

```
@INPROCEEDINGS{2025AAS...24526804K,
    author = {{Kutra}, Taylor and {Prato}, Lisa and {Tofflemire}, Benjamin
and {Akeson}, Rachel and {Schaefer}, Gail and {Tang}, Shih-Yun and {Segura-
Cox}, Dominique and {Johns-Krull}, Christopher and {Kraus}, Adam and
{Andrews}, Sean and {Jensen}, Eric},
    title = "{An ALMA Survey of Circumstellar Disks in Young Binaries}",
    booktitle = {American Astronomical Society Meeting Abstracts \#245},
    year = 2025,
    series = {American Astronomical Society Meeting Abstracts},
    volume = {245},
    month = jan,
    eid = {268.04},
    pages = {268.04},
    abstract = "{Young binary systems offer a unique opportunity to study
the fragility
of circumstellar disks in dynamically tumultuous environments.
In this talk, I will present preliminary ALMA continuum and 12CO
emission for several systems, including the puzzling DF Tau. DF
Tau is a close visual binary with a semi-major axis of only 14
AU; we find circumstellar disks around both the primary and
secondary star. Other disk signatures, i.e. accretion
measurements and H-band veiling, indicate only a disk around the
primary star. Because the two stars likely formed together, with
the same composition, in the same environment, and at the same
time, we expect their disks to be co-eval. However the absence
of an inner disk around the secondary suggests uneven
dissipation. We resolve this contradiction by proposing that the
inner disk of DF Tau B is, at minimum, beyond
\raisebox{-0.5ex}{\textasciitilde}0.06 AU and consider several
processes which have the potential to accelerate inner disk
evolution."},
    adsurl = {https://ui.adsabs.harvard.edu/abs/2025AAS...24526804K},
    adsnote = {Provided by the SAO/NASA Astrophysics Data System}
}
```