrained optimization in diffusion processes
tailored to MAPF in continuous spaces. The proposed method leverages the projection-based method for diffusion
models (Christopher et al.| [2024], which has been recently introduced to steer the learned data distribution to satisfy
some constraints of interest. This approach reformulates the sampling process as a constrained optimization problem,
projecting the outputs of DMs at each sampling step into the feasible region. However, the MAPF feasible region is
defined by a set of nonconvex nonlinear constraints (NNCs), which massively complicates the application of these
diffusion models in scenarios with a large number of agents or with moving objects. To address this limitation and
enhance computational efficiency, we propose an augmented Lagrangian method that relaxes the NNCs, making the
proposed approach suitable for complex applications where classical MAPF algorithms fall short. This novel integra-
tion enables generative diffusion models to generate, for the first time, collision-free trajectories for scenarios involving
dozens of agents and obstacles.

The paper’s contributions are summarized as follows:

1. We introduce a novel formulation of MAPF in continuous spaces using diffusion models, enabling the simultaneous
generation of trajectories for all agents in a single framework.

2. To address the challenge of constraint satisfaction, we adapt the projection mechanism for MAPF by embedding
constraints directly into the diffusion process, projecting the generated solutions into the feasible region.

3. Given the computational intractability of MAPF in continuous spaces, especially with a large number of agents, we
develop an augmented Lagrangian approach to accelerate the projection process. This enhancement significantly
reduces computational overhead, making the method scalable and practical for real-world applications.

4. We assess the ability of our approach to generate feasible MAPF trajectory empirically over several challenging
scenarios, which include maps with narrow corridors, dense obstacles, and a large number of agents.

2 Related Work

Multi-Agent Path Finding. The classical MAPF problem assumes that time and the environment are discretized
into time steps and grids, respectively [Stern et al. [2019]]. Under this assumption, numerous search algorithms have
been developed to efficiently obtain near-optimal solutions for MAPF in discrete environments, even for scenarios
involving hundreds of agents|Li et al.|[2019} 2021b]],(Okumura et al. [2022a], |Li et al. [2021bf. While this assumption
significantly reduces the complexity of MAPEF, it creates a gap between the problem’s formulation and real-world ap-
plications, posing challenges in many domains Shaoul et al. [2024]]. Some studies attempt to generalize MAPF to con-
tinuous environments using probabilistic roadmaps |[Kavraki et al. [1996] and rapidly exploring random trees |LaValle
[1998]. Another line of research formulates MAPF as a constrained optimization problem with continuous variables,
employing methods such as sequential convex programming |Augugliaro et al. [2012], (Chen et al.| [2015] and the al-
ternating direction method of multipliers (Chen et al. [2023]]. However, these methods often fail to find any solution if
there are a large number of agents and obstacles, even if one exists.

Path Finding with Generative Models. There has been a growing interest in leveraging generative models for
path finding problems. Existing studies primarily focus on using diffusion models to solve single-agent path finding
problems Janner et al.|[2022], |Carvalho et al.|[2023]]. Besides these approaches, Okumura et al.|utilizes a conditional
variational autoencoder to predict cooperative timed roadmaps to aid in solving MAPF in continuous spaces. |[Shaoul
et al. uses diffusion models to generate a trajectory for a single agent and employs classical searching algorithms to
determine the final solutions. However, these methods do not ensure the feasibility of the diffusion model outputs and
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cannot directly generate collision-free paths. In contrast, our approach integrates optimization techniques into diffusion
models to directly generate feasible MAPF solutions in continuous spaces, even in scenarios with a significant number
of obstacles, while ensuring feasibility.

3 Preliminaries

Diffusion Models. Diffusion Models (DMs) are a class of probabilistic generative models designed to transform sim-
ple noise distributions into complex target data distributions. They operate through two Markov chains: (1) a forward
diffusion process that progressively adds noise to data samples, and (2) a reverse denoising process that iteratively
removes noise to recover data samples [Yang et al. [2023]]. In the forward process, Gaussian noise is incrementally
added to the data xq ~ ¢(xg) over T timesteps, producing a sequence of noisy samples x1, X, . . . , X7

Q(Xt|xt71) =N (Xt; vV1- 5tXt7175tI> s (D

where 3; € (0, 1) is a predefined variance schedule controlling the amount of noise added at each step, ensuring that
the final distribution approximates an isotropic Gaussian. The reverse process begins with a sample from the noise
distribution x7 ~ A(0,I) and aims to reconstruct data samples by sequentially removing noise:

Po(Xe—1]%¢) = N (x4—1; po(x¢, ), Bo (x4, 1)), )

where 6 represents the learned parameters of neural networks, and py and ¥y are functions parameterizing the mean
and covariance, respectively. Through this process, DMs iteratively transform random noise samples into data resem-
bling the target distribution g(xo).

Score-based DMs employ a neural network sy to approximate the score function Vx; log ¢(x;), which points in the
direction of the steepest ascent of the data density at each noise level |Song et al. [2020]]. The training objective is to
minimize the difference between the true score and the network’s approximation |Yang et al.|[2023|]:

Eit,....7, xo~a(xo), | VXt l0g q(x¢) — s0(x¢, ) n(t) B (3a)
XtNtI(Xt\Xo)

=Eior,..1, x0~q(xo),|vxt log Q(Xt‘XO) — 89(x¢, t)|277(t)5t + const,

x~q(x¢|x0)
where q(x¢|xg) = N (xt; V1= Bixo, BtI) and 7)(t) is a positive weighting function.

As shown by |Yang et al. [2023], classical DMs are a special case of score-based DMs. In the subsequent sections, our
focus will be on score-based DMs due to their flexibility and effectiveness.

3.1 Multi-Agent Path Finding in Continuous Space

Multi-Agent Path Finding (MAPF) involves computing collision-free trajectories for multiple agents moving from
their respective start locations to designated goals within a shared environment. Consider a set of N, agents
A = {ai,aq,...,an,} operating on a two-dimensional plane, in a continuous space. Each agent a; is modeled as a
sphere with radius ; and has a trajectory over H time steps denoted by m; = [}, 72, ..., 7], where 7} = (2}, yl)
represents the position of agent a; at time h. The agents have start positions B = [by, bo,...,by,] and goal posi-
tions E = [e1,ea,...,en,]. In addition, their movement must adhere to kinematic constraints, such as maximum
velocities. The environment contains N, obstacles O = {o1,...,0n,}. The objective is to find a set of trajectories
IT = {7y, mo,..., 7N, }, each associated with agent a;, that minimizes a cost function while ensuring feasibility with
respect to environmental constraints and inter-agent collision avoidance.

The MAPF problem can be formulated as the following constrained optimization:

ml_i[n J(II) (4a)
s.t. IT C Qops, (4b)
T =b;, Vi€ [Ny, (4c)

il =e;, Vie€ [N, (4d)
Kinematic constraints on I1T, (4e)
Collision avoidance between agents in I, (4f)

where J : RNeXHX2 _4 R is the cost function (e.g., total travel time or energy consumption), and s denotes
the feasible region of the environment considering obstacles. Constraints (4b)) ensure that agents avoid obstacles, (4c)



A 1 AW N =

Multi-Agent Path Finding in Continuous Spaces with Projected Diffusion Models A PREPRINT

Algorithm 1: PDM
X% ~ N(Oa \ ﬂTI)
fort =T to1do

Ve < Pt/2pr
for i = 1to M do

z ~N(0,1); g+ sp-(x710)
xi = rPQ(Xéfl + 78 +/27:2)

0 M
Xi 1 — Xy

return x9

and (@d) ensure that each agent starts at and reaches its designated start and end positions, respectively, (4e) enforce
kinematic limits, and (4f) prevent inter-agent collisions. In the following, we denote the constraint set (@c)— (@f), with
Q.

The MAPF problem is challenging due to the high dimensionality of the joint configuration space and the need to coor-
dinate multiple agents simultaneously Stern et al.|[2019],|Shaoul et al. [2024]]. Traditional methods often struggle with
scalability and may not efficiently handle the continuous nature of real-world environments, as shown in |Augugliaro
et al.|[2012]], |Shaoul et al.|[2024]]. We seek to address this issue using constrained DMs.

4 Constrained Diffusion Models

In this section, we first revisit the sampling process for DMs and then investigate the integration of DMs and optimiza-
tion to constrain the output of DMs satisfying constraints.

4.1 Recall The Sampling Process in DMs

Since the sampling process in DMs is a Markov process, we generate xq by iterative sampling from the conditional
distribution x; ~ q(x¢|xg) as t — 0, where g(x¢|xo) shifts from Gaussian noise to the training data distribution
as t decreases. The sample is optimized with respect to each interim data distribution by M iterations of Stochastic
Gradient Langevin Dynamics (SGLD):

X, =%, + 7 Vi log g(xi|x0) + /2mez, ®

where z is standard normal, v, > 0 is the step size, and V. log q(x%|xo) is approximated by the learned score function
so(xy, t).

Christopher et al.|[2024] derive theory connecting the application of SGLD for sampling to iterative, gradient-based
optimization algorithms. The described process ensures that, under appropriate conditions, samples are distributed
according to the target distribution ¢(x). As shown by Christopher et al.|[2024]], SGLD converges toward a stationary
distribution under mild assumptions, transitioning toward deterministic gradient ascent as the stochastic component
diminishes. This connects the reverse diffusion process to an optimization problem, minimizing the negative log-
likelihood of the data distribution and forming the foundation for constrained sampling via iterative projections.

4.2 Projected Diffusion Models

In this subsection, we introduce Projected Diffusion Models (PDM) to ensure that generated outputs satisfy predefined
constraints. While the objective remains consistent with traditional score-based DMs, the solution is restricted to lie
within a feasible region €2. This transforms the optimization problem into a constrained formulation (Christopher et al.
[2024]:

min 3 —logg(xi[xo) (62)
X T
st Xr,...,Xg € Q. (6b)

The reverse sampling process in PDM aligns closely with that of traditional score-based DMs. Specifically, the score
network sg(x,t) estimates the gradient of the objective in Equation (6a), enabling iterative updates as defined in
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Equation (5). However, the presence of constraints necessitates a modification to the update rule to maintain fea-
sibility. To address this, PDM employs a projected guidance approach, incorporating constraints into the optimization
process.

The projection operator, Pq, is defined as solving a constrained optimization problem:
Pao(x) = argmind(x,y), (7
yEeQ

where d(x,y) is a distance function, and, unless otherwise d(x,y) denotes the euclidean distance: ||y — x||3, which
identifies the closest feasible point y within 2 to the input x.

To ensure feasibility at each step, the projected diffusion model applies the projection operator after updating x;,
leading to the projected diffusion model sampling step:

Xt — Py (xi + 7tV log g(x:[x0) + QWZ) ’ .

where () is the set of constraints and Pq, is a projection onto 2. Throughout the reverse Markov chain, each iteration
performs a gradient step to minimize the objective in Equation (6a), while ensuring feasibility through projection. As
is the case in this paper, the complete sampling process is outlined in Algorithm [T}

PDM directly minimizes the negative log-likelihood as its core objective, similar to standard unconstrained sampling
methods. This approach provides a crucial benefit: it directly optimizes the probability of generating samples that
align with the data distribution, while simultaneously imposing explicit, verifiable constraints. In the next section, we
develop a projection mechanism tailored for MAPF in continuous spaces.

5 Efficient Projections for MAPFs

While PDM provides a useful method to steer samples generated by the generative model to satisfy relevant constraints,
projecting onto nonconvex sets can be a computationally expensive operation, especially when it is required to be
computed at each step of the sampling process. To address this shortcoming, we develop a projection mechanism to
generate feasible trajectories for all agents. To accelerate the projection process, we adopt the augmented Lagrangian
method (ALM) Boyd et al.|[2011]] to the projection process.

5.1 Collision-free Trajectories Projection Mechanism

In the following, we define the mathematical formulation of the feasible region {2 for the MAPF problem, distinguish-
ing between convex and nonconvex constraints.

Convex Constraints. First, each agent’s trajectory must start and end its specified start and goal points, as specified

in Constraints and (4d).
Additionally, agents must adhere to maximum velocity limits between consecutive time steps:

(rh = 707)? < (AL, Vi€ [No),he{2,..., H}, ©)
where v]"* denotes the maximum allowable velocity for agent a;, and At is the time interval between steps.
Together, these constraints define a convex set:

Q0. = {H c RNG,XHXQ

Constr. (@c), @d), and (9) hold} : (10)

Nonconvex Constraints. To ensure collision avoidance between agents, we impose the following nonconvex con-
straints:

(m' =) > (R*)?, Vi, j, i # j € [Nal, h € [H], (11)
where R® denotes the minimum distance between agents at each time.
Similarly, to avoid collisions between agents and static obstacles, we have:
(7} — 0;)* > (R%)?,Vi, j € [N], h € [H], (12)
where R° denotes the minimum distance between agents and obstacles to guarantee noncollision. Similarly, these two
constraints define

0, = {H e RN«Hx2|Constr. (TT)), (12), hold}. (13)

The complete feasible set is given by: 0 = Q. N ,,. Although the projector Pg, can generate feasible MAPF trajec-
tories, the nonconvex constraints result in high computational costs.
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5.2 ALM for Efficient Projection

To address this issue, we seek to relax the nonconvex constraints in MAPF to transform the original nonconvex quadrat-
ically constrained quadratic problem (QCQP) into a convex QCQP. To facilitate analysis, we rewrite the inequality
constraints as equalities:

Ho :(R*)? = (nf —m})? +df ), = 0,4, 5, i # j, Vh, (14a)
Ho :(R%)? — (7' — 0j)? +d?; ), = 0,Vi, j, Vh, (14b)

where df . i jn and d? j.n (with vector form d® and d°, respectively) are positive dummy variables. The Lagrangian
function is defined as:

LML, v,,v,) = f(z) + v, Ho(ID) + v, Ho(IT), (15)
where v, and v,, are Lagrangian multipliers, H, and H, represent the equality constraints deﬁned by 4a and (14D -
respectively. Specifically, H, corresponds to the agent collision avoidance constraints (R%)? — (7 — ) +di =
0,4, 4, i # j, Yh, and H, corresponds to the obstacle collision avoidance constraints (R°)? — (wf - oj) +df

0,Ve, 4, Yh. To improve the poor convergence of the classical lagrangian function, we can augment the Lagranglan
function with a penalty on the constraint residuals Boyd et al.|[2011]], Kotary et al. [2022]:

LT, v,,v,) = f(@)+v, Ha(TD) + vy Ho(ID) + pal[Ha(TD)|* + po| Ho (L), (16)

where p, and p, are chosen penalty weights on the equality residuals. The corresponding Lagrangian Dual function
can be defined:

d(ve,v,) = ml%n LTI, v, v,). (17)

The Lagrangian Dual Problem is to maximize the dual function:

arg max d(v,,v,) (18a)
st. TII e Q.. (18b)

Through weak duality, solving the dual problem can provide a lower bound for the original problem’s optimal

solution. Specifically, a feasible solution IT to the Primal problem can be derived from the dual solution (v}, v}) via
the stationarity condition:

II =arg min LI, v;,v)). (19a)

I1eQ,

The dual problem (I8) can be solved iteratively, named the Dual Ascent method (DAM):

" = arg Jnin LI, vk vk, (20a)
Iic

v =k 4 pkyy (TR, (20b)

vETL = UF 4 ok (TTF). (20c)

Using ALM significantly accelerates the projection process, especially in complex scenarios. The augmented sampling
process is described in Algorithm 2]

6 Experiments

We evaluate the performance of PDM in generating feasible trajectories for MAPF in continuous spaces. We com-
pare PDM against standard Diffusion Models (SDM) and Guided Diffusion Models (GDM) across three challenging
scenarios: Narrow Corridors, Obstacle-Dense Environments, and Agent-Dense Environments.

6.1 Experimental Setup
We conduct experiments in the following scenarios:

* Narrow Corridors: Scenarios where agents must exchange positions in confined spaces, requiring precise
coordination to avoid collisions.
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Algorithm 2: ALM for Projection

Input: Tolerance ¢, Weight p, Initial Trajectory I1

X% ~ ./\/(0, O'TI)

while V,, <AV, <ddo
Dy Ho(II), Dy < Ho(ID);
I« arg minpeq, £(1£[7 vivl);
Vo, < Ha(ﬂ)’ Vy, < HO(ﬂ) 5
p < Update(p)

return fI;

* Obstacle-Dense Environments: Scenarios with a high density of obstacles, where agents must navigate
complex paths to reach their goals without collisions.

* Agent-Dense Environments: Scenarios with a large number of agents, increasing the complexity of collision
avoidance and coordination.

For each scenario, we generate environments where the positions of obstacles and agents are randomly assigned and
do not appear in the training data, ensuring that the models are tested on unseen configurations. The training data is
collected following the routine described in|Okumura et al.|[2022b].

We evaluate the methods based on two metrics:

* Violation Rate: The percentage of constraints violated, indicating the feasibility of the generated trajectories.

» Total Path Length: The sum of the lengths of the paths taken by all agents, reflecting the efficiency of the
trajectories.

We compare our proposed PDM against the following baseline methods:

» Standard Diffusion Models (SDM): Standard diffusion models used to generate trajectories without any
constraint handling.

* Guided Diffusion Models (GDM): Diffusion models guided by penalty terms added during the sampling
process to encourage feasibility, similar to the method used in|Carvalho et al. [2023].

6.2 Evaluation on Narrow Corridors

The Narrow Corridor scenarios are designed to test the ability of the methods to generate feasible trajectories in tight
spaces where agents must exchange positions. Figures|1(a) and |l (b)|illustrate the trajectories generated by PDM in two
different narrow corridor scenarios. Agents (solid circles) successfully reach their respective goals (empty circles) by

B i s e e e e e

(a) Narrow Corridor 1.

(b) Narrow Corridor 2.

Figure 1: Collision-free trajectories generated by PDM in Narrow Corridor scenarios. Agents (solid circles) navigate
to their goals (empty circles) by exchanging positions in confined spaces without collisions.
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PDM DM GDM

Violation NC 1 0 34.62 0.96
Rate NC?2 0 15.79 5.26
Path NC1 0.7867 2.6766 0.8235
Length NC2 0.7521 2.1293 0.8398
Table 1: Performance Evaluation on Narrow Corridors.

(a) Obstacle-dense Scenario 1. (b) Obstacle-dense Scenario 2.

Figure 2: Collision-free trajectories generated by PDM in Obstacle-Dense scenarios. Agents successfully navigate
through environments with numerous obstacles to reach their goals. The empty dashed circles denote starting points,
and the solid circles represent the goals.

coordinating their movements to avoid collisions in the confined space. Notice how PDM can identify a set of feasible
paths for each agent in the narrow corridor by generating complex maneuvers and adjusting speed and position to
allow an agent to overtake the other.

Table [1] presents the performance of all methods in terms of violation rate and total path length for the two narrow
corridor scenarios (NC1 and NC2). Lower values indicate better performance. Notice how PDM outperforms both DM
and GDM, achieving zero violation rates and the shortest total path lengths in both scenarios. In contrast, standard
DM exhibits high violation rates and longer paths, indicating significant limitations in handling constraints. GDM
reduces violation rates compared to DM but still falls short of PDM’s performance.

6.3 Evaluation on Obstacle-dense Scenarios

In the Obstacle-Dense scenarios, we test the methods in environments with twenty randomly placed obstacles and four
agents. Figures|2(a) and [2(b)| show the trajectories generated by PDM, demonstrating its ability to navigate complex
environments while avoiding collisions even when agents need to navigate scenarios presenting a large number of
obstacles.

Table[2]summarizes the performance of the methods in the obstacle-dense scenarios (OD1 and OD2). Notice how PDM
achieves the best performance, maintaining zero violation rates and the shortest paths, indicating strong adaptability

PDM DM GDM

Violation OS'1 0 0.58 0.48
Rate 0S2 0 1.02 0.58
Path OS1 20087 6.0228 5.6979
Length OS2 2.0457 5.8585 52771
Table 2: Performance Evaluation on Obstacle-dense Scenarios.
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PDM DM GDM

Violation AS 1 0.31 3.78 0.54
Rate AS2  0.17 2.99 0.37
Path AS1 52021 11.1599 5.4932
Length AS2 5.1631 11.4114 5.4081
Table 3: Performance Evaluation on Agent-dense Scenarios.

to dense obstacles. In contrast, DM exhibits higher violation rates and the longest paths. GDM outperforms DM but is
worse than PDM. These results emphasize PDM’s robustness and efficiency.

6.4 Evaluation on Agent-dense Scenarios

Finally, we test the ability of our proposed method to handle a large collection of agents. An increasing number
of agents significantly introduces computational costs during projection, which makes standard projection methods
challenging to handle. To address this, we use the ALM method to efficiently address Agent-dense Scenarios. Table
evaluates PDM, DM, and GDM in agent-dense scenarios (AS 1 and AS 2). PDM achieves the lowest violation
rates (0.31 and 0.17) and shortest path lengths (5.2021 and 5.1631), highlighting its efficiency in handling high agent
density. GDM also shows moderate performance, with higher violation rates and longer path lengths compared to
PDM. DM performs the worst, with significantly higher violation rates (3.78 and 2.99) and longest paths (11.1599 and
11.4114), indicating limited suitability for agent-dense conditions.

These results are significant as they demonstrate the power of combining diffusion models with constrained optimiza-
tion techniques to address problems that would be otherwise challenging to be tackled by these two areas indepen-
dently.

7 Conclusion

In this paper, we have presented a novel approach that combines constrained optimization techniques with DMs to
generate collision-free trajectories for MAPF in continuous spaces. By integrating constraints directly into the diffusion
process, our method enables the direct generation of feasible solutions for MAPF without the need for expensive
rejection sampling or post-processing steps. This integration ensures that the generated trajectories satisfy all necessary
constraints, including collision avoidance between agents, adherence to kinematic limits, and compliance with start
and goal positions.

To address the computational challenges inherent in handling complex constraints, especially in scenarios with a large
number of agents or obstacles, we designed an ALM to efficiently manage the projection process within the diffusion
framework. The ALM significantly accelerates the computation by transforming the constrained optimization problem
into a series of unconstrained problems augmented with penalty terms and Lagrange multipliers. This enhancement
makes our approach scalable and practical for real-world applications where computational resources and time are
critical factors.

Our preliminary experiments across various challenging scenarios—including narrow corridors, obstacle-dense envi-
ronments, and agent-dense environments—demonstrate the effectiveness and robustness of our proposed method. In
narrow corridor scenarios, where precise coordination is crucial, our PDM successfully generated feasible trajectories
that allowed agents to exchange positions without collisions. In obstacle-dense environments, PDM consistently navi-
gated agents through complex paths while maintaining zero violation rates and optimizing path lengths. In agent-dense
scenarios, despite the increased complexity due to the higher number of agents, PDM maintained superior performance
with the lowest violation rates and shortest total path lengths.

Crucially, the integration of constrained optimization into the diffusion process not only ensures constraint satisfaction
but also improves the overall quality of the generated trajectories. By embedding constraint handling directly within
the generative model, the aim is to eliminate the reliance on heuristic adjustments, leading to a cohesive and effective
solution. We hope that applications like this one would help to bridge the gap between probabilistic generative models
and constrained optimization, opening new avenues for applying diffusion models to complex multi-agent robotic
systems.
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