Real-Time Bridging of I/0 and Network Buses in
Cyber-Physical Systems

0[0000700037261078020] ; Zhiyuan Ruan[0009*0008*2616*31621

Richard West [0000—0001—5100—0666]

Anton Njavr , and

Boston University, Boston MA 02215, USA

{njavro,zruan,richwest}@bu.edu

Abstract. Cyber-physical systems (CPS) increasingly require real-time,
high bandwidth data communication and processing. To address this,
Time Sensitive Networking (TSN) provides latency-bounded data trans-
mission at one or more gigabits-per-second throughput. However, it does
not commonly connect directly to I/O devices, such as sensors and ac-
tuators. In contrast, Universal Serial Bus (USB) is ubiquitous for device
I/0, but has yet to be widely adopted for host-to-host networking.
This paper considers the use of a common USB software stack for both
device I/O and host-to-host communication. We compare against a sys-
tem using USB for device I/O and TSN for host-level networking. Our
findings show that a unified approach using USB results in reduced soft-
ware complexity, simplified bus coordination, and more effective miti-
gation of priority inversion when transferring data across multiple bus
segments. Experiments show that end-to-end latency is within expected
delay bounds, and is reduced if the same USB software stack is used for
all communication with a given host. This suggests that bridging chal-
lenges exist in current systems, which are solved by either extending a
high-bandwidth bus such as TSN to support device I/O, or enhancing
USB with improved networking capabilities.

Keywords: Cyber-Physical Systems - Universal Serial Bus - Time Sen-
sitive Networking

1 Introduction

Increasingly complex cyber-physical systems (CPSs) [49/36] are emerging in do-
mains such as automotive, industrial control, avionics and robotics. These sys-
tems often require high bandwidth, low-latency sensor data processing and con-
trol. This involves data collection from arrays of input devices (e.g., LIDARs and
cameras, in the case of autonomous vehicles), and real-time processing on one
or more compute nodes. Different compute nodes may interface with different
devices needed for input and output, and then coordinate their data processing
tasks by sharing information across a network.

Controller Area Networking (CAN) [31/T4] has proven to be a dependable so-
lution for information transfer between microcontrollers, but lacks the bandwidth

2 Njavro et al.

to meet the demands of modern cyber-physical systems. Ethernet [T6/443I1T],
supports higher bandwidth but does not provide the tight timing guarantees re-
quired for real-time communication. Consequently, Time-triggered Ethernet [34]
and now Time-Sensitive Networking (TSN) [20/40] have been developed as ways
to guarantee communication delay constraints.

Originally applied to audio-video bridging (AVB), TSN is now being con-
sidered as a standard for use in automotive [10], aerospace [55] and industrial
control applications. While it supports clock synchronization, bandwidth reserva-
tion, and predictable host-to-host networking, it does not provide a commonly
adopted approach for communication with input/output (I/O) devices. Chip
manufacturers have suggested the use of medium access control devices [I7] as a
means to connect microcontrollers to networks such as Ethernet and TSN. Until
this technology is widely adopted, the problem of integrating high-bandwidth,
low-latency sensors and actuators to compute nodes in emerging CPS domains
is left to other bus technologies.

USB is a ubiquitous approach to connect I/O devices to hosts, although
it is less commonly used for host networking. This is in part because it was
not originally envisioned as a peer-to-peer technology. Hence, it would appear
that TSN is preferred for host-to-host networking, while USB is better suited to
device I/O. However, the use of two different buses leads to potential bridging
problems at the host-level, to ensure traffic is able to disembark one bus in time
to be ready for when the next bus is available for use. Coupled with the need
for two different protocol stacks and device drivers, different packet formats, bus
speeds, and arbitration protocols, there is often a delay moving traffic from one
bus to another. This paper addresses the question: “if we used the same protocol
stack for device I/O and host-based communication, would we be able to simplify
coordinated data transfers, reduce latency and potentially improve throughput?”
Consequently, we consider using USB as a unified solution for both host-to-host
networking and device I/O, with the opportunity to schedule communication
transactions across different buses.

Contributions. We use USB’s debugging capability (xDBC) found in the xHCI
specification, to achieve predictable host-to-host communication, while carefully
synchronizing with the transfer of I/O device data. By applying our xDBC imple-
mentation to Linux, we show that a USB-only system exhibits lower worst-case
end-to-end transfer latency than the best-case scenarios using both TSN for host
networking and USB for device I/O. We then implement xDBC in the Quest
real-time OS [53] to show how integrated USB networking and device I/0 is
able to reduce the end-to-end latency even further.

We believe that current cyber-physical systems would benefit from a single
bus solution for coordinated time-sensitive, high bandwidth networking and de-
vice I/O. This suggests that either a bus such as TSN should be extended to
communicate directly with sensors and actuators, or a device-centric bus such as
USB should be enhanced with better networking features. For complex topolo-
gies spanning longer distances, combining USB and TSN might be preferred.
USB could be used for clusters of nearby hosts close to devices, and TSN used

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 3

for back-end networking. This would allow for real-time data processing and
control tasks to coordinate operations, with tighter time bounds, on hosts that
are short hops away from sensors and actuators.

The rest of the paper is structured as follows: Section [2] provides background
information. Section [3] then describes the challenges of a dual-bus design for
device I/O and networking, and explains the proposed use of USB xDBC to
solve these problems. The section is completed with a description of the latency
models used to estimate the worst-case performance of unified (USB-only) versus
dual (USB and TSN) bus communication. Section |4 presents our experimental
evaluation for both unified and the dual-bus approaches. Related work is then
discussed in Section [} followed by conclusions and future work in Section [0}

2 Background

2.1 Universal Serial Bus

USB is a master-slave protocol that connects a host computer (the master) to
one or more peripheral devices (the slaves). As of USB 3.0, a device operates at
one of four possible communication rates: low, full, high, or super speed, with
maximum throughput of 1.5 Mbps, 12 Mbps, 480 Mbps and 5 Gbps, respectively.
Recent advances with USB 3.2 now increase bus bandwidth up to 20 Gbps, with
USB 4 going as high as 40 Gbps. The effective bandwidth for a device depends on
its speed, and how the system software programs the host controller to schedule
USB packets on the corresponding bus instance.

Each USB device is defined by a set of descriptors that are readable by the
host. These descriptors correspond to the device, its configurations, interfaces
and supported endpoints. A device descriptor defines the number of configura-
tions supported, amongst other information. A configuration descriptor defines
the number of interfaces supported, as well as the maximum bus power con-
sumed by the physical device. Only one configuration for a given device is active
at any time. An interface descriptor specifies the number of endpoints as well
as the function those endpoints serve. For example, a USB keyboard with an
integrated mouse will have two interface descriptors, one each for the keyboard
and the mouse. An endpoint descriptor specifies a maximum packet size, trans-
fer type, transfer direction (input or output) and polling interval for periodic
transfer of the endpoint.

There are four endpoint transfer types: (1) Bulk transfers - Used for lossless
transmission of non-real-time data. A USB thumb drive is an example of USB
device with a bulk endpoint; (2) Isochronous transfers - Used for loss-tolerant
real-time data transmission. A USB camera typically comes with isochronous
endpoints; (3) Control transfers - Used for lossless transmission of device con-
figuration data; (4) Interrupt transfers - Used for lossless real-time data trans-
mission. This type of endpoint is found on devices such as keyboards.

Bulk and control transfers are asynchronous, while isochronous and inter-
rupt are periodic, with a defined interval between transactions. The specification

4 Njavro et al.

guarantees that high-speed periodic transfers are limited to 80% of a microframe,
leaving at least 20% to asynchronous transfers. USB 3 superspeed periodic traffic
occupies up to 90% of the microframe time, guaranteeing at least 10% for bulk
and control data.

A USB host stack consists of a host controller and the software. Software
encompasses device-specific drivers, a host controller driver, and various operat-
ing system interfaces for communication between devices and applications. USB
transfers are always initiated by the host. Peripheral devices only respond to
host requests. A transfer request from software on the host to a device might be
carried out by several USB bus transactions. The number of transactions needed
is decided by the maximum packet size of the endpoint and the number of bytes
requested by the software. A transfer request of 1024 bytes, to an endpoint with
maximum packet size of 512 bytes, requires two data transactions. Transactions
are scheduled on the bus in frames of 1 ms with low and full speed devices,
and in microframes of 125us with high (USB 2.0) and super-speed (USB 3.x)
devices. A transaction will not be scheduled by the host controller if it cannot
be completed in the same frame or microframe.

2.2 USB Extensible Debug Capability (xDBC)

USB 3.x supports host-to-host communication using the xHCI built-in debug
capability known as xDBC. This capability, originally designed as a debugging
mechanism, allows for two USB host machines to communicate using a pair
of super-speed bulk (IN and OUT) endpoints. Software techniques are able to
reserve bandwidth for bulk transfers by restricting the traffic associated with
periodic endpoints [69]. Alternatively, newer chipsets equipped with an eXten-
sible Device Controller Interface (xDCI) allow for dual role (host and device)
controller switching, and customizable endpoint configurations for host-to-host
communication. As we are yet to properly investigate xDCI capabilities, we re-
strict this paper to studying xDBC versus TSN.

2.3 Time Sensitive Networking (TSN)

TSN describes a set of standards to extend IEEE 802.1Q [2] Ethernet with clock
synchronization and timing guarantees for message transfers. From a high-level
perspective, the TSN standards of concern in this paper include: (1) Traffic
shaping and scheduling, and (2) Time synchronization. TSN provides a Time
Aware Shaper (TAS) and Credit-Based Shaper (CBS) to model and shape the
traffic. Clock synchronization across all hosts in a network is achieved using the
IEEE 802.1AS [3] Generalized Precision Time Protocol (gPTP).

This paper focuses on the IEEE 802.1Qbv Time-Aware Scheduler (TAS) [I].
TAS is based on time-division multiple access (TDMA), to allocate network
bandwidth shares across different time slots. TAS supports three type of classes:
A, B, and lowest-latency control data traffic (CDT) class. Three bits of the Pri-
ority Code Point (PCP) field in VLAN tags are used to assign protocol priorities.
This limits the number of priority classes to 8, whereas in USB it is possible to

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 5

support up to 1024 [54]. TSN may, however, implement more service classes in
software, within each of the 8 priority classes assigned using VLAN tags.
Figure [I|shows a schedule where each cycle contains both timing-critical and
best effort traffic, each in its own time slice. To prevent best effort traffic from
interfering with critical traffic, TSN uses what are called Guard bands. These
are dedicated time windows before timing-critical scheduling periods, in which
initialization of new best effort transmissions are prohibited. Guard bands ensure
high-priority traffic is isolated from best effort transfers. However, they result
in lost bandwidth, since the time used for a guard band is not used by any
traffic class. The derivation of a guard band depends on knowledge of the largest
packet size. For a 1Gbps Ethernet connection and a maximum transmission unit
(MTU) size of 1500 bytes (1542 bytes on the wire), the guard band is set to:

1542bytes _
125x10bytesx T 12.3ps.

Cycle N | Cycle N+1
< > < >
1
High Criticality Best Effort Guard Band: High Criticality Best Effort Guard Band
v v [’

\
] [[] []

Time ——»

Fig. 1. Time Aware Scheduler Example.

Guard band problems are partially mitigated in one of two ways: (1) using
knowledge of the packet length, a TSN scheduler determines its transmission
time, and allows the packet to be sent only if it does not interfere with high-
priority traffic, or (2) frame preemption is used to halt the transmission of lower-
priority traffic when high-priority data is ready to be sent. Both approaches
require complex hardware support, which is not yet enabled in Linux.

3 Technical Overview

3.1 Challenges of Non-Unified I/O and Networking

We now focus on the challenges faced by systems using different bus architectures
for I/O and networking. Figureshows the problem of moving data between USB
(e.g., for device input) and TSN, as it traverses host-level stacks. High-priority
outgoing data via a TSN-based 1210 Network Interface Card (NIC) misses its
TDMA window and waits for best effort traffic, due to lack of synchronization
between USB 125us microframes, user-level processing, and TSN.

Figure [3| presents an example of optimal alignment between USB and TSN
subsystems. Two assumptions are made in this case. First, we assume the follow-
ing delays are time-bounded: (1) the system latency for submitting a USB read
request from user-level to the kernel (Apg,), (2) the time to return the data from
the device to user-level (Aps,), (3) the user-space processing time (Ayser), and
(4) the system delay to forward outgoing data through the networking stack to
the TSN-capable network controller (Apg,). As we will see later, this is a chal-
lenging assumption to make without support from a finely-tuned RTOS. Second,

6 Njavro et al.

: Cycle N !

Micro-Frame N Il

User-Level Processing
Depacketize /_’ ______ >—\Packetize
T
USB Stack Fom=m———— / L N U, WU, ' TSN Stack
, Host Memory ! ! [l
| 0 : 0OS Networking Stack,
! BULK Packet " ' 1
/ ey TCP/IP Packet !
[, a0 H |
1
USB Asynchronous : :""""'A\Z"""'J
Scheduler '
'
: i210 NIC
xHCI Host Controller '
T
Transmission Scheduling : TSN Missed Ti Slot N ____ N EVX étﬁe\mpt
' Isse: ime (o) \ 'S
—— H [
Periodic Traffic BULK Packet ‘: Micro-Frame N+1 : Cycle N-1 High Priority Best Effort ‘ Guard E Cycle N+1
I '
'

v

Fig. 2. Complete Datapath of a Dual-bus System.

[[JUSB 2: 512 Byte Data Packet []512 Byte TSN High-Priority Window

[]TSN Guard Band [[Best Effort TSN Traffic
| |
usB 2| , : I
f | micro-frame
) |
1 v
|_Aos, ‘ Auss ‘ Aos, | Ayser | Aos, | Arsy |
HOST | T T T T T
v
TSN] ‘ } I

Cycle

micro-frame |

Aos, | Argy |
T I T

v

MISS
T

T Time

Fig. 4. Clock Misalignment of USB and TSN.

and more improbable, is the assumption that the TSN scheduling cycle aligns
perfectly with when the processed USB data is ready for forwarding.

Figure [f] shows how clock misalignment results in high-priority data missing
its allocated TSN time slot, causing it to wait for best effort traffic. The increased
latency for high-priority data may result in a scheduling avalanche [58] in down-
stream nodes, or loss of critical information if buffers overflow. Mitigating this
problem requires a coordination mechanism that works on top of the I/O and

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 7

networking subsystems. Two possible approaches include: (1) introducing more
buffering, or (2) imposing more pessimistic constraints on the TSN scheduler.

Increased buffering would allow more I/O packets to be stored in system
memory until their scheduled release time on TSN is reached. While this lowers
the probability of losing packets, it potentially increases latency, as I/O packets
wait for their release. Aside from buffering, the high-criticality traffic time win-
dow could be increased in the TSN time-aware scheduler. This, however, may
result in noticeable throughput degradation for any low-criticality or best effort
trafic class.

Besides the scheduling and coordination challenges faced by dual-bus sys-
tems, fundamental design differences between USB and TSN also limit their
combined capabilities. One problem is that TSN has fewer traffic priority classes
than USB does. Priority inversion is then possible, as I/O packets of different
criticality levels may need to share the same priority-class window in TSN.

3.2 TUnified USB Stack Solution

Having shown the challenges of a non-unified architecture, we now present a
unified networking and device approach using USB. We focus on USB 2 high-
speed device I/O as it is still more commonly used than USB 3.x. However,
for host-to-host networking, we consider xDBC. xDBC allows for 5 Gbps peak
bus bandwidth, which surpasses the commonly used 1Gbps, and even the newer
2.5Gbps, TSN networks.

[]USB 2: 512 Byte Data Packet []USB 3: 512 Byte Data Packet

usB 2} |

micro-frame [

Aysp,

N 1
micro-frame Time

Aos, | Auss, | Aos, | Ayser | Aos,

\ \

HOST]

|
0
i

UsB 3|
Fig. 5. Unified I/O and Networking Transfer over USB.

Figure [f] depicts an example where high-priority sensor traffic is read from
an I/O device, processed in a user-level context, and sent over an xDBC network
connection. In this example, both I/0 reads and xDBC writes use a common USB
software stack to submit requests. Using knowledge of active device transfers
and their importance allows the USB stack to reserve bandwidth for when time-
sensitive (high-criticality) data needs to be forwarded to a remote host. Thus,
the stack is able to reserve time on the xDBC bus precisely after information is
processed in user-space and needs transmitting. This is possible by having the
USB stack use information about the time to process user-level data, Ayser,
for a given traffic priority class. Our stack is made aware of this information,

8 Njavro et al.

and, combined with awareness of active USB request blocks (URBs), it avoids
assigning best effort or low-priority traffic to the xDBC bus when it predicts it
is needed by high-priority data. Some prior works have shown that it is possible
to implement such real time scheduling on USB [41169].

We have implemented host-level networking support using xDBC in both
Linux and the Quest RTOS. A Debug Target machine uses an xDBC driver to
expose itself as a USB device, as shown in Figure[6] A Debug Host machine enu-
merates the target via a USB debug device driver. The xDBC capability allows
the target to expose two Bulk endpoints for both IN and OUT communication.
An example data path using the IN communication endpoint starts with the
user-level call to usb_write() on Host 1. This results in a system call, which
is re-directed to the xDBC driver. This immediately invokes the xdbc_write()
function, which queues a TX event and notifies the USB host controller once
the data is ready to be sent. The xDBC driver also polls the host controller
regularly for xDBC-related events that need to be handled, such as comple-
tion of sending a packet by the host controller. On the receiving side, the USB
debug device driver is responsible for submitting the read requests. Once those
requests have been submitted, the debug device driver proceeds to wait until the
Host Controller invokes an IRQ handler, which ends up transferring the data to
user-level. Information flow from Host 2 to Host 1 is possible by swapping the
usb_read/write() operations, and using the OUT communication endpoint.

Debug task: { Debugger task:
usb_write() usb_read()

System Call Interface System Call Interface

..................................... e g) R
f i

xDBC Driver E USB Debug
\ 4 H i Device Driver

xdbc_write() h § ; v

H

H

S H ; H

H ; { host_read()] :

Process events H : '

y : ; :
H

H i H

H

-

-

| ; ! - RQ) !
je=rrn | S
: rocess events ' : Wait for H

Ring the doorbell ! completion
USB Host Controller I USB Host Controller L
(Debug capability enabled) T (Debug capability disabled)

Debug Target (Host 1) Debug Host (Host 2)

Fig. 6. Example USB xDBC Datapath.

3.3 Latency Model

This subsection presents a latency model for both unified and dual-bus solutions.
Our analysis considers a system with a sensory device and two hosts, where a
user application on one host (Host 1) reads from the sensor over USB 2, and

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 9

forwards data to a second host (Host 2) using either USB 3 or TSN. The end-to-
end latency, Ago., is defined as the time between the initiation of a sensor read
request on Host 1 and the reception of data on Host 2.

In our analysis, we make the following assumptions: (1) whenever a request
is made to the sensor, data is immediately available for transfer between the
USB sensor device and the host, (2) a user-level task predictably transfers one
data packet from the I/O device onto the network every period, (3) OS-level
latencies are bounded, and (4) a software time-aware TSN traffic shaper has a
125us scheduling cycle and a window for high-criticality traffic of size b; bytes.

From Figures [3] and [4] we define the following terms:

— Aps,: Represents the worst-case system overhead to issue a USB read from
user-space to the USB host controller.

— Aypspe: Represents the worst-case time for the host controller to transfer a
USB 2 packet.

— Aops,: Represents the worst-case system overhead for a USB packet to be
returned to user-space from the USB host controller once the data is avail-
able.

— Ayser: Represents the worst-case time that the user program takes to process
USB data.

— Aops,: Represents the worst-case time to submit a packet from user-space to
the network controller.

— Argn: Represents the worst-case TSN packet transmission time.

— Apsps: Represents the worst-case USB 3 packet transmission time using
xDBC.

We categorize Agq. into host and communication delays for ease of analysis.
For the host delay, we consider Apysp,, = Aos1 + Aos2 to be the total system
time to complete a USB read request. This is followed by Ay, as defined above.
Then, Ayspry = Aos, represents the system latency to send a USB 2 packet
onto xDBC, whereas Arsn,, = Aops, is the latency to send an equivalent
Ethernet packet to the TSN NIC. We extend Figures [3] and [4] with the overhead
of receiving data on Host 2. This is represented by Aysp,, when using xDBC,
and Argng,, when using TSN.

For the total communication delay, we define Apy,sa-5 to be the bus ar-
bitration delay. This represents the time from when the data arrives into the
device queue until it is transmitted, which we consider negligible. Apyansfer is
the worst-case transfer latency for b; bytes of data over the respective medium,
which corresponds to Ayspa, Ausps and Argy. We define Arransfer vsB2,
Arransfer vsps and Appansrer Tsn to differentiate transfers across the respec-
tive buses. Finally, A propagati(n: is the time needed to propagate signals across
a bus, which we assume is negligible.

10 Njavro et al.

Therefore:
AusBrx + Arransfer_vsp2 if using
+Ayser + AusBrx USB
+ATransfer UsB3 + AUsBrx
Aege < (1)
AusBrx + ATransfer vsp2 if using
+Ayser + Arsng TSN
+Arransfer_ TSN + ATsNpx

Arpansfer depends on the specific bus protocol, but is represented as follows:
ATransfer =h+ 80ép + (aX LObits + 8'7le) (2)

In the equation, h denotes the time required for the host to prepare a trans-
mission request. In this paper, we consider peak bandwidths of 480 Mbps for
high-speed USB 2, 5 Gbps for superspeed USB 3, and 1 Gbps for TSN. For
the USB host controller, h is typically 5 nanoseconds, and no more than 304
nanoseconds for a 1Gb 1210 TSN-enabled NIC [30]. p represents the protocol
overhead. This includes the Ethernet address and VLAN tags, among others,
for TSN, and synchronization transfers (SYNC) and CRC checks in the case of
USB. For USB 2 high-speed bulk transfers this value is 55 bytes, while for the
USB 3 it is 48 bytes. Protocol overheads for TSN come to 42 bytes per transfer.
« is the latency of transferring one bit of data over the corresponding bus. In the
case of high-speed USB 2, « is 2.08 nanoseconds, while for superspeed USB 3
and for 1 Gbps TSN, it is 0.2 and 1 nanoseconds respectively. Op;+s accounts for
worst-case bit stuffing and we consider it only used in USB 2 transfers, where it
has a fixed value of 19/6~/3.17. The final variable, v, is also a USB 2 exclusive
overhead and it is the cost of host-device bit-level synchronization on the packet
payload. Its value is 7/6a1.17 for USB 2. We assume ~ to be 1 for TSN and
USB 3 since they do not rely on bit stuffing for their synchronization.

The transfer delay formula in nanoseconds for USB 2 high-speed data is:

ATransfer vsp2 = h+8ap + (ax [Opits + 87b;])
=5+ 8x2.08x55
+(2.08% [3.17 + 8x1.17xb;)
= 021.7 + (2.08x [3.17 + 9.36xb;)

(3)

The transfer delay formula in nanoseconds for USB 3 superspeed data is:

Arransfer UsBz = h+8ap + (ax [Opits + 87b;])
=5+ 8x0.2x48
+(0.2x [0+ 8x1xb;])
= 81.8 4 (0.2x [8xb;])

(4)

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 11

Finally, the transfer delay formula in nanoseconds for 1 Gbps TSN is:

Atrransfer_ TSN = b+ 8ap + (ax |Opits + 8vb;])
= 304 4 8x1x42
+ (1x [0+ 8x1xb;])
= 640 + [8xb;]

4 Evaluation

This section presents our analysis of two systems, one based exclusively on USB
and another involving TSN, with the goal of comparing their networking charac-
teristics. We conduct two set of experiments, one with two connected nodes and
another with four nodes connected in a ring topology. Our host nodes are Cin-
coze DX1100 embedded PCs, each equipped with an Intel Core i7-8700T 2.4GHz
CPU. All USB connections to the DX1100 machines are made using USB 3.2
Genl ports. These host machines also come equipped with Intel 1210 network
interface cards (NICs), which provide native TSN support. In addition to the
two host machines, we also use a single Teensy 4.1 controller board to mimic the
sensor input of a cyber-physical system that sends fixed-size packets. The Teensy
4.1 features an NXP iMX RT1062 System-on-Chip (SoC), with a 600 MHz Arm
Cortex M7 processor, and a USB 2.0 high-speed bus. The two host machines
in our USB experiments are connected via a crossover cable through an xDBC
port of the USB Host Controller for networking. Host-to-host connectivity for
the TSN experiments uses a standard 1GbE cable.

In our Linux-based experiments, both hosts use kernel version 6.9.0, patched
with PREEMPT _RT [50], version rt5. Comparison experiments are also per-
formed with the Teensy connected to Host 1 running the Quest RTOS [I3],
which in turn uses xDBC to connect to Host 2, similarly running Quest. We
developed a custom CDC-ACM driver for USB2 for both Linux and Quest to
ensure similarly predictable read latency from the Teensy to Host 1.

Linux/USB and Quest/USB experiments use USB for both device I/O and
networking, as shown in the test setup of Figure [7] Linux/TSN experiments
use USB for device I/O and TSN for host-to-host communication, as shown
in Figure[8] The USB read and write functions in Linux represent transfers via
TTY device file descriptors. Similarly, the sendto and recvfrom socket functions
interact with the Linux networking stack. For Quest, usb_read and usb_write
system calls transfer data between the host and the specific end-point associated
with a target bus.

While our experiments represent relatively simple host-to-host communica-
tion topologies, future work will focus on more scalable networks such as 3- and
4-dimensional hypercubes. A series of latency experiments read 5,000 512-byte
packets from the Teensy, at a rate of 1 every 2.5ms on Host 1. These are processed
in user-space and then forwarded to Host 2.

Both USB xDBC and TSN-based experiments in Linux consist of sender and
receiver user-level programs, which run on isolated CPU cores. For Quest, user-

12 Njavro et al.

level programs on each host run with a real-time Sporadic Server [60] budget of
88us every 125us, to match the period of a USB microframe. Time measurements
in Linux are performed using clock gettime, while in Quest using the RDTSC
feature of x86 processors. We have confirmed in Linux that both techniques are
adequate by comparing them head to head.

HOST 1 HOST 2 HOST 1 HOST 2

PP b_read() P
@usb,re;d()@ >® @ Ezb_\fzte()r_@ @usb_rea;ﬁ() @ ig:;to() recvfrom() @

--

i UsB cDC-ACM i ‘ i UsB Core | USB cDC-ACM { Networking Stack | e Stack!
[R A | S B YT S Pt | [y
B - e -
Fig. 7. Unified USB Testing Setup. Fig.8. USB+4+TSN Dual Bus Testing
Setup.

4.1 TSN Test in Linux

A Time-Aware Shaper (TAS) is currently supported in mainline Linux through
the Time-Aware Priority Shaper (TAPRIO) queue discipline (qdisc). The TAPRIO
qdisc supports the mapping of Linux networking priorities onto the NIC hard-
ware queues, which are additionally supported by a Gate Control List (GCL)
scheduling state machine that provides predictable traffic egress. In addition to
the qdisc support offered by Linux, we also utilize the Linux gPTP daemon to
synchronize the clocks between two hosts.

After successfully synchronizing clocks between the two host machines, the
end-to-end latency experiments begin by recording the start-time, ts, of a USB
read request to the Teensy. Once a 512 byte packet is successfully received from
the Teensy, it is forwarded to a network socket, with ¢; added to its payload.
Similarly, the arrival time, ¢, is recorded on Host 2, when the packet is received
in user-space. Agg. is then measured to be t, — t.

Four TSN experiments with varying traffic window sizes assess the variance
caused by uncoordinated I/O and networking transfers. These experiments re-
spectively use 8, 16, 62 and 112 microsecond transmission windows for high-
priority traffic. The smallest window of 8 microseconds is more than sufficient to
transfer 512 bytes at 1 Gbps. Due to space constraints, full results for two of the
tests are recorded in this paper (see Figures [9] and [10]), while summary statis-
tics for all of the experiments are shown in Figure [I3] In all cases we kept the
TAPRIO cycle size equal to 125 ps to mimic the USB microframe, and allowed
PTP packets throughout all of the 125us. However, the high priority traffic from
the Teensy is only allowed to be transmitted from Host 1 during its exclusive
time window.

Between all the transmission window sizes, the 8us window results in a high-
est observed latency and variance. As explained in Sections [2 and [3] missing the
allocated window slot results in packet buffering, which if done at high frequency
causes the backlog in the NIC queues. Additionally, packets could remain queued
in the kernel, and if they miss their transmission window on the first host, they

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 13

800 800 800 800

700

600

500

400

300
200 200 2001 200

100 100 1001 100

0 0 1000 2000 3000 4000 5000 06 250 500 0 0 1000 2000 3000 4000 5000 00 1000

Sample Index Frequency Sample Index Frequency

Fig. 9. Linux/TSN End-to-End Latencies Fig. 10. Linux/TSN End-to-End Laten-
with 62us Window. cies with 112us Window.

may cause a chain of misses down the line. As of yet, extending temporal knowl-
edge of GCL up to the user-space is a challenging process that requires very
detailed profiling of the kernel transmission latencies in order to correctly antici-
pate arrival of the packets to the NIC. With the inclusion of the I/O stream from
a different bus, and without any low-level mechanism to synchronize the two,
it is not feasible to operate tight control loops across the I/O and networking
subsystems needed for real-time control.

We proceed to increase the transmission window size to 16us, 62us, and
112pus. The last window size of 112us represents the largest window possible
that still includes a guard band of 13us. This guard band is based on the largest
possible 1500 byte Maximum Transmission Unit (MTU) and 42 byte Ethernet
packetization overhead, which requires 12.344us transmission latency on a 1
Gbps line. As seen in Figure [I3] broadening the transmission window results in
lower variance by eliminating timeslot misses.

It is worth noting that txtime-assist mode was not used for the TSN ex-
periments, even though it is intended to more precisely ensure the egress of
data meets its GCL schedule. Synchronization issues with PTP and TAPRIO
are known to exist when using txtime-assist mode, as discussed in [51]. Mech-
anisms to solve this problem involve using multiple i210 ports, but those were
not available with our setup.

We now combine our modeling analysis from Section [3] with our empirical ob-
servations made through measurements. We first benchmark the reading of 512
byte packets off the Teensy in order to observe the combined latency of Apg,,
Ayspa, and Apg,. On our Linux system, we observe a maximum Teensy read
latency to be: 354.45us. The Ayge, maximum observed latency is 3.32us. The
observed maximum latency for Apgn, . is 199.518s. When it comes to Argn,«
we use SO_TIMESTAMPING functionality in Linux to measure the OS over-
head of network transmission. The maximum outgoing latency is 28.679us.

It is important to remember that for the worst-case modeling we must also
include a potential 125us penalty a packet might experience if it misses its trans-
mission window. And finally, we refer to EquationElto obtain the Aryansfer TSN
for 512 byte packets, which is 4.736us. Adding all of these values results in a the-
oretical upper bound of 715.703us for end-to-end latency over TSN using Linux
on Hosts 1 and 2. This is noted in Figures [9] and with a red line.

14 Njavro et al.

4.2 TUSB Test in Linux

To the best of our knowledge no RTOS that we know of has support for both TSN
and real-time USB stacks. Since we are interested in doing faithful comparisons
of both approaches, we have opted to test single-bus USB designs both in real-
time Linux and in the Quest RTOS. As shown in previous works [69/4T22//54]
and in Section [2] USB offers a great potential to unify the I/O and networking
buses in real-time systems. Even though its USB stack is not explicitly designed
with real-time characteristics in mind, PREEMPT RT-enabled Linux offers an
opportunity to compare USB and TSN on the same OS platform, mitigating
any major differences that might arise from varying OS implementations. By
comparison, the Quest RTOS will then be used to demonstrate the benefits of a
unified real-time USB stack for multiple bus instances.

As for TSN, our USB tests in Linux run on isolated CPU cores in order
to avoid system disturbances where possible. We have opted to not use the
SCHED FIFO or SCHED RR policies since our measurements show they result
in degraded performance on our test setup. Linux exposes xDBC functionality
as a runtime serial communication mechanism. The Linux Debug Host is able
to enumerate a Debug Target and access it as a ttyUSB device through the
TTY layer, while the Debug Target communicates with the host via a ttyDBC
interface. We disable the TTY-layer buffering and flow control mechanisms to
prevent latency variability.

USB is a master-slave protocol that performs synchronization with the host
at the hardware level. It does not natively support nor require a PTP-like mech-
anism for clock synchronization. To ensure USB and TSN measurements are as
comparable as possible, we keep the gPTP daemon in Linux to have synchronized
clocks across our two hosts. Besides the host-to-host link being USB xDBC, our
Linux USB test is similar to that involving TSN. Once again, Host 1 records
the initial timestamp, t,, right before issuing a read request to the Teensy. After
Host 1 receives the Teensy data, and verifies its correctness, it forwards it to
xDBC. A user-level program on Host 2 reads the ttyUSB interface to receive the
data from xDBC. Once the program has obtained the packet, it is inspected to
ensure it has the correct signature, and its arrival time t, is recorded.

Figure [T1] shows the obtained results of our experiment. As we can see, the
Linux USB measurements fall within our modeling bound and tend to average
around 382us, with a maximum delay of 470us. These measurements shows that
the Linux USB solution provides comparable performance to that achieved with
TSN when it has a wide transmission window. However, in the USB case we do
not need to statically allocate large portions of a microframe and still achieve
similar or better performance.

We conclude the experiments involving Linux transfers over a unified USB
network, by comparing to predicted results using the latency model from Sec-
tion 3.3l We start by reusing the same maximum values for Teensy read re-
quests (Ayspry) and Ayser, which are 354.45us and 3.32us, respectively. For
Ay sy, we measure the difference between when the user-level process issues a
usb_write() and the lowest point in the USB xDBC stack on Linux before the

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 15

packet is split into Transfer Request Blocks (TRBs). The maximum of this value
is measured to be 64.662us. On the Aysp,, datapath, the largest measurement
is 78.664us. Referring to Equation [we calculate the amount of time needed to
transfer the 512 byte packet over xDBC. This is 0.901us for superspeed USB.
The upper bound for A, is 501.997us, as shown in Figure[IT]once again by the
horizontal red line.

800 800

600 { 600 6001 600

4 s00 500 4 5001 500
T 4001 400

3001 300

2001 200
100] AeiuswshawRee | 100

[1000 2000 3000 4000 5000 0 1000) 1000 2000 3000 4000 5000 °0 500
Sample Index Frequency Sample Index Frequency

Fig.11. Linux/USB End-to-End Laten- Fig.12. Quest/USB End-to-End Laten-

cies. cies.

4.3 USB Test in Quest

For the purposes of analyzing USB in the context of cyber-physical systems
with hard real-time constraints, we turn to the Quest RTOS. Throughout our
testing process we set the budget to 88us and period to 125us respectively.
The reasoning behind the period value is that we are interested in operating at
the timing granularity of 125us USB microframes. The budget value represents
70% of 125us period, which gives the host enough time to perform meaningful
processing on the packet and perform coordination between the device I/O and
networking stacks. The USB test in Quest is similar to that in Linux. It consists
of reading a packet, adding necessary signatures (or timestamps), and forwarding
the data along to the egress stream.

As mention earlier, USB does not explicitly require clock synchronization
mechanisms such as PTP, since the synchronization is embedded within the pro-
tocol hardware layer. This, along with the fact that Quest does not yet support
gPTP functionality, requires the measurement of packet round-trip latencies, to
collect all the timing data within a single clock domain. Our measurements in
Quest use the RDTSC mechanism of x86 processors to measure time.

We again derive a latency bound for the USB-based Quest solution by obtain-
ing the maximum latency measurements for varying subsections of our datapath.
Starting with the Teensy read latency in Quest, we observe the maximum value
of 38.03us. Apser has a maximum value of 0.0225us. Likewise, Aysp,., has an
upper bound of 55.238us, while Aysp,, is within 46.038us. Equation [yields
a worst-case latency for 512 byte packet transfers of 0.901us. To calculate the
worst case latency in Quest we also have to consider the possibility of a missed
period, which in our case is 125us. Thus, Ago.<265.23us.

16 Njavro et al.

Figure [I2] shows the end-to-end latency measurements for Quest. Looking at
the numerical statistics in Table [} and the histograms in Figure [I3] it is clear
that USB communication in Quest outperforms all other forms of communica-
tion involving Linux. USB communication in Quest has a worst-case end-to-end
latency that is more than 4 times lower than the best-case involving TSN for
Linux. Notwithstanding, unified USB communication in Linux achieves lower
worst-case end-to-end latency and delay variation than any TSN scenario.

Metrics
10° = Min
- Avg

Max

104

10°

Latencies (us) (Log Scale)

102

TSN 8ps. TSN 16ps TSN 62us TSN 112ps Linux USB Quest USB

Fig. 13. Combined Statistics for All Experiments.

Min |Max Avg Std

TSN 8us |176.47|1962558.64|696740.65|301966.31
TSN 16pus |264.97|25105.43 |618.75 859.83
TSN 62us |275.50(712.90 550.21 70.71
TSN 112pus|243.62|701.97 514.75 61.75
Linux USB|256.35(470.93 382.05 19.62
Quest USB|81.55 |168.07 108.61 14.57

Table 1. End-to-End Latency Statistics (us).
4.4 Throughput Measurements

Finally, TSN throughput measurements are performed using iPerf3 on Linux.
These measurements are for host-to-host communication, without involving the
Teensy. Comparisons with the throughput for USB xDBC on Quest are recorded
in Table [2| using different packet payloads from 512 to 2048 bytes. As is seen,
USB is able to outperform a 1GbE TSN i210 NIC. This shows that USB xDBC
is capable of satisfying high-throughput demands of modern cyber-physical sys-
tems, potentially better than TSN. Future work will consider optimizations to
our USB communication stack, to take advantage of the higher bandwidths of
USB 3.2 Gen2 (20Gbps), and newer buses.

512 Bytes|1024 Bytes|2048 Bytes
USB:|1014.153 |1010.859 [1006.255
TSN:|936 934 934

Table 2. Throughput Measurements (Mbps) for Different Payloads.

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 17

Note that USB’s peak bandwidth of 5Gbps compared to TSN’s 1Gbps (in
these experiments) does not significantly influence the latency benefits of a
single-bus approach to networking and device I/O. Even accounting for the dif-
ference in protocol bits added to equal payloads of USB versus TSN packets, the
transmission delay difference across each bus is less than a few microseconds.
As USB and TSN measured throughputs are actually much closer, as seen in
Table [2] the practical transmission delay differences of the two buses have even
less of an impact on the end-to-end latencies shown in Figure [I3]

4.5 Multi-hop Host-Based Networking

All experiments so far consider point-to-point communication. We now investi-
gate USB networking performance using multiple hosts. We limit the network
size to four hosts, arranged in a ring as shown in Figure This might represent
a zonal architecture used in an automotive software-defined vehicle, for example,
where host-based processing is performed close to the sensors and actuators. Such
configurations minimize communication latencies essential for real-time control,
whereas larger network deployments introduce excessive delays that compromise
system responsiveness.

@ VCPU / SCHED_DEADLINE PROCESS

Host 1 Host 2 Host 3 Host 4
User Program User Program User Program User Program
—@® i —

OS Networking Stack

Physical Layer Physical Layer Physical Layer Physical Layer

Fig. 14. Experimental four-node ring using DX1100 hosts.

We evaluate the following three scenarios: (1) Ethernet-based Ring (Linux
PREEMPT RT), (2) USB-based Ring (Linux PREEMPT _RT), and
(3) USB-based Ring (Quest RTOS). Case (1) considers standard Ethernet
without TSN features enabled, as we focus on a single traffic class. This con-
figuration represents optimal TSN performance where all gates remain open,
eliminating scheduling constraints and guard band overhead. Case (2) replaces
Ethernet links with USB connections using xDBC. Finally, Case (3) replaces
PREEMPT RT-enabled Linux with Quest.

For each of the three scenarios, above, we measure the throughput of 1024-
byte packets, representative of sensor data, around the ring. A second experiment
measures the round-trip latency of 1024-byte packets, transferred every 500ms
from the first host, around the entire ring. The 500ms delay between each transfer
represents a sampling interval to retrieve data from a sensor, but this has no
bearing on the actual round-trip latency once a packet begins propagation.

18 Njavro et al.

Data traversing each host is forwarded by a user-level process. Linux configu-
rations use a SCHED_DEADLINE policy, while Quest processes are associated with
equivalent VCPUs [I3], having 90us runtime budget and 150us deadline param-
eters. These parameters are sufficient to maximize user-level data-forwarding
rates without hogging CPU resources.

Throughput results, shown in Table [3] demonstrate that Quest with USB
networking achieves superior performance (221.00 Mbps), exceeding the Ether-
net baseline by 13.3%. Linux with USB networking exhibits reduced performance
(112.71 Mbps) due to TTY subsystem constraints. Originally designed for termi-
nal I/O, the TTY layer introduces substantial overhead through line discipline
processing, kernel workqueue scheduling, and context switching mechanisms un-
suited for high-frequency data exchange.

Table 3. Average Throughput in 4-Node Ring Topology

Configuration Throughput (Mbps)
Ethernet + Linux PREEMPT _RT 195.08
USB + Linux PREEMPT RT 112.71
USB + Quest RTOS 221.00

Latency experiment results, shown in Table[d] reveal Quest with USB achieves
the best average and maximum performance (1.091 ms, and 1.100ms, respec-
tively), while Linux with USB demonstrates lower delay variation (0.004 ms
standard deviation). Ethernet exhibits elevated latency and variability, reflect-
ing the overhead inherent in conventional networking stack architectures.

Table 4. Round-Trip Latency in 4-Node Ring Topology

Configuration Min (ms)|Max (ms)|Avg (ms)|Std Dev (ms)
Ethernet + Linux PREEMPT RT| 1.429 1.800 1.614 0.263
USB + Linux PREEMPT _RT 0.884 1.217 1.214 0.004
USB + Quest RTOS 0.999 1.100 1.091 0.025

The experiments in this section point to the viability of USB as a technology
for host-based networking, where processing nodes are within a few hops of sen-
sors and actuators. Results show competitiveness with Ethernet-based networks.
For many cyber-physical systems, it seems that USB is a potential candidate for
networking and device I/O. Where hosts must naturally perform data processing
tasks, the avoidance of using switches is an added appeal of USB, as it keeps the
necessary hardware, wiring and cost of networking to a minimum.

4.6 Discussion

The results presented above serve to show the challenges faced by host-level
bridging. A host-level bridge links multiple bus segments so that data is pro-
cessed and forwarded between compute nodes. While TSN provides support for
real-time host-level networking, it does not solve the end-to-end problem, as
it does not provide a means to communicate directly with input and output

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 19

devices. This paper serves to encourage the community to either extend TSN
with more widespread support for I/O devices, or to consider supporting a USB
standard for host-level networking. USB 4.0 already has support for host-to-host
communication, but it has yet to be considered for industrial-grade real-time ap-
plications and networks. For small CPS networks, USB offers a lot of potential
(e.g., in automotive domains where zonal architectures [39] are becoming a topic
of interest, and researchers are attempting to build software defined vehicles and
networks [247T47]).

The current limitations for USB concern the signaling strength, which lim-
its bus segments to a few meters [67/68]. This distance can be increased using
repeaters, powered hub-devices that allow up to 7 bus segments to be chained
together, or USB powered cables that reach greater than 15 meters. However, a
new USB standard is needed for links that span larger distances. An additional
limitation of USB is that it is not a full peer-networking solution. As it operates
in a master-slave configuration, it limits topologies to stars and trees [69] . Ring,
hypercubic and arbitrary graph topologies require additional hardware [21] (e.g.,
active bridge cables [29], custom USB switches, or combinations of host and de-
vice controllers). Notwithstanding, these challenges are possibly easier to address
than implementing a full end-to-end solution for TSN, which requires all devices
to have a suitable medium access controller [17].

Now that many Intel processors feature embedded DWC3 [6263] USB (xDCI)
device controllers as a complement to xHCI, it is possible to build relatively
complex USB networking topologies. This is possible by configuring each host to
have one xDBC connection, one xDCI (device controller) connection, and up to
127 host controller connections to remote hosts configured as devices. The USB
specification limits devices to 127 per host controller.

A 4-dimensional hypercubic topology is possible using up to 2 device connec-
tions comprising either xDBC or xDCI, while all other host connections employ
xHCI per compute node. Proof: Let the device connections be designated in-
coming and the host connections be outgoing, although both types may actually
be bi-directional using USB IN/OUT endpoints. We know a hypercube has 2
nodes in any dimension, and for an n-dimension hypercube, we have 2" nodes.
The total number of edges is nx 2™~ This is because each of the 2" nodes has
n edges (one per dimension), but they are each shared with one neighbor. As
all edges are effectively directed (either being associated with xHCI, xDBC or
xDCI), then there must be a total of nx2("~1) incoming edges. Any edge that is
incoming to a node must also be outgoing from another node, so the total out-
going edges equals the total incoming edges, which equals the total edges. If any
node has at most 2 incoming edges (for xDBC and xDCI), and there are 2™ nodes,
then the total incoming edges in the entire graph is 2x2", but this must equal
the total edges. Hence, 2x2" = nx2®=D implying 2x2x2("~1) = px2(n=1),
Thus, n = 4, for a max-sized hypercube of 2* = 16 nodes.

While USB is limited to timing at 125us (the size of a microframe), this

serves well for many latency-sensitive applications. Researchers have already
implemented a USB-CAN gateway controller [59], suggesting that USB is capable

20 Njavro et al.

of handling latencies incurred by CAN bus data. We believe that a combination
of USB and TSN network solutions will be useful in the future, allowing for
small-scale host-level networks to employ USB, while more complex topologies
use TSN. Such a heterogenous approach would make for an interesting solution
to traffic routing, and isolation of data of different criticality levels.

5 Related Work

Related work on timing-predictable cyber-physical systems [7] studies the con-
struction of task pipelines to ensure end-to-end guarantees between the arrival
of sensing data and the corresponding control output [22l23]. Systems such as
Scout [44] schedule paths through as sequence of services that are treated as
schedulable entities, but this differs from our focus on investigating the use of
USB as a single-bus solution for networking and device I/O. Similarly, RAD-
FLOWS [48] investigates a design framework for predictable data communica-
tion from a theoretical perspective, independent of technologies such as USB
and TSN discussed in this work.

Other work has more generally addresses real-time bus communication in
both theoretical scenarios [3733/5] and physical implementations [I5J72I35I38/65].
Tindell et al [65] investigate the worst case transmission delay due to blocking of
higher priority tasks, taking jitter into account in their analysis. Davis et al [14]
provide a revised study of CAN, correcting for earlier analytical flaws. Likewise,
Zuberi and Shin [72] address the utilization problem of CAN-bus networks, using
a mixed traffic scheduler that combines both Earliest Deadline First and Dead-
line Monotonic Scheduling. Others provide a scheduling analysis of CAN [1F],
assuming messages are scheduled using a FIFO rather than priority queue. In the
realm of USB, Huang et al [2728] attempt to provide QoS guarantees for USB
1.1 and 2.0, by modifying the endpoint descriptors within the host controller
driver. In contrast, our work focuses on the use of USB as a combined bus solu-
tion for networking and device I/0, showing the performance capabilities in the
presence of host-to-host communication based on xHCI’s debug capability.

Work by Ruan et al [54] considers the use of USB interrupters to differen-
tiate between I/O transactions for tasks of different priorities and timing re-
quirements. Similarly, work on USB bus scheduling provides guarantees to bulk
data transfers in the presence of isochronous and periodic transactions [69/4122].
Common to these works is the use of software-based scheduling techniques to
control the submission of USB transactions to the host controller, thereby shap-
ing the means by which the hardware orders transfer requests.

We compare with TSN [T9/5746], since it stands to be one of the most signif-
icant networking technologies in cyber-physical systems. Others describe studies
on TSN testbeds [62I819], to simulate real-world systems, and application us-
age in industrial automation [56/66], automotive [64J70/4516], and robotics [25]
research. More specific research aspects of TSN, include work on time synchro-
nization [20/32], credit-based shaping [42I18], and scheduling [6II12].

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 21

6 Conclusions and Future Work

This paper investigates the bridging of buses to exchange data between devices
and hosts. Bridging is necessary in cyber-physical systems, with task pipelines
connecting sensors and actuators to a network of hosts. Empirical results show
that using USB for both networking and device I/O is a viable solution for
collecting, processing and distributing high bandwidth, low-latency data.

Linux experiments using USB host-to-host communication, in conjunction
with USB CDC-ACM device transfers, achieve average and worst-case end-to-
end latencies that are better than when TSN is involved in data transfer. This is
true even for large TSN transmission windows, suggesting that USB multi-hop
communication in Linux is a promising approach. In comparison, combined USB
networking and device I/O in Quest achieves a worst-case end-to-end latency
that is more than 4 times lower than the best case involving TSN, with 512-byte
payload transfers. Additionally, our observations of the throughput with USB
suggest it has the potential to handle data rates on par with, or higher than
TSN, at least over short range, small-scale host-based networks.

Future work will investigate the use of USB xDCI (eXtensible Device Con-
troller Interface), to form more complex USB or hybrid USB+TSN networks [69].
We are similarly interested in studying differentiated service support [54] to pro-
vide end-to-end quality-of-service guarantees to separate communication streams.

7 Acknowledgments

This work is supported in part by the National Science Foundation (NSF) under
Grant #2007707. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect
the views of the NSF.

References

1. IEEE Standard for Local and Metropolitan Area Networks — Bridges and Bridged
Networks - Amendment 25: Enhancements for Scheduled Traffic. IEEE Std
802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std
802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015)
pp. 1-57 (2016). https://doi.org/10.1109/TEEESTD.2016.8613095

2. IEEE Standard for Local and Metropolitan Area Network-Bridges and Bridged
Networks. IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014) pp. 1-1993
(2018). [https://doi.org/10.1109/IEEESTD.2018.8403927

3. IEEE Standard for Local and Metropolitan Area Networks—Timing and Synchro-
nization for Time-Sensitive Applications. IEEE Std 802.1AS-2020 (Revision of
IEEE Std 802.1AS-2011) pp. 1-421 (2020). |https://doi.org/10.1109/TEEESTD.
2020.9121845

4. Alves, M., Tovar, E., Vasques, F.: Ethernet Goes Real-Time: a Survey on Re-
search and Technological Developments (2000), https://api.semanticscholar.org/
CorpuslID:54705346

https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2018.8403927
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://doi.org/10.1109/IEEESTD.2020.9121845
https://api.semanticscholar.org/CorpusID:54705346
https://api.semanticscholar.org/CorpusID:54705346

22

10.

11.

12.

13.

14.

15.

16.

17.

Njavro et al.

Aras, C., Kurose, J., Reeves, D., Schulzrinne, H.: Real-Time Communication in
Packet-Switched Networks. Proceedings of the IEEE 82(1), 122-139 (1994). https:
//doi.org/10.1109/5.259431

Ashjaei, M., Lo Bello, L., Daneshtalab, M., Patti, G., Saponara, S., Mubeen, S.:
Time-Sensitive Networking in Automotive Embedded Systems: State of the Art
and Research Opportunities. Journal of Systems Architecture 117, 102137 (2021).
https://doi.org/https://doi.org/10.1016 /j.sysarc.2021.102137

Axer, P., Ernst, R., Falk, H., Girault, A., Grund, D., Guan, N., Jonsson, B.,
Marwedel, P., Reineke, J., Rochange, C., Sebastian, M., Hanxleden, R.V., Wil-
helm, R., Yi, W.: Building Timing Predictable Embedded Systems. ACM Trans.
Embed. Comput. Syst. 13(4) (mar 2014). https://doi.org/10.1145/2560033, |https:
//doi.org/10.1145 /2560033

Bosk, M., Rezabek, F., Abel, J., Holzinger, K., Helm, M., Carle, G., Ott, J.: Simula-
tion and Practice: A Hybrid Experimentation Platform for TSN. In: 2023 IFIP Net-
working Conference (IFIP Networking). pp. 1-9 (2023). https://doi.org/10.23919/
TFTPNetworking57963.2023.10186364

Bosk, M., Rezabek, F., Holzinger, K., Marino, A.G., Kane, A.A., Fons, F., Ott, J.,
Carle, G.: Methodology and Infrastructure for TSN-Based Reproducible Network
Experiments. IEEE Access 10, 109203-109239 (2022). |https://doi.org/10.1109/
ACCESS.2022.3211969

Brunner, S., Roder, J., Kucera, M., Waas, T.: Automotive E/E-architecture En-
hancements by Usage of Ethernet TSN. In: 2017 13th Workshop on Intelligent
Solutions in Embedded Systems (WISES). pp. 9-13 (2017). |https://doi.org/10.
1109/WISES.2017.7986925

Cardoso, J., Derler, P., Eidson, J.C., Lee, E.A.: Network Latency and Packet Delay
Variation in Cyber-Physical Systems. In: 2011 IEEE Network Science Workshop.
pp. 51-58 (2011). [attps://doi.org/10.1109/NSW.2011.6004658

Craciunas, S.S., Oliver, R.S., Chmelik, M., Steiner, W.: Scheduling Real-Time
Communication in IEEE 802.1Qbv Time Sensitive Networks. In: Proceedings
of the 24th International Conference on Real-Time Networks and Systems. p.
183-192. RTNS ’16, Association for Computing Machinery, New York, NY,
USA (2016). [https://doi.org/10.1145/2997465.2997470, https://doi.org/10.1145/
2997465.2997470

Danish, M., Li, Y., West, R.: Virtual-CPU Scheduling in the Quest Operating Sys-
tem. In: 2011 17th IEEE Real-Time and Embedded Technology and Applications
Symposium. pp. 169-179 (2011). https://doi.org/10.1109/RTAS.2011.24

Davis, R., Burns, A., Bril, R., Lukkien, J.: Controller Area Network (CAN) Schedu-
lability Analysis: Refuted, Revisited and Revised. Real-Time Systems 35, 239-272
(02 2007). https://doi.org/10.1007 /s11241-007-9012-7

Davis, R.I., Kollmann, S., Pollex, V., Slomka, F.: Controller Area Network (CAN)
Schedulability Analysis with FIFO Queues. In: Proceedings of the 2011 23rd Eu-
romicro Conference on Real-Time Systems. pp. 45-56. ECRTS '11, IEEE Computer
Society, Washington, DC, USA (2011). https://doi.org/10.1109/ECRTS.2011.13,
http: //dx.doi.org/10.1109/ECRTS.2011.13

Decotignie, J.D.: Ethernet-Based Real-Time and Industrial Communications. Pro-
ceedings of the IEEE 93(6), 1102-1117 (2005). https://doi.org/10.1109/JPROC.
2005.849721

Automotive MAC-PHY devices connect low cost MCUs to Ethernet:
https://www.embedded.com /automotive-mac-phy-devices-connect-low-cost-
mcus-to-ethernet/ (September 2023)

https://doi.org/10.1109/5.259431
https://doi.org/10.1109/5.259431
https://doi.org/10.1109/5.259431
https://doi.org/10.1109/5.259431
https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102137
https://doi.org/https://doi.org/10.1016/j.sysarc.2021.102137
https://doi.org/10.1145/2560033
https://doi.org/10.1145/2560033
https://doi.org/10.1145/2560033
https://doi.org/10.1145/2560033
https://doi.org/10.23919/IFIPNetworking57963.2023.10186364
https://doi.org/10.23919/IFIPNetworking57963.2023.10186364
https://doi.org/10.23919/IFIPNetworking57963.2023.10186364
https://doi.org/10.23919/IFIPNetworking57963.2023.10186364
https://doi.org/10.1109/ACCESS.2022.3211969
https://doi.org/10.1109/ACCESS.2022.3211969
https://doi.org/10.1109/ACCESS.2022.3211969
https://doi.org/10.1109/ACCESS.2022.3211969
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/WISES.2017.7986925
https://doi.org/10.1109/NSW.2011.6004658
https://doi.org/10.1109/NSW.2011.6004658
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1145/2997465.2997470
https://doi.org/10.1109/RTAS.2011.24
https://doi.org/10.1109/RTAS.2011.24
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1007/s11241-007-9012-7
https://doi.org/10.1109/ECRTS.2011.13
https://doi.org/10.1109/ECRTS.2011.13
http://dx.doi.org/10.1109/ECRTS.2011.13
https://doi.org/10.1109/JPROC.2005.849721
https://doi.org/10.1109/JPROC.2005.849721
https://doi.org/10.1109/JPROC.2005.849721
https://doi.org/10.1109/JPROC.2005.849721

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 23

Fang, B., Li, Q., Gong, Z., Xiong, H.: Simulative Assessments of Credit-Based
Shaping and Asynchronous Traffic Shaping in Time-Sensitive Networking. In: 2020
12th International Conference on Advanced Infocomm Technology (ICAIT). pp.
111-118 (2020). https://doi.org/10.1109/TCATT51223.2020.9315374

Fedullo, T., Morato, A., Tramarin, F., Rovati, L., Vitturi, S.: A Comprehensive
Review on Time Sensitive Networks with a Special Focus on Its Applicability to
Industrial Smart and Distributed Measurement Systems. Sensors 22, 1638 (02
2022). https://doi.org/10.3390,/s22041638

Finn, N.: Introduction to Time-Sensitive Networking. IEEE Communications Stan-
dards Magazine 2(2), 22-28 (2018). [https://doi.org/10.1109/MCOMSTD.2015.
1700076

Frigerio, A., Vermeulen, B., Goossens, K.G.W.: Automotive Architecture Topolo-
gies: Analysis for Safety-Critical Autonomous Vehicle Applications. IEEE Access
9, 6283762846 (2021). https://doi.org/10.1109/ACCESS.2021.3074813

Golchin, A., Cheng, Z., West, R.: Tuned Pipes: End-to-End Throughput and De-
lay Guarantees for USB Devices. In: 2018 IEEE Real-Time Systems Symposium
(RTSS). pp. 196-207 (2018). https://doi.org/10.1109/RTSS.2018.00037

Golchin, A., Sinha, S., West, R.: Boomerang: Real-Time I/O Meets Legacy Sys-
tems. In: 2020 IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS). pp. 390-402 (2020). https://doi.org/10.1109/RTAS48715.2020.
00013

Gopu, G.L., Kavitha, K.V., Joy, J.: Service Oriented Architecture-based Connec-
tivity of Automotive ECUs. In: 2016 International Conference on Circuit, Power
and Computing Technologies (ICCPCT). pp. 1-4 (2016). https://doi.org/10.1109/
1CCPCT.2016.7530358

Gutiérrez, C.S.V., Juan, L.U.S., Ugarte, [.Z., Vilches, V.M.: Time-Sensitive Net-
working for Robotics. CoRR abs/1804.07643 (2018), http://arxiv.org/abs/1804.
07643

Hu, L., Shou, G., Zhang, X., Liu, Y., Hu, Y.: Multi-domain Time Synchronization
Model and Performance Evaluation in TSN. In: 2021 7th International Conference
on Computer and Communications (ICCC). pp. 2028-2032 (2021). https://doi.
org/10.1109/1CCC54389.2021.9674709

Huang, C.Y., Chang, L.P., Kuo, T.-W.: A Cyclic-Executive-based QoS Guarantee
over USB. In: The 9th IEEE Real-Time and Embedded Technology and Applica-
tions Symposium, 2003. Proceedings. pp. 88-95 (2003). https://doi.org/10.1109/
RTTAS.2003.1203040

Huang, C.Y., Kuo, T.W., Pang, A.C.: QoS Support for USB 2.0 Periodic and Spo-
radic Device Requests. In: Proceedings of the 25th IEEE International Real-Time
Systems Symposium. pp. 395-404. RTSS 04, IEEE Computer Society, Washing-
ton, DC, USA (2004). https://doi.org,/10.1109/REAL.2004.45, http://dx.doi.org/
10.1109/REAL.2004.45

Inc., P.T.: SuperSpeed USB 3.0 Host-to-Host Bridge Controller Datasheet (2019)
Intel Corporation: Intel® Ethernet Controller 1210 Datasheet (2021),
https://www.intel.com/content /www/us/en/embedded /products/networking/
1210-ethernet-controller-family.html, revision 3.7

Road Vehicles — Controller Area Network (CAN) (2009), iSO 11898

Kero, N., Puhm, A., Kernen, T., Mroczkowski, A.: Performance and Reliability
Aspects of Clock Synchronization Techniques for Industrial Automation. Proceed-
ings of the IEEE 107(6), 1011-1026 (2019). https://doi.org/10.1109/JPROC.2019.
2915972

https://doi.org/10.1109/ICAIT51223.2020.9315374
https://doi.org/10.1109/ICAIT51223.2020.9315374
https://doi.org/10.3390/s22041638
https://doi.org/10.3390/s22041638
https://doi.org/10.1109/MCOMSTD.2018.1700076
https://doi.org/10.1109/MCOMSTD.2018.1700076
https://doi.org/10.1109/MCOMSTD.2018.1700076
https://doi.org/10.1109/MCOMSTD.2018.1700076
https://doi.org/10.1109/ACCESS.2021.3074813
https://doi.org/10.1109/ACCESS.2021.3074813
https://doi.org/10.1109/RTSS.2018.00037
https://doi.org/10.1109/RTSS.2018.00037
https://doi.org/10.1109/RTAS48715.2020.00013
https://doi.org/10.1109/RTAS48715.2020.00013
https://doi.org/10.1109/RTAS48715.2020.00013
https://doi.org/10.1109/RTAS48715.2020.00013
https://doi.org/10.1109/ICCPCT.2016.7530358
https://doi.org/10.1109/ICCPCT.2016.7530358
https://doi.org/10.1109/ICCPCT.2016.7530358
https://doi.org/10.1109/ICCPCT.2016.7530358
http://arxiv.org/abs/1804.07643
http://arxiv.org/abs/1804.07643
https://doi.org/10.1109/ICCC54389.2021.9674709
https://doi.org/10.1109/ICCC54389.2021.9674709
https://doi.org/10.1109/ICCC54389.2021.9674709
https://doi.org/10.1109/ICCC54389.2021.9674709
https://doi.org/10.1109/RTTAS.2003.1203040
https://doi.org/10.1109/RTTAS.2003.1203040
https://doi.org/10.1109/RTTAS.2003.1203040
https://doi.org/10.1109/RTTAS.2003.1203040
https://doi.org/10.1109/REAL.2004.45
https://doi.org/10.1109/REAL.2004.45
http://dx.doi.org/10.1109/REAL.2004.45
http://dx.doi.org/10.1109/REAL.2004.45
https://www.intel.com/content/www/us/en/embedded/products/networking/i210-ethernet-controller-family.html
https://www.intel.com/content/www/us/en/embedded/products/networking/i210-ethernet-controller-family.html
https://doi.org/10.1109/JPROC.2019.2915972
https://doi.org/10.1109/JPROC.2019.2915972
https://doi.org/10.1109/JPROC.2019.2915972
https://doi.org/10.1109/JPROC.2019.2915972

24

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Njavro et al.

Kettler, K., Lehoczky, J., Strosnider, J.: Modeling Bus Scheduling Policies for
Real-Time Systems. In: Proceedings 16th IEEE Real-Time Systems Symposium.
pp. 242-253 (1995). https://doi.org/10.1109/REAL.1995.495214

Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The Time-Triggered
Ethernet (TTE) Design. In: Eighth IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (ISORC’05). pp. 22-33 (2005). https:
//doi.org/10.1109/ISORC.2005.56

Kopetz, H., Griinsteidl, G.: TTP-A Protocol for Fault-Tolerant Real-Time Sys-
tems. Computer 27(1), 14-23 (Jan 1994). https://doi.org/10.1109/2.248873

Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC). pp. 363-369 (2008). https://doi.org/10.1109/ISORC.2008.25
Lehoczky, J.P., Sha, L.: Performance of Real-Time Bus Scheduling Algorithms.
In: Proceedings of the 1986 ACM SIGMETRICS joint international conference
on Computer performance modelling, measurement and evaluation. pp. 44-53.
SIGMETRICS ’86/PERFORMANCE ’86, ACM, New York, NY, USA (1986).
https://doi.org/10.1145/317499.317538

Loeser, J., Hartig, H.: Low-Latency Hard Real-Time Communication over Switched
Ethernet. In: Proceedings of the 16th Euromicro Conference on Real-Time Sys-
tems. pp. 13-22. ECRTS ’04, IEEE Computer Society, Washington, DC, USA
(2004). https://doi.org/10.1109/ECRTS.2004.16

Maier, J., Reuss, H.C.: Design of Zonal E/E Architectures in Vehicles Using a Cou-
pled Approach of k-Means Clustering and Dijkstra’s Algorithm. Energies (2023),
https://api.semanticscholar.org/CorpusID:263285378

Messenger, J.L.: Time-Sensitive Networking: An Introduction. IEEE Com-
munications Standards Magazine 2(2), 29-33 (2018). |https://doi.org/10.1109/
MCOMSTD.2018.1700047

Missimer, E., Li, Y., West, R.: Real-Time USB Communication in the Quest Oper-
ating System. In: 2013 IEEE 19th Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS). pp. 11-20 (2013). https://doi.org/10.1109/RTAS.
2013.6531075H

Mohammadpour, E., Stai, E., Le Boudec, J.Y.: Improved Credit Bounds for the
Credit-Based Shaper in Time-Sensitive Networking. IEEE Networking Letters 1(3),
136-139 (2019). https://doi.org/10.1109/LNET.2019.2925176

Moreira, P., Serrano, J., Wlostowski, T., Loschmidt, P., Gaderer, G.: White Rab-
bit: Sub-nanosecond Timing Distribution over Ethernet. In: 2009 International
Symposium on Precision Clock Synchronization for Measurement, Control and
Communication. pp. 1-5 (2009). https://doi.org,/10.1109/ISPCS.2009.5340196
Mosberger, D., Peterson, L.L.: Making Paths Explicit in the Scout Operating Sys-
tem. SIGOPS Oper. Syst. Rev. 30(SI), 153-167 (Oct 1996). https://doi.org/10.
1145/248155.238771

Patti, G., Bello, L.L., Leonardi, L.: Deadline-Aware Online Scheduling of TSN
Flows for Automotive Applications. IEEE Transactions on Industrial Informatics
19(4), 5774-5784 (2023). [https://doi.org/10.1109,/T11.2022.3184069

Pei, J., Hu, Y., Tian, L.: A Review on Key Mechanisms of Time-Sensitive Net-
working. In: 2021 International Conference on Advanced Computing and Endoge-
nous Security. pp. 01-07 (2022). https://doi.org/10.1109/TEEECONF52377.2022.
10013335

Pelliccione, P., Knauss, E., Heldal, R., Agren7 M., Mallozzi, P., Alminger, A., Bor-
gentun, D.: A Proposal for an Automotive Architecture Framework for Volvo Cars.

https://doi.org/10.1109/REAL.1995.495214
https://doi.org/10.1109/REAL.1995.495214
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/ISORC.2005.56
https://doi.org/10.1109/2.248873
https://doi.org/10.1109/2.248873
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1145/317499.317538
https://doi.org/10.1145/317499.317538
https://doi.org/10.1109/ECRTS.2004.16
https://doi.org/10.1109/ECRTS.2004.16
https://api.semanticscholar.org/CorpusID:263285378
https://doi.org/10.1109/MCOMSTD.2018.1700047
https://doi.org/10.1109/MCOMSTD.2018.1700047
https://doi.org/10.1109/MCOMSTD.2018.1700047
https://doi.org/10.1109/MCOMSTD.2018.1700047
https://doi.org/10.1109/RTAS.2013.6531075
https://doi.org/10.1109/RTAS.2013.6531075
https://doi.org/10.1109/RTAS.2013.6531075
https://doi.org/10.1109/RTAS.2013.6531075
https://doi.org/10.1109/LNET.2019.2925176
https://doi.org/10.1109/LNET.2019.2925176
https://doi.org/10.1109/ISPCS.2009.5340196
https://doi.org/10.1109/ISPCS.2009.5340196
https://doi.org/10.1145/248155.238771
https://doi.org/10.1145/248155.238771
https://doi.org/10.1145/248155.238771
https://doi.org/10.1145/248155.238771
https://doi.org/10.1109/TII.2022.3184069
https://doi.org/10.1109/TII.2022.3184069
https://doi.org/10.1109/IEEECONF52377.2022.10013335
https://doi.org/10.1109/IEEECONF52377.2022.10013335
https://doi.org/10.1109/IEEECONF52377.2022.10013335
https://doi.org/10.1109/IEEECONF52377.2022.10013335

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems 25

In: 2016 Workshop on Automotive Systems/Software Architectures (WASA). pp.
18-21 (2016). https://doi.org/10.1109/WASA.2016.9

Pineiro, R., Ioannidou, K., Brandt, S.A., Maltzahn, C.: RAD-FLOWS: Buffering
for Predictable Communication. In: 2011 17th IEEE Real-Time and Embedded
Technology and Applications Symposium. pp. 23-33 (2011). jhttps://doi.org/10.
1109/RTAS.2011.11

Rajkumar, R.R., Lee, 1., Sha, L., Stankovic, J.: Cyber-Physical Systems: The Next
Computing Revolution. In: Proceedings of the 47th Design Automation Confer-
ence. p. 731-736. DAC ’10, Association for Computing Machinery, New York, NY,
USA (2010). https://doi.org/10.1145/1837274.1837461}, https://doi.org/10.1145/
1837274.1837461

Reghenzani, F., Massari, G., Fornaciari, W.: The Real-Time Linux Kernel: A Sur-
vey on PREEMPT RT. ACM Comput. Surv. 52(1) (feb 2019). https://doi.org/
10.1145/3297714, https://doi.org/10.1145/3297714

Rezabek, F., Bosk, M., Carle, G., Ott, J.: TSN Experiments Using COTS Hard-
ware and Open-Source Solutions: Lessons Learned. In: 2023 IEEE International
Conference on Pervasive Computing and Communications Workshops and other
Affiliated Events (PerCom Workshops). pp. 466-471 (2023). |https://doi.org/10.
1109/PerComWorkshops56833.2023.10150312

Rezabek, F., Bosk, M., Paul, T., Holzinger, K., Gallenmiiller, S., Gonzalez, A.,
Kane, A., Fons, F., Haigang, Z., Carle, G., Ott, J.: EnGINE: Developing a Flex-
ible Research Infrastructure for Reliable and Scalable Intra-Vehicular TSN Net-
works. In: 2021 17th International Conference on Network and Service Management
(CNSM). pp. 530-536 (2021). https://doi.org/10.23919/CNSM52442.2021.96 15529
Richard West: The Quest Real-Time Operating System, http://www.questos.org/
(November 2024), http://www.questos.org/

Ruan, Z., Njavro, A., West, R.: USB Interrupt Differentiated Service for Band-
width and Delay-Constrained Input/Output. In: 2024 IEEE 30th Real-Time and
Embedded Technology and Applications Symposium (RTAS). pp. 42-54 (2024).
https://doi.org/10.1109/RTAS61025.2024.00012

Sanchez-Garrido, J., Aparicio, B., Ramirez, J.G., Rodriguez, R., Melara, M., Cer-
cos, L., Ros, E., Diaz, J.: Implementation of a Time-Sensitive Networking (TSN)
Ethernet Bus for Microlaunchers. IEEE Transactions on Aerospace and Electronic
Systems 57(5), 2743-2758 (2021). https://doi.org/10.1109/TAES.2021.3061806
Seliem, M., Pesch, D.: Software-Defined Time Sensitive Networks (SD-TSN) for
Industrial Automation. In: 2022 14th International Conference on Computational
Intelligence and Communication Networks (CICN). pp. 1-7 (2022). |https://doi.
org/10.1109/CICN56167.2022.10008262

Seol, Y., Hyeon, D., Min, J., Kim, M., Paek, J.: Timely Survey of Time-Sensitive
Networking: Past and Future Directions. IEEE Access 9, 142506-142527 (2021).
https://doi.org/10.1109/ACCESS.2021.3120769

Simon, C., Maliosz, M., Mate, M.: Design Aspects of Low-Latency Services with
Time-Sensitive Networking. IEEE Communications Standards Magazine 2(2), 48—
54 (2018). https://doi.org/10.1109/MCOMSTD.2018.1700081

Sinha, S., West, R.: Towards an Integrated Vehicle Management System in
DriveOS. ACM Trans. Embed. Comput. Syst. 20(5s) (sep 2021). https://doi.org/
10.1145 /3477013, [https://doi.org/10.1145 /3477013

Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic Task Scheduling for Hard Real-Time
Systems. Real-Time Systems Journal 1(1), 27-60 (1989)

https://doi.org/10.1109/WASA.2016.9
https://doi.org/10.1109/WASA.2016.9
https://doi.org/10.1109/RTAS.2011.11
https://doi.org/10.1109/RTAS.2011.11
https://doi.org/10.1109/RTAS.2011.11
https://doi.org/10.1109/RTAS.2011.11
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1145/3297714
https://doi.org/10.1145/3297714
https://doi.org/10.1145/3297714
https://doi.org/10.1145/3297714
https://doi.org/10.1145/3297714
https://doi.org/10.1109/PerComWorkshops56833.2023.10150312
https://doi.org/10.1109/PerComWorkshops56833.2023.10150312
https://doi.org/10.1109/PerComWorkshops56833.2023.10150312
https://doi.org/10.1109/PerComWorkshops56833.2023.10150312
https://doi.org/10.23919/CNSM52442.2021.9615529
https://doi.org/10.23919/CNSM52442.2021.9615529
http://www.questos.org/
https://doi.org/10.1109/RTAS61025.2024.00012
https://doi.org/10.1109/RTAS61025.2024.00012
https://doi.org/10.1109/TAES.2021.3061806
https://doi.org/10.1109/TAES.2021.3061806
https://doi.org/10.1109/CICN56167.2022.10008262
https://doi.org/10.1109/CICN56167.2022.10008262
https://doi.org/10.1109/CICN56167.2022.10008262
https://doi.org/10.1109/CICN56167.2022.10008262
https://doi.org/10.1109/ACCESS.2021.3120769
https://doi.org/10.1109/ACCESS.2021.3120769
https://doi.org/10.1109/MCOMSTD.2018.1700081
https://doi.org/10.1109/MCOMSTD.2018.1700081
https://doi.org/10.1145/3477013
https://doi.org/10.1145/3477013
https://doi.org/10.1145/3477013
https://doi.org/10.1145/3477013
https://doi.org/10.1145/3477013

26

61.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

Njavro et al.

Stiiber, T., Osswald, L., Lindner, S., Menth, M.: A Survey of Scheduling in
Time-Sensitive Networking (TSN). ArXiv abs/2211.10954 (2022), https://api.
semanticscholar.org/CorpusID:253734910

Synopsys: DesignWare USB-C 3.0 Controller IP. https://www.synopsys.com, ob-
served May, 2025

Synopsys: Synopsys USB 3.0 Dual-Role Device Controller IP.
https://www.synopsys.com, observed May, 2025

Testa, G., Canzonieri, G., Leonardi, L., Bello, L.L., Patti, G.: Comparative As-
sessment of Time-Sensitive Networking Transmission Schemes in Automotive Ap-
plications. In: 2023 AEIT International Conference on Electrical and Electronic
Technologies for Automotive (AEIT AUTOMOTIVE). pp. 1-6 (2023). https:
//dot.org /10.23919 /AEITAUTOMOTIVE58986.2023.10217195

Tindell, Hansson, Wellings: Analysing Real-Time Communications: Controller
Area Network (CAN). In: 1994 Proceedings Real-Time Systems Symposium. pp.
259-263 (1994). |https://doi.org/10.1109/REAL.1994.342710

Tschoke, S., Lynker, F., Buhr, H., Schreiner, F., Willner, A., Vick, A., Chem-
nitz, M.: Time-Sensitive Networking over Metropolitan Area Networks for Re-
mote Industrial Control. In: 2021 IEEE/ACM 25th International Symposium on
Distributed Simulation and Real Time Applications (DS-RT). pp. 1-4 (2021).
https://doi.org/10.1109/DS-RT52167.2021.9576141

Universal Serial Bus Specification, 2.0 edn. (April 27 2000)

Universal Serial Bus Specification, 3.2 edn. (September 22 2017)

West, R., Golchin, A., Njavro, A.: Real-Time USB Networking and Device I/0O.
ACM Trans. Embed. Comput. Syst. 22(4) (Jul 2023). |https://doi.org/10.1145/
3604429, https://doi.org/10.1145 /3604429

Xu, Y., Shang, J., Tang, H.: Recent Trends of In-Vehicle Time Sensitive Networking
Technologies, Applications and Challenges. China Communications 20(11), 30-55
(2023). https://doi.org/10.23919/JCC.ea.2021-0888.202302

Zhu, H., Zhou, W., Li, Z., Li, L., Huang, T.: Requirements-Driven Automotive
Electrical /Electronic Architecture: A Survey and Prospective Trends. IEEE Access
9, 100096100112 (2021). https://doi.org/10.1109/ACCESS.2021.3093077
Zuberi, K.M., Shin, K.G.: Non-preemptive Scheduling of Messages on Controller
Area Network for Real-Time Control Applications. In: Proceedings of the Real-
Time Technology and Applications Symposium. RTAS ’95, IEEE Computer So-
ciety, Washington, DC, USA (1995), http://dl.acm.org/citation.cfm?id=526671.
828330

https://api.semanticscholar.org/CorpusID:253734910
https://api.semanticscholar.org/CorpusID:253734910
https://doi.org/10.23919/AEITAUTOMOTIVE58986.2023.10217195
https://doi.org/10.23919/AEITAUTOMOTIVE58986.2023.10217195
https://doi.org/10.23919/AEITAUTOMOTIVE58986.2023.10217195
https://doi.org/10.23919/AEITAUTOMOTIVE58986.2023.10217195
https://doi.org/10.1109/REAL.1994.342710
https://doi.org/10.1109/REAL.1994.342710
https://doi.org/10.1109/DS-RT52167.2021.9576141
https://doi.org/10.1109/DS-RT52167.2021.9576141
https://doi.org/10.1145/3604429
https://doi.org/10.1145/3604429
https://doi.org/10.1145/3604429
https://doi.org/10.1145/3604429
https://doi.org/10.1145/3604429
https://doi.org/10.23919/JCC.ea.2021-0888.202302
https://doi.org/10.23919/JCC.ea.2021-0888.202302
https://doi.org/10.1109/ACCESS.2021.3093077
https://doi.org/10.1109/ACCESS.2021.3093077
http://dl.acm.org/citation.cfm?id=526671.828330
http://dl.acm.org/citation.cfm?id=526671.828330

	Real-Time Bridging of I/O and Network Buses in Cyber-Physical Systems

