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Abstract

Accurately characterizing the neurochemical environment is essential for advancing
the understanding and treatment of neurological and psychiatric disorders. Fast-
scan cyclic voltammetry (FSCV) enables high-temporal-resolution measurement
of neurotransmitter dynamics, but predicting multiplex concentrations in complex
fluids remains an open challenge. We identify three key obstacles: nonlinear
analyte interactions, the limited utility of normalization, and pronounced batch
effects stemming from sensor fabrication variability. To address these, we propose
a metadata-aware contrastive representation learning framework that explicitly
incorporates batch identity, scan sequence, and scan rate to model experimental
variability. Preference-based ranking losses emphasize subtle yet discriminative
features of voltammetry curves, while the learned representations are decoupled
from downstream predictors. A convolutional neural network is then applied
to capture non-linearity in concentration prediction. Preliminary results show
improved accuracy over traditional baselines, highlighting a promising direction at
the intersection of time-series representation learning and multiplexed biosensing.

1 Introduction

Neurotransmitters and hormones regulate essential physiological and psychological functions [9].
Neurotransmitters enable rapid brain communication, while hormones act as long-range messengers
coordinating systemic physiology. Dopamine drives reward and motor control, serotonin shapes
mood, norepinephrine modulates stress and attention, and melatonin regulates sleep–wake cycles.
Real-time monitoring of their dynamics is crucial for understanding neural circuits, brain–body
interactions, and for phenotyping psychiatric and neurological disorders.

Electrochemical sensing through cyclic voltammetry (CV) is the primary sensing method, recording
redox currents of analytes [2]. While slow-scan CV yields high-quality signals, it lacks real-time res-
olution. Fast-scan CV (FSCV) improves temporal resolution, but discrimination between structurally
similar monoamine compounds (e.g., dopamine vs. norepinephrine) remains challenging.

Despite substantial prior work on inferring multiplex concentrations from CV data [10, 14, 12, 19,
4, 6, 16], our analysis reveals three under-recognized obstacles that fundamentally limit current
approaches. First, analyte–analyte interactions introduce non-linear coupling effects that degrade
multiplex prediction accuracy. Second, contrary to common practice, we find that background-
subtraction–based normalization [7, 8] does not improve concentration prediction. Third, CV curves
exhibit substantial heterogeneity and batch- or sensor-specific variation, further complicating model
generalization. We provide an expanded discussion of these observations in Appendix A.
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We propose a metadata-aware contrastive learning framework that decouples representation learning
from downstream prediction. Metadata such as batch identity, scan sequence, and scan rate guide ro-
bust representation, while preference-based ranking losses emphasize subtle concentration-dependent
differences. A convolutional neural network then captures nonlinearities for prediction.

Our contributions are: (1) systematic characterization of CV-specific challenges, (2) a metadata-aware
contrastive framework for robust representation learning, and (3) evidence of improved accuracy on
unseen CV data.

2 Methods

(a)

Figure 1: Overview of biosensing system empowered with AI for concentration prediction.

The system automatically predicts multiplex concentrations from neurochemical sensors using cyclic
voltammetry. Figure 1 shows the AI-powered sensing setup for four target compounds—serotonin (5-
HT), dopamine (DA), norepinephrine (NE), and melatonin (MEL). These compounds were dissolved
in 1X phosphate buffered saline (PBS) to create solutions of known concentrations, which were
placed into a neurochemical sensor array with PBS references at one end of each row.

Currents detected by the sensors and electrodes are transmitted to a cyclic voltammetry (CV) monitor,
which outputs CV curves. This measurement is typically repeated multiple times, yielding a scan
sequence of CV curves. For representation learning, features are extracted from pairs of successive
curves within each sequence. The resulting representations are then fed into a downstream model for
concentration prediction. The machine learning task is formulated to predict the concentrations of
four target compounds from the current CV curve.

Data Process. Each CV curve was unfolded by horizontally flipping the reduction portion and
concatenating it with the oxidation portion, yielding a continuous time series of electrical current. For
each example, features were derived from the current CV curve and its preceding scan. Five feature
modalities were constructed: (1) the average of the current and preceding curves, (2) the difference
between the current and preceding curves, and the (3) first, (4) second, and (5) third derivatives of the
time series derived from modality (1). Preliminary experiments showed that derivatives beyond the
third order did not provide additional performance gains.

2.1 Meta-PairRank (MPR) Framework

Contrastive learning is a self-supervised framework that aligns similar examples while separating
dissimilar ones, thereby preserving intrinsic structure in the embedding space and enhancing gener-
alization. Pairwise ranking introduces preferential discrimination between examples with distinct
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Figure 2: Overview of neurochemical sensing system and machine learning architecture. Machine
learning system overview and contrastive loss schematic diagram.

labels. In this work, we assume: (1) CV curves obtained under identical experimental conditions are
similar; and (2) CV curves with differing concentration ground truths are dissimilar.

Our representation framework consists of three components:

• Data augmentation (Aug(·)): Each input CV curve is augmented using standard time-series
techniques (e.g., Gaussian noise), producing jittered variants that share metadata with
the original. Augmented and original samples jointly define positives and negatives for
Meta-Contrast Loss, while PairRank Loss operates on explicitly constructed CV curve pairs.

• Encoder network (Enc(·)): An encoder maps each CV curve to a k-dimensional represen-
tation (k = 32). Both original and augmented inputs undergo identical transformations,
yielding embeddings used for downstream concentration prediction.

• Projection network (Proj(·)): A projection head (MLP or linear layer) maps embeddings
to a normalized high-dimensional space, where inter-sample distances are computed. As
in prior work, Proj(·) is used only during representation learning and discarded during
downstream tasks.

Additional architectural modules may be incorporated on top of Enc(·) or Proj(·) as complementary
constraints to further regularize representation learning.

Meta-Contrast Loss. Using metadata (experiment batch, FSCV scan rate), we assume curves from
the same batch or scan rate are positives, others negatives. The loss, adapted from supervised
contrastive [11] and N-pair loss [15], is:

Lmeta({xi, x
+
i }; Proj) =

1

N

N∑
i=1

log
(
1 +

∑
j ̸=i

exp(Proj(xi)
TProj(x+

j )− Proj(xi)
TProj(x+

i ))
)

where N is the number of classes. Anchors are encouraged to align with positives and diverge from
negatives.

Pairwise Rank Loss. Learning-to-rank (LoR) methods compare item pairs to capture preference [3].
We adopt a pairwise formulation on CV examples to capture fine-grained discriminative features.
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Following the pairing strategy in Meta-Contrast Loss, each anchor is compared with a positive sharing
at least one metadata type, with labels defined by relative compound concentrations (1 if anchor >
positive, else 0). A shared scoring network Scr(·) on top of Proj(·) outputs scores whose differences
predict these preference labels. Multiple pairwise loss functions can be applied; in this work, we
adopted logistic loss without loss of generality.

Reconstruction Loss. To preserve information in low-dimensional representations, we employ
autoencoders with binary cross-entropy on normalized CV inputs:

Lreconstr(x) = − 1

N

∑
i

[xi log(x̂i) + (1− xi) log(1− x̂i)],

where x̂i is reconstructed from xi via the decoder applied to Enc(·).
Loss Combination. The total loss is a weighted sum of meta-contrast, pairwise rank, and reconstruction
losses:

Ltotal =
α

2
(Lmeta_batch + Lmeta_scan_rate) + βLpair + (1− α− β)Lreconstr

with α = β = 1
3 .

2.2 Multiplex Concentration Prediction

Embeddings from Enc(·) are fed into a CNN for multiplex concentration prediction, with batch and
scan rate metadata concatenated at a hidden layer. CNNs are selected for their capacity to capture
nonlinear feature interactions and integrate with learned representations. To address unseen batches,
the model jointly predicts batch IDs; the resulting probability distribution over batches is concatenated
with the embeddings for final concentration prediction.

3 Experiments

Figure 3: Performance summary on RMSE % (left) and MAE in µM (right).

Figure 3 compares model performance at a scan rate of 20, reported as RMSE (%) and mean ab-
solute error (MAE, µM). Baselines include logistic regression (LR), convolutional neural network
(CNN) [13], Transformer [17], PCA [12], Autoencoder [6], TS2Vec [20], T-Rep [5], Chronos [1], and
Rank-N-Contrast [21]. Except for CNN, LR, and Meta-PairRank, all representation-based methods
were paired with a multiple linear regression model. Most baselines cluster around 25–32% RMSE,
with CNN exhibiting greater variability—occasionally reaching lower errors but with less stability.
Rank-N-Contrast reduces RMSE to 22.9% with a narrower spread. Meta-PairRank significantly out-
performs all baselines (pairwise t-tests against each baseline yield p < 0.05), achieving substantially
lower RMSE (4.36%) with minimal variance. For MAE, Meta-PairRank again achieves the best
results, with a median of 0.033 µM and exceptionally low variability.

Figure 4 shows PaCMAP projections of examples with identical multiplex concentrations. Each color
denotes a unique multiplex concentration, with instances at a scan rate of 500 highlighted as large
dots. In CNN, same-color dots form clusters that remain distinguishable. In Chronos, these clusters
are more tightly packed, leading to greater overlap. In Meta-PairRank, same-color dots overlap
substantially, indicating that its representations are more robust to noise affecting concentration
prediction than those of the other methods.
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(a) (b) (c)

Figure 4: Visualization of examples with identical multiperplexed concentrations, projected into 2D
using PaCMAP [18]. (a) CNN (b) Chronos (c) Meta-PairRank.

Table 1: Performance on metadata ablation.
Views RMSE (%) MAE (µM)
Scan rates, modality IDs 4.253 ± 0.295 0.033 ± 0.002
Batch IDs, modality IDs 3.268 ± 0.215 0.024 ± 0.002
Batch IDs, scan rates 3.369 ± 0.229 0.025 ± 0.002
Batch IDs, scan rates, modality IDs 2.869 ± 0.189 0.022 ± 0.001

Table 1 reports performance under different metadata ablation settings. Batch ID emerges as the most
informative metadata, as its removal produces the largest increase in both RMSE and MAE, followed
by scan rate and modality ID.

4 Conclusions

We presented Meta-PairRank, a metadata-aware contrastive framework for predicting multiplex
neurochemical concentrations from cyclic voltammetry. By incorporating batch and scan information
into representation learning, our approach achieves significantly lower errors and greater robustness
than existing baselines, highlighting its potential to advance neurochemical sensing.
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A Challenges of Multiplex Concentration Prediction1
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Figure 1: Data examples explaining why traditional machine learning for CV data may fail. 5-HT:
serotonin. DA: dopamine. MEL: melatonin. NE: norepinephrine. Concentration unit is µM. (a)
Slow scan CV curves varying concentration of analytes. Ranges 1 (green) and 2 (red) are two salient
CV portions discriminating the solution predominated by 5-HT and DA. Top: serotonin dominant.
Middle: dopamine dominant. Bottom: co-dominant. (b) Slow scan CV curves and their normalized
ones by subtracting the background measured from PBS. PBS: phosphate-buffered saline. Top: the
raw curves from 20µM serotonin+20µM dopamine, and from PBS. Bottom: raw curve substracting
background. (c) FSCV curves collected in two batches from the solution with the same concentration.

Kang et al. [4] and Bond et al. [1] are among the few studies that have addressed the challenges and2

potential solutions to predict multiplex concentration. The former suggested that CV curves might be3

inadequate for training, while the latter proposed strategies to improve electrochemical sensing data4
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for machine learning. Nevertheless, prior research has not systematically examined the fundamental5

causes underlying these shortcomings. We summarized our discovery as follows.6

A.1 Interactions among analytes affect multiplex concentration prediction non-linearly.7

One branch of previous work used principle component regression (PCR) [5, 9, 6] because machine8

learning trained from CV data are prone to over-fitting. CV curve features are high-dimensional,9

but obtaining measurements from diverse concentrations to support training is difficult. Since10

PCR is linear, its underlying assumption is that analytes are independently contribute to multiplex11

concentration prediction and CV curves correlate to analyte concentration. However, our examples in12

Figure 1a fails to support it. Adding dopamine into serotonin dominant solution delayed dopamine13

oxidation and reduced its feature saliency during reduction. Dopamine CV features are robust to the14

addition of serotonin though.15

A.2 Normalizing CV curves by subtracting background does not improve prediction.16

The background-subtraction technique on voltammetry was first proposed in 1980s [3], and was17

subsequently used in [2] to maximize sensitivity and selectivity of voltammetry signals. It aims18

to increase the signal-to-noise ratio or help visualize small faradaic currents (tens of nanoamperes19

or less) produced by neurotransmitter release during biological stimulus events [8]. However, our20

preliminary experiment by using this data process approach failed to perform better than using raw21

CV curves. Mean absolute error on slow scan CV data increases from 1.51±0.04 to 2.36±0.20µM22

based on 5-fold cross validation, suggesting that subtracting background may incorporate more noise23

than producing sensitive and selective signals from the machine learning perspective. Figure 1b24

demonstrates that CV data subtracting background fall into a much narrow range and lead to larger25

relative inconsistency among multiple CV scans from the same solution, even though they seem more26

sensitive and selective. Movassaghi et al. [8] also discussed concerns of subtracting background for27

voltammetry data normalization, although from another perspective.28

A.3 CV curves can be heterogeneous and inconsistent across trials.29

CV curves can be heterogeneous and inconsistent across experiment batches, even though the30

measured solution has the same analyte concentration. Figure 1c shows one example from FSCV data.31

Electric current during oxidation and reduction does not well overlap between the data collected in32

Batch 5 and 6 performed on two days. While various work used computational approaches to predict33

neurochemical concentration from CV curves, none of them discovered and emphasized this issue,34

which negatively affects the performance of machine learning for multiplex concentration prediction.35
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B Experiment Setup36

B.1 Data sets37

Slow-scan cyclic voltammetry (general) was used to measure solutions at millimolar (mM) concen-38

trations. Serotonin, dopamine, melatonin, and norepinephrine were prepared at 1, 2, 5, and 10 mM,39

yielding 256 unique multiplex concentrations. For each concentration, ten CV curves were collected,40

resulting in 2,560 curves in total.41

Fast-scan cyclic voltammetry (general) was used to measure solutions at micromolar (µM) concentra-42

tions. As in slow-scan CV, serotonin, dopamine, melatonin, and norepinephrine were prepared at 1, 5,43

10, and 20 µM, yielding 256 unique multiplex concentrations. FSCV was conducted at scan rates of44

20, 50, 100, 200, 300, and 500 per second. For each scan rate and concentration, twenty CV curves45

were collected, producing 30,720 curves across 16 experimental batches.46

Fast-scan cyclic voltammetry (random) consisted of CVs from 16 randomly generated multiplex47

concentrations, centered at 0.5, 0.3, 0.03, and 0.2 µM for melatonin, norepinephrine, dopamine,48

and serotonin, respectively. These values approximate estimated levels in the human brain. For49

each compound, concentrations were sampled from a normal distribution N(avg, 1), constrained to50

positive values.51

In addition, CVs on pure PBS were collected after every four unique multiplex concentrations,52

resulting in approximately 25% more PBS curves alongside the multiplex measurements.53

The first two datasets were combined to train the representation model and local convolutional neural54

network. Fine-tuning was performed on PBS curves from the final dataset, with evaluation conducted55

on solute-containing solutions from the same set.56

B.2 Tissue-like Neurotransmitter Sensors57

This work builds on recent advances in tissue-like neurotransmitter sensors engineered for soft,58

complex, and dynamically moving organs [7]. These devices provide an elastic, conformable59

biosensing interface with promising potential for future in vivo applications. Such designs open60

opportunities to investigate neurotransmitter dynamics in contexts such as gut–microbiota interactions61

and brain–gut communication.62
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