

1 **Title : A proximate mechanism for evolutionary trade-offs in the bean beetle**

2 ***Callosobruchus maculatus***

3

4 **Running head: A proximate mechanism for trade-offs**

5

6 Desire I. Uwera Nalukwago^{1,2,4}, Samuel J. L. Gascoigne^{1,3}, Beth DeFoe¹ and Flavia Barbosa¹

7

8 ¹Department of Biology, Lake Forest College

9 555 N. Sheridan Rd., Lake Forest, IL, 60045, USA

10 ²Present address: Department of Biology, Stanford University

11 450 Jane Stanford Way Stanford, CA 94305, USA

12 ³Present address: Department of Biology, University of Oxford,

13 11a Mansfield Road, Oxford OX1 3SZ, UK

14 ⁴Corresponding author, email: uweradn@stanford.edu

15

16 **Keywords:** copulatory behaviors, dispersal, juvenile hormone, life history, morphology, seed

17 beetle

18

19 **Article type:** Original article

20 **Word count:** 3322/7500 (not including abstract, figure legends nor references)

21

22 *Acknowledgements*

23 The authors are grateful to Frances Rice, Sarah McField, Dariana Gomez, and Iman Shepard for
24 their consistent support in data collection, animal husbandry, and project set up.

25

26 *Funding*

27 This material is based upon work supported by the Department of Biology at Lake Forest
28 College and by the National Science Foundation under Grant IOS-2113134. Any opinions,
29 findings, and conclusions or recommendations expressed in this material are those of the
30 author(s) and do not necessarily reflect the views of the NSF.

31

32 *Conflict of interests*

33 The authors have no conflict of interest to disclose.

34

35 *Author's Contributions*

36 SJLG contributed to generating the concept of the study as well as manuscript revision. FB
37 contributed to generating the concept of the study, designing study methods, treatment
38 preparations and applications, data analysis, manuscript drafting and revision and supervision of
39 the study. DIUN helped design the study, carried out the outlined experimental methods,
40 performed male behavioral data analysis, and helped draft the manuscript. BD carried out
41 dissections, imaging, morphological data collection and helped revise the manuscript.

42

43 **Abstract**

44 The mechanisms underlying resource allocation and covariances in life history traits are at the
45 core of evolutionary biology. Whilst previous studies have detailed multiple mechanisms for the

46 differential allocation of resources toward life history traits, few studies have tested the
47 contributions of these mechanisms toward both resource allocation and life history trait
48 covariance. To address this, we explored the role of Juvenile Hormone (JH) in modulating
49 resource allocation and trait correlations in the bean beetle *Callosobruchus maculatus*. We
50 hypothesized that JH plays a critical role in determining the differential resource allocation to
51 dispersal traits and gonads. To test our hypotheses, we manipulated JH levels in developing
52 larvae using methoprene (a synthetic JH analog) and precocene (a JH synthesis inhibitor). We
53 found support for our hypothesis as decreased JH generated individuals with larger wings and
54 smaller gonads relative to the control group. We found consistent negative covariances between
55 reproductive and dispersal traits across treatments, with JH shifting individuals along this trade-
56 off axis without altering the relationship. Notably, these effects were sex-specific: in males, wing
57 size was shaped by both testes size and JH treatment, whereas in females, wing size was related
58 to ovariole size but unaffected by JH manipulation. Interestingly, we found no significant effect
59 of increased JH on wing and gonad size. These findings provide direct evidence of JH's
60 involvement in resource allocation and trait covariances in bean beetles.

61

62 **Introduction**

63 Life history trade-offs are fundamental to understanding the mechanisms behind
64 ecological and evolutionary processes. Trade-offs are often quantified as negative covariances
65 between costly traits (e.g., body size, ornament length, pre-copulatory behaviors) in response to
66 varying environmental conditions. In the face of limited resources, costly traits will compete,
67 leading to the emergence of environment-specific strategies that selection can act upon, *i.e.*
68 trade-offs (Roff, 2002; Stearns, 1989). Varying resource availability allows investigators to study
69 the roles of resource allocation and covariance between an organism's costly traits (Messina &
70 Fry, 2003). However, simply observing phenotypic correlations may lead to inaccurate accounts
71 of negative correlations since spurious correlations may be observed between unrelated traits (de
72 Jong & van Noordwijk, 1992; van Noordwijk & de Jong, 1986). Thus, it is also important to
73 study the proximate causes of trade-offs since natural selection directly acts upon these
74 physiological mechanisms (Sinervo & Svensson, 1998; Zera & Harshman, 2001).

75 Multiple ecological and physiological mechanisms have been associated with moderating
76 the induction of trade-offs, which in turn can contribute to the development and maintenance of
77 polymorphisms in many insect species (Fry, 2006; Gascoigne et al., 2022; Zera & Mole, 1994).
78 Ultimate causes, like ecological perturbations, can shape populations through trade-offs. For
79 example, the generation of dispersal morphs in some species results from intra-specific
80 competition with increased larval density and low resource availability (Garland et al., 2022;
81 Gascoigne et al., 2022). At the proximate level, hormones often act as underlying mechanisms
82 behind life history trade-offs. In insects, one of the primary hormones associated with life history
83 trade-offs is juvenile hormone (JH) (Sinervo & Svensson, 1998; Stearns, 1989; Zera &
84 Harshman, 2001). In addition to its conserved role in larval development across insects (Emlen

85 & Nijhout, 2001; Fry, 2006; Gotoh et al., 2011; Nijhout, 1998), JH has also been implicated as a
86 developmental switch determining the generation of dispersal and non-dispersal morphs in wing-
87 polymorphic insects . JH acts by concurrently impacting wing size and other costly
88 morphological and behavioral traits associated with reproduction, *e.g.* gonad size, courtship,
89 fecundity, and timing of egg production in females and mate acquisition in males (Gascoigne et
90 al., 2022; Guerra, 2011). Studies across numerous insect species have demonstrated that high
91 larval density conditions typically lead to reduced juvenile hormone titers, promoting the
92 development of dispersal morphs with enhanced flight capability, while low-density
93 environments maintain higher JH levels that favor reproductive investment (Hartfelder & Emlen,
94 2012; Zera & Tiebel, 1988). This endocrine response to crowding provides a mechanistic link
95 between ecological conditions and the adaptive resource allocation trade-offs observed in wing-
96 polymorphic insects.

97 The bean beetle (*Callosobruchus maculatus*) serves as an excellent model organism for
98 studying trade-offs due to its well-documented wing dimorphism (Caswell, 1960; Messina, 1991;
99 Roff, 1986; Sanghvi et al., 2022; Southgate et al., 1957; Utida, 1956). Increased competition due
100 to high larval density in the environment during early development results in individuals with
101 long wings relative to body size thereby improving flight capability (Messina & Renwick, 1985;
102 Taylor, 1974; Utida, 1972). Additionally, recent studies have demonstrated correlations between
103 specific morphological traits and behavioral patterns in *C. maculatus* (Dick & Credland, 1984;
104 Gascoigne et al., 2022; Katsuki & Lewis, 2015). In Gascoigne et al. (2022), we induced
105 differential resource allocation to dispersal traits by allowing beetles to develop under different
106 larval density treatments. We found that increased larval density generated individuals with
107 larger wings and smaller gonads in both males and females. Overall, Gascoigne et al. (2022)

108 demonstrated that density during development affects trade-offs between dispersal and
109 reproduction in *C. maculatus*. However, the proximate mechanisms governing the differential
110 allocation of resources to traits that cause these trade-offs are not fully understood.

111 To test this mechanism, we exposed *C. maculatus* larvae to either a juvenile hormone
112 (JH) analog, a JH antagonist, or a control. We predicted that if JH mediates trade-offs between
113 dispersal and reproductive traits in *C. maculatus*, results from JH manipulations would mirror the
114 effects of larval density on dispersal and reproductive traits observed in Gascoigne et al. (2022)
115 in comparison to the control group. Specifically, (1) treatment with the JH analog (methoprene)
116 will shift resource allocation toward reproduction, leading to individuals with relatively shorter
117 wings and larger gonads, as seen in low density environments, while the JH antagonist
118 (precocene) would produce the opposite effect, relatively longer wings and smaller gonads as
119 observed in high larval density environments; and (2) we further predicted that altering JH levels
120 may influence the trade-off (*i.e.*, the covariance) between dispersal and reproductive traits.
121 Specifically, if JH regulates the trade-off directly, we expect to see systematic changes in trait
122 covariation across treatments. However, if trade-offs are developmentally constrained, we expect
123 JH to shift individuals along an unchanging trade-off slope.

124 **Methods**

125 *Laboratory Population*

126 The individuals in our study were sourced from a controlled laboratory population bred
127 from a strain of *C. maculatus* at Lake Forest College in Illinois, USA. This cowpea-adapted
128 strain is housed at 25°C under a 12hr:12hr light:dark cycle in 4-liter plastic containers containing
129 cowpeas (*Vigna unguiculata*) and sealed with mesh plastic covers to ensure adequate ventilation.

130

131 *Juvenile Hormone (JH) Treatments*

132 To test the effect of JH in changing resource allocation towards wing and gonad size in
133 *C. maculatus*, we treated the cowpeas used for larval development. Specifically, the cowpeas
134 used for the generation of experimental individuals were treated with either precocene (a
135 synthetic JH inhibitor), methoprene (a synthetic JH analog) and acetone as a control. We soaked
136 50 grams of cowpeas in a solution of either precocene diluted in acetone to a concentration of 10
137 mg/ml, methoprene diluted in acetone to a concentration of 10 mg/ml or pure acetone for 48
138 hours. The concentrations for all treatments were based on previous work in *C. maculatus* using
139 juvenile hormone analogs applied to cowpea seeds (Abo El-Ghar, 1992) and supported by
140 studies demonstrating strong developmental effects of methoprene in Coleoptera at lower
141 concentrations when applied topically (Parthasarathy & Palli, 2009). This combination of prior
142 research and our own pilot testing supports the biological relevance of our chosen treatment level
143 and larval exposure method. Subsequently, the cowpeas were added to 48-well cell culture plates
144 with a single bean in each well. To minimize potential plate effects, all three treatments were
145 evenly distributed across every plate. Females selected haphazardly from the laboratory
146 population were allowed 48 hours to oviposit, after which they were removed from all plates.
147 Each female was confined to a single cowpea placed in an individual well of the 48-well plate,
148 with the wells closed off to prevent access to other cowpeas. After oviposition, we manipulated
149 larval densities to achieve medium density (5-7 eggs per cowpea) to minimize the confounding
150 effects of larval density on resource allocation for the treatment groups. The plates were kept in
151 an incubator (Powers Scientific environmental chamber DS27SD) at 27°C under a 12hr:12hr
152 light:dark photoperiod for three to four weeks, the generation time of an adult *C. maculatus*.
153 Towards the end of the third week, we checked the plates daily for the emergence of adults.

154 Once adults emerged, they were sexed and isolated. We only collected a single adult from each
155 cowpea to standardize individuals by age and not use individuals who were siblings.

156

157 *Dissections and morphological trait measurements*

158 We dissected experimental individuals under a microscope (Leica MZ60-series stereo
159 microscope) using FST fine forceps and Pyrex nine-well dissection well-plates. For all
160 experimental individuals, we obtained one hind wing and gonad (a testis for males and an
161 ovariole for females) as primary traits of interest. All specimens were mounted in DMHF (2,5-
162 dimethyl-4-hydroxy-3(2H)-furanone) medium. Imaging was done using a Leica MZ16A
163 stereoscope with a Leica DFC429 digital camera and Leica Application Suite imaging software.
164 Trait sizes were quantified using ImageJ (Rasband, 1997).

165

166

167 *Statistics and analysis*

168 All gonad and wing size measurements were natural log-scaled to correct for increases in
169 variance as absolute measures increase. Furthermore, we measured relative trait size as a
170 measure of selective resource allocation by dividing the natural log of an individual's trait size by
171 the natural log of the same individual's body mass (Karp et al., 2012).

172 Rather than categorizing individuals into discrete groups, we treated dispersal and
173 reproductive relative trait sizes as continuous variables since we found them to vary continuously
174 (Messina & Renwick, 1985). This approach allowed us to detect treatment-induced shifts in trait
175 allocation without imposing artificial categorical boundaries. To test our first prediction that
176 increased juvenile hormone (JH) will alter resource allocation leading to the development of

177 non-dispersal morphs, one-way ANOVAs were used to test for sex-specific main effects of the
178 treatments on relative gonad and wing size and relative dispersal traits. Subsequently, Tukey-
179 HSD post-hoc tests were used to show differences between groups.

180 To test our second prediction that JH may influence the covariation between
181 reproductive and dispersal traits, we conducted sex-specific analyses of covariance (ANCOVAs)
182 to identify the effects of JH treatment, gonad size, and gonad size \times treatment interaction on
183 relative wing length. Whilst the one-way ANOVA testing the first prediction demonstrates the
184 main effect of JH treatment on reproductive and dispersal trait size, these effects are not
185 independent. In many ectotherms, increases in reproductive trait size often lead to reductions in
186 dispersal trait size and *vice versa* (Gascoigne et al., 2022; Miller et al., 2019; Roff & Fairbairn,
187 2007; Zera & Denno, 1997). Importantly, such trade-offs may either remain developmentally
188 constrained, resulting in a consistent negative covariation across treatments, or they may be
189 plastic. Manipulations to the underlying mechanisms from which trade-offs arise can alter the
190 slope of allometric scaling between traits (Shingleton et al., 2007; Shingleton & Frankino, 2013).
191 To distinguish between these possibilities, we included the gonad size \times treatment interaction in
192 the ANCOVA model. A significant interaction would indicate that JH modulates the slope of the
193 trade-off, whereas a non-significant interaction would suggest that JH shifts individuals along a
194 fixed trade-off axis.

195 All statistical analyses were performed in JMP® 13 Software (SAS Institute Inc. 2016).

196

197 **Results**

198 *Resource allocation: Reduced juvenile hormone leads to allocation to dispersal*

199 To test our first prediction that increased juvenile hormone (JH) will alter resource
200 allocation by increasing investment in gonads, we measured gonad and wing sizes in beetles
201 exposed to varying levels of JH during larval development.

202 JH treatment had a significant effect on testis size and wing size in male and female
203 *Callosobruchus maculatus*. In males, treatment with the JH inhibitor precocene led to a
204 significant decrease in testis size ($F_{(2,57)} = 4.25$, $p = 0.019$, Figure 1A) and increased wing length
205 relative to body mass ($F_{(2,57)} = 9.93$, $p = 0.001$, Figure 1B) compared to the acetone
206 control. Similarly, treatment with the JH inhibitor precocene in females led to a decrease in
207 ovariole size ($F_{(2,57)} = 3.61$, $p = 0.03$, Figure 1C) and an increase in wing length relative to body
208 mass ($F_{(2,57)} = 9.08$, $p < 0.001$, Figure 1D) compared to the acetone control. In turn, treatment with
209 a JH inhibitor led to an increased investment in dispersal-related morphological traits and a
210 decreased investment in reproductive-related morphological traits in both male and female *C.*
211 *maculatus*. However, the JH analog methoprene did not show the opposite effect of the JH
212 inhibitor precocene. Contrary to our prediction, the JH analog methoprene showed no effect on
213 gonad size (Figure 1A,C) or wing size (Figure 1B,D) in male and female *C. maculatus* relative to
214 the acetone control ($p > 0.05$).

215

216 *Trait covariances: Reproductive and dispersal traits covary negatively across treatments*

217 To test our second prediction that JH levels may influence the trade-off (*i.e.*, the
218 covariance) between dispersal and reproductive traits, we regressed relative wing length against
219 relative gonad size controlling for JH treatment and relative gonad size \times treatment interaction.

220 We found negative covariances between reproductive and dispersal traits in both sexes.

221 In males, there was a significant effect of relative testis area ($F_{1,63} = 29.6$, $p < 0.0001$) and JH

222 treatment ($F_{1,63} = 3.72, p = 0.03$) on wing size, but no testis area \times treatment interaction ($F_{1,63} =$
223 $0.04, p = 0.19$, Figure 2A). In females, we found an effect of relative ovariole area on wing size
224 ($F_{1,63} = 31.85, p < 0.0001$), but no effect of treatment ($F_{1,63} = 0.26, p = 0.77$) or ovariole area
225 \times treatment interaction ($F_{1,63} = 2.25, p = 0.11$, Figure 2B). These results, along with the average
226 trait shifts shown in Figure 1, suggest that while JH affects mean trait values, it does not change
227 the underlying allometric scaling (the trade-off slope) between these traits. Instead, JH treatment
228 shifts individuals along the trade-off slope without altering the slope itself, indicating that the
229 relationship between reproductive and dispersal traits remains stable despite the JH treatment
230 (Frankino et al., 2019).

231

232 **Discussion**

233 Our results support the hypothesis that juvenile hormone (JH) mediates the physiological
234 relationship governing trade-offs between dispersal and reproductive traits in response to
235 environmental conditions. In *Callosobruchus maculatus*, these conditions, specifically larval
236 crowding, appear to generate shifts in trait investment. Using the juvenile hormone analog
237 (methoprene) and antagonist (precocene), we investigated the physiological effect of varying
238 environmental conditions during development, *i.e.*, larval density, observed at a phenotypic level
239 in Gascoigne et al. (2022). We found significant effects of the JH treatment on the reproductive
240 and dispersal traits of both males and females. Treatment with the JH antagonist precocene
241 mirrored the effects of high larval density during development, resulting in trade-offs between
242 gonad size and wing length, with individuals developing smaller gonads and longer wings,
243 indicative of a shift toward dispersal. However, treatment with the JH analog methoprene did not
244 significantly show the reverse effects, with larger gonads and shorter wing lengths as expected.

245 This asymmetry may be explained by threshold effects in hormone responses. According to
246 the classical JH-wing-morph hypothesis, trait expression is determined by whether JH titers fall
247 above or below certain thresholds, with elevated levels typically reducing wing development
248 (Zera, 2016). If beetles reared at medium density (5-7 eggs per cowpea) already maintain
249 endogenous JH levels favoring reproduction, further methoprene exposure may not have been
250 sufficient to induce further shifts and thus show significant differences between the control and
251 methoprene group. Additionally, acetone itself has been shown to have an effect on morph
252 determination in some insects, potentially through stress-mediated responses regulated by
253 neurohormones (Zera & Tanaka, 1996). If acetone produced a mild brachypterizing (wing-

254 reducing) effect in our control beetles, this could have blurred the observable differences
255 between control and methoprene treatments.

256 Importantly, our results suggest that JH modulates where individuals fall along a fixed
257 trade-off axis by enhancing investment in one trait at the expense of another, rather than altering
258 the shape or slope of the trade-off itself. This further suggests that the underlying resource-
259 allocation “architecture” is developmentally constrained, and hormonal cues serve to toggle trait
260 prioritization within these limits. From an evolutionary perspective, such constraints may
261 channel phenotypic variation along predictable axes, shaping life history strategies in response to
262 environmental cues without requiring shifts in the trade-off structure itself. Such findings are
263 consistent with other insect systems, such as the wing-polymorphic cricket where JH application
264 shifts individuals along a trade-off slope between flight muscle and ovarian development (Zera
265 & Bottsford, 2001). Similarly, in planthoppers, JH analogs influence wing length without
266 disrupting the negative correlation between wing and reproductive development (Ayoade et al.,
267 1999). It has also been observed in caste differentiation in social insects, where endocrine
268 regulation preserves trade-off integrity while enabling plastic responses (Hardie & Lees, 1985).
269 Our work extends these findings to Coleoptera, suggesting the evolutionary conservation of these
270 physiological mechanisms across diverse insect orders and thus supports the view of endocrine
271 mechanisms acting as modulators rather than designers of phenotypes. This developmental
272 constraint perspective helps explain why life history trade-offs are often maintained across
273 environments despite selection potentially favoring their breakdown (Frankino et al., 2019).

274 Our results also reveal some sex-specific influences of JH. While many studies in
275 *Callosobruchus maculatus* have focused on males due to clear trade-offs between testes and
276 wing size, females also allocate resources between reproduction and dispersal traits (Canal et al.

277 2021). We included both males and females in our study to test whether juvenile hormone (JH)
278 similarly regulates reproductive and dispersal trait allocation in both sexes. In males, wing size
279 was shaped by both testes size and JH treatment, whereas in females, wing size was tightly
280 coupled to ovariole size but unaffected by JH manipulation. This aligns with our previous
281 findings in Gascoigne et al. 2022, where larval density influenced wing and gonad size more
282 strongly in males than females. Together, these findings suggest that the dispersal–reproduction
283 trade-off in response to larval crowding is more hormonally plastic in males, likely reflecting sex
284 differences in life-history strategies (Gascoigne et al. 2022). Male fitness may benefit from
285 flexible dispersal strategies under variable mating opportunities, whereas female fitness is more
286 strongly tied to maximizing reproductive output, favoring tighter integration of reproductive and
287 dispersal traits and reduced hormonal modulation. Although we observed some treatment effects
288 on female wing and gonad size, significant trade-offs mediated by juvenile hormones may
289 involve other unmeasured traits, such as immunity or lifetime fecundity, which could be more
290 relevant to female fitness and mediate their resource allocation patterns (Rolff & Siva-Jothy,
291 2002; Zuk & McKean, 1996).

292 The trade-offs we observed likely stem from selective resource application shaped by a a
293 physiological hierarchy regulated by JH (Flatt & Kawecki, 2007; Zera & Zhao, 2006). While we
294 frame our results in terms of environmental “pressure,” it is more accurate to describe the context
295 as developmental conditions simulating resource limitation. These conditions likely trigger stress
296 pathways that modulate hormone sensitivity or production (Noriega, 2014). For example,
297 precocene, which suppresses JH activity, led to greater investment in dispersal traits, while
298 methoprene was expected to promote reproductive investment. These results are consistent with
299 the idea that organisms must balance growth, survival and reproduction under developmental

300 constraints, and that developmental hormone cues help manage this balance, resulting in
301 phenotypic dimorphism (Clifton & Noriega, 2012; Zera et al., 2007).

302 Mechanistically, JH interacts with nutrient-sensitive signaling pathways such as the
303 insulin/insulin-like growth factor (IIS)/target of rapamycin (TOR) pathway, where reduced
304 insulin signaling has been linked to lower JH levels and decreased fecundity (Pan et al., 2022).

305 High JH titers promote vitellogenin synthesis, a hormone critical for ovarian development,
306 through binding to the transcription factor methoprene-tolerant (Parthasarathy et al., 2009).

307 These dynamics may explain our expectations of enhanced gonad development in methoprene-
308 treated, low-density individuals (Gascoigne et al., 2022), though the lack of observed effect
309 could stem from suboptimal dosing or limited trait variance in our laboratory population (Zera,
310 2016). Conversely, JH downregulation has been associated with increased lipid storage,
311 particularly under reduced reproductive investment (Li et al., 2022). In insects, energy resources
312 often fuel both flight and reproduction, and investment in dispersal traits like wing development
313 may trade off with fecundity, particularly in crowded conditions where dispersal offers a fitness
314 advantage (Katsuki & Lewis, 2015).

315 Despite these insights, our study has several limitations. First, we did not directly quantify *in*
316 *vivo* concentrations of methoprene or precocene, and the efficiency of larval uptake remains
317 uncertain. While previous studies have shown that surface application to cowpea seeds can
318 influence *C. maculatus* development (Abo El-Ghar, 1992), direct measurement of hormone
319 uptake would improve the precision of causal inference. Future work using tracer compounds or
320 analytical chemistry approaches could help clarify dose-response dynamics. Second, we did not
321 measure endogenous JH levels under different rearing densities. Although the hypothesis that
322 density modulates hormone production is well supported in other insect systems (Ishikawa et al.,

323 2013; Iwanaga & Tojo, 1986) empirical confirmation in *C. maculatus* would strengthen the link
324 between environment, endocrine response, and phenotype. Finally, while topical JH analog
325 application is widely used and effective, genetic tools such as RNA interference or CRISPR-
326 based modulation of JH pathway genes would offer more targeted tests of causality. Such
327 methods remain challenging in *C. maculatus* due to larval concealment within seeds and limited
328 genomic resources, but adapting these tools could open new avenues for dissecting endocrine
329 regulation of life history trade-offs.

330 In conclusion, our study demonstrates that juvenile hormone is a key proximate mechanism
331 mediating the trade-off between dispersal and reproduction in *Callosobruchus maculatus*. By
332 experimentally altering JH signaling, we demonstrate that hormonal modulation can shift
333 resource allocation between competing traits without altering the underlying covariance
334 structure. These findings underscore the importance of physiological pathways in translating
335 environmental variation into adaptive phenotypic outcomes and offer a mechanistic foundation
336 for understanding how life history strategies evolve in response to ecological constraints.

337

338 **References**

339 Abo El-Ghar, G. E. S. (1992). Effects of insect growth regulators with juvenile hormone activity
340 against *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae). *Anzeiger Für
341 Schädlingskunde, Pflanzenschutz, Umweltschutz*, 65(7), 137–140.

342 Ayoade, O., Morooka, S., and Tojo, S. (1999). Enhancement of short wing formation and
343 ovarian growth in the genetically defined macropterous strain of the brown planthopper,
344 *Nilaparvata lugens*. *Journal of insect physiology*, 45(1), 93-100.

345 Canal, D., Garcia-Gonzalez, F., & Garamszegi, L. Z. (2021). Experimentally constrained early
346 reproduction shapes life history trajectories and behaviour. *Scientific reports*, 11(1), 4442.
347 <https://doi.org/10.1038/s41598-021-83703-1>

348 Caswell, G. H. (1960). Observations on an Abnormal Form of *Callosobruchus maculatus* (F.).
349 *Bulletin of Entomological Research*, 50(4), 671–680.
350 <https://doi.org/10.1017/S0007485300054705>

351 Clifton, M.E. & Noriega, F.G. (2012). The fate of follicles after a blood meal is dependent on
352 previtellogenesis and juvenile hormone in *Aedes aegypti*. *Journal of Insect
353 Physiology* 58, 1007–1019.

354 de Jong, G., & van Noordwijk, A. J. (1992). Acquisition and Allocation of Resources: Genetic
355 (CO) Variances, Selection, and Life Histories. *The American Naturalist*, 139(4), 749–770.
356 <https://doi.org/10.1086/285356>

357 Dick, K. M., & Credland, P. F. (1984). Egg production and development of three strains of
358 *Callosobruchus maculatus* (F.) (Coleoptera: Bruchidae). *Journal of Stored Products
359 Research*, 20(4), 221–227. [https://doi.org/10.1016/0022-474X\(84\)90007-9](https://doi.org/10.1016/0022-474X(84)90007-9)

360 Emlen, D. J., & Nijhout, H. F. (2001). Hormonal control of male horn length dimorphism in
361 *Onthophagus taurus* (Coleoptera: Scarabaeidae): a second critical period of sensitivity to
362 juvenile hormone. *Journal of Insect Physiology*, 47(9), 1045–1054.
363 [https://doi.org/10.1016/S0022-1910\(01\)00084-1](https://doi.org/10.1016/S0022-1910(01)00084-1)

364 Flatt, T., Tu, M.P., & Tatar, M. (2005). Hormonal pleiotropy and the juvenile hormone
365 regulation of *Drosophila* development and life history. *BioEssays*, 27(10), 999–1010.

366 Frankino, W. A., Bakota, E., Dworkin, I., Wilkinson, G. S., Wolf, J. B., & Shingleton, A. W.
367 (2019). Individual Cryptic Scaling Relationships and the Evolution of Animal Form.
368 *Integrative and Comparative Biology*, 59(5), 1411–1428. <https://doi.org/10.1093/icb/icz135>

369 Fry, C. L. (2006). Juvenile hormone mediates a trade-off between primary and secondary sexual
370 traits in stalk-eyed flies. *Evolution & Development*, 8(2), 191–201.
371 <https://doi.org/10.1111/j.1525-142X.2006.00089.x>

372 Garland, T., Downs, C. J., & Ives, A. R. (2022). Trade-Offs (and Constraints) in Organismal
373 Biology. *Physiological and Biochemical Zoology*, 95(1), 82–112.
374 <https://doi.org/10.1086/717897>

375 Gascoigne, S. J. L., Uwera Nalukwago, D. I., & Barbosa, F. (2022). Larval Density, Sex, and
376 Allocation Hierarchy Affect Life History Trait Covariances in a Bean Beetle. *The American
377 Naturalist*, 199(2), 291–301. <https://doi.org/10.1086/717639>

378 Guerra, P.A. (2011). Evaluating the life-history trade-off between dispersal capability and
379 reproduction in wing dimorphic insects: A meta-analysis. *Biological Reviews* 86, 813–
380 835.

381 Hardie, J. I. M., & Lees, A. D. (1985). The induction of normal and teratoid viviparae by a
382 juvenile hormone and kinoprene in two species of aphids. *Physiological Entomology*, 10(1),
383 65-74.

384 Hartfelder, K. & Emlen. D. J. (2012). Endocrine control of insect polyphenism. *Insect
385 endocrinology*. Academic Press, 464-522.

386 Ishikawa, A., Gotoh, H., Abe, T., & Miura, T. (2013). Juvenile hormone titer and wing-morph
387 differentiation in the vetch aphid *Megoura crassicauda*. *Journal of Insect Physiology*, 59(4),
388 444–449. <https://doi.org/10.1016/j.jinsphys.2013.02.004>

389 Iwanaga, K., & Tojo, S. (1986). Effects of juvenile hormone and rearing density on wing
390 dimorphism and oocyte development in the brown planthopper, *Nilaparvata lugens*. *Journal
391 of Insect Physiology*, 32(6), 585–590. [https://doi.org/10.1016/0022-1910\(86\)90076-4](https://doi.org/10.1016/0022-1910(86)90076-4)

392 Karp, N. A., Segonds-Pichon, A., Gerdin, A.-K. B., Ramírez-Solis, R., & White, J. K. (2012).
393 The fallacy of Ratio Correction to address confounding factors. *Laboratory Animals*, 46(3),
394 245–252. <https://doi.org/10.1258/la.2012.012003>

395 Katsuki, M., & Lewis, Z. (2015). A trade-off between pre- and post-copulatory sexual selection
396 in a bean beetle. *Behavioral Ecology and Sociobiology*, 69. [015-1971-4](https://doi.org/10.1007/s00265-
397 015-1971-4)

398 Li, Y.-Y., Chen, J.-J., Liu, M.-Y., He, W.-W., Reynolds, J. A., Wang, Y.-N., Wang, M.-Q., &
399 Zhang, L.-S. (2022). Enhanced Degradation of Juvenile Hormone Promotes Reproductive
400 Diapause in the Predatory Ladybeetle *Coccinella Septempunctata*. *Frontiers in Physiology*,
401 13. <https://www.frontiersin.org/articles/10.3389/fphys.2022.877153>

402 Messina, F. J. (1991). Life-history variation in a seed beetle: Adult egg-laying vs. larval
403 competitive ability. *Oecologia*, 85(3), 447–455. <https://doi.org/10.1007/BF00320624>

404 Messina, F. J., & Fry, J. D. (2003). Environment-dependent reversal of a life history trade-off in
405 the seed beetle *Callosobruchus maculatus*. *Journal of Evolutionary Biology*, 16(3), 501–
406 509. <https://doi.org/10.1046/j.1420-9101.2003.00535.x>

407 Messina, F., & Renwick, J. A. (1985). Ability of Ovipositing Seed Beetle to Discriminate
408 Between Seeds With Differing Egg Loads. *Ecological Entomology*, 10, 225–230.
409 <https://doi.org/10.1111/j.1365-2311.1985.tb00552.x>

410 Miller, C. W., Joseph, P. N., Kilner, R. M., & Emberts, Z. (2019). A weapons–testes trade-off in
411 males is amplified in female traits. *Proceedings of the Royal Society B: Biological Sciences*,
412 286(1908), 20190906. <https://doi.org/10.1098/rspb.2019.0906>

413 Nijhout, H. F. (1998). *Insect Hormones*. Princeton University Press.

414 Noriega, F. G. (2014). Juvenile Hormone Biosynthesis in Insects: What Is New, What Do We
415 Know, and What Questions Remain?, *International Scholarly Research Notices*, 967361,
416 <https://doi.org/10.1155/2014/967361>

417 Pan, X., Pei, Y., Zhang, C., Huang, Y., Chen, L., Wei, L., Li, C., Dong, X., & Chen, X. (2022).
418 Effect of Insulin Receptor on Juvenile Hormone Signal and Fecundity in *Spodoptera litura*
419 (F.). *Insects*, 13(8), 701. <https://doi.org/10.3390/insects13080701>

420 Parthasarathy, R., & Palli, S. R. (2009). Molecular analysis of juvenile hormone analog action in
421 controlling the metamorphosis of the red flour beetle, *Tribolium castaneum*. *Archives of*
422 *insect biochemistry and physiology*, 70(1), 57–70. <https://doi.org/10.1002/arch.20288>

423 Parthasarathy, R., Tan, A., Sun, Z., Chen, J., Rainkin, M., & Palli, S. R. (2009). Juvenile
424 hormone regulation of male accessory gland activity in the red flour beetle, *Tribolium*
425 *castaneum*. *Mechanisms of Development*, 126(7), 563–579.
426 <https://doi.org/10.1016/j.mod.2009.03.005>

427 Rasband, W.S. (1997). ImageJ. Bethesda, MD.

428 Roff, D. A. (1986). The Evolution of Wing Dimorphism in Insects. *Evolution*, 40(5), 1009–1020.

429 <https://doi.org/10.1111/j.1558-5646.1986.tb00568.x>

430 Roff, D.A. (2002). Life history evolution. *Sinauer Associates, Sunderland, Massachusetts*.

431 Roff, D. A., & Fairbairn, D. J. (2007). The Evolution and Genetics of Migration in Insects.

432 *BioScience*, 57(2), 155–164. <https://doi.org/10.1641/B570210>

433 Rolff, J., & Siva-Jothy, M. T. (2002). Copulation corrupts immunity: a mechanism for a cost of

434 mating in insects. *Proceedings of the National Academy of Sciences of the United States*

435 *of America*, 99(15), 9916–9918. <https://doi.org/10.1073/pnas.152271999> Sanghvi, K.,

436 Iglesias-Carrasco, M., Zajitschek, F., Kruuk, L. E. B., & Head, M. L. (2022). Effects of

437 developmental and adult environments on ageing. *Evolution*, 76(8), 1868–1882.

438 <https://doi.org/10.1111/evo.14567>

439 SAS Institute Inc. (2016). JMP® Version 13. Cary, NC.

440 Shingleton, A. W., & Frankino, W. A. (2013). New perspectives on the evolution of exaggerated

441 traits. *BioEssays*, 35(2), 100–107. <https://doi.org/10.1002/bies.201200139>

442 Shingleton, A. W., Frankino, W. A., Flatt, T., Nijhout, H. F., & Emlen, Douglas. J. (2007). Size

443 and shape: The developmental regulation of static allometry in insects. *BioEssays*, 29(6),

444 536–548. <https://doi.org/10.1002/bies.20584>

445 Sinervo, B., & Svensson, E. (1998). Mechanistic and Selective Causes of Life History Trade-

446 Offs and Plasticity. *Oikos*, 83(3), 432–442. <https://doi.org/10.2307/3546671>

447 Southgate, B. J., Howe, R. W., & Brett, G. A. (1957). The specific Status of *Callosobruchus*

448 *maculatus* (F.) and *Callosobruchus analis* (F.). *Bulletin of Entomological Research*, 48(1),

449 79–89. <https://doi.org/10.1017/S0007485300054110>

450 Stearns, S. C. (1989). Trade-Offs in Life-History Evolution. *Functional Ecology*, 3(3), 259–268.

451 <https://doi.org/10.2307/2389364>

452 Taylor, T. A. (1974). Observations on the effects of initial population densities in culture, and

453 humidity on the production of ‘active’ females of *Callosobruchus maculatus* (F.)

454 (Coleoptera, Bruchidae). *Journal of Stored Products Research*, 10(2), 113–122.

455 [https://doi.org/10.1016/0022-474X\(74\)90018-6](https://doi.org/10.1016/0022-474X(74)90018-6)

456 Utida, S. (1956). “Phase” dimorphism observed in the laboratory population of the cowpea

457 weevil, *Callosobruchus quadrimaculatus* 2nd report. *Researches on Population Ecology*,

458 3(1), 93–104. <https://doi.org/10.1007/BF02758216>

459 Utida, S. (1972). Density dependent polymorphism in the adult of *Callosobruchus maculatus*

460 (Coleoptera, Bruchidae). *Journal of Stored Products Research*, 8(2), 111–125.

461 [https://doi.org/10.1016/0022-474X\(72\)90028-8](https://doi.org/10.1016/0022-474X(72)90028-8)

462 van Noordwijk, A. J., & de Jong, G. (1986). Acquisition and Allocation of Resources: Their

463 Influence on Variation in Life History Tactics. *The American Naturalist*, 128(1), 137–142.

464 Zera, A. J., & Bottsford, J. (2001). The endocrine-genetic basis of life-history variation: The

465 relationship between the ecdysteroid titer and morph-specific reproduction in the wing-

466 polymorphic cricket *Gryllus firmus*. *Evolution; International Journal of Organic*

467 *Evolution*, 55(3), 538–549.

468 Zera, A., & Denno, R. (1997). Physiology and ecology of dispersal polymorphism in insects.

469 Annu Rev Ent, 42: 207-230. *Annual Review of Entomology*, 42, 207–230.

470 <https://doi.org/10.1146/annurev.ento.42.1.207>

471 Zera, A. J. (2016). Juvenile Hormone and the endocrine regulation of wing polymorphism in
472 insects: New insights from circadian and functional-genomic studies in *Gryllus* crickets.
473 *Physiological Entomology*, 41(4), 313–326. <https://doi.org/10.1111/phen.12166>

474 Zera, A. J., & Mole, S. (1994). The physiological costs of flight capability in wing-dimorphic
475 crickets. *Researches on Population Ecology*, 36(2), 151–156.
476 <https://doi.org/10.1007/BF02514930>

477 Zera, A. & Harshman, L.G. (2001). The Physiology of Life History Trade-Offs in Animals.
478 *Annual Reviews of Ecology and Systematics* 32, 95–126.

479 Zera, A. J., & Tanaka, S. (1996). The role of juvenile hormone and juvenile hormone esterase in
480 wing morph determination in *Modicogryllus confirmatus*. *Journal of Insect Physiology*,
481 42(9), 909–915. [https://doi.org/10.1016/0022-1910\(96\)00005-4](https://doi.org/10.1016/0022-1910(96)00005-4)

482 Zera, A. J., & Tiebel, K. C. (1988). Brachypterizing effect of group rearing, juvenile hormone III
483 and methoprene in the wing-dimorphic cricket, *Gryllus rubens*. *Journal of Insect
484 Physiology*, 34(6), 489–498. [https://doi.org/10.1016/0022-1910\(88\)90190-4](https://doi.org/10.1016/0022-1910(88)90190-4)

485 Zera, A. J. & Zhao Z. (2006). Intermediary metabolism and life-history trade-offs: differential
486 metabolism of amino acids underlies the dispersal-reproduction trade-off in a wing-
487 polymorphic cricket. *The American Naturalist*, 167(6) 889-900.

488 Zera, A. J., Zhao, Z., & Kaliseck, K. (2007). Hormones in the Field: Evolutionary Endocrinology
489 of Juvenile Hormone and Ecdysteroids in Field Populations of the Wing-Dimorphic
490 Cricket *Gryllus firmus*. *Physiological and Biochemical Zoology*, 80(6), 592–606.
491 <https://doi.org/10.1086/521803>

492 Zuk, M., & McKean, K. A. (1996). Sex differences in parasite infections: patterns and
493 processes. *International journal for parasitology*, 26(10), 1009–1023.