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Abstract

We consider quantile estimation in a semi-supervised setting, where one has two available
data sets: (i) a small or moderate sized labeled data set containing observations for a response and
a set of possibly high dimensional covariates, and (ii) a much larger unlabeled data set where only
the covariates are observed. Such settings are of increasing relevance in modern studies involving
large databases where labeled data may be limited due to practical constraints but unlabeled
data are plentiful, and it is of interest to investigate how the latter may be exploited. We propose
a family of semi-supervised estimators for the response quantile(s) based on the two data sets, to
improve the estimation accuracy compared to the supervised estimator, i.e., the sample quantile,
which uses the labeled data only. These estimators are based on a flexible imputation strategy
applied to the estimating equation along with a debiasing step that allows for full robustness
against misspecification of the imputation model. Further, a one-step update strategy is adopted
to enable easy implementation of our method and handle the inevitable complexity arising from
the non-linear nature of the quantile estimating equation. Under fairly mild assumptions, we
prove our estimators are fully robust to the choice of the nuisance imputation model, in the
sense of alwaysmaintaining root-n consistency and asymptotic normality, while having improved
efficiency relative to the supervised estimator. Further, they achieve semi-parametric optimality
also, provided the relation between the response and the covariates is correctly specified via the
imputation model. In addition, as an illustration of estimating the nuisance imputation function,
we consider kernel smoothing type estimators on lower dimensional and possibly estimated
transformations of the high dimensional covariates, and we establish novel results on uniform
convergence rates of such kernel smoothing estimators in high dimensions, involving responses
indexed by a function class and usage of dimension reduction techniques. These results may be
of independent interest. Numerical results on both simulated and real data confirm our semi-
supervised approach’s improved performance, both in terms of estimation as well as inference.
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1 Introduction

Semi-supervised settings, as the name suggests, are characterized by two available data sets: (i)
a labeled data containing a limited number of observations on both a response Y and a set of
covariatesX, and (ii) an unlabeled data of much larger size where only the covariates X are observed.
Statistical learning in such settings, often termed “semi-supervised learning”, has gained substantial
attention in the last two decades in machine learning, and more recently, in the statistics community
as well. A detailed overview of semi-supervised learning and the growing literature can be found
in Zhu and Goldberg (2009) and Chapelle et al. (2010). Semi-supervised settings emerge naturally
when observations for X are easy to collect for a large cohort, but obtaining the corresponding
Y is costly or time-consuming. This situation is ubiquitous in modern studies across scientific
disciplines (see Chapelle et al. (2010) for various examples), including modern biomedical studies,
such as electronic health records – rich resources of data for discovery research – where labeling of
Y is often logistically prohibitive; see Section 1 of Chakrabortty and Cai (2018) for further details.
Another highly relevant biomedical application is in integrative genomics, especially expression
quantitative trait loci studies (Michaelson et al., 2009) that develop association mapping between
gene expression levels Y and genetic variants X. A major bottleneck for the power of such studies
has turned out to be the limited sample size of the expensive gene expression data (Flutre et al.,
2013; McCaw et al., 2021). In contrast, observations for the genetic variants are usually cheaper and
available for much more individuals. Safely and efficiently leveraging these plentiful unlabeled data
thus necessitates developing suitable semi-supervised strategies for robust and efficient inference,
which are our main focus in this paper.

1.1 Our goal and existing work

In semi-supervised settings, the most critical and natural question is when and how the unlabeled
data can be used to improve estimation accuracy compared to supervised methods, which take ac-
count of the labeled data only. In principle, such improvement is determined by how the parameter
of interest depends on the marginal distribution PX of X as the unlabeled data are informative for
PX only (Seeger, 2002; Zhang and Oles, 2000). Thus conditions on the relation between PX and
the conditional distribution of Y given X were assumed explicitly or implicitly by many existing
semi-supervised approaches that aimed to estimate E(Y | X) nonparametrically, including genera-
tive modeling (Nigam et al., 2000), graph-based methods (Zhu, 2005) and manifold regularization
(Belkin et al., 2006). Their advantages over supervised learning, however, cannot be guaranteed
when these distributional assumptions are violated (Cozman and Cohen, 2001; Cozman et al.,
2003). Recently, robust semi-supervised methods were proposed for various (finite dimensional)
inference problems, including mean estimation (Zhang et al., 2019; Zhang and Bradic, 2022), linear
regression (Chakrabortty and Cai, 2018; Azriel et al., 2022) and prediction accuracy evaluation
(Gronsbell and Cai, 2018), among others. As the name “robust” suggests, they have been proven
to be at least as efficient as their supervised counterparts even if the underlying distribution or
model assumptions are misspecified. In a more general context, Chapter 2 of Chakrabortty (2016)
provides an elaborate interpretation about robustness and efficiency of semi-supervised inference
from a semi-parametric perspective. Despite this rich and growing literature on semi-supervised
inference, the problem of quantile estimation has, to the best of our knowledge, not been inves-
tigated in semi-supervised settings. Quantile(s), however, are important parameter(s) that help
characterize the whole response distribution, and are often robust choices for measuring the central
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tendency of heavy-tailed and/or skewed data, compared to the mean (which may not even ex-
ist). This work therefore aims to bridge this gap in the existing semi-supervised learning literature
regarding inference for quantiles.

1.2 Problem setup

To formulate our work, suppose X ∈ X ⊂ Rp, for some X , and Y ∈ R is continuous with a density
function f(·) as well as a distribution function F (·). Here, the dimension p ≡ pn of X could diverge,
and possibly exceed the sample size n, allowing for the case where p≫ n. Our goal is to estimate
the τ -quantile, θ0 ≡ θ0(τ) ∈ Θ ⊂ R, for some Θ, of the response Y , for some fixed and known
τ ∈ (0, 1), defined as the solution to the estimating equation:

E{ψ(Y, θ0)} = 0, (1.1)

where ψ(y, θ) := I(y < θ)− τ with I(·) being the indicator function. It is important to notice that
the existing robust semi-supervised methods for the problems as mentioned in the last paragraph
cannot be easily extended to this problem, because they all directly impute the unlabeled Y with
the conditional mean E(Y | X), or relevant working models thereof. Due to the non-linear and
inseparable nature of Y and θ0 in the equation (1.1), such imputation strategies can, however, lead
to bias in this case. This fact makes quantile estimation fundamentally different and much more
challenging compared to problems based on estimating equations that are linear/separable in the
response Y and the parameter(s) of interest, such as mean estimation (Zhang et al., 2019; Zhang
and Bradic, 2022) and linear regression (Chakrabortty and Cai, 2018; Azriel et al., 2022).

In a semi-supervised setting, we have two independent data sets: the labeled data L := {Zi :=
(Yi,X

T
i )

T : i = 1, . . . , n} and the unlabeled data U := {Xi : i = n+1, . . . , n+N}, which consist of
n and N independent copies of Z := (Y,XT)T and X, respectively. Here, the labeling mechanism
is typically by design, so that L and U have the same distribution – a standard, often implicit,
assumption in the literature; see Chakrabortty and Cai (2018, Remark 2.1) for details – and the
labeling status, i.e., labeled or not, of an individual is considered fixed/non-random, unlike usual
missing data problems where the missingness mechanism/indicator is considered random. More
importantly, a major challenge and a key feature – often a consequence of the underlying practical
circumstances – contrasting our setup from traditional missing data problems is that the unlabeled
data can be much larger in size than the labeled data (N ≫ n), i.e., it is possible that

limn,N→∞(n/N) = 0.

An example is the ideal semi-supervised setting where n is finite and N = ∞, i.e., the distribution
PX is known. This clearly violates the “positivity assumption”, that the proportion of Y observed
in the whole data L ∪ U is bounded away from zero, often required in the missing data literature
(Tsiatis, 2007; Little and Rubin, 2019). Thus, letting νn,N := n/(n+N), we allow

ν := limn,N→∞νn,N ∈ [0, 1).

This natural violation of the positivity assumption caused by the case ν = 0 in fact raises substantial
technical difficulties, e.g., non-standard asymptotics, that cannot be handled by the classical theory
of missing data, making our semi-supervised setting fairly unique and challenging.
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1.3 Our contributions

Based on the labeled data L only, a supervised estimator θ̂SUP can be obtained by solving the sample
version of (1.1) given by n−1

∑n
i=1{I(Yi < θ̂SUP) − τ} = 0. Although θ̂SUP possesses consistency

and asymptotic normality, which will be shown in Proposition 2.1, ignoring the unlabeled data U
generally leads to a loss of efficiency; see Remark 2.5 for details. To improve the estimation of
θ0, this article proposes a family of semi-supervised estimators, which takes both L and U into
consideration by imputing the function ψ(Y, θ) in the definition (1.1). Under mild conditions, our
estimators are always n1/2-consistent for θ0 and asymptotically normal with arbitrary imputation
functions (Theorem 2.1), and also ensured to outperform the supervised estimator θ̂SUP with respect
to asymptotic variance (Remark 2.5). When the imputation function correctly specifies the condi-
tional distribution of Y given X, our method further attains semi-parametric efficiency (Remark
2.5). Another advantage of our estimators is their first-order insensitivity, that is, their influence
functions are not affected by estimation errors or knowledge of the nuisance estimator’s construction
(Remark 2.4). This property is particularly desirable for inference when the covariates X are high
dimensional or the nuisance functions are estimated by nonparametric techniques. Our method
uses sample splitting/cross-fitting techniques to allow for such nuisance estimators. In the proof of
these claimed properties, technical innovations related to empirical process theory are established
to handle the classes of ψ(Y, θ) and other relevant random functions indexed by θ; see Lemma A.2
in Appendix A.2. When constructing our estimators, we adopt the strategy of one-step update
(Van der Vaart, 2000; Tsiatis, 2007) to overcome computational difficulties arising from the insep-
arability of Y and θ in (1.1), providing a simple implementation of our estimation and inference
procedures. It also avoids the burdensome task of estimating nuisance functions for the whole
parameter space Θ. Instead, we only need to consider one single value of θ. This feature allows
us to use a wide range of approaches, including parametric regression and nonparametric/machine
learning approaches, like kernel smoothing and random forest, for the nuisance estimation, a fairly
important component in the implementation of our method that poses substantial challenges in
high dimensional scenarios. Although the above-mentioned desirable properties of our method are
guaranteed by any nuisance estimators as long as the high-level conditions in Theorem 2.1 hold,
we thoroughly study kernel smoothing estimators , with possible use of dimension reduction , as
an illustration. Specifically, we show those high-level conditions are satisfied by kernel smoothing
estimators through deriving their uniform convergence rates, when the outcome involves a function
class of Y and the covariates are generated by transforming the high dimensional X via possibly
unknown dimension reduction processes; see Theorem 3.1 and Remark 3.1. These results extend
the existing theory of kernel smoothing estimators with generated covariates (Mammen et al., 2012;
Escanciano et al., 2014; Mammen et al., 2016) in high dimensions. These are also useful in other
applications, and should be of independent interest. In summary, our main contributions thus are:

(a) We develop a globally robust and locally optimal strategy for quantile estimation in semi-
supervised and high dimensional setups, providing a family of n1/2-consistent, asymptotically
normal and first-order insensitive estimators ensured to be at least as efficient as the sample
quantile θ̂SUP and more efficient whenever possible; see Theorem 2.1 and Remarks 2.4–2.5;

(b) As an illustration of the nuisance estimators and their theoretical properties required in our
method, we consider kernel smoothing type estimators, and derive their uniform convergence
rates when the response is indexed by a function class and the high dimensional covariates are
transformed by (unknown) dimension reduction mechanisms; see Theorem 3.1 and Remark 3.1.
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1.4 Organization of the article

In the next section, we introduce our family of semi-supervised estimators for the response quantile
θ0 and study their asymptotic properties. The choice and estimation of the nuisance functions
involved in our approach are theoretically investigated in Section 3. Section 4 provides numerical
results from extensive simulations under a wide range of data generating mechanisms, followed by
an empirical data example in Section 5. These numerical results substantiate the properties and
advantages of our approach stated in the previous sections. Finally, Section 6 ends the article with
a concluding remark as well as a brief discussion of possible future work. All technical details,
including auxiliary lemmas and proofs of all theoretical results, and extra numerical results as well
as necessary supplements to the data analysis in Section 5 can be found in Appendices A–C.

2 Semi-supervised estimation of quantiles via one-step update

Notation. Throughout, we use the lower case letter c to represent a generic positive constant,
including c1, c2, etc., which may vary from line to line. For a d1 × d2 matrix P whose (i, j)th com-
ponent is P[ij], we define ∥P∥0 := max1≤j≤d2{

∑d1
i=1 I(P[ij] ̸= 0)}, ∥P∥1 := max1≤j≤d2(

∑d1
i=1 |P[ij]|),

∥P∥ := max1≤j≤d2{(
∑d1

i=1P
2
[ij])

1/2} and ∥P∥∞ := max1≤i≤d1,1≤j≤d2 |P[ij]|. The symbols 1d and 0d

refer to d-dimensional vectors of ones and zeros, respectively and Normal (µ, σ2) denotes the Nor-
mal distribution with mean µ and variance σ2. We denote B(α, ε) := {a : |a− α| ≤ ε} as a generic
neighborhood of a scalar α with some radius ε > 0. For a vector β, we use β[j] to denote its jth com-
ponent. For any random function ĝ(·, θ) and a random vector W with copies W1, . . . ,Wn+N , we
denote EW{ĝ(W, θ)} :=

∫
ĝ(w, θ)dFW(w) as the expectation of ĝ(W, θ) with respect toW treating

ĝ(·, θ) as a non-random function, where FW(·) is the distribution function of W. For M ∈ {n, n+
N}, we write EM{ĝ(W, θ)} := M−1

∑M
i=1ĝ(Wi, θ) and GM{ĝ(W, θ)} := M1/2[EM{ĝ(W, θ)} −

EW{ĝ(W, θ)}] as well as define varM{ĝ(W, θ)} := EM [{ĝ(W, θ)}2]− [EM{ĝ(W, θ)}]2. Also, we let
EN{ĝ(W, θ)} := N−1

∑n+N
i=n+1ĝ(Wi, θ) and GN{ĝ(W, θ)} := N1/2[EN{ĝ(W, θ)} − EW{ĝ(W, θ)}].

Lastly, let f(· | w) and F (· | w) represent the conditional density and distribution functions of Y
given W = w, respectively.

2.1 The supervised estimator

We first investigate the supervised estimator θ̂SUP, i.e., the sample quantile, solving: En{I(Y <
θ̂SUP)− τ} = 0. To study its limiting behavior, we need the following basic assumption.

Assumption 2.1. The parameter θ0 is in the interior of the space Θ. The density function f(·)
of Y satisfies f(θ0) > 0 and has a bounded derivative in B(θ0, ε).

The basic Assumption 2.1 is fairly standard, and it guarantees the identifiability of θ0 as well
as the validity of θ̂SUP. The following proposition then gives the limiting properties of θ̂SUP.

Proposition 2.1. Under Assumption 2.1, the supervised estimator θ̂SUP satisfies:

θ̂SUP − θ0 = − {nf(θ0)}−1∑n
i=1ψ(Y, θ0) + op(n

−1/2).

Furthermore, the asymptotic distribution of θ̂SUP is:

n1/2f(θ0)σ
−1
SUP(θ̂SUP − θ0) → Normal (0, 1) (n→ ∞),

with σ2SUP := var{ψ(Y, θ0)} = τ(1− τ).
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Proposition 2.1 provides the asymptotic variance of θ̂SUP, which can be compared with that of
our semi-supervised estimator(s) proposed below. Its proof can be found in Koenker (2005).

2.2 A family of semi-supervised estimators based on one-step update

Main idea. The conditional expectation of the left hand side in (1.1) given X is:

E{ψ(Y, θ0) | X} ≡ F (θ0 | X)− τ ̸= 0 with a positive probability,

if we exclude the trivial situation where F (θ0 | X) = τ almost surely. This indicates that the
distribution PX of X indeed plays a role in the definition of θ0. Hence, the supervised estimator θ̂SUP

is possibly sub-optimal in that it discards the unlabeled data U , which provides extra information
on PX. To make use of U where Y is not observed, we now consider substituting a function of X
for E{ψ(Y, θ)} in the definition (1.1) of θ0. An intuitive choice is µ(X, θ) := E{ψ(Y, θ) | X} since
E{ψ(Y, θ)} = E{µ(X, θ)}. Then, a further representation of E{ψ(Y, θ)} is:

E{ψ(Y, θ)} = E{µ(X, θ)}+ E{ψ(Y, θ)− µ(X, θ)}.

However, the form of µ(X, θ) is typically hard to specify correctly in practice. We thus posit a
working model ϕ(X, θ) that is possibly misspecified, and not necessarily equal to µ(X, θ).

Then, our method is inspired by the fact that the following robust representation holds:

E{ψ(Y, θ)} = h(θ) := E{ϕ(X, θ)}+ E{ψ(Y, θ)− ϕ(X, θ)}, (2.1)

for an arbitrary function ϕ(·, ·), implying that under (1.1), at θ = θ0,

h(θ0) ≡ E{ϕ(X, θ0)}+ E{ψ(Y, θ0)− ϕ(X, θ0)} = 0. (2.2)

In the left hand side of (2.2), the term E{ψ(Y, θ0) − ϕ(X, θ0)} guarantees global robustness which
means the equation always holds, i.e., for any function ϕ(·, ·), while the other term E{ϕ(X, θ0)}
involves X only and can thus be estimated using the whole data L ∪ U .

Then, the sample version of (2.2) constructed with L ∪ U is:

En+N{ϕ̂n(X, θ)}+ En{ψ(Y, θ)− ϕ̂n(X, θ)} = 0, (2.3)

where ϕ̂n(·, ·) denotes some reasonable estimator of ϕ(·, ·) based on L.

Construction of the estimators. Intuitively, the equation (2.3) gives the road map to our semi-
supervised estimators. Solving (2.3) with respect to θ is, however, not straightforward owing to
its non-linear nature. So we consider a more implementation-friendly and computationally efficient
one-step update approach. Noticing that the derivative h′(·) of the function h(·) defined in (2.1) is
the density function f(·) of Y , we can hence solve the equation (2.2) by Newton’s method, which
refines an initial solution θINIT by a one-step update θINIT − {h′(θINIT)}−1h(θINIT) ≡

θINIT + {f(θINIT)}−1[E{ϕ(X, θINIT)− ψ(Y, θINIT)} − E{ϕ(X, θINIT)}]. (2.4)

Recall from (2.3) ϕ̂n(·, ·) is an estimator of ϕ(·, ·) based on L. Further, let θ̂INIT be an initial estimator
of θ0 and let f̂n(·) be an estimator of f(·). Then, the empirical version, based on the whole data
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L ∪ U , of the population-level representation (2.4) immediately gives a family of semi-supervised
estimators θ̂SS of θ0 indexed by {ϕ̂n(·, ·), θ̂INIT, f̂n(·)}:

θ̂SS := θ̂INIT + {f̂n(θ̂INIT)}−1[En{ϕ̂n(X, θ̂INIT)− ψ(Y, θ̂INIT)} − En+N{ϕ̂n(X, θ̂INIT)}]. (2.5)

Although we do not require specific forms of {θ̂INIT, f̂n(·)}, a natural choice of the initial estimator
θ̂INIT is the supervised estimator θ̂SUP, while f̂n(·) can be a kernel density estimator; see Remark
3.2 for details on their convergence properties. As regards the imputation function ϕ̂n(·, ·), which
is an important component in our method, an arbitrary choice is allowed as long as the high-level
conditions in Section 2.3 are satisfied. We will thoroughly study some specific examples of ϕ̂n(·, ·)
in Section 3. However, regardless of the choice of ϕ̂n(·, ·), we apply a general cross-fitting strategy
(Chernozhukov et al., 2018; Newey and Robins, 2018) to obtain ϕ̂n(Xi, ·) as follows.

Cross-fitting of ϕ̂n(·, ·) and its benefits. For some fixed integer K ≥ 2, we divide the index
set I = {1, . . . , n} into K disjoint subsets I1, . . . , IK of the same size nK := n/K without loss of
generality. Let ϕ̂n,k(·, ·) be the corresponding estimator of ϕ(·, ·) based on the data L−

k := {Zi : i ∈
I−
k } of size nK− := n− nK, where I−

k := I/Ik. Then we set

ϕ̂n(Xi, θ) ≡
∑K

k=1{ϕ̂n,k(Xi, θ)I(i ∈ Ik) +K−1ϕ̂n,k(Xi, θ)I(i > n)} (2.6)

Through cross-fitting, the dependence of ϕ̂n(·, ·) and Xi in ϕ̂n(Xi, θ) (i = 1, . . . , n) is eliminated,
so that the second-order errors in the expansion of θ̂SS become more tractable while the influence
function remains unchanged. We can therefore avoid some stringent conditions, which are analogous
to the stochastic equicontinuity ones in the empirical process theory (Van der Vaart, 2000), when
deriving properties of θ̂SS. More detailed discussions of cross-fitting can be found in Chakrabortty
and Cai (2018), Chernozhukov et al. (2018) and Newey and Robins (2018).

In summary, we obtain our semi-supervised estimators θ̂SS of the quantile θ0 in three steps:

(i) Calculate an initial estimator θ̂INIT of θ0 and an estimator f̂n(·) of the density function f(·);

(ii) Obtain the imputation function ϕ̂n(X, θ̂INIT) by the cross-fitting procedures (2.6);

(iii) Plug {f̂n(θ̂INIT), ϕ̂n(X, θ̂INIT)} in the one-step update formula (2.5) to obtain the final θ̂SS.

Remark 2.1 (Robustifying and debiasing nature of the representation (2.5)). In addition to ro-
bustifying the estimator θ̂SS, as discussed after (2.2), another effect of the term En{ϕ̂n(X, θ̂INIT)−
ψ(Y, θ̂INIT)} in (2.5) is eradicating the first-order error of ϕ̂n(·, ·) as an estimator of ϕ(·, ·) so that
the influence function of θ̂SS is not affected by the estimation error of ϕ̂n(·, ·). This property is
crucial for ensuring the n1/2-consistency and asymptotic normality of θ̂SS, particularly when X is
high dimensional or ϕ̂n(·, ·) involves nonparametric calibrations. We will formally discuss this point
in Remark 2.4 after obtaining the theoretical results of θ̂SS. Interestingly, even if the imputation
function satisfies E{ϕ(X, θ)} = E{ψ(Y, θ)}, this robustifying and debiasing term should always be
included so that θ̂SS can enjoy the desirable properties mentioned above.
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2.3 Main results: Theoretical properties of the semi-supervised estimators

The definition (2.5) now equips us with a family of semi-supervised estimators θ̂SS for θ0 indexed
by {ϕ̂n(·, ·), θ̂INIT, f̂n(·)}. To study their limiting behavior, we assume the following conditions.

Assumption 2.2. The estimators θ̂INIT and f̂n(·) satisfy that

θ̂INIT − θ0 = Op(un) and f̂n(θ̂INIT)− f(θ0) = Op(vn)

for some positive sequences un = o(1) and vn = o(1).

Assumption 2.3. E[{ϕ(X, θ0)}2] <∞. In addition, for any sequence θ̃ → θ0 in probability,

Gn{ϕ(X, θ̃)− ϕ(X, θ0)} = op(1) and Gn+N{ϕ(X, θ̃)− ϕ(X, θ0)} = op(1). (2.7)

Assumption 2.4. Denote the estimation error ψ̂n,k(X, θ) := ϕ̂n,k(X, θ) − ϕ(X, θ) and its second

moment ∆k(L) := (supθ∈B(θ0,ε)EX[{ψ̂n,k(X, θ)}2])1/2 (k = 1, . . . ,K). Then, the set

Pn,k := {ψ̂n,k(X, θ) : θ ∈ B(θ0, ε)}, (2.8)

for some ε > 0, satisfies that, for any η ∈ (0,∆k(L) + ξ ] with some ξ > 0,

N[ ]{η,Pn,k | L, L2(PX)} ≤ H(L)η−c (k = 1, . . . ,K), (2.9)

with some function H(L) > 0 such that H(L) = Op(an) for some positive sequence an, where the
symbol N[ ](·, ·, ·) refers to the bracketing number defined in Van der Vaart and Wellner (1996) and

Van der Vaart (2000). Here Pn,k is indexed by θ only and treats ψ̂n,k(·, θ) as a non-random function
(k = 1, . . . ,K). Further, for some positive sequences dn,2 and dn,∞ allowed to diverge,

∆k(L) = Op(dn,2) and supx∈X , θ∈B(θ0,ε)|ψ̂n,k(x, θ)| = Op(dn,∞) (k = 1, . . . ,K). (2.10)

Remark 2.2. Assumption 2.2 is standard for one-step estimators, ensuring good behavior of θ̂INIT

and f̂n(·). Assumption 2.3 outlines features of a reasonable imputation function ϕ(·, ·). According
to Example 19.7 and Lemma 19.24 of Van der Vaart (2000), the condition (2.7) is true provided
ϕ(X, θ) is Lipschitz continuous in θ. Assumption 2.4 is imposed to control the estimation error of
ϕ̂n,k(X, θ) in the neighborhood B(θ0, ε) of θ0. The condition (2.9) therein holds when Pn,k is a VC
class given L (Van der Vaart and Wellner, 1996). Also, we put the restriction (2.10) with possibly
divergent rates on the L2 and L∞ norms of ψ̂n,k(X, θ), weaker than requiring its convergence
uniformly over x ∈ X and θ ∈ B(θ0, ε), i.e., the L∞ convergence. All these (high-level) assumptions
are fairly mild and will be verified for some choices of {ϕ(·, ·), ϕ̂n,k(·, ·)} in Section 3; see, e.g.,
Propositions 3.1–3.2 and the discussions after Theorem 3.1 therein. In addition, we do not assume
limn→∞(n/N) = 0, a common requirement in the semi-supervised literature (Chakrabortty and
Cai, 2018; Gronsbell and Cai, 2018). Our conclusions thus remain valid even when the labeled
and unlabeled data are comparable in size. Nevertheless ν = 0 is a more practically relevant and
theoretically challenging case, significantly different from the traditional missing data problem.

In the following theorem, we state the large sample properties of θ̂SS defined by (2.5), giving a
complete characterization of its asymptotic expansion under general (high-level) conditions.
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Theorem 2.1 (General asymptotic expansion of θ̂SS). If Assumptions 2.1–2.4 hold, then

θ̂SS − θ0 = {nf(θ0)}−1∑n
i=1ωn,N (Zi, θ0) +Op(u

2
n + unvn + n−1/2rn) + op(n

−1/2),

where ωn,N (Z, θ) := ϕ(X, θ)− ψ(Y, θ)− En+N{ϕ(X, θ)} satisfying E{ωn,N (Z, θ)} = 0, and

rn := dn,2{log an + log (d−1
n,2)}+ n

−1/2
K dn,∞{(log an)2 + (log dn,2)

2}.

Further, given

unvn + u2n + n−1/2rn = o(n−1/2), (2.11)

the limiting distribution of θ̂SS is n1/2f(θ0)σ
−1
SS (θ̂SS − θ0) → Normal (0, 1) (n,N → ∞), where

σ2SS := var{ωn,N (Z, θ0)} = (1− νn,N )var{ψ(Y, θ0)− ϕ(X, θ0)}+ νn,Nvar{ψ(Y, θ0)}.

Remark 2.3. The asymptotic variance of θ̂SS can be estimated by n−1{f̂n(θ̂INIT)}−2σ̂2SS with

σ̂2SS := (1− νn,N )varn{ψ(Y, θ̂INIT)− ϕ̂n(X, θ̂INIT)}+ νn,Nvarn{ψ(Y, θ̂INIT)}. (2.12)

Of course, one can replace the initial estimator θ̂INIT in f̂n(θ̂INIT) and (2.12) by the semi-supervised
estimator θ̂SS. The results from our simulations in Section 4, however, show that {f̂n(θ̂INIT)}−1σ̂SS

works quite well for estimating {f(θ0)}−1σSS. In addition, using {f̂n(θ̂INIT)}−1σ̂SS reduces compu-
tational burden, since ϕ̂n(Xi, θ̂INIT) is already available from the previous steps, while ϕ̂n(Xi, θ̂SS)
(i = 1, . . . , n) needs to be calculated afresh via the cross-fitting procedure (2.6).

As the most important special case of Theorem 2.1, which holds for any νn,N and its limit ν –

positive or zero, the limiting behavior of θ̂SS when ν = 0 is considered in the next corollary.

Corollary 2.1 (Properties of θ̂SS under the special case ν = 0). Assume that the conditions of
Theorem 2.1 hold and that ν = 0. Then, the semi-supervised estimator θ̂SS satisfies:

θ̂SS − θ0 = {nf(θ0)}−1∑n
i=1ω(Zi, θ0) +Op(u

2
n + unvn + n−1/2rn) + op(n

−1/2), and

n1/2f(θ0)σ̃
−1
SS (θ̂SS − θ0) → Normal (0, 1) (n,N → ∞),

where ω(Z, θ) := ϕ(X, θ)− ψ(Y, θ)− E{ϕ(X, θ)} satisfying E{ω(Z, θ)} = 0, and

σ̃2SS := var[{ω(Z, θ0)}2] = var{ψ(Y, θ0)− ϕ(X, θ0)}.

Remark 2.4 (Robustness and first-order insensitivity). Theorem 2.1 presents the n1/2-consistency
and asymptotic normality of θ̂SS with an arbitrary choice of {ϕ(·, ·), ϕ̂n,k(·, ·)} under the assump-
tions therein. In this sense, it provides a family of globally robust semi-supervised estimators with
influence functions indexed by ϕ(·, ·). In addition, we observe that estimating ϕ(·, ·) by ϕ̂n(·, ·)
does not affect the influence function of θ̂SS, as long as the high-level conditions in Assumption
2.4 are satisfied. Therefore, θ̂SS is first-order insensitive to estimation errors and any knowledge
of the construction of ϕ̂n(·, ·). This property is particularly desirable for inference when X is high
dimensional or ϕ̂n(·, ·) involves nonparametric techniques – cases when it may not be n−1/2-rate.
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Remark 2.5 (Efficiency comparisons, and some examples of the imputation function ϕ(·, ·)). If we
take ϕ(X, θ) ≡ E{ψ(Y, θ) | d(X)} with some possibly unknown function d(·), then

σ2SS ≡ E[{ψ(Y, θ0)}2]− (1− νn,N )E[{ϕ(X, θ0)}2] ≤ σ2SUP,

i.e., the semi-supervised variance {f(θ0)}−2σ2SS in Theorem 2.1 is no more than the supervised
variance {f(θ0)}−2σ2SUP in Proposition 2.1, indicating θ̂SS is equally or more efficient compared to
the supervised estimator θ̂SUP. An example of d(x) is the linear transformation d(x) ≡ PT

0 x, where
P0 is some unknown r × p matrix, with a fixed r ≤ p, that can be chosen and estimated using
parametric regression methods (r = 1), e.g., linear regression of Y vs. X, or dimension reduction
techniques (r ≥ 1) such as sliced inverse regression (Li, 1991; Lin et al., 2019); see Section 4 for
the implementation details of estimating P0. After obtaining an estimator of P0, a further step of
nonparametric smoothing can be conducted to approximate ϕ(x, θ) ≡ E{ψ(Y, θ) | PT

0 X = PT
0 x}.

In Section 3, we will substantiate that ϕ(x, θ) ≡ E{ψ(Y, θ) | PT
0 X = PT

0 x} and its corresponding
nuisance estimators indeed satisfy the high-level conditions required in Theorem 2.1.

Further, when ϕ(X, θ0) = E{ψ(Y, θ0) | X} and ν > 0, we have:

σ2SS = (1− νn,N )var[ψ(Y, θ0)− E{ψ(Y, θ0) | X}] + νn,Nvar{ψ(Y, θ0)}
→ (1− ν)E([ψ(Y, θ0)− E{ψ(Y, θ0) | X}]2) + ν E[{ψ(Y, θ0)}2] = σ2EFF, (2.13)

with {f(θ0)}−2σ2EFF the semi-parametric efficiency bound for estimating θ0 in missing data theory
(Tsiatis, 2007; Graham, 2011). If ϕ(X, θ0) = E{ψ(Y, θ0) | X} and ν = 0, Corollary 2.1 gives:

σ̃2SS = E([ψ(Y, θ0)− E{ψ(Y, θ) | X}]2) ≤ E[{ψ(Y, θ0)− g(X)}2],

for any function g(·) in L2(PX), and the equality holds only if g(X) = E{ψ(Y, θ0) | X} almost
surely. This fact reveals the asymptotic optimality of θ̂SS among all regular and asymptotically
linear estimators of θ0, whose influence functions take the form: {f(θ0)}−1{g(X) − ψ(Y, θ0)}, for
some function g(·). Further, under the appropriate semi-parametric model of Z – one where the
distribution of X is known while that of Y is unrestricted up to Assumption 2.1, one can show that
{f(θ0)}−2E([ψ(Y, θ0) − E{ψ(Y, θ0) | X}]2) equals the efficient asymptotic variance for estimating
θ0. Thus, for any ν ≥ 0, θ̂SS achieves semi-parametric efficiency with ϕ(·, ·) as above.

3 Choice and estimation of the nuisance functions

This section details some choices and estimators of the imputation function ϕ(·, ·) used in the con-
struction of our semi-supervised estimators θ̂SS in (2.5). Although an arbitrary imputation function
equips our method with the n1/2-consistency and asymptotic normality stated in Theorem 2.1 if the
high-level conditions in Assumption 2.3 hold, the ideal choice from the perspective of efficiency is
ϕ(X, θ) = E{ψ(Y, θ) | X} as discussed in Remark 2.5. However, when the dimension p of X is large,
estimating the conditional mean E{ψ(Y, θ) | X} fully nonparametrically is generally undesirable in
practice due to curse of dimensionality that typically enforces stringent conditions such as under-
smoothing (Chakrabortty and Cai, 2018). A common strategy is implementing suitable dimension
reduction techniques followed by nonparametric calibrations targeting the function E{ψ(Y, θ) | S}
rather than E{ψ(Y, θ) | X}, where S := PT

0 X ∈ S ⊂ Rr and P0 is a p× r matrix with some fixed
r ≤ p. Here we emphasize that E{ψ(Y, θ) | S} = E{ψ(Y, θ) | X} is not assumed anyway, i.e., the
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dimension reduction is not necessarily sufficient. According to Remark 2.5, the advantage of θ̂SS
over θ̂SUP in terms of efficiency is ensured by setting

ϕ(X, θ) ≡ ϕ(X, θ,P0) ≡ E{ψ(Y, θ) | PT
0 X} ≡ E{ψ(Y, θ) | S}, (3.1)

regardless of whether the dimension reduction is sufficient or not. Hence P0 can be any user-
defined or data-dependent matrix. If P0 is entirely determined by PX, we can safely assume its
estimation error to be negligible due to the plentiful observations for X in semi-supervised settings.
An example is the r leading principal component directions of X. However, to make the dimension
reduction and the imputation as sufficient as possible, we mainly consider cases where P0 depends
on the joint distribution of (Y,XT)T and thereby needs to be estimated on L with significant errors.
Some reasonable choices of such P0 will be discussed in Remark 3.1.

To justify the usage of imputation functions of the form ϕ(X, θ) ≡ E{ψ(Y, θ) | S} as in (3.1),
we now show it satisfies Assumption 2.3 under a mild condition.

Proposition 3.1. Suppose that E[{supθ∈B(θ0,ε)f(θ | S)}2] < ∞ for some ε, with f(· | S) the
conditional density of Y given S. Then, Assumption 2.3 is satisfied by ϕ(X, θ) ≡ E{ψ(Y, θ) | S}.

To approximate the conditional mean ϕ(X, θ) ≡ E{ψ(Y, θ) | PT
0 X}, we may employ any suitable

smoothing technique, such as kernel smoothing, kernel machine regression and smoothing splines.
For sake of illustration, we focus here on the kernel smoothing estimator(s):

ϕ̂n,k(x, θ) ≡ ϕ̂n,k(x, θ, P̂k) := {ℓ̂n,k(x, P̂k)}−1m̂n,k(x, θ, P̂k) (k = 1, . . . ,K), where (3.2)

ℓ̂n,k(x,P) := h−r
n En,k[Kh{PT(x−X)}] and m̂n,k(x, θ,P) := h−r

n En,k[ψ(Y, θ)Kh{PT(x−X)}],

with the notation En,k{g(Z)} := n−1
K−

∑
i∈I−

k
g(Zi) for any function g(·), and with P̂k being any

estimator of P0 based on the data set L−
k , Kh(s) := K(h−1

n s), K(·) : Rr 7→ R a kernel function,
e.g., the standard Gaussian kernel, and hn → 0 denoting a bandwidth sequence. Considering X is
possibly high dimensional and P0 needs to be estimated, establishing the (uniform) convergence
properties of ϕ̂n,k(x, θ, P̂k) poses substantial technical challenges and has not been studied in the
literature yet to the best of our knowledge. In contrast, most of the existing works on kernel
smoothing with such estimated transformed covariates – often termed as “generated” covariates –
e.g., Mammen et al. (2012), Escanciano et al. (2014) and Mammen et al. (2016), mainly focus on
the scenario where the dimension of X is fixed. Our result below is thus novel in this sense.

To derive the convergence rate of ϕ̂n,k(x, θ, P̂k), as defined in (3.2), uniformly over x ∈ X
and θ ∈ B(θ0, ε), we impose the following requirements, along with some standard smoothness
conditions for kernel smoothing which are listed in Assumption A.1 of Appendix A.1.

Assumption 3.1. The estimation error ∥P̂k −P0∥1 = Op(αn) for some positive sequence αn.

Assumption 3.2 (Required only when P0 needs to be estimated). (i) The support X of X is such
that supx∈X ∥x∥∞ < ∞. (ii) The function ∇K(s) := ∂K(s)/∂s is continuously differentiable and
satisfies ∥∂{∇K(s)}/∂s∥ ≤ c ∥s∥−w for any ∥s∥ > c, where w > 1 is some constant. Further, it is
locally lipschitz continuous, i.e., ∥∇K(s1)−∇K(s2)∥ ≤ ∥s1− s2∥ρ(s2) for any ∥s1− s2∥ ≤ c, where
ρ(·) is some bounded and square integrable function with a bounded derivative ∇ρ(·). (iii) Let
ηt[j](s, θ) be the jth component of ηt(s, θ) := E[X{ψ(Y, θ)}t | S = s]. Then, with respect to s, the
function ηt[j](s, θ) is continuously differentiable and has a bounded first derivative on S0 ×B(θ0, ε)
(t = 0, 1; j = 1, . . . p) for some open set S0 ⊃ S.
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Assumption 3.1 regulates the behavior of P̂k as an estimator of the transformation matrix P0.
Assumption 3.2 requires mild smoothness conditions to control the estimation error of P̂k while
(ii) therein is satisfied in particular by the second-order Gaussian kernel, among others. Similar
assumptions can be found in Chakrabortty and Cai (2018) that studied kernel smoothing estimators
with dimension reduction in low dimensional scenarios. We now propose the following result.

Theorem 3.1 (Convergence of ϕ̂n,k). Set γn := [(nhrn)
−1max{log(h−r

n ), log(logn)}]1/2, sn,1 :=
γn+hdn and sn,2 := h−2

n α2
n+h−1

n γnαn+αn. If Assumptions 3.1–3.2, as well as Assumption A.1 in
Appendix A.1, hold and sn,1 + sn,2 = o(1), then

supx∈X , θ∈B(θ0,ε)|ϕ̂n,k(x, θ, P̂k)− ϕ(x, θ,P0)| = Op(sn,1 + sn,2) (k = 1, . . . ,K).

Remark 3.1 (Convergence rates – examples of P̂k). Theorem 3.1 establishes the L∞ error rate
of ϕ̂n,k(x, θ, P̂k) under mild conditions. The uniform consistency of ϕ̂n,k(x, θ, P̂k) is ensured at the
optimal bandwidth rate hopt = O{n−1/(2d+r)} for any kernel order d ≥ 2 and fixed r, if

αn = o{n−1/(2d+r)}. (3.3)

We consider the validity of (3.3) for some common choices of P0, such as the least squares regres-
sion parameter (r = 1) satisfying E{X(Y − PT

0 X)} = 0p, or the r leading eigenvectors (r ≥ 1) of
the matrix cov{E(X | Y )}, which can be estimated by sliced inverse regression (Li, 1991). When
p is fixed, there typically exist n1/2-consistent estimators P̂k of P0, so (3.3) is satisfied by the
fact that αn = O(n−1/2). In high dimensional scenarios where p is divergent and greater than
n, one can obtain P̂k based on regularized versions of linear regression or sliced inverse regres-
sion (Lin et al., 2019). In these cases, the sequence αn = O{q(log p/n)1/2} when the L1 penalty
is used under some suitable conditions (Bühlmann and Van De Geer, 2011; Wainwright, 2019;
Lin et al., 2019), where q := ∥P0∥0 represents the sparsity level. Hence (3.3) is true whenever
q(log p)1/2 = o{n(2d+r−2)/(4d+2r)}. An example of P̂k, with r = 1, for high dimensional data is
the lasso estimator P̂k ≡ argminβ∈Rp{n−1

K−
∑

i∈I−
k
(Yi − βTXi)

2 + λn,k∥β∥1}, where λn,k > 0 is a

tuning parameter. After this parametric regression step, we conduct kernel smoothing of ψ(Y, θ̂INIT)
on the one-dimensional linear combination P̂T

kX to obtain ϕ̂n,k(x, θ̂INIT, P̂k), as in (3.2); see Section
4 for the details of constructing such a high-dimensional nuisance estimator.

Theorem 3.1 implies that dn,2 = o(1) and dn,∞ = o(1) for Assumption 2.4 when ϕ(x, θ,P) and

ϕ̂n,k(x, θ,P) are as in (3.1)–(3.2). We now validate the condition (2.9) on the bracketing number.

Proposition 3.2. Suppose that E[{supθ∈B(θ0,ε)f(θ | S)}2] < ∞, for some ε > 0. Then, the set

Pn,k defined in (2.8) satisfies N[ ]{η,Pn,k | L, L2(PX)} ≤ c (n+ 1)η−1.

Remark 3.2 (Verification of the condition (2.11)). The results of Theorem 3.1 and Proposition
3.2 indicate that an = O(n), dn,2 = o(1) and dn,∞ = o(1) in Assumption 2.4. Moreover, by setting

the initial estimator θ̂INIT ≡ θ̂SUP and estimating the density function f(·) via kernel smoothing
with a second-order kernel function at the optimal bandwidth rate, we have un = O(n−1/2) and
vn = O{(n−1logn)2/5} from Proposition 2.1 and Hansen (2008), where {un, vn} are as defined
in Assumption 2.2. These results on the convergence rates of {an, dn,2, dn,∞, un, vn} are actually

sufficient for the condition (2.11) in Theorem 2.1 and thus ensure the asymptotic normality of θ̂SS.
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Remark 3.3 (Other reasonable choices of the nuisance estimator). As we conclude this section, we
would like to reiterate that although we have focused on the combination of kernel smoothing and
dimension reduction in this section, it is just one suitable strategy for approximating the nuisance
function ϕ(X, θ) in (3.1). A wide class of alternatives could also be leveraged to estimate ϕ(X, θ)
as long as the high-level conditions in Theorem 2.1 are satisfied. For instance, we can let P0 equal
the p × p identity matrix in (3.1) and approximate ϕ(X, θ) ≡ E{ψ(Y, θ) | X} by popular machine
learning approaches, such as random forest (Breiman, 2001) and kernel machine regression (Liu
et al., 2007), without use of dimension reduction. We will present the implementation details and
numerical results related to random forest in Sections 4 and 5 while not delving any further into
the theoretical aspects, which are beyond the main interest of this article.

4 Simulations

We study in this section the numerical performance of our proposed semi-supervised inference
method on simulated data and compare it to the supervised counterpart. Throughout, the quantile
level is τ = 0.5. The results are similar for other quantile levels, such as τ = 0.25 or 0.75. We do
not present them here for brevity. We set the sample sizes n = 200, 500 or 2, 000 and N = 5, 000.
The covariates X are drawn from a p-dimensional normal distribution with a zero mean and an
identity covariance matrix, where we choose p = 10, 20, 200 or 500. The conditional outcome model
is chosen as Y | X ∼ Normal {m(X), 1} for a variety of m(·) discussed below.

Let Xq := (X[1], . . . ,X[q])
T, where q = p when p ∈ {10, 20}, and q = 5 or ⌈p1/2⌉ when p ∈

{200, 500}, represents the (effective) sparsity (fully dense for p ∈ {10, 20}, and sparse or moderately
dense for p ∈ {200, 500}, respectively) of the true conditional mean model m(X), which we set as:

(a) m(X) ≡ 0 , a null model;

(b) m(X) ≡ 1Tq Xq, a linear model;

(c) m(X) ≡ 1Tq Xq + (1Tq Xq)
2/q, a single index model;

(d) m(X) ≡ (1Tq Xq){1 + 2(0Tq−⌈q/2⌉,1
T
⌈q/2⌉)Xq/q}, a double index model;

(e) m(X) ≡ 1Tq Xq + ∥Xq∥2/3, a quadratic model.

These models generally represent a broad class of relation between Y and X, containing commonly
encountered linear and non-linear (quadratic and interaction) effects, in both low and high dimen-
sional scenarios. In each configuration, estimation and inference results of our semi-supervised
estimators are summarized from 500 replications. In the interest of space, the results for p = 10 or
200 are given in Appendix B.

For any kernel smoothing steps involved, we always use the second-order Gaussian kernel and
select the bandwidths by maximizing the following cross-validated likelihood function:

L(b) :=
∏

i∈I−
k
{ϕ̂(−i,b)

n,k (Xi, θ̂INIT) + τ}I(Yi<θ̂INIT)[1− {ϕ̂(−i,b)
n,k (Xi, θ̂INIT) + τ}]I(Yi≥θ̂INIT),

where ϕ̂
(−i,b)
n,k (·, ·) is a leave-one-out version of (3.2) constructed with the data {(Yj ,XT

j )
T : j ∈

I−
k \{i}} (k = 1, . . . ,K) and the bandwidth hn ≡ b. All regularized approaches are based on the L1

penalty with tuning parameters chosen by ten-fold cross validation. We set the number of folds in
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Table 1: Simulation results of Section 4: Efficiencies of the semi-supervised estimators relative to
the supervised estimator. The boldface in each case represents the best efficiency.

p = 20 p = 500, q = 5 p = 500, q = ⌈p1/2⌉
n m(X) KS1 KS2 PR RF ORE KS1 KS2 PR ORE KS1 KS2 PR ORE

200

(a) 0.90 0.93 0.86 0.94 1.00 0.95 0.68 0.99 1.00 0.95 0.68 0.99 1.00
(b) 4.76 4.36 2.58 1.38 4.38 2.31 1.41 1.88 2.50 2.96 1.14 1.22 4.62
(c) 4.23 4.03 2.74 1.37 4.36 1.78 1.02 1.44 2.21 1.95 1.07 1.24 4.60
(d) 3.71 3.40 2.48 1.34 4.11 1.37 0.85 1.34 2.12 1.77 1.05 1.24 4.24
(e) 2.45 2.31 1.99 1.38 4.74 1.90 1.24 1.56 2.65 1.20 0.91 1.17 4.97

500

(a) 0.98 0.95 0.98 0.98 1.00 0.96 0.91 0.99 1.00 0.96 0.91 0.99 1.00
(b) 3.99 3.78 3.55 1.45 3.70 2.64 2.53 2.39 2.31 3.90 3.22 2.32 3.86
(c) 3.76 3.96 3.54 1.43 3.69 2.13 1.94 1.68 2.07 3.56 3.05 2.35 3.84
(d) 3.48 3.31 3.36 1.44 3.51 1.65 1.71 1.56 2.00 3.21 2.89 2.25 3.60
(e) 2.38 2.32 2.24 1.47 3.93 1.70 1.63 1.68 2.43 2.00 1.89 1.58 4.09

2000

(a) 1.00 1.00 0.99 0.99 1.00 1.00 0.96 1.00 1.00 1.00 0.96 1.00 1.00
(b) 2.65 2.66 2.61 1.45 2.34 1.76 1.75 1.74 1.80 2.29 2.28 2.04 2.39
(c) 2.66 2.69 2.65 1.45 2.34 1.57 1.57 1.47 1.69 2.23 2.29 2.04 2.39
(d) 2.59 2.62 2.58 1.46 2.28 1.48 1.56 1.42 1.65 2.15 2.16 1.98 2.31
(e) 1.72 1.71 1.69 1.38 2.42 1.65 1.64 1.63 1.86 1.72 1.73 1.63 2.46

Glossary of notation: p, the dimension of X; q, the sparsity level; n, the labeled data size; m(X) ≡ E(Y | X);

KS1/KS2, kernel smoothing on the one/two direction(s) selected by linear regression/sliced inverse regression; RF,

random forest; PR, parametric regression; ORE, oracle relative efficiency.

the cross-fitting process (2.6) as K = 10. The initial estimator θ̂INIT in (2.5) is chosen as the sample
median while f̂n(·) is taken as the kernel density estimator of Y , both obtained using L.

To approximate the nuisance function ϕ(x, θ0), the estimator ϕ̂n,k(x, θ̂INIT) leveraging the data
L−
k is calculated by:

(I) kernel smoothing as in (3.2), where the p× r transformation matrix P̂k is chosen as:

(i) the slope vector from unregularized or regularized linear regression (r = 1) of Y vs. X,

(ii) or the first two directions selected by the unregularized (with ⌈n/5⌉ slices of equal width)
or regularized (with ⌈n/75⌉ slices of equal size) versions of sliced inverse regression
(r = 2) (Li, 1991; Lin et al., 2019) of Y vs. X;

(II) parametric regression, giving ϕ̂n,k(x, θ̂INIT) ≡ [1 + exp{−(1,xT)γ̂k}]−1 − τ with γ̂k being the

slope vector from unregularized or regularized logistic regression of I(Y < θ̂INIT) vs. X;

(III) random forest (for p = 10 or 20 only), treating ψ(Y, θ̂INIT) as the response, growing 500 trees
and randomly sampling ⌈p1/2⌉ covariates as candidates at each split.

Here, regularization is applied when p ∈ {200, 500}. With these choices of ϕ̂n,k(X, θ̂INIT), in-
corporating a variety of flexible and easy-to-implement (parametric, semi-parametric or nonpara-
metric) approaches to fitting (working) models between a continuous or binary response and a
set of possibly high dimensional covariates, we construct the nuisance estimators ϕ̂n(X, θ̂INIT) via
the cross-fitting process (2.6). Then our semi-supervised estimators θ̂SS are obtained by plugging
{f̂n(θ̂INIT), ϕ̂n(X, θ̂INIT)} in the one-step formula (2.5).
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Table 2: Simulation results of Section 4: Inference based on the semi-supervised estimators using
kernel smoothing on the direction selected by linear regression. All the numbers have been multi-
plied by 100. The boldfaces are the coverage rates of the 95% confidence intervals.

p = 20 p = 500, q = 5 p = 500, q = ⌈p1/2⌉
n m(X) ESE Bias ASE CR ESE Bias ASE CR ESE Bias ASE CR

200

(a) 9.3 1.2 9.8 96.6 9.1 -0.7 9.6 96.6 9.1 -0.7 9.6 96.6
(b) 19.0 -0.7 21.7 97.2 14.2 1.0 15.2 95.4 24.0 2.6 25.7 97.0
(c) 19.9 -1.8 21.4 95.8 14.4 0.8 15.4 95.4 29.7 1.6 29.9 94.0
(d) 20.2 4.1 22.0 97.2 15.6 0.7 18.8 98.2 28.1 1.2 30.5 96.6
(e) 30.0 -4.3 32.6 95.2 17.4 -0.3 18.3 96.0 41.5 3.3 43.1 96.0

500

(a) 5.8 0.7 6.0 94.0 5.4 0.1 5.9 96.6 5.4 0.1 5.9 96.6
(b) 12.8 -1.0 14.2 97.2 8.7 -0.1 9.6 97.0 14.0 2.1 15.1 95.8
(c) 13.1 -1.5 13.8 95.8 8.3 0.7 9.0 96.4 14.6 1.7 15.4 95.2
(d) 12.8 1.6 13.8 96.8 9.5 0.4 11.0 98.0 14.0 2.2 15.8 96.6
(e) 18.5 -0.3 20.5 95.6 11.0 -0.3 11.2 95.6 21.7 1.5 22.6 97.0

2000

(a) 2.8 0.4 2.9 96.2 2.8 -0.1 2.9 95.0 2.8 -0.1 2.9 95.0
(b) 8.4 -1.2 8.6 95.0 5.5 0.0 5.3 94.4 9.4 1.5 9.2 94.8
(c) 8.2 -1.6 8.4 95.4 4.9 0.6 4.7 95.0 9.3 1.5 9.0 94.4
(d) 7.8 0.6 8.1 96.2 5.1 0.0 5.5 95.2 8.6 2.0 8.9 95.8
(e) 10.7 -1.8 11.0 95.6 5.9 -0.3 6.0 94.8 12.1 1.4 11.9 95.0

Glossary of notation: p, the dimension of X; q, the sparsity level; n, the labeled data size; m(X) ≡ E(Y | X); ESE,

empirical standard error; ASE, average of estimated standard errors; CR, coverage rate of 95% confidence intervals.

Table 1, along with Table 4 of Appendix B, presents the relative efficiencies, given by:

E{(θ̂SS − θ0)
2}/E{(θ̂SUP − θ0)

2},

of our semi-supervised estimators to the supervised estimator, i.e., the sample median of the la-
beled data L. For reference, we also provide the oracle relative efficiency σ2SUP/σ

2
EFF given by

Proposition 2.1 and (2.13), which is achievable only asymptotically when the imputation function
ϕ(X, θ) = E{ψ(Y, θ) | X}. The true values of σSUP, σEFF and θ0 are approximated by Monte Carlo
based on 100, 000 observations for (Y,XT)T independent of L ∪ U . Except for the null model (a),
where the unlabeled data U does not help estimate θ0 in theory, the various estimators based on
kernel smoothing or random forest generally outperform the supervised method across all scenarios.
These results coincide with the discussion on efficiency in Remark 2.5 considering that both kernel
smoothing and random forest target the function E{ψ(Y, θ0) | PT

0 X} for some matrix P0. Also, the
parametric regression approach with imputation functions from logistic regression shows superiority
over the sample median of L under all the models other than (a), indicating that our approach is
fully robust and that the logistic model captures a part of the relation between Y and X. Moreover,
we notice that the relative efficiencies of our estimators become closer to the corresponding oracle
quantities as n increases, verifying the asymptotic optimality claimed in Remark 2.5. In summary,
these observations demonstrate the efficiency gain achieved by our semi-supervised method relative
to its supervised competitor.

Next, in Table 2 as well as Table 5 of Appendix B, we display, as a representative case, the results
of inference concerning θ0 based on our semi-supervised estimator θ̂SS with ϕ̂n,k(·) constructed
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using kernel smoothing on the direction selected by linear regression. We report the bias, the
empirical standard error, the average of the estimated standard errors, and the coverage rate of
the 95% confidence intervals, based on the asymptotic normality from Theorem 2.1. We can see
that the biases are negligible, that the averages of the estimated standard errors are close to the
corresponding empirical standard errors, and that the coverage rates are all around the nominal level
of 0.95. Surprisingly, when the sample size n = 200, the dimension p = 500 and the sparsity level
q = ⌈p1/2⌉ > n1/2, our method still generates satisfactory results and therefore shows insensitivity
to the condition αn = o(1) required by Theorem 3.1, considering αn = q(logp/n)1/2 in Assumption
3.1 when the L1 penalty is leveraged under some suitable conditions (Bühlmann and Van De Geer,
2011; Negahban et al., 2012; Wainwright, 2019). Generally speaking, the numbers in these tables,
which are yielded by the inference procedures based on the limiting distribution in Theorem 2.1 and
the variance estimate in Remark 2.3, validate the theoretical results obtained in Section 2. With
other choices of ϕ̂n,k(·, ·), our method yields inference results similar in flavor to those in Tables 2
and 5. We thus omit them for the sake of brevity.

5 Real Data Analysis

In this section, we apply our semi-supervised method to a subset of data from the National Health
and Nutrition Examination Survey Data I Epidemiologic Follow-up Study, a study jointly initiated
by the National Center for Health Statistics and the National Institute on Aging in collaboration
with other agencies of the United States Public Health Service (Hernán and Robins, 2020). The
study aimed to explore the effect of various clinical, nutritional, demographic and behavioral fac-
tors on medical outcomes including morbidity and mortality. The data were collected through
a baseline visit in 1971 and a follow-up visit in 1982, and the subset we focused on contained
data on a cohort of 1425 individuals. A detailed description of the study data is available at
https://hsph.harvard.edu/miguel-hernan/causal-inference-book.

Among the various biomedical outcomes recorded in the data, we are interested in the cohort’s
body weight at follow-up. Based on similar data, Ertefaie et al. (2022) considered the relationship
between body weight and smoking from a causal perspective, estimating the average treatment
effect of smoking cessation on weight gain during the follow up period. Unlike their study, which
divided the observations into two groups according to smoking status (quit or not) at follow-
up, we analyze all the 1,425 individuals together and our goal is to estimate the median weight
θ0 of the whole cohort in 1982. Further, we want to explore if there is any significant weight
change among the cohort between 1971 and 1982, via comparing the analysis results to the baseline
measure, i.e., the median weight 69.40, with a 95% confidence interval (68.32, 70.48), of these 1,425
individuals in 1971. Apart from body weight as the response, we also take into account p = 20
important covariates, to be included in our imputation models, whose names and descriptions
are listed in Table 6 of Appendix C. To illustrate our approach in a semi-supervised setup, we
randomly select n = 100 or 200 out of the 1,425 observations as the labeled data L and regard the
rest as the unlabeled data U . Then we implement the supervised and semi-supervised strategies
of estimation and inference as described in Section 4. Here, regularization is applied to all the
regression procedures involved in our imputations. This process is replicated 500 times. We take
the median weight θ̂GS = 72.12, with an estimated standard error of 0.54, of all the 1,425 individuals
in 1982 as a gold standard estimator. The subscript “GS” in θ̂GS stands for “gold standard”.
Summarized from the 500 replications, Table 3 reports the averages of the point estimates and 95%
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Table 3: Data analysis results of Section 5: Estimation and inference of the cohort’s median weight
in 1982 based on various methods, and efficiencies of the semi-supervised estimators relative to the
supervised estimators, i.e., E{(θ̂SUP− θ̂GS)

2}/E{(θ̂SS− θ̂GS)
2}. The boldface in each case represents

the best efficiency and the shortest confidence interval.

n = 100 n = 200
Est 95% CI RE ESE Bias CR Est 95% CI RE ESE Bias CR

Sup 71.85 (69.77, 73.93) 1.00 1.93 -0.27 0.96 71.78 (70.34, 73.22) 1.00 1.41 -0.34 0.95
SS-RF 72.14 (70.61, 73.68) 1.88 1.42 0.02 0.97 72.07 (71.02, 73.13) 2.06 1.01 -0.05 0.96
SS-KS1 72.15 (70.74, 73.56) 2.16 1.33 0.03 0.97 72.11 (71.12, 73.11) 2.57 0.90 -0.01 0.96
SS-KS2 72.17 (70.61, 73.73) 1.71 1.49 0.05 0.96 72.10 (71.07, 73.13) 2.33 0.95 -0.02 0.96
SS-PR 72.14 (70.69, 73.59) 2.01 1.37 0.02 0.97 72.11 (71.10, 73.12) 2.39 0.94 -0.01 0.96

Glossary of notation: n, the labeled data size; Est, point estimate; CI, confidence interval; RE, relative efficiency;

ESE, empirical standard error; CR, coverage rate of the 95% confidence intervals; Sup, supervised estimator; SS,

semi-supervised estimator; RF, random forest; KS1/KS2, kernel smoothing on the one/two direction(s) selected by

linear regression/sliced inverse regression; PR, parametric regression.

confidence intervals, and the relative efficiencies E{(θ̂SUP − θ̂GS)
2}/E{(θ̂SS − θ̂GS)

2} of the semi-
supervised estimators versus the supervised estimators. We also present the inference results on
θ0, where the biases and coverage rates are calculated relative to the gold standard, θ̂GS.

In Table 3, which displays the analysis results on the cohort’s median weight in 1982, we
notice that the lower bounds of all the semi-supervised confidence intervals are clearly above the
upper bound of the 95% confidence interval (68.32, 70.48) of the median weight in 1971, indicating
significant weight gain among the cohort between 1971 and 1982. However, this finding is likely
to be ignored by the supervised method because the two supervised confidence intervals in Table
3 both overlap with (68.32, 70.48). This contrast demonstrates the considerable advantage of our
semi-supervised inference procedures in terms of being more powerful in detecting significance.
This is also reflected in their efficiencies, with the various semi-supervised estimators all yielding
substantially better efficiencies (with relative efficiencies as high as 2.16 and 2.57, for the two choices
of n) outperforming the supervised method. Moreover, they all have negligible biases (much lower
than the supervised method) and also generate satisfactory coverage rates around the nominal level
0.95. These results confirm again the superiority of our semi-supervised method.

6 Discussion

We considered semi-supervised inference for quantile estimation in high dimensional settings, a
problem relatively unaddressed in the existing literature, and developed a robust and efficient
strategy based on imputation, allowing for flexible choices of the (nuisance) imputation model.
We provided a complete characterization of the achievable estimators, and their robustness and
efficiency properties. Moreover, we considered kernel smoothing estimators, with possible use of
dimension reduction, as an illustration of the nuisance estimators involved in our method, estab-
lishing novel results on their uniform convergence rates in high dimensions. In a recent parallel
work (Chakrabortty and Dai, 2022), we have also extended the theory and methodology developed
in this article to the case of causal parameters. However, the problem of marginal quantiles itself
without bringing in the causal framework is of general interest to the broader statistical community,
so we focus on it in the current paper.
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A natural extension of the marginal quantile estimation problem is quantile regression (Koenker,
2005) targeting the (p+1)-dimensional parameter β0 in a possibly misspecified working model that
assumes the τ -conditional quantile of Y given X equals (1,XT)β0. One may expect that the
one-step update strategy in Section 2.2 with suitable modifications can provide a family of semi-
supervised estimators for β0 that outperform the supervised counterpart. Such a procedure, how-
ever, also involves technical difficulties such as estimating the conditional density of Y − (1,XT)β0

given X, which can be a challenging task when p is moderate or large, and therefore requires
developing more careful and sophisticated methodology. We thus leave this topic for future study.
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Supplementary material

• Appendices A–C include technical assumptions required by Theorem 3.1 (Appendix A.1),
auxiliary lemmas that would be used for proving the main theorems (Appendix A.2), proofs
of all the theoretical results (Appendices A.3–A.9), additional simulation results (Appendix
B) and further information regarding the data analysis in Section 5 (Appendix C).

• All the computer programs used for obtaining the results in Sections 4–5 are available at:
https://github.com/guorongdai/semi-supervised quantile estimation.

A Technical details

A.1 Smoothness conditions for kernel smoothing

The following Assumption A.1 contains the smoothness conditions required by Theorem 3.1. These
conditions are fairly standard for kernel-based approaches, and their analogous versions can also
be found in various existing works in the literature, such as Newey and McFadden (1994), Andrews
(1995), Masry (1996) and Hansen (2008), among others.

Assumption A.1. (i) The function K(·) is a symmetric kernel of order d ≥ 2 with a finite dth
moment. Moreover, it is bounded, integrable and continuously differentiable. In addition, there
exists some constant v > 1 such that ∥∇K(s)∥ ≤ c1 ∥s∥−v for any ∥s∥ > c2. (ii) The support S
of S ≡ PT

0 X is compact. The density function fS(·) of S is bounded and bounded away from zero
on S. Further, it is d times continuously differentiable with a bounded dth derivative on S0. (iii)
With respect to s, the conditional distribution function F (θ | S = s) of Y given S = s is d times
continuously differentiable and has a bounded dth derivatives on S0 × B(θ0, ε).
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A.2 Preliminary lemmas

The following Lemmas A.1–A.2 would be useful in the proofs of the main theorems and propositions.
The proofs of these lemmas, as well as Theorems 2.1–3.1 and Propositions 3.1–3.2, can be found in
Sections A.3–A.9.

Lemma A.1. For some fixed integer M , suppose Wn,1, . . . ,Wn,M ∈ R are mutually independent
sequences of random variables satisfying that, for some constants µm and σm > 0,

Wn,m
d−→ Normal (µm, σ

2
m) (m = 1, . . . ,M ;n→ ∞). (A.1)

Then,
∑M

m=1Wn,m
d−→ Normal (

∑M
m=1µm,

∑M
m=1σ

2
m) (n→ ∞).

Lemma A.2. Suppose there are two independent samples, S1 and S2, consisting of n and m
independent copies of (XT, Y )T, respectively. For γ ∈ Rd with some fixed d, let ĝn(x,γ) be an
estimator of a measurable function g(x,γ) ∈ R based on S1 and

Gm{ĝn(X,γ)} := m1/2[m−1∑
(XT

i ,Yi)T∈S2
ĝn(Xi,γ)− EX{ĝn(X,γ)}].

For some set T ⊂ Rd, denote

∆(S1) := (supγ∈T EX[{ĝn(X,γ)}2])1/2 and M(S1) := supx∈X ,γ∈T |ĝn(x,γ)|.

For any η ∈ (0,∆(S1) + c ], suppose Gn := {ĝn(X,γ) : γ ∈ T } satisfies that

N[ ]{η,Gn | S1, L2(PX)} ≤ H(S1)η
−c, (A.2)

with some function H(S1) > 0. Here Gn is indexed by γ only and treats ĝn(·,γ) as a nonrandom
function. Assume H(S1) = Op(an), ∆(S1) = Op(dn,2) and M(S1) = Op(dn,∞) with some positive
sequences an, dn,2 and dn,∞ allowed to diverge. Then, we have:

supγ∈T |Gm{ĝn(X,γ)}| = Op(rn,m),

where rn,m = dn,2{log an + log (d−1
n,2)}+m−1/2dn,∞{(log an)2 + (log dn,2)

2}.

A.3 Proof of Lemma A.1

We have that, for any t ∈ R,

E{exp(it
∑M

m=1Wn,m)} =
∏M

m=1E{exp(itWn,m)}
→

∏M
m=1 exp(iµmt− σ2mt

2/2)

= exp{i(
∑M

m=1µm)t− (
∑M

m=1σ
2
m)t2/2} (A.3)

where i is the imaginary unit. In the above, the first step uses the mutual independence of
Wn,1, . . . ,Wn,M , and the second step is due to (A.1) and Levy’s continuity theorem. The fact

that (A.3) is the characteristic function of Normal (
∑M

m=1µm,
∑M

m=1σ
2
m) implies the conclusion.

□
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A.4 Proof of Lemma A.2

For any δ ∈ (0,∆(S1) + c ], we have that the bracketing integral:

J[ ]{δ,Gn | S1, L2(PX)} ≡
∫ δ
0 [1 + logN[ ]{η,Gn | S1, L2(PX)}]1/2dη

≤
∫ δ
0 1 + logN[ ]{η,Gn | S1, L2(PX)}dη

≤
∫ δ
0 1 + logH(S1)− c log η dη

= δ{1 + logH(S1)}+ c (δ − δ log δ),

where the third step is due to (A.2). This, combined with Lemma 19.36 of Van der Vaart (2000),
implies that

EX[supγ∈T |Gm{ĝn(X,γ)}|]

≤ J[ ]{δ,Gn | S1, L2(PX)}+ [J[ ]{δ,Gn | S1, L2(PX)}]2M(S1)δ
−2m−1/2

≤ δ{1 + logH(S1)}+ c (δ − δ log δ) + {1 + logH(S1) + c (1− log δ)}2M(S1)m
−1/2

for any δ ∈ (∆(S1),∆(S1) + c ]. Therefore,

EX[supγ∈T |Gm{ĝn(X,γ)}|] ≤ ∆(S1){1 + logH(S1)}+ c {∆(S1)−∆(S1) log∆(S1)}+

[1 + logH(S1) + c {1− log∆(S1)}]2M(S1)m
−1/2.

Since the right hand side in the above is Op(rn,m), it gives that

EX[supγ∈T |Gm{ĝn(X,γ)}|] = Op(rn,m). (A.4)

Then, for any positive sequence tn → ∞, we have:

P[supγ∈T |Gm{ĝn(X,γ)}| > tnrn,m | S1]

≤ (tnrn,m)−1EX[supγ∈T |Gm{ĝn(X,γ)}|] = op(1),

where the first step holds by Markov’s inequality and the last step is due to (A.4). This, combined
with Lemma 6.1 of Chernozhukov et al. (2018), gives that

P[supγ∈T |Gm{ĝn(X,γ)}| > tnrn,m] → 0,

which completes the proof. □

A.5 Proof of Theorem 2.1

Write

θ̂SS − θ0 = {S1(θ̂INIT)− θ0}+ {f̂n(θ̂INIT)}−1{S2(θ̂INIT) + S3(θ̂INIT)}, (A.5)

where

S1(θ) := θ − {f̂n(θ)}−1En{ψ(Y, θ)},
S2(θ) := (1− νn,N )[En{ϕ̂n(X, θ)− ϕ(X, θ)} − EN{ϕ̂n(X, θ)− ϕ(X, θ)}],
S3(θ) := En{ϕ(X, θ)} − En+N{ϕ(X, θ)}.
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Assumption 2.2 gives:

P{θ̂INIT ∈ B(θ0, ε)} → 1, (A.6)

L̂n := {f̂n(θ̂INIT)}−1 − {f(θ0)}−1 = Op(vn) = op(1). (A.7)

By Theorem 19.3 of Van der Vaart (2000), we know that {I(Y < θ) : θ ∈ B(θ0, ε)} forms a
P-Donsker class, so the permanence properties of P-Donsker classes (Van der Vaart and Wellner,
1996) guarantee that

D := {ψ(Y, θ) : θ ∈ B(θ0, ε)} = {I(Y < θ)− τ : θ ∈ B(θ0, ε)} (A.8)

is also a P-Donsker class. Moreover, the convergence (A.6) implies that ψ(Y, θ̂INIT) is in D with
probability tending to one. In addition, we have:

E[{ψ(Y, θ̂INIT)− ψ(Y, θ0)}2] = E[{I(Y < θ̂INIT)− I(Y < θ0)}2]
= F (θ̂INIT) + F (θ0)− 2F{min(θ̂INIT, θ0)} → 0.

in probability because of the continuity of F (·) from Assumption 2.1 and the consistency of θ̂INIT

from Assumption 2.2. Hence Lemma 19.24 of Van der Vaart (2000) gives that

Gn{ψ(Y, θ̂INIT)− ψ(Y, θ0)} = op(1), (A.9)

which implies that

En{ψ(Y, θ̂INIT)} − E{ψ(Y, θ̂INIT)} = n−1/2[Gn{ψ(Y, θ0)}+Gn{ψ(Y, θ̂INIT)− ψ(Y, θ0)}]
= En{ψ(Y, θ0)}+ op(n

−1/2). (A.10)

Taylor’s expansion gives that

E{ψ(Y, θ̂INIT)} = f(θ0)(θ̂INIT − θ0) +Op(|θ̂INIT − θ0|2)
= f(θ0)(θ̂INIT − θ0) +Op(u

2
n) (A.11)

= Op(un), (A.12)

where the residual term in the first step is due to (A.6) as well as the fact that f(·) has a bounded
derivative in B(θ0, ε) from Assumption 2.1, the second step uses Assumption 2.2, and the last step
holds by the fact that un = o(1) from Assumption 2.2. Then, we have:

L̂nEn{ψ(Y, θ̂INIT)} = L̂n[En{ψ(Y, θ0)}+Op(un) + op(n
−1/2)]

= L̂n{Op(n
−1/2) +Op(un) + op(n

−1/2)}
= Op(unvn) + op(n

−1/2), (A.13)

where the first step holds by (A.10) and (A.12), the second step uses the central limit theorem and
the last step is due to (A.7). Thus, we have:

S1(θ̂INIT)− θ0

= θ̂INIT − θ0 − {f̂n(θ̂INIT)}−1En{ψ(Y, θ̂INIT)}
= θ̂INIT − θ0 − {f(θ0)}−1En{ψ(Y, θ̂INIT)}+Op(unvn) + op(n

−1/2)

= θ̂INIT − θ0 − {f(θ0)}−1[E{ψ(Y, θ̂INIT)}+ En{ψ(Y, θ0)}] +Op(unvn) + op(n
−1/2)

= −{f(θ0)}−1En{ψ(Y, θ0)}+Op(u
2
n + unvn) + op(n

−1/2), (A.14)
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where the second step uses (A.13), the third step holds by (A.10) and the last step is due to (A.11).
Moreover, denote

GnK,k{ψ̂n,k(X, θ)} = n
1/2
K [n−1

K
∑

i∈Ik ψ̂n,k(Xi, θ)− EX{ψ̂n,k(X, θ)}] (k = 1, . . . ,K).

Considering Assumption 2.4, Lemma A.2 gives that

supθ∈B(θ0,ε)|GnK,k{ψ̂n,k(X, θ)}| = Op(rn),

supθ∈B(θ0,ε)|GN{ψ̂n,k(X, θ)}|

= Op[dn,2{log an + log (d−1
n,2)}+N−1/2dn,∞{(log an)2 + (log dn,2)

2}]
= Op(rn) (k = 1, . . . ,K). (A.15)

Hence, using (A.6), we have that, with probability tending to one,

|S2(θ̂INIT)| ≤ supθ∈B(θ0,ε)|En{ϕ̂n(X, θ)− ϕ(X, θ)} − EN{ϕ̂n(X, θ)− ϕ(X, θ)}|

= supθ∈B(θ0,ε)|K
−1∑K

k=1[n
−1/2
K GnK,k{ψ̂n,k(X, θ)} −

N−1/2GN{ψ̂n,k(X, θ)}]|

≤ K−1∑K
k=1[n

−1/2
K supθ∈B(θ0,ε)|GnK,k{ψ̂n,k(X, θ)}|+

N−1/2supθ∈B(θ0,ε)|GN{ψ̂n,k(X, θ)}|] = Op(n
−1/2rn). (A.16)

In addition, we know

f̂n(θ̂INIT) = Op(1) (A.17)

due to the facts that f̂n(θ̂INIT) − f(θ0) = op(1) from Assumption 2.2, and that f(θ0) > 0 from
Assumption 2.1. Combining (A.16) and (A.17) yields:

{f̂n(θ̂INIT)}−1S2(θ̂INIT) = Op(n
−1/2rn). (A.18)

Next, we have that

S3(θ̂INIT) = (En − En+N ){ϕ(X, θ̂INIT)}
= (En − En+N ){ϕ(X, θ0)}+ n−1/2Gn{ϕ(X, θ̂INIT)− ϕ(X, θ0)} −

(n+N)−1/2Gn+N{ϕ(X, θ̂INIT)− ϕ(X, θ0)}
= (En − En+N ){ϕ(X, θ0)}+ op(n

−1/2) + op{(n+N)−1/2}
= (En − En+N ){ϕ(X, θ0)}+ op(n

−1/2) (A.19)

where the third step uses (A.6) and (2.7) in Assumption 2.3. Therefore, it follows that

L̂nS3(θ̂INIT) = L̂n[n
−1/2Gn{ϕ(X, θ0)} − (n+N)−1/2Gn+N{ϕ(X, θ0)}+ op(n

−1/2)]

= op(n
−1/2), (A.20)

where the last step holds by (A.7) as well as the fact that Gn{ϕ(X, θ0)} = Op(1) andGn+N{ϕ(X, θ0)} =
Op(1) ensured by the central limit theorem and the square integrability of ϕ(X, θ0) from Assumption
2.3. Combining (A.19) and (A.20) yields:

{f̂n(θ̂INIT)}−1S3(θ̂INIT) = {f(θ0)}−1S3(θ̂INIT) + op(n
−1/2)

= {f(θ0)}−1(En − En+N ){ϕ(X, θ0)}+ op(n
−1/2). (A.21)
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Summing up, the equations (A.5), (A.14), (A.18) and (A.21) imply that

θ̂SS − θ0 = {f(θ0)}−1En{ωn,N (Z, θ0)}+Op(u
2
n + unvn + n−1/2rn) + op(n

−1/2). (A.22)

Further, we know that

n1/2En{ωn,N (Z, θ0)} = Gn{(1− νn,N )ϕ(X, θ0)− ψ(Y, θ0)} −
(n/N)1/2GN{(1− νn,N )ϕ(X, θ0)}. (A.23)

The central limit theorem and Slutsky’s theorem give that, as n,N → ∞,

σ−1
1 Gn{(1− νn,N )ϕ(X, θ0)− ψ(Y, θ0)} → Normal (0, 1), (A.24)

σ−1
2 (n/N)1/2GN{(1− νn,N )ϕ(X, θ0)} → Normal (0, 1), (A.25)

where

σ21 := E[{ψ(Y, θ0)}2] + (1− νn,N )2var{ϕ(X, θ0)} − 2(1− νn,N )E{ψ(Y, θ)ϕ(X, θ)},
σ22 := (n/N)(1− νn,N )2var{ϕ(X, θ0)}.

Thus, we have:

σ21 + σ22 = E[{ψ(Y, θ0)}2] + (1− νn,N )var{ϕ(X, θ0)} − 2(1− νn,N )E{ϕ(X, θ0)ψ(Y, θ0)}
= (1− νn,N )var{ψ(Y, θ0)− ϕ(X, θ0)}+ νn,Nvar{ψ(Y, θ0)} = σ2SS. (A.26)

Finally, applying Lemma A.1 and Slutsky’s theorem, the equations (A.22)–(A.26) conclude the
asymptotic normality under the assumption (2.11) and the independence of the empirical processes
in (A.24) and (A.25). □

A.6 Proof of Corollary 2.1

Since ν = 0, the central limit theorem gives that

En+N{ϕ(X, θ0)} = E{ϕ(X, θ0)}+Op{(n+N)−1/2} = E{ϕ(X, θ0)}+ op(n
−1/2).

This, combined with (A.22), implies the stochastic expansion, followed by the asymptotic normality.
Further, it is clear that σSS → σ̃SS as n→ ∞ in that limn→∞ νn,N = 0. □

A.7 Proof of Proposition 3.1

The second moment of ϕ(X, θ0) is obviously finite because the function F (· | S) is bounded. For
any θ1, θ2 ∈ B(θ0, ε), Taylor’s expansion gives:

|ϕ(X, θ1)− ϕ(X, θ2)| = |F (θ1 | S)− F (θ2 | S)|
≤ supθ∈B(θ0,ε)f(θ | S)|θ1 − θ2|,

Therefore, under the assumption that

E[{supθ∈B(θ0,ε)f(θ | S)}
2] <∞, (A.27)
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Example 19.7 of Van der Vaart (2000) implies:

N[ ]{η,F , L2(PX)} ≤ c η−1 (A.28)

with F := {ϕ(X, θ) : θ ∈ B(θ0, ε)}. Then, by Theorem 19.5 of Van der Vaart (2000), we know that
F is P-Donsker. Further, we have that, for any sequence θ̃ → θ0 in probability,

EX[{ϕ(X, θ̃)− ϕ(X, θ0)}2] = ES[{F (θ̃ | S)− F (θ0 | S)}2]
≤ (θ̃ − θ0)

2E[{supθ∈B(θ0,ε)f(θ | S)}
2] → 0

in probability, where the second step uses Taylor’s expansion and the fact that θ̃ ∈ B(θ0, ε) with
probability approaching one, and the last step holds by (A.27). Lastly, applying Lemma 19.24 of
Van der Vaart (2000) concludes (2.7). □

A.8 Proof of Theorem 3.1

Set m(x, θ,P) := ϕ(x, θ,P)fS(P
Tx). We now derive the convergence rate of m̂n,k(x, θ, P̂k) −

m(x, θ,P0).
We first handle the error from estimating P0 by P̂k, i.e., m̂n,k(x, θ, P̂k)−m̂n,k(x, θ,P0). Taylor’s

expansion gives that, for

s̄n := h−1
n {PT

0 +M(P̂k −P0)
T}(x−X) (A.29)

with some M := diag(µ1, . . . , µr) and µj ∈ (0, 1) (j = 1, . . . , r),

m̂n,k(x, θ, P̂k)− m̂n,k(x, θ,P0)

= h−(r+1)
n En,k[{∇K(s̄)}T(P̂k −P0)

T(x−X)ψ(Y, θ)]

= h−(r+1)
n trace((P̂k −P0)

TEn,k[(x−X){∇K(s̄)}Tψ(Y, θ)])
= h−(r+1)

n trace[(P̂k −P0)
T{Un,1(x, θ) +Un,2(x, θ)−Un,3(x, θ)}], (A.30)

where

Un,1(x, θ) := En,k((x−X)[∇K(s̄n)−∇K{h−1
n PT

0 (x−X)}]Tψ(Y, θ)),
Un,2(x, θ) := En,k(x[∇K{h−1

n PT
0 (x−X)}]Tψ(Y, θ)),

Un,3(x, θ) := En,k(X[∇K{h−1
n PT

0 (x−X)}]Tψ(Y, θ)).

For the function ρ(·) in Assumption 3.2 (ii), denote Jn := {h−r
n ρ{h−1

n (s − S)} : s ∈ S}. Taylor’s
expansion gives that, for any s1, s2 ∈ S and some s̄ := s1 +M(s2 − s1) with M := diag(µ1, . . . , µr)
and µj ∈ (0, 1) (j = 1, . . . , r),

h−r
n |ρ{h−1

n (s1 − S)} − ρ{h−1
n (s2 − S)}|

= h−(r+1)
n |[∇ρ{h−1

n (s̄− S)}]T(s1 − s2)| ≤ c h−(r+1)
n ∥s1 − s2∥,

where the second step uses the boundedness of ∇ρ(·) from Assumption 3.2 (ii). Therefore Example
19.7 of Van der Vaart (2000) implies:

N[ ]{η,Jn, L2(PX)} ≤ c h−(r+1)
n η−r. (A.31)

24



Moreover, we have that

sups,S∈S [h
−r
n ρ{h−1

n (s− S)}] = O(h−r
n ). (A.32)

due to the boundedness of ρ(·) from Assumption 3.2 (ii). In addition, we know that

sups∈SES([h
−r
n ρ{h−1

n (s− S)}]2) = h−rsups∈S
∫
h−r
n [ρ{h−1

n (s− v)}]2fS(v)dv
= h−r

n sups∈S
∫
{ρ(t)}2fS(s− hnt)dt = O(h−r

n ), (A.33)

where the second step uses change of variables and the last step holds by the boundedness of fS(·)
from Assumption A.1 (ii) and the square integrability of ρ(·) from Assumption 3.2 (ii). Based on
(A.31)–(A.33), applying Lemma A.2 yields that

sups∈S |En,k[h
−r
n ρ{h−1

n (s− S)}]− EX[h−r
n ρ{h−1

n (s− S)}]|

= Op{n−1/2
K− h−r/2

n log(h−1
n ) + n−1

K−h
−r
n (loghn)

2} = op(1), (A.34)

where the second step is because we assume (nhrn)
−1/2log(h−r

n ) = o(1). Then, we know

sups∈SES[h
−r
n ρ{h−1

n (s− S)}] = sups∈S
∫
h−r
n ρ{h−1

n (s− v)}fS(v)dv
= sups∈S

∫
ρ(t)fS(s− hnt)dt = O(1).

where the second step uses change of variables and the last step holds by the boundedness of fS(·)
from Assumption A.1 (ii) and the integrability of ρ(·) from Assumption 3.2 (ii). This, combined
with (A.34), implies that

sups∈SEn,k[h
−r
n ρ{h−1

n (s− S)}] = Op(1). (A.35)

Next, we have:

supx∈XEn,k[∥∇K(s̄n)−∇K{h−1
n PT

0 (x−X)}∥]
≤ supx∈XEn,k[∥s̄n − h−1

n PT
0 (x−X)∥ρ{h−1

n PT
0 (x−X)}]

≤ supx∈XEn,k[∥(P̂k −P0)
T(x−X)∥h−1

n ρ{h−1
n PT

0 (x−X)}]
≤ c ∥P̂k −P0∥1supx,X∈X ∥x−X∥∞sups∈SEn,k[h

−1
n ρ{h−1

n (s− S)}]
= Op(h

r−1
n αn), (A.36)

where the first step uses the local lipschitz continuity of ∇K(·) from Assumption 3.2 (ii), the second
step is due to the definition (A.29) of s̄n, the third step holds by Hölder’s inequality, and the last
step is because of Assumptions 3.1, 3.2 (i) and the equation (A.35). Hence,

supx∈X , θ∈B(θ0,ε)∥Un,1(x, θ)∥∞
≤ c supx∈XEn,k[∥x−X∥∞∥∇K(s̄n)−∇K{h−1

n PT
0 (x−X)}∥]

≤ c supx∈XEn,k[∥∇K(s̄n)−∇K{h−1
n PT

0 (x−X)}∥] = Op(h
r−1
n αn).

where the first step holds by the boundedness of ψ(Y, θ), the second step is due to Assumption 3.2
(i), and the last step uses (A.36). This, combined with Assumption 3.1 and Hölder’s inequality,
implies that

supx∈X , θ∈B(θ0,ε)∥(P̂k −P0)
TUn,1(x, θ)∥∞

≤ ∥P̂k −P0∥1supx∈X , θ∈B(θ0,ε)∥Un,1(x, θ)∥∞ = Op(h
r−1
n α2

n). (A.37)
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Next, under Assumptions A.1 (ii) and 3.2 (ii) as long as the fact that {ψ(Y, θ) : θ ∈ B(θ0, ε)} is a
VC class with a bounded envelope function, Lemma B.4 of Escanciano et al. (2014) gives that

supx∈X , θ∈B(θ0,ε)∥Un,2(x, θ)− E{Un,2(x, θ)}∥∞ = Op(h
r
nγn), (A.38)

supx∈X , θ∈B(θ0,ε)∥Un,3(x, θ)− E{Un,3(x, θ)}∥∞ = Op(h
r
nγn). (A.39)

Let δ(s, θ) := E{ψ(Y, θ) | S = s}fS(s) and ∇δ(s, θ) := ∂δ(s, θ)/∂s. We have:

supx∈X , θ∈B(θ0,ε)∥E{Un,2(x, θ)}∥∞
≤ supx∈X , θ∈B(θ0,ε)∥x

∫
δ(s, θ)[∇K{h−1

n (PT
0 x− s)}]Tds∥∞

= hr+1supx∈X , θ∈B(θ0,ε)∥x
∫
{∇δ(PT

0 x− hnt, θ)}TK(t)dt∥∞ = O(hr+1). (A.40)

In the above, the second step uses integration by parts and change of variables, while the last
step holds by Assumption 3.2 (i), the boundedness of ∇δ(s, θ) from Assumptions A.1 (ii) and
(iii), as well as the integrability of K(·) from Assumption A.1 (i). Set ζ(s, θ) := fS(s)η1(s, θ) and
∇ζ(s, θ) := ∂ζ(s, θ)/∂s. Analogous to (A.40), we know

supx∈X , θ∈B(θ0,ε)∥E{Un,3(x, θ)}∥∞
≤ supx∈X , θ∈B(θ0,ε)∥

∫
ζ(s, θ)[∇K{h−1

n (PT
0 x− s)}]Tds∥∞

= hr+1supx∈X , θ∈B(θ0,ε)∥
∫
{∇ζ(PT

0 x− hnt, θ)}TK(t)dt∥∞ = O(hr+1), (A.41)

where the last step holds by the boundedness of ∥∇ζ(s, θ)∥∞ from Assumptions A.1 (ii) and 3.2
(iii), and the integrability of K(·) from Assumption A.1 (i). Combining (A.38)–(A.41) yields:

supx∈X , θ∈B(θ0,ε)∥Un,2(x, θ)−Un,3(x, θ)∥∞ = Op(h
r
nγn + hr+1

n ),

which implies that

supx∈X , θ∈B(θ0,ε)∥(P0 − P̂k)
T{Un,2(x, θ)−Un,3(x, θ)}∥∞

≤ ∥P0 − P̂k∥1supx∈X , θ∈B(θ0,ε)∥Un,2(x, θ)−Un,3(x, θ)∥∞
= Op(h

r
nγnαn + hr+1

n αn)

using Hölder’s inequality and Assumption 3.1. This, combined with (A.30) and (A.37), gives:

supx∈X , θ∈B(θ0,ε)|m̂n,k(x, θ, P̂k)− m̂n,k(x, θ,P0)| = Op(sn,2). (A.42)

Moreover, we control the error m̂n,k(x, θ,P0) − m(x, θ,P0). Under Assumptions A.1 (i), (ii)
and the fact that {ψ(Y, θ) : θ ∈ B(θ0, ε)} is a VC class with a bounded envelope function, Lemma
B.4 of Escanciano et al. (2014) gives that

supx∈X , θ∈B(θ0,ε)|m̂n,k(x, θ,P0)− E{m̂n,k(x, θ,P0)}| = Op(γn). (A.43)

Further, under Assumption A.1, standard arguments based on dth order Taylor’s expansion of
m(x, θ,P0) yield that

supx∈X , θ∈B(θ0,ε)|E{mn,k(x, θ,P0)} −m(x, θ,P0)| = O(hdn). (A.44)
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Combining (A.42)–(A.44) yields:

supx∈X , θ∈B(θ0,ε)|m̂n,k(x, θ, P̂k)−m(x, θ,P0)| = Op(sn,1 + sn,2). (A.45)

Similar arguments give that

supx∈X |ℓ̂n,k(x, P̂k)− fS(P
T
0 x)| = Op(sn,1 + sn,2). (A.46)

Thus, we have:

supx∈X , θ∈B(θ0,ε)|ϕ̂n,k(x, θ, P̂k)− ϕ(x, θ,P0)|

= supx∈X , θ∈B(θ0,ε)|{ℓ̂n,k(x, P̂k)}−1m̂n,k(x, θ, P̂k)− {ℓ(x,P0)}−1m(x, θ,P0)|

≤ supx∈X , θ∈B(θ0,ε)|{ℓ̂n,k(x,P0)}−1{m̂n,k(x, θ, P̂k)−m(x, θ,P0)}|+

supx∈X , θ∈B(θ0,ε)|[{ℓ̂n,k(x,P0)}−1 − {ℓ(x,P0)}−1]m(x, θ,P0)| = Op(sn,1 + sn,2),

where the last step follows from the fact that Op(sn,1 + sn,2) = o(1) and repeated use of (A.45),
(A.46) as well as Assumption A.1 (ii). □

A.9 Proof of Proposition 3.2

Considering that

ϕ̂n,k(X, θ, P̂k) ≡ {ℓ̂n,k(x, P̂k)}−1m̂n,k(x, θ, P̂k)

with m̂n,k(x, θ,P) ≡ h−r
n En,k[{I(Y < θ)− τ}Kh{PT(x−X)}], it is obvious that, given L,

{ϕ̂n,k(X, θ, P̂k) : θ ∈ B(θ0, ε)} ⊂ {ϕ̂n,k(X, θi, P̂k) : i = 1, . . . , n+ 1}

for any θ1 < Y(1), θi ∈ [Y(i−1), Y(i)) (i = 2, . . . , n) and θn+1 ≥ Y(n), where Y(i) is the ith order

statistic of {Yi : i = 1, . . . , n}. Therefore the set {ϕ̂n,k(X, θ, P̂k) : θ ∈ B(θ0, ε)} contains at most
(n+ 1) different functions indexed by θ given L. This, combined with (A.28), implies that the set
Pn,k ≡ {ϕ̂n,k(X, θ)− ϕ(X, θ) : θ ∈ B(θ0, ε)} satisfies:

N[ ]{η,Pn,k | L, L2(PX)} ≤ c (n+ 1)η−1. □

B Additional simulation results

We present here the results of our simulation studies with p = 10 or 200, in Tables 4 and 5. See
Section 4 for the descriptions of the settings and the methods. The behavior of the results – both
in estimation and inference – are similar to the other cases presented in the main paper.

C Supplement to the data analysis in Section 5

The following Table 6 lists the names and descriptions of the covariates we considered for our data
analysis in Section 5. These were the covariates included in all our imputation models.
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Table 4: Simulation results of Section 4: Efficiencies of the semi-supervised estimators relative to
the supervised estimator. The boldface in each case represents the best efficiency.

p = 10 p = 200, q = 5 p = 200, q = ⌈p1/2⌉
n m(X) KS1 KS2 PR RF ORE KS1 KS2 PR ORE KS1 KS2 PR ORE

200

(a) 0.94 0.91 0.93 0.94 1.00 0.96 0.81 0.98 1.00 0.96 0.81 0.98 1.00
(b) 3.42 3.25 3.07 1.63 3.33 2.54 2.29 2.18 2.52 3.24 2.22 1.81 3.90
(c) 2.98 2.88 2.84 1.55 3.21 2.02 1.80 1.58 2.23 2.62 2.13 1.81 3.86
(d) 2.51 2.66 2.34 1.54 2.88 1.45 1.25 1.42 2.14 2.20 1.77 1.65 3.41
(e) 2.20 2.16 1.94 1.56 3.58 1.80 1.66 1.58 2.67 1.75 1.43 1.44 4.19

500

(a) 0.98 0.99 0.96 0.96 1.00 0.97 0.93 0.99 1.00 0.97 0.93 0.99 1.00
(b) 3.19 3.12 3.10 1.75 2.95 1.98 1.90 1.92 2.33 3.19 3.00 2.61 3.37
(c) 2.86 2.87 2.85 1.67 2.86 1.94 1.86 1.65 2.09 2.94 3.02 2.59 3.34
(d) 2.52 2.51 2.37 1.63 2.62 1.39 1.41 1.38 2.01 2.40 2.26 2.04 3.01
(e) 2.13 2.08 2.12 1.74 3.14 2.01 1.94 1.88 2.45 2.24 2.12 2.00 3.57

2000

(a) 0.98 1.01 0.99 0.97 1.00 0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00
(b) 1.95 1.96 1.94 1.58 2.08 1.89 1.89 1.85 1.81 2.19 2.17 2.10 2.23
(c) 1.93 1.92 1.91 1.54 2.05 1.68 1.67 1.51 1.70 2.11 2.11 2.03 2.22
(d) 1.74 1.76 1.70 1.47 1.94 1.46 1.61 1.43 1.65 2.09 2.13 1.99 2.10
(e) 1.67 1.68 1.66 1.69 2.15 1.71 1.72 1.69 1.87 1.61 1.60 1.57 2.30

Glossary of notation: p, the dimension of X; q, the sparsity level; n, the labeled data size; m(X) ≡ E(Y | X);

KS1/KS2, kernel smoothing on the one/two direction(s) selected by linear regression/sliced inverse regression; RF,

random forest; PR, parametric regression; ORE, oracle relative efficiency.
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Table 5: Simulation results of Section 4: Inference based on the semi-supervised estimators using
kernel smoothing on the direction selected by linear regression. All the numbers have been multi-
plied by 100. The boldfaces are the coverage rates of the 95% confidence intervals.

p = 10 p = 200, q = 5 p = 200, q = ⌈p1/2⌉
n m(X) ESE Bias ASE CR ESE Bias ASE CR ESE Bias ASE CR

200

(a) 9.0 0.3 9.7 97.2 8.8 -0.2 9.6 96.6 8.8 -0.2 9.6 96.6
(b) 17.3 0.1 17.6 93.4 13.3 -0.1 15.1 97.4 19.6 -1.7 20.8 95.8
(c) 17.7 -0.6 16.7 92.4 13.0 -1.4 15.1 97.6 21.6 -1.7 21.9 95.6
(d) 16.8 -0.4 18.3 96.6 14.9 -0.3 18.6 98.4 20.7 -1.1 23.4 96.4
(e) 23.0 -0.1 23.5 95.0 17.2 -0.8 18.1 96.0 28.3 -1.1 30.6 95.0

500

(a) 5.8 0.0 5.9 95.6 5.9 -0.1 5.9 95.4 5.9 -0.1 5.9 95.4
(b) 10.9 -0.4 11.4 97.4 9.7 -0.4 9.5 93.8 12.5 -0.5 13.1 96.6
(c) 11.0 -0.8 10.6 95.2 8.4 -0.8 9.0 96.4 12.9 -0.7 12.8 95.6
(d) 10.3 0.5 11.3 96.8 9.6 -0.4 11.0 97.4 12.5 -0.6 13.6 97.4
(e) 14.6 -1.0 14.9 93.8 10.4 0.4 11.2 97.2 15.9 -0.6 18.1 97.6

2000

(a) 2.8 0.3 2.9 96.2 2.6 0.3 2.9 96.6 2.6 0.3 2.9 96.6
(b) 6.6 -0.2 6.6 94.0 5.2 0.0 5.3 95.4 7.5 -1.1 7.7 95.4
(c) 6.2 -0.3 6.2 95.6 4.8 -0.1 4.7 95.2 7.6 -1.0 7.5 94.2
(d) 5.9 0.0 6.2 96.2 5.1 0.1 5.5 96.2 6.8 -0.8 7.4 97.6
(e) 7.2 -1.2 8.0 97.0 5.8 0.1 6.0 95.2 9.2 -1.1 9.7 96.8

Glossary of notation: p, the dimension of X; q, the sparsity level; n, the labeled data size; m(X) ≡ E(Y | X); ESE,

empirical standard error; ASE, average of estimated standard errors; CR, coverage rate of 95% confidence intervals.

Table 6: Covariates included for the data analysis in Section 5.

Variable name Description

active In your usual day, how active are you in 1971?
age Age in 1971
alcoholfreq How often do you drink in 1971?
allergies Use allergies medication in 1971
asthma DX asthma in 1971
cholesterol Serum cholesterol (mg/100ml) in 1971
dbp Diastolic blood pressure in 1982
education Amount of education by 1971
exercise In recreation, how much exercise in 1971?
ht Height in centimeters in 1971
price71 Average tobacco price in state of residence 1971 (US$2008)
price82 Average tobacco price in state of residence 1982 (US$2008)
race White, black or other in 1971
sbp Systolic blood pressure in 1982
sex Male or female
smokeintensity Number of cigarettes smoked per day in 1971
smokeyrs Years of smoking
tax71 Tobacco tax in state of residence 1971 (US$2008)
tax82 Tobacco tax in state of residence 1971 (US$2008)
wt71 Weight in kilograms in 1971
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