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Abstract

Supervised multi-modal learning involves mapping multiple modalities to a target
label. Previous studies in this field have concentrated on capturing in isolation
either the inter-modality dependencies (the relationships between different modali-
ties and the label) or the intra-modality dependencies (the relationships within a
single modality and the label). We argue that these conventional approaches that
rely solely on either inter- or intra-modality dependencies may not be optimal in
general. We view the multi-modal learning problem from the lens of generative
models where we consider the target as a source of multiple modalities and the
interaction between them. Towards that end, we propose inter- & intra-modality
modeling (I2M2) framework, which captures and integrates both the inter- and
intra-modality dependencies, leading to more accurate predictions. We evaluate
our approach using real-world healthcare and vision-and-language datasets with
state-of-the-art models, demonstrating superior performance over traditional meth-
ods focusing only on one type of modality dependency. The code is available at
https://github.com/divyam3897/12M2.

1 Introduction

Supervised multi-modal learning involves mapping input data to a target label, where the data is
derived from multiple modalities and information about the boundaries between different modalities
is available. This problem has garnered interest in numerous applications, such as autonomous
driving [18, 9, 40], healthcare [28, 67], robotics [55, 76, 14], to name a few. We encourage readers to
refer to the latest survey papers [79, 36, 42] for recent developments in this field.

Despite multi-modal learning being a key paradigm in machine learning, its effectiveness varies across
different applications. In some cases, a multi-modal learner outperforms a uni-modal learner [8, 78],
while in others, it may not be as effective as individual uni-modal learners [74, 16] or a simple
combination of uni-modal learners [53]. These differing results beg for a principled framework that
can explain such discrepancies in multi-modal model performance and provide a general recipe for
designing models that can leverage multi-modal data more efficiently and without such shortcomings.

In this work, we aim to uncover the underlying factors behind such discrepancies and introduce
a more principled approach to multi-modal learning to resolve them. We view the supervised
multi-modal learning problem from a probabilistic lens and define the underlying data-generating
process. More formally, the proposed data-generating process is shown in Figure 1a. Without loss
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Figure 1: Data generating process for various scenarios with two modalities x, x’ and output y.
In the context of multi-modal learning a), the label modulates the individual modalities (referred
to as intra-modality dependencies) and the interaction between them (referred to as inter-modality
dependency) through the selection variable v. In contrast, conventional approaches assume the
graphical model in b) or ¢). In the graphical model shown in b), the dependency between each
individual modality and the label only modulates through the selection variable v. On the other hand,
the graph in ¢) assumes that the dependency between two modalities is independent of the label.

of generality, we consider the output y generating data x and x’ for the two modalities. We define
the statistical dependency between the set of modalities and the label using a selection variable
v € {0,1}. Formally,

p(y,x,x',v=1)=p(y)p(x | y)px | y)p(v=1]x,%x"y).

This selection variable is always set to one because it is the mechanism that induces the dependencies
between the modalities and the label. The strength of this selection mechanism varies across datasets.
When the selection effect is strong, inter-modality dependencies (dependencies between the modalities
and label) become more significant. Conversely, when the selection effect is weak, intra-modality
dependencies (dependencies between the individual modalities and label) are more crucial.

At a high-level, our framework assumes that the output label generates the data associated with
individual modalities. In addition, it also defines the relationship among different modalities and
the label with the selection mechanism. The extent to which the output is dependent on the data
from individual modalities and on the cross-modality relationships, differs from use-case to use-case.
Given the lack of prior knowledge about the strength of these dependencies on the final task, a
multi-modal system must model both the inter- and intra-modality dependencies. We achieve this
by building a classifier for each modality to capture the intra-modality dependencies and another
classifier to capture the dependencies between the output label and the inter-modality interactions.
These classifiers are then combined by constructing a product or log-ensemble of their outputs. We
name this approach inter- & intra-modality modeling (I2ZM2), stemming directly from the above
multi-modal generative model.

The proposed framework can be used to categorize all the previous works on multi-modal learning
into two categories. The first category correspond to the inter-modality modeling methods [4, 6, 19,
27,45,43,8,78,2,32,75,78, 56, 57, 15, 83]. This includes methods that predominantly focus on
capturing the dependencies between the modalities to predict the target. From our graphical model’s
perspective these methods are based on the assumption that there are no direct edges from y to
x,x’ (see Figure 1b). Although these methods can technically capture both inter- and intra-modality
dependencies, they often fail to do so effectively [74, 78, 15]. This ineffectiveness stems from their
reliance on incomplete underlying assumptions about the generative model for multi-modal learning.
The second category correspond to the intra-modality modeling methods [54, 33, 23, 39, 66]. This
include approaches that consider the interactions between different modalities that occur only through
the label (see Figure 1c). These approaches do not capture the relationship between the modalities for
prediction, which contradicts the objective of multi-modal learning. Inter-modality approaches excel
when modalities share significant information to predict the label, while intra-modality approaches
are effective when cross-modality information is sparse or absent. Often times, such information is
not provided to us when building the multi-modal models.

The proposed I12M2 framework addresses this shortcoming by not requiring prior knowledge of the
strength of these dependencies. It explicitly models both inter- and intra-modality dependencies,
making it adaptable and effective across various conditions. We validate our claims on multiple
datasets, demonstrating the benefits of 2M2 over both inter- and intra-modality methods. We apply



our method to multiple tasks in healthcare, including automatic diagnosis using knee MRI exams [81]
and for mortality and ICD-9 code prediction in the MIMIC-III dataset [31]. We also demonstrate the
benefits of I2M2 in multiple vision-and-language tasks such as VQA [3, 65] and NLVR2 [69]. Our
evaluation shows the varying strength of dependencies across datasets; intra-modality dependencies
are more beneficial for fastMRI dataset, while inter-modality dependencies are more relevant for
NLVR?2 dataset. Both dependencies are pertinent for the AV-MNIST, MIMIC-III and VQA datasets.
I12M2 excels across the board, ensuring robust performance regardless of which dependencies are
most significant.

2 What is Multi-modal Learning?

Multi-modal learning refers to the problem setup where the input is expressed as a set of observations
from different modalities. Unlike conventional learning involving data set from a single modality,
multi-modal learning can and should exploit the information from all the provided modalities for the
purpose of prediction. In this work, we are interested in supervised multi-modal learning, where the
goal is to map the inputs from multiple modalities to the targets.

We begin with the dataset D = {(x;,x';,y:)}7; with n examples. Without loss of generality, y; is

the label and x; € X C R?and x/; € X' C R represent data from the two modalities. To define
multi-modal learning more formally, we define a multi-modal data generating process in which
label y gives rise to both the modalities x and x" and the interaction between them (see Figure 1a).
The variable v represents a selection variable that captures the statistical dependencies across the
modalities given the label. This selection variable is a binary random variable that is conditioned
on all the input modalities and the target. As mentioned earlier, this variable is always present (i.e.,
v = 1), but its influence varies across datasets. The joint probability in this case can be written as:

p(y, x,x',v=1)=p(y)px|y)px |y)pv=1]|xx"y). (D

While this might appear similar to the use of selection variables in modeling selection bias [26, 10, 5],
in our context, selection does not refer to selecting examples, but to the mechanism that induces the
dependencies between the modalities and the label. Particularly, we use this mechanism to break the
conditional independence among the input modalities given the label, which is often referred to as the
‘explaining away’ phenomenon. The challenge is that, prior to analysis, the relative importance of
inter- and intra-modality dependencies for classification is often unknown. Therefore, a multi-modal
classifier needs to account for both inter- and intra-modality dependencies.

Our data generating process is commonly observed in many real-world scenarios. As a concrete
example, consider VQA [3], a task that involves answering an open-ended question using information
from an associated image. Each individual modality — either the image or question — can independently
provide clues towards the correct answer [21, 8, 11, 65], yet these hints alone are often not sufficient
to predict the answer. It is only by examining both modalities together that we can accurately infer
the correct answer. This combination is captured in our generative model by the selection variable v.
Thus, this task requires building separate models to capture the image and text specific information
conditioned on the answer (intra-modality dependencies) and the dependency between the image, text
modality given the answer (inter-modality dependency) to make the best prediction. This underlines
the importance of a modeling approach that not only considers the interaction between the modalities
but also uses each modality independently to predict the correct label.

3 Three Ways to Capture Modality Dependencies

Traditional approaches in multi-modal learning model the interaction between different modalities
in order to predict the target, primarily by building novel architectures [54, 33, 64, 46, 2, 19, 75,
45, 39, 66]. Although these approaches occasionally outperform uni-modal models, there are cases
where they fall short and are less effective than either the uni-modal learners [21, 8, 78] or their
ensemble [53] counterparts. Furthermore, to the best of our knowledge, no prior work exists that
sheds light on the reasons behind this discrepancy in model performance and provides a solution for
the same. In this work we move our focus away from the question of model parameterization given a
multi-modal data. Instead, we focus towards uncovering the probabilistic assumptions required to
study multi-modal learning.



We describe our I2M2 approach that incorporates the modality grouping information by considering
models trained on individual modalities, while simultaneously capturing the interaction between the
modalities. Next, we group existing studies into inter-modality modeling [4, 6, 19, 27, 45, 43, 2, 32,
75, 78, 56], which only uses the interaction between different modalities to predict the correct label,
and intra-modality modeling [54, 33, 64, 23, 39, 66], which assumes the conditional independence
between the modalities given the target.

3.1 Inter- & Intra-Modality Modeling (12M2)

Starting from Equation (1), we can write the conditional probability over labels as the product of four
terms as follows:

p)p(x|y)p(X' |y)p(v=1]y,x,x)
Yy p(Y)pxx |y)p(v=1]y, xx)

plylxx,v=1)= @

where p (x | y),p (X' | y) andp (v = 1] y,x,x’) are functions that map inputs (x,y), (x’,y) and
(x,x’,y) to a positive scalar. For clarity, we will use ¢x (¥ | X), ¢x (¥ | X'), and ¢x x' (¥ | x,%’) in
lieuof p(x|y),p(x' |y)andp(v =1]y,x,x') and rewrite the above equation as follows:

p(y | %,x", v =1) o< p(y) gx (¥ [ %) gx (¥ | X') g (y [ %,%7), ©)

Unimodal predictors Multimodal predictor

where gx(y | x) captures the conditional probability of the target given x, g« (y | x’) the conditional
probability of the target given the other modality X', gx x/(y | X, X") the conditional probability of
the target given both the modalities. We omit v from the right hand side for brevity.

This suggests that we should build a separate predictive model for each modality and a model that
takes as input the concatenated pair of both modalities. We combine these modality-specific and
multi-modal classifiers by building a product of experts (or an additive ensemble in the log-probability
space). In this approach, we separately capture the intra-modality dependency within each modality
and inter-modality interaction across the modality boundary, to predict the target. This modeling
paradigm captures the influence of both individual modalities on the label, as well as the combined
impact of both modalities.

I2M2 closely aligns with the mutual information framework proposed in the multi-view frame-
work [71, 44] and captures the three different types of mutual information. We motivate and explain
this perspective for multi-modal learning from the principles of probabilsitic graphical models by
explaining the underlying graphical models that give rise to such a factorization of mutual information.

3.2 Inter-Modality Modeling

Current research on multi-modal learning mainly focuses on how to parameterize the conditional
distribution over the label given multiple modalities. It has seen the development of various ar-
chitectural strategies, which can be categorized into two main types: The first type is the early
fusion [4, 6, 19, 27, 45, 43] which combines the input modalities at an initial stage and processes
them using a single, shared model. The second type is the intermediate fusion [2, 32, 75, 78, 56]
which uses distinct models for each modality, linked together by fusion modules at different layers.
We collectively call these modeling paradigms as inter-modality modeling, as it considers all the
modalities together and does not explicitly use the information about modality boundaries, beyond
parameterization. Thus, the predictive probability over y can be written as:

p(y | x,x',v=1) x p(y)axx (v | x,%). “)

This is derived from Equation (3), where g« (y | x) and g (y | x’) are set to constant functions. This
corresponds to removing the direct edges y — x and y — X’ in the graphical model depicted in
Figure Ia, resulting in the graphical model shown in Figure 1b. Consider the example of NLVR [69,
70], which involves determining whether a sentence accurately describes a pair of images or not. This
task requires a model to possess joint understanding of visual and textual information to determine
the accuracy of the statement. The dataset was curated to explicitly avoid visual or language bias [68].
To achieve this, each sentence was associated with multiple examples with conflicting labels. This
was accomplished by showing workers a set of visually similar yet distinct images and asking them
to write sentences that are true for some of the images but not for others.



Prior studies for inter-modality modeling [4, 6, 19, 27, 45, 43, 8, 78, 2, 32, 75, 78, 56, 57, 15, 83]
mostly focus on emphasizing inter-modality dependencies and identifying an issue with under utilizing
these dependencies. While these methods are capable of capturing both inter and intra-modality
dependencies, they often fail to do so effectively, especially when inter-modality information is
absent or sparse [15]. Additionally, many of these approaches are developed for specific applications,
such as person re-identification [35], multimedia recommendation [48] and sentiment analysis [47].
Unlike these specialized approaches, I2M2 is agnostic to the types of modalities and captures both
the inter and intra-modality dependencies explicitly.

3.3 Intra-Modality Modeling

Intra-modality modeling [54, 33, 64, 23, 39, 66] processes each input modality through separate
encoders. It then uses a product of experts model consisting of these uni-modal predictors, where
the correlation between the modalities does not predict the target. Consider an example of the tiger
detection task, where y = 1 indicates the presence of a tiger. The first modality is shape information,
and the second modality is texture information. When y = 0, the first modality has a random shape,
and the second modality a random texture. On the contrary, when the label is “tiger”, i.e., y = 1, the
first modality (shape) has a tiger-like shape, regardless of the second modality (texture) and the same
applies to the texture modality. This implies that all the statistical dependencies between modalities
manifest themselves via the label (y).

We refer to the predictive model for this generative process as intra-modality modeling, where we
assume conditional independence among the modalities given the label y. In this case the predictive
distribution can be written as:

Py |xx,v=1)ccp(y) oy |x) g (y|x) ®)
Similar to Equation (4), this model stems from Equation (3), where ¢x x (y | x,X’) is treated as a
constant function. This corresponds to eliminating the directed edge y — v in the graphical model
in Figure la, leading to the graphical model shown in Figure 1c. We build a classifier for each
modality and combine them by building a product (or a log-ensemble) of these classifiers, ignoring
higher-order interactions among the modalities.

4 Experiments

To differentiate various methods for multi-modal learning, we use audio-vision MNIST (AV-MNIST)
dataset [73], healthcare datasets, such as fastMRI [81] and MIMIC-III [31], vision-and-language
datasets, including VQA-VS [65] (a recently introduced version of VQA), and NLVR2 [70] (the
latest version of NLVR). We consider state-of-the-art models for all the datasets. We defer the details
of datasets to Appendix A and model hyper-parameters to Appendix B.

4.1 AV-MNIST

. . . Table 1: AV-MNIST ac-
Experimental setup. AV-MNIST combines audio and visual modal- curacy comparison be-

ities for MNIST digit (0-9) recognition task. We use LeNet [37] with  tween various methods..
the top-performing methods from recent studies. Specifically, we em- Best results are high-
ploy late fusion (LF), which concatenates the uni-modal feature repre- lighted in bold.

sentations followed by a classification head, and low-rank multimodal

ACCURACY
fusion (LRTF) [50] from the recent multi-modal benchmark [41] for thiS yacs-onLy 6473 2018
dataset. AUDIO-ONLY 39.59 (& 1.44)
INTRA-MODALITY  68.63 (+0.48)
Results. Table 1 shows that inter-modality approaches outperform both INTER-MODALITY
intra-modality and single-modality approaches, underscoring the signifi- i;TF ;}gg o
cance of inter-modal interactions as anticipated by the data construction. TV R
I2M2 improves the performance by 1%, supporting our claim that both — —

intra- and inter-modality interactions are crucial for this task. Moreover, = LRTF 72.38 (+ 0.17)
as expected from the dataset construction, the model trained with the
visual modality more effectively predicts the label than the audio component. The performance is
enhanced by 4% with intra-modality modeling compared to using only the visual modality. 2M2
eliminates the need to pre-determine which specific dependencies should be modeled, offering a more
flexible and effective modeling approach.




Table 2: Accuracy on MIMIC-III for mortality

and ICD code prediction. I2M?2 obtains higher
95 performance in comparison to static (S) and time-
series (T) uni-modal models, intra-modality mod-
eling and inter-modality modeling.
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Figure 2: Results on fastMRI dataset. We and VQA-VS respectively. I2M2 obtains com-

compare root-sum-of-squares, magnitude and Parable performance to inter modality method for
phase unimodal models, NLVR2, while outperforming it for VQA-VS. I

, ,and 12M2 mod- and T denote the image and text modalities respec-
els (bars are in the same order). 12VI2 obtains tively. Best results are highlighted in bold.
comparable performance to the INTRA INTER  NLVR2 VQA-VS

by ignoring the inter-modality depen- 11D 00D
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4.2 FastMRI

Experimental setup. This dataset [81, 82] consists of MR scans that include DICOM images and
the corresponding raw measurements in the frequency domain (also known as k-space in the MR
community), along with slice-level labels. We dissect the complex k-space data into magnitude and
phase components, treating them as two distinct modalities for identifying the most significant knee
pathologies: 1) anterior cruciate ligament (ACL), 2) meniscus tear, 3) cartilage and 4) others grouping
all the other pathologies. We use PreactResNet-18 [25] following Madaan et al. [52], the only study
targeting diagnosis for this task.

Results. Consistent with our previous experiments, [2M2 outperforms the unimodal magnitude and
phase models, inter-modality and intra-modality methods, as shown in Figure 2. In this experiment,
unlike the AV-MNIST dataset, inter-modality modeling degrades the performance compared to
intra-modality modeling. Despite the opposite trend, I2M2 generally worked better than either of
them across all pathologies. The superior performance of I2M2 highlights its ability to perform well
even when one type of modality dependency is missing by effectively capturing the other.

Even when compared with root-sum-of-squares (RSS) — de facto standard way of representing MR
images in deep learning that benefits from the enhanced signal-to-noise ratio (SNR) offered by
multi-coil data, I2M2 achieves performance superior to the model trained with RSS images across all
pathologies. This finding is notable, given the higher SNR of RSS images due to the use of multi-coil
data compared to our alternative representations synthesized by simulated single-coil output, resulting
in lower SNR. This is useful because, until this point, we could not benefit from multiple modalities
in complex MR images relative to RSS.

Lastly, the acquisition of MRI data is often a combination of multiple signals, which introduces
background noise. Such background noise is easily impacted by the acquisition environments. It is
thus important to evaluate the generalization of our methodology while varying the SNR ratios during
inference. We show the effectiveness of I2M2 over inter-modality modeling for varying SNR levels
by increasing levels of Rician noise [61, 22] in Appendix C.



4.3 MIMIC-III

Experimental setup. The MIMIC-III dataset [31] encompasses ten years of intensive care unit
(ICU) patient data from Beth Israel Deaconess Medical Center. We divide the dataset into two
modalities [60, 41]: 1) the time-series modality, which includes hourly medical measurements over
24 hours, and 2) the static modality, capturing a patient’s medical information. We consider three
tasks, namely a) mortality prediction of a patient within one day, two days, three days, one week, one
year and beyond, and b) two binary classification tasks for ICD-9 codes, one to assess if a patient
falls under group 1 (codes 140-239; neoplasms) and another for group 7 (codes 460-519; diseases of
the respiratory system). We adopt the best-performing models from the recent multi-modal learning
benchmarks [60, 41] for this dataset (see Appendix B for more details).

Results. Table 2 shows that I2M2 enhances performance across all tasks when compared to
methods that focus solely on either inter-modality or intra-modality dependencies. Both modalities
are predictive of mortality, but their effectiveness varies across different groups in predicting ICD-9
codes. Specifically, for ICD-9 codes 140-239, which are associated with neoplasms, the static
modality proved more effective. This is likely because it includes factors such as the patient’s
advanced age and the presence of chronic diseases, which are known to increase the risk of neoplasms.
For ICD-9 codes 460-519, the model trained with time-series modality showed better performance,
as hourly measurements are useful to identify minor changes in respiratory functions, potentially
signaling the onset or exacerbation of the disease.

For both mortality and ICD-9 prediction, we found that the intra-modality model obtains comparable
performance to the inter-modality model, highlighting that both the individual modalities and their
interaction are predictive of the target for these tasks. As expected from our generative model, which
formed the basis for our I2M2, the importance of these dependencies is contingent on the specific
task label, and our method uses them effectively.

4.4 Natural Language Visual Reasoning

Experimental setup. NLVR?2 [68] represents a binary classification task in which the goal is to
determine whether the text description correctly describes a pair of two images. The model takes
as input two images and a text statement describing those images and predicts whether the text
describes both images correctly. As discussed in Section 3.2, this dataset was constructed to minimize
unimodal bias. For this dataset, we use the state-of-the-art FIBER model [13, 53], which takes a pair
of images and associated text as input and produces a binary label as its output. We fine-tune the full
model consisting of Swin Transformer [51] for the image backbone, and RoOBERTa [49] for the text
backbone and an MLP classifier on top of the encoder for five seeds.

Results. Table 3 shows that inter-modality modeling and I2M2 yield similar performance, which is
substantially higher than the unimodal models and intra-modality model. This is because each of the
image-only and the text-only models attains a chance-level accuracy for this dataset. This shows that
neither the isolated text nor the image alone can make meaningful predictions in this problem. This
can be attributed to the careful construction of the dataset, which eliminates language and visual biases
and underscores the importance of inter-modal interaction within this dataset [68]. It demonstrates
the ability of I12M2 to effectively disregard the uninformative intra-modality dependencies when
predicting the target for this dataset. This aligns with our observations from fastMRI, where 12M?2
disregarded the inter-modality dependencies.

4.5 Visual Question Answering

Experimental setup. The objective of VQA is to answer questions about images, as detailed in
Section 2. The labels comprise 3, 129 of the most common answers in the training and validation sets.
The evaluation comprises IID and out-of-distribution (OOD) test sets released by VQA-VS [65]. We
report the average OOD accuracy across nine OOD test sets. Additional details on the OOD test sets
are provided in Appendix A, along with a detailed performance breakdown in Appendix C. Similar to
NLVR?2, we use the state-of-the-art FIBER model [13] for training on VQA-VS dataset. We use the
pre-trained model weights — Swin-Base [51] and RoBERTa-Base [49] for vision and text encoders
and train an MLP classifier on top of the pre-trained encoders following Makino et al. [53]. We use
the VQA score metric across five random seeds to compare model performance.
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trained with architecture WideResNet-20-3 to
our I2M2 trained with PreactResNet-18 across
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Results. Table 3 shows the IID accuracy for the VQA-VS dataset. It is evident that I2M2 surpasses
inter-modality modeling and unimodal models in performance, emphasizing the importance of using
both inter-modality and intra-modality dependencies. This improved performance is achieved by
leveraging the dependencies between the modalities and individual modalities to predict the target.
While the image-only model does not effectively predict the final task, the text-only model obtains
17.86% higher performance. This improvement can be primarily attributed to the language bias
present within this dataset, as highlighted in previous works [21, 1, 11, 65]. While all models suffer
a drop in performance for the OOD test-sets, [2M2 achieves a relative improvement of 5.86% and
19.35% in comparison to inter-modality modeling and intra-modality modeling respectively. This
highlights that addressing distribution shifts involves not only improving the individual experts but
the robustness can also be enhanced through redundancy.

4.6 Further Analysis: Beyond Aggregate Metrics

While aggregate metrics provide a broad overview, they often miss crucial details. We show that
I12M2 surpasses other ensemble and wider models, even with a fixed parameter budget. Moreover,
I12M2 avoids spurious dependencies between modalities and labels, a common issue in other models.

Comparison between models with identical parameter counts. To determine whether the perfor-
mance improvement by 12M?2 is due to the additional parameters or the specific manner in which the
experts are combined, we compare it with various mixture of expert models. Particularly, we compare
with an ensemble of three magnitude models, an ensemble of three phase models, an ensemble of
magnitude and phase models and an ensemble of magnitude, phase and inter-modality model in
Figure 3. We observe that across all pathologies, the ensemble outperforms individual unimodal
models but 2M2 obtains better performance than all the ensemble models. This demonstrates that
our I2M2 is more effective, even when constrained with a fixed parameter budget. We further contrast
I2M2 using PreactResNet-18 with unimodal and inter-modality models using WideResNet-20-3 in
Figure 4. Across various pathologies, 2M2 outperforms in terms of AUROC, reinforcing our view
that the effectiveness stems more from our training approach and the integration of individual experts
rather than merely from expanding the number of model parameters.

Analysis of common mistakes. The training, validation, and test sets of VQA-VS contain a range of
inter- and intra-modality spurious dependencies that are conditioned on specific labels. For example,
the label “tennis” often correlates with words like “what”, “sport”, and “is” in the question, whereas
the label “kite” is linked with a “kite” in the image. Similarly, the words “how” and “many” in



What is the sport? What sport is this? What sport is this?  what is the man doing? How many horses?  How many elephants?
4 i e i

How many birds?

(a) OOD examples for questions (b) OOD examples for images (c) Multi-modal OOD examples

Figure 5: Visualization of samples from VQA-VS OOD test-sets. We visualize random instances
without text, image and multi-modal spurious dependencies. Specifically, words like “what”, “sport”,
and “is” in questions, the presence of “kite” in the image, and a combination of “how” and “many” in
the question with animals in the image are spuriously correlated with the labels “tennis”, “kite”, and
“one”, “two”, “three” respectively in the IID sets. I2M2 using a product of experts correctly predicts
the target even when the spurious dependencies are absent, while individual expert models do not.
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questions about animals or birds are typically associated with the labels “one”, “two”, or “three”. In
Figure 5, we purposefully chose examples where such spurious dependencies are absent from the
OOD test-sets [65] to demonstrate that the I2M?2 can accurately predict in these scenarios, unlike the
other models. We observe that most models overlook the question or image content in such instances,
defaulting to “’kiting”, “tennis”, and “one”, “two”, or “three” as answers. On the contrary, I2M2 can
accurately predict in these scenarios in comparison to these models. We find that in over 30% of

cases where each expert fails individually, I2M2 succeeds in making the correct prediction.

5 Limitations and Future Work

Linear relationship between model size and number of modalities. The implementation of 2M2
leads to a corresponding growth in model size with each added modality, which, although effective,
results in higher computational costs. Specifically, the computational complexity of the model’s
forward pass increases linearly with the addition of modalities. For cases with a small number of
modalities, such as three or four, we can directly apply our modeling paradigm and iterate through all
possible combinations of these modalities to construct our product of experts model. This method
is straightforward due to the manageable number of combinations. For scenarios involving a larger
number of modalities, we propose the following approach for future investigation. We envision
employing a single network that receives all modalities as input. If any modality is absent for a
specific example, this network receives a null token instead. For each example, we randomly select a
subset of combinations of conditional probabilities. The model can then constructed based on either
the product or the sum of logarithms of these conditional probabilities. This approach will keep the
number of parameters linear, thereby managing complexity effectively.

Table 5: Effect of pre-training.
Challenges in model initialization. We found ACL MENISCUS ~ CARTILAGE  OTHERS
it more effective to train models for each modal- “x 9049t 039 91.95 o029 87.49 o400 80.42 (= 0as)
ity separately before fine-tuning them jointly, as Vo 9262 032 93.79 (ro014) 89.59 (o4 81.32 (+0384)
opposed to training them jointly from scratch,
as shown in Table 5. This trend was consistent across all the datasets. This aligns with the findings of
many previous works [38, 17, 77, 30], which have attributed this phenomenon to model-dominance
effect [77], where single high performing model tends to dominate, and learner collusion [30],
wherein learners bias their predictive distributions in opposing directions, canceling each other out
when aggregated. This suggests that there are optimization challenges in training multi-modal models
from scratch that are not yet fully understood. We believe that investigating these challenges and
developing end-to-end training methods is a promising area for future research.




6 Conclusion

In this paper, we proposed inter- & intra-modality modeling (I2M2) for multi-modal learning,
capturing both inter-modality and intra-modality dependencies. Applied to real-world datasets in
healthcare and vision-language domains, I2M2 consistently outperformed conventional methods
that rely solely on inter- or intra-modality dependencies and excelled in both in-distribution and
out-of-distribution scenarios. Its versatility and modality-agnostic nature make I12M2 a valuable tool,
providing a solid foundation for future research and applications in multi-modal learning.

7 Societal Impact

Contents posted on social media and other internet platforms are becoming increasingly more complex.
They are no longer in just one modality, such as text-only, image-only or audio-only. These online
contents are often multi-modal, requiring one to consider multiple modalities simultaneously to grasp
the true meaning of these contents. As was pointed out earlier by Kiela et al. [34] in their hateful
meme challenge, for instance, many harmful contents online require a holistic understanding of the
text and the associated images, and text-only or image-only interpretation may miss the harmful
nature of those contents. Advances in multi-modal learning, such as this work, will help us build a
more effective content understanding system that can enable us to build a better automated filtering
system to keep online platforms less harmful. We also acknowledge, however, that a better capability
of multi-modal understanding can be used to build more advanced recommendation systems that may
negatively contribute to the consumption of media and news by users.
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Organization. In the supplementary material, we provide a description of the datasets in Appendix A,
implementation details in Appendix B and additional results in Appendix C.

A Datasets

A.1 Audio-Vision MNIST

Audio-Vision MNIST (AV-MNIST) has been a popular toy benchmark [58, 73, 41] to evaluate the
performance of existing models for multi-modal learning. The images are collected from the MNIST
dataset [37] and audio from the free spoken digit dataset (FSDD) [29] containing human-spoken
digits. 75% of energy is removed from the visual modality with PCA and noise is added to the audio
modality from the ESC-50 dataset [59]. We use 55000 examples for training, 5000 validation, and
10000 testing examples for evaluation.

A.2 FastMRI

Problem setup. The process of MR data acquisition involves exposing the human subject to varying
magnetic field and radio-frequency pulses and capturing the resulting electromagnetic responses from
the human body. These electromagnetic responses are measured by devices called receiver coils that
are positioned in the vicinity of the tissue or organ being imaged. The measurements captured by
the receiver coils are in the Fourier domain (a.k.a., k-space in the MR community), where each coil
produces a partial image with different spatial sensitivity across different parts of the volume.

The generation of ground truth images using the data from multiple coils consists of two steps. The
first step involves an Inverse Fourier Transform of the k-space data from an individual coil to generate
coil specific images. In the second step, we generate a single image by combining the magnitudes of
the individual coil images voxel by voxel using the root-sum-of-squares (RSS) method [62]:

e 1/2
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c=0

where x¢ are the k-space measurements acquired by the c-th coil and and n.. is the number of receiver
coils. The images generated by RSS method does not contain the phase information and the raw-
data is often not openly released, which has slowed the progress in researching the task of disease
identification using the raw measurements. Further, the phase of the acquired data is often discarded
for diagnosis. To this end, even for MR image reconstruction majority of the methods used synthetic
k-space data obtained from the ground-truth spatially reconstructed images [63, 80, 12].

In this research, we argue that blindly constraining the inputs of the DNN models to be the same
as what a human would use to render a diagnosis is sub-optimal. We hypothesize that using the
raw measurements as input to the DNNs, without regards to its human interpretability, will allow
us to build systems that are more accurate at predicting diseases, by enabling the DNN models to
automatically extract the most informative diagnostic signals. Towards that end, we explore the
utility of using magnitude and phase of the input signal as two modalities for the DNN models and
understand the role of the phase component of the complex data acquired by the MR scanners for
disease identification.

Dataset. The fastMRI dataset [81] was the first large-scale dataset that consisted of raw k-space
data alongside anonymized clinical magnetic resonance (MR) images. In this work for the purpose of
simplicity we aggregate the data from multiple coils and emulate it to be originating from a single
coil using the method proposed in Tygert and Zbontar [72], Zbontar et al. [81] to compute emulated
single-coil data.

FastMRI+ [82] augmented this dataset with pathology annotations. These annotations motivated
our exploration into the potential of the raw k-space data components for automated diagnosis.
Specifically, we focused on knee pathologies, using emulated single-coil k-space data with slice-level
labels. We dissect the complex k-space data into magnitude and phase components, treating them as
two distinct modalities for identifying clinically important pathologies in MR scans.

We consider the most significant knee pathalogies as highlighted by the clinicians: 1) Anterior
Cruciate ligament (ACL) with 1,443 annotations of 254 subjects, 2) Meniscus tear with 5,658
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annotations of 663 subjects, and 3) Cartilage with 3,600 annotations of 710 subjects and 4) others
containing the group of all the other pathologies. The slices were cropped to 320 x 320 and 15% of
the dataset for used for validation and test sets.

A.3 MIMIC-III

The Medical Information Mart for Intensive Care (MIMIC-III) dataset is a popular medical benchmark
consisting of Electronic Health Records (EHRs) of of over 40, 000 patients at Beth Israel Deaconess
Medical Center from 2001-2012. The dataset is categorized into two modalities [60, 41]. First, it
consists of the static modality, which contains five medical features of the patient including chronic
diseases, admission type and age. Second, it is composed of time-series modality, which consists of
twelve different measurements recorded hourly over a 24-hour period.

We consider the following two tasks for this dataset:

* Mortality prediction. The objective of this task is to predict whether the patient dies in one
day, two day, three day, one week, one year, or longer than one year.

* ICD-9 code prediction. This task focuses on predicting the appropriate group of the
International Statistical Classification of Diseases and Related Health Problems, Ninth
Revision (ICD-9) diagnosis codes for each patient admission. The ICD-9 system categorizes
similar diseases into groups. In this work, the dataset is used to determine whether a patient’s
condition falls within either Group 1, which includes codes 140 — 239 related to neoplasms,
or Group 7, covering codes 460 — 519 associated with respiratory diseases.

Following Liang et al. [41], we split the dataset into 80% training, 10% for validation and 10% for
testing. This results in 28, 970 training, 3, 621 validation, and 3, 621 examples for testing.

A.4 Natural Language Vision Reasoning

The evaluation of vision and language models’ capability to reason about visual compositions has
been an important direction of research in the field. Natural Language Vision Reasoning (NLVR) [69]
played an important role with the release of synthetic images, text, or combinations of both for
analysis. The dataset consists of pairs of images against a natural language sentence. The task is to
ascertain if the sentence accurately describes (True) or inaccurately describes (False) the image pair.

Expanding on this, the NLVR2 dataset [70] incorporated real-world photographs. The dataset was
curated to avoid visual or language bias [68] by ensuring that each sentence was paired with multiple
examples with distinct labels. This was achieved by showing workers a collection of visually similar
yet distinct images and asking them to write sentences that are true for some images but false for
others. The dataset consists of 59, 677 examples, each with an image resolution of 384 pixels.

A.5 Visual Question Answering

Problem setup. The task of visual question answering (VQA) involves answering questions related
to a given image. This task has been widely adopted as a benchmark to evaluate the performance of
models that integrate both the vision and language modalities. Following prior studies, we consider it
as a multi-label classification problem consisting of 3,129 distinct labels.

Background. Initial VQA datasets were found to exhibit a significant issue: models were able to
answer questions even without considering images. This issue led to the creation of the VQA-CP v2
dataset [ 1], which was constructed to emphasize out-of-distribution (OOD) robustness by deliberately
varying the distribution of answers for identical types of questions between the training and testing
phases. This dataset was designed to incentivize models that properly rely on images for answering
questions.

Despite its intention, VQA-CP v2 still exhibited several issues [11, 65]. First, it utilized an OOD
test set for the purpose of model selection. Second, the models had to be retrained to assess their
performance under IID conditions. Si et al. [65] recently addressed these problems in VQA-VS by
introducing new IID validation and test splits from the original VQA v2 dataset, along with OOD test
sets based on images, language, and multimodal shortcuts.
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Dataset. VQA-VS [65] consolidated the training and validations sets from VQA v2 dataset. The
combined dataset was split into 70% for training, 5% for validation and 25% for testing. Further, Si
et al. [65] created a set of out-of-distribution test sets, which were crafted from the test-set into the
following categories:

» Text-based test sets. This category encompasses four subsets, each evaluating whether the
model relies on concepts from the question to predict the answer. The question-type (QT)
test-set clusters the samples where the question prefixes are predictive of the answer. The
key-word (KW) and key-word pair (KWP) test-sets focus on instances that exhibit a high
degree of mutual information with the answer. The last group considers the QT and KW
concepts together to construct the combined set.

» Image-based test sets. The image-based test sets comprises of two subsets. The key object
(KO) subset consists of instances where certain visual features demonstrate a strong correla-
tion with the answer. The key-object pair (KOP), expands on the KO set by incorporating
pairs of visual elements that have a high correlation with answer.

¢ Multi-modal test sets. These combine elements from both the textual and visual domains,
resulting in three subsets. The QT+KO consists of the instances where question-prefix and
key visual objects are predictive of the answer. Similarly, KW+KO focuses on instances
with keyword elements and visual objects. QT+KW+KO amalgamates the instances where
question types, keywords, and key visual objects are predictive of the answer.

B Models and Hyperparameters

AV-MNIST. We use the LeNet [37] model for both the image and audio modality following Liang
et al. [41]. For training all the models, we optimize using cross-entropy loss with SGD using learning
rate and weight decay equal to 5 x 1072 and 1 x 10~* for 25 epochs. Low-Rank Tensor Fusion
(LRTF) uses rank 40 and the output dimension is equal to be 120. We report the mean and standard
deviation across five runs with random seeds. All experiments were conducted on a single NVIDIA
A100 GPU.

FastMRI. For our baseline model, we use PreactResNet-18 [24] following Madaan et al. [52] and use
early fusion to capture the inter-modality dependencies. We report the mean and standard deviation
of AUROC [7] and balanced accuracy [20] for all our experimental analysis across five independent
runs. We conduct a grid search on the learning rate and weight decay for this dataset and report the
optimal values in Table B.6. We employ early stopping based on the average AUROC across all
pathologies to store the best model, which is then used for reporting the results.

Table B.6: Learning rates (LR) and weight decay (WD) for fastMRI dataset.

Method LR WD
MAGNITUDE-ONLY 1x 1075 1x1073
PHASE-ONLY 1x107* 1x10!

INTRA-MODALITY 1x1076 1x1073
INTER-MODALITY 1x107% 1x1072

2M2 1x107% 1x1072

MIMIC-III. We follow the experimental setup used by Purushotham et al. [60], Liang et al. [41] for
this dataset. The static encoder and decoder is a two-layer MLP with LeakyReLU activation function.
The time-series encoder and decoder is a GRU with the hidden dimension equal to 30. For capturing
the inter-modality dependencies for this dataset, we use late fusion. We use a batch-size of 40 and
RMSProp with a learning rate of 1 x 102 to train for twenty epochs across all the tasks. The mean
and standard deviation are reported across five independent runs for all the models and tasks.

NLVR2 and VQA-VS. We use the FIBER model [13] for both the datasets. It consists of the Swin
Transformer [51] for the image backbone, and RoBERTa [49] for the text backbone. We fine-tune
a MLP classifier on top of the encoder with learning rate 1 x 10~ for VQA-VS. For NLVR2, we
fine-tune the full-model with the learning rate 1 x 10~ for five seeds. We report the VQA score for
VQA-VS and accuracy for NLVR2 with mean and standard deviation.
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Figure C.6: VQA score on various OOD VQA-VS test sets. We compare image, text unimodal
models, , with I2M2 (bars are in the same order).
Across all test-sets, 2M?2 demonstrates superior performance compared to the other models.
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Figure C.7: AUROC performance comparison for varying ricean-noise levels. Comparison of
AUROC performance for PreactResNet-18 trained with modeling and I12M2 on ACL,

meniscus tear, cartilage and other pathologies with increasing levels of Ricean-noise. We observe
that I2M?2 obtains obtains equal or better performance for majority of the noise levels compared to
inter-modality modeling.

C Additional Results

Results with distribution shifts with VQA. I2M2 relies on both the inter- and intra-modality
dependencies. In scenarios where models depend heavily on one type of modality dependency, they
often become less reliable when faced with changes in data distribution. This phenomenon is evident
in Figure C.6, where we present the results for various OOD image, text and multi-modal based
test-sets. While all models suffer a drop in performance for all the test-sets, it is noteworthy that
across all these test-sets, I2M2 consistently achieves a relative improvement ranging from two to four
percent when compared to the performance of inter-modality modeling. Furthermore, it achieves a
performance gain of 20 to 25% compared to models trained solely on text inputs. This highlights that
addressing distribution shifts effectively involves not only improving the individual experts but the
robustness can also be enhanced through redundancy.

Results with distribution shifts with FastMRI. The acquisition of MRI data is often a combination
of multiple signals, which introduces background noise. In fact among various factors, noise is by-far
the biggest factor that contributes towards image deterioration when going from a high-field scanner
(scanner with high magnetic field strength) to a low-field scanner (scanner with low magnetic field
strength). Despite being inexpensive these scanners have not seen widespread adoption because of
the poor diagnostic quality of the images generated by them. Evaluation of any methodology on low
signal-to-noise ratio (SNR) images is important for it gives some insights into how the methodology
will generalize to low-field scanners, potentially leading to transformative impact in healthcare by
facilitating the use of these scanners which are inexpensive and relatively accessible.

Due to the dearth of data collected from the low-SNR MR scanners, we simulate the low-SNR
k-space data during inference. Particularly, we know that the noise in the acquired k-space is Gaussian
distributed, which leads to the ground truth images having noise that has a Rician distribution [61, 22].
Thus, to degrade the signal, we add Gaussian noise to both the real and imaginary channels.

Figure C.7 shows the effects of varying noise levels, or alternatively, varying signal-to-noise ratios.
We notice that for all types of pathologies, I2M2 performs better in terms of AUROC at lower noise
levels. This improvement persists for meniscus and cartilage pathologies even at higher noise levels.
This enhanced performance is attributed to the noise addition impacting both real and imaginary
channels, affecting the magnitude and phase modalities, respectively. I2M2 captures the interactions
within and between these modalities, showing greater resilience to this noise due to redundancy.
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Entropy measurement. Table C.7 shows the
entropy of the label distribution across three dif-
ferent datasets, and it compares these values with
the average entropy of the predictive distribu-
tion for both unimodal models and inter-modality
models, post fine-tuning from 12M2. In the cases
of AV-MNIST and VQA-VS, consistent with
results in Section 4, we observe that both the
unimodal experts and the inter-modality model
exhibit lower entropy. On the other hand, in
the NLVR2 dataset, while the unimodal experts

Table C.7: Entropy of individual experts. We
compare the entropy of the label (y) distribution
with the average entropy of the predictions (y)
for individual experts.

AV-MNIST VQA-VS NLVR2
H(y) 2.30 0000  6.86 (£000) 0.69 (+0.00)
H(y | x) 1.61 (0120 271 o071y 0.68 (& 0.01)
H(y | x) 224 o002 432128 0.67 =001
H(y|x,x') 095008 533036 0.17 002

demonstrate a high average entropy, the inter-modality model exhibits significantly lower entropy in
its predictive distribution. This results from the interaction between the modalities being predictive
of the target, with no significant information found in the modalities when considered separately, as

also illustrated in Figure C.6.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Code available https://github.com/anonycodes/multimodal.

. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix A and Appendix B.

. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes] .

Justification: The results are accompanied with confidence intervals across five random runs.

. Experiments Compute Resources
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Answer: [Yes] .
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