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Figure 1: We propose an end-to-end differentiable framework capable of estimating invisible forces
directly from video data, mimicking the human ability to perceive unseen physical effects through
vision alone. This approach enables applications such as physics-based video generation, where new
objects can be seamlessly introduced into a scene and simulated within the same force field. Force
strength: from low to high (best viewed in colors).

Abstract

A longstanding goal in computer vision is to model motions from videos, while
the representations behind motions, i.e. the invisible physical interactions that
cause objects to deform and move, remain largely unexplored. In this paper, we
study how to recover the invisible forces from visual observations, e.g., estimating
the wind field by observing a leaf falling to the ground. Our key innovation is an
end-to-end differentiable inverse graphics framework, which jointly models object
geometry, physical properties, and interactions directly from videos. Through
backpropagation, our approach enables the recovery of force representations from
object motions. We validate our method on both synthetic and real-world sce-
narios, and the results demonstrate its ability to infer plausible force fields from
videos. Furthermore, we show the potential applications of our approach, including
physics-based video generation and editing. We hope our approach sheds light on
understanding and modeling the physical process behind pixels, bridging the gap
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between vision and physics. Please check more video results in our project page
https://chaoren2357.github.io/seeingthewind/.

“Who has seen the wind? Neither I nor you: But when the leaves hang trembling, the
wind is passing through.” – Christina Rossetti

1 Introduction

Watching leaves swirl and glide through the autumn breeze, we can almost sense the wind gently
guiding them in a natural choreography. Similarly, as cherry blossom petals drift in spring, it feels
as though the air cradles them, orchestrating their delicate descent. Although we cannot directly
see the wind, humans can seamlessly infer these invisible physical interactions from visible cues in
their surroundings, such as those captured in videos. While this intuitive physics capability has long
existed in human vision, it remains underexplored in computer vision. In this paper, we bridge the
gap by introducing a differentiable framework to revealing invisible forces from visual data.

The key challenge of this problem lies in extracting insights about an unseen target—dynamic
forces—while relying exclusively on visible inputs. To address this, it is essential to understand
how videos, as visible cues, connect to the underlying invisible dynamics. Consider a video of a
leaf falling: external forces like wind, apply to a leaf with known shape, appearance, and physical
properties, producing a motion that aligns with physical laws and is captured visually. By developing
an end-to-end differentiable model of this physical process, we can learn and predict these invisible
forces, such as wind, based on video evidence alone.

To this end, we propose a differentiable inverse graphics framework, which models objects’ in-
herent properties (geometry, appearance, and physical properties), invisible force representations,
and physical processes from video inputs. For object modeling, we leverage 3D Gaussians [1]
as representations for shape and appearance, which can be easily obtained from videos. To model
objects’ physical properties, we propose a novel approach that leverages commonsense about physical
properties in vision-language models and attaches the knowledge to 3D Gaussians. For force represen-
tations, we adopt the Eulerian perspective and introduce a novel causal tri-plane representation, which
models the spatio-temporal continuity and intrinsic causality of forces with high fidelity. For physical
processes, we implement a differentiable physics simulator for deformable objects to animate object
motions based on object properties and forces. We note that our object representation (Gaussians
as Lagrangian elements) and the force representation (causal tri-plane as grids) perfectly fit into the
formulations of the material point method [2], allowing us to accurately model the physical process.
Together, these components form a differentiable framework that bridges perception and physics, so
that we can estimate forces from video object motions via backpropagation.

While our framework accurately models the physical process, recovering force representations from
object motions in videos remains highly challenging. Unlike system identification approaches which
estimate only a few physical parameters, forces are omni-directional and can present throughout
the 3D space. Estimating such dense and complex force representations poses great challenges to
optimization. Moreover, time integration in the physics simulator leads to unstable backpropagation,
with gradients often exploding as they accumulate over time. To address the challenges, we propose a
novel 4D sparse tracking objective, where we represent object motions as the movements of sparse
keypoints in the spatio-temporal space, and the movements of the Lagrangian elements, i.e., the 3D
Gaussians, are further controlled by their neighboring keypoints via barycentric interpolation. With
this objective, we greatly reduce the complexity of the prediction space and facilitate the estimating
of force representations.

We evaluated our estimated force representations on both synthetic and real-world scenarios. The
results demonstrate our method’s ability to recover invisible forces from videos. Moreover, we show
that with the estimated force representation, we can generate novel and physically plausible object
motions by changing object types, physical properties, or boundary conditions, which enables realistic
physics-based video generation and editing.

To conclude, we summarize our contributions as follows:

• We identify an important problem in physics understanding from videos: recovering invisible forces
from object motions. To tackle this problem, we propose a novel inverse-graphics framework
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that jointly models object properties, forces, and physical processes, enabling the estimation of
underlying forces directly from video observations.

• We introduce a novel sparse tracking objective, which effectively handles the optimization chal-
lenges in differentiable physics and enables robust estimation of forces from visual inputs.

• We demonstrate our method’s ability to recover forces from motion, and showcase its potential for
generating physically plausible motions and enabling physics-based video generation and editing.

2 Related Works

Intuitive Physics. Understanding the physical world is a fundamental aspect of human intelligence.
Researchers have long sought to bring this intuitive physics understanding ability to machine intelli-
gence. Galileo [3] and the following works [4, 5] integrated deep learning with physics simulation
to estimate physical object properties from visual observations. More recent approaches performed
system identification by leveraging differentiable physics [6–9], neural fields [10–12], 3D Gaussian
splatting [13, 14], vision-language models [15, 16], and video generation [17–20], enabling more
accurate estimation of physical object properties. However, these methods primarily focus on a single
physical parameter, such as mass, friction, and Young’s modulus. In contrast, estimating forces is
significantly more challenging, as they are vectors that can exist throughout the 3D space. In this
paper, we propose a novel framework that successfully recovers force fields from visual inputs.

Differentiable Physics. Differentiable physics simulators [21–29] have been widely used to bridge
perception and physics by enabling the backpropagation of particle motion gradients to physical
parameters. However, using gradients from physics simulators to optimize physical properties can
be notoriously difficult, as the inherent discontinuous behavior and the time integration of physics
simulation often lead to vanishing or exploding gradients. To handle this challenge, we propose an
optimization scheme with a novel sparse tracking objective, which greatly stabilizes the estimation
process and enables robust recovery of high-dimensional forces.

Force Estimation. Researchers explored modeling contact forces for robotic manipulation [30–
34] and human-object interactions [35–40]. However, most approaches rely on controlled robotic
environments with tactile sensors or require strong priors on hand and object shapes, as well as
physical properties, to estimate forces. In contrast, our method operates on natural videos with
minimal assumptions about object properties, enabling force estimation in unconstrained scenarios.

Physics-based Generation. Researchers explored reconstructing physically interactive scenes [41,
42] and generating physically plausible videos [43–46]. Most approaches rely on physics simulators
or physics-informed neural networks [47] to animate motion, but they typically require manually
specified forces and environmental conditions. Beyond these, interactive editing methods [48, 49]
drive visual changes by optimizing displacement fields in the image or feature space under generative
priors; such formulations specify apparent motion without estimating underlying physical forces.
An alternative approach learns 3D velocity fields directly from videos [50, 51], producing smooth
trajectories yet lacking explicit force representations, which makes parameter-aware edits (e.g.,
changing mass) less principled. In contrast, our approach automatically recovers forces and physical
conditions from natural videos and applies them to novel objects, enabling physics-driven video
generation without manual parameter tuning.

3 Method

We study recovering invisible forces from videos. Our inverse graphics framework first models object
properties (Section 3.1), force representations (Section 3.2), and physical processes (Section 3.3)
from videos. To optimize force representations, we introduce a sparse tracking objective (Section 3.4).
An overview of our method is in Figure 2.

3.1 Object Modeling

Capturing the essence of dynamic objects requires modeling both their shape for accurate physical
interactions and their appearance for visual fidelity. This necessitates a representation that seamlessly
integrates precise Lagrangian shape modeling with photorealistic rendering. To this end, we adopt
3D Gaussians [1] as the representation for shape and appearance. Specifically, an object in a video is
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Figure 2: We propose a differentiable inverse graphics framework to recover invisible forces from
videos by integrating object modeling, physics simulation, and optimization. Objects are represented
with 3D Gaussians and assigned physical properties via Vision-Language Models. Forces are modeled
as a causal tri-plane, and object motions are simulated using a differentiable physics simulator. A
sparse tracking objective enables robust differentiable force recovery from videos.

represented by a set of Gaussian kernels G in the 3D space. Each Gaussian kernel G is parameterized
by

G = {x,v,Σ, σ, SH,D,m,E, ν}, (1)

where x ∈ R3 and v ∈ R3 are the spatial location and velocity of a Gaussian kernel respectively.
The covariance matrix Σ represents the shape, and opacity σ and spherical harmonics SH represent
the appearance of a Gaussian. Moreover, we attach each Gaussian with its physical properties: a
deformation gradient D, the mass m, Young’s modulus E, and the Poisson ratio ν, which we will
discuss later.

Since objects in a video undergo motion and deformation due to external forces, their corresponding
3D Gaussians also evolve over time. Let t denote a timestep in the video. The Gaussians at time t is
then defined as

Gt = {xt,vt,Σt, σ, SH,Dt,m,E, ν}, (2)

where the spatial position xt, velocity vt, covariance Σt, and deformation gradient Dt change over
time t.

We initialize the Gaussians {G0} at t = 0 only using the first frame of the video. Specifically, we use
pixel-aligned point clouds that are extracted from the first image I0 via a pretrained metric-depth
model [52] to initialize the Gaussian positions {x0}, and we optimize {Σ0, σ, SH} via Gaussian
splatting on I0. Notably, although point clouds from a single image can be incomplete, we can
still obtain robust force estimates thanks to the proposed sparse tracking objective, which will be
discussed later. We have also explored multiview object reconstruction in our experiments. For v0

and D0, we initialized them as 0 and I respectively.

To model the physical interactions between objects and forces, we also need to know the objects’
physical properties from videos. To this end, we introduce a simple but effective approach that
leverages commonsense knowledge from vision-language models to assign the physical properties
{m,E, ν} to each 3D Gaussian. Specifically, given the first image I0, we first query a vision-language
model [53] to infer the object types and provide an estimate of the physical properties {m,E, ν}
from commonsense knowledge. Then, we query a grounded segmentation model [54] to generate
object segmentation masks based on the object types. Finally, the pixel-aligned Gaussians {G0}
that are inside the object masks are assigned with the corresponding estimated physical properties
{m,E, ν}. For common objects, the estimated physical properties from the vision-language model
are quite robust. Hence, even without accurate system identification, our framework could provide a
robust force estimate with the commonsense physical properties(see Experiments 4.3).

Leveraging foundation models [52–54], our framework automatically recovers objects’ geometry,
appearance, and physical properties from videos without manual effort. The recovered object
Gaussians serve as a unified representation for modeling physical interactions in dynamic videos.
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3.2 Force Representations

Properly modeling force representations is essential to our framework. For point contact forces,
we can directly define force vectors on Gaussian particles. However, for forces that are distributed
throughout 3D space, e.g., wind, we adopt the Eulerian perspective and introduce a causal tri-plane to
represent forces in 3D space. This representation is based on the observations that forces are spatially
continuous and causally dependent over time. Specifically, we define the force f at the position x and
the time t as

f(x, t) = D(γ(x) + φ(t;φ(t− 1))), (3)
where D(·) is a feature decoder and γ(·) represents the tri-plane feature map from [55]. φ(·) is a
small MLP that encodes the time t, initialized using the learned weights from the previous timestep
t− 1, i.e., φ(t− 1). Compared to other 4D representations [56–58], this representation disentangles
space and time, leading to superior computational efficiency. Additionally, the recursive dependency
of φ(t) on φ(t− 1) enables accurate modeling of evolving force dynamics over time.

3.3 Physical Process

With the object Gaussians and force representations, we are ready to simulate object motion following
physical laws. To this end, we implemented a differentiable physics simulator for deformable objects
using the Material Point Method (MPM) [2]. Empirically, we found that our object representation,
where Gaussians act as Lagrangian elements, and our force representation, modeled as a causal
tri-plane on a grid, naturally align with the formulations of [2], enabling accurate modeling of the
physical process.

In detail, the forward physical process Fphysics takes the object Gaussians {Gt} at time t and the
force field f(x, t), and outputs {Gt+1} at the next timestep t+ 1:

{Gt+1} = Fphysics({Gt}, f(x, t)). (4)

The physical process relies on multiple sub-steps δt to update motions from t to t+ 1 incrementally.
In the following section, we introduce the computational flow in a sub-step δt. For simplicity, we
consider a single Gaussian Gt and omit the particle-to-grid, grid computation, and grid-to-particle
process in MPM, focusing solely on the core physics principles and update formulas.

For a Gaussian Gt : {xt,vt,Σt, σ, SH,Dt,m,E, ν} at the time t, we first characterize the object
deformations by updating the deformation gradient Dt:

Dt = (I+∇vt−δtδt)Dt−δt, (5)

where ∇vt−δt is the velocity gradient and I is the identity matrix. Then, we update the Gaussian
velocity vt by incorporating both external and internal forces:

vt = vt−δt + δt
f(xt, t)

m
+ δt

fi(x
t, t, E, ν,Dt)

m
, (6)

where f(xt, t) is the external force by querying the casual tri-plane f(x, t) at the Gaussian position
xt, fi(x

t, t, E, ν,Dt) represents internal forces fi determined by the constitutive model. m is the
mass matrix derived from the mass m of the Gaussian. Note that external forces are computed on
particles before the particle-to-grid step, while internal forces are calculated on the corresponding
grid during the grid-to-particle step. External forces are applied directly to particles because the scene
volume is much larger than the occupied regions. Acting on particles instead of grid nodes avoids
empty cells and yields finer, less noisy fields aligned with the moving mass.

Next, we update the position xt of the Gaussian following standard time integration:

xt = xt−δt + δtvt. (7)

Finally, the covariance matrix Σ is calculated based on the deformation gradient:

Σt = DtΣ0(Dt)T . (8)

Through multiple sub-step updates, we can evolve the Gaussian state from Gt to Gt+1. Notably,
the computational process is fully differentiable. Hence, given the per-Gaussian motion x̂t → x̂t+1

5



extracted from adjacent video frames, we leverage x̂t → x̂t+1 as the motion tracking target to
optimize the force field f(x, t) via backpropagation.

min
f(x,t)

|x̂t+1 − xt+1|,

s.t. (x̂t,xt+1) ∈ (Gt, Gt+1),

Gt+1 = Fphysics(G
t, f(x̂t, t)).

(9)

In the following sections, we will discuss how to establish per-Gaussian motion x̂t → x̂t+1 from
videos, and how to optimize the force field f(x, t) robustly.

3.4 Recovering Forces from Videos

To optimize the force field f(x, t), it is essential to track per-Gaussian motions x̂t → x̂t+1 from videos
as the optimization target. A straightforward approach is to use a photometric loss, i.e. comparing the
pixel differences in adjacent frames |It − It+1| by projecting the Gaussians onto the image plane:
It = π({Gt}), where π is the projection function. Nevertheless, we found that photometric loss
alone fails to provide sufficient motion constraints, often resulting in vanishing gradients during
optimization. Alternatively, we can extract dense 3D scene flows from videos using off-the-shelf
depth and optical flow prediction or 4D reconstruction [59–61]. Nevertheless, the accuracy of
these pre-trained models is limited, resulting in noisy dense 3D flows that significantly hinder the
optimization process. We found the key to robust optimization is to reduce the target space and
adopt more reliable motion estimates. To this end, for objects with bending-only deformations (e.g.,
paper folding) or small deformations, we introduce a novel 4D sparse-tracking objective. Specifically,
we adopt a more reliable point-tracking algorithm [62] that provides sparse, pixel-level estimates
of object keypoint motions pt → pt+1, where p ∈ RN×2 is N keypoint pixel coordinates. Next,
we want to establish the keypoint correspondences in 3D: Pt → Pt+1, where we use P ∈ RN×3

and p ∈ RN×2 to denote the associated keypoints in the 3D and pixel space respectively. To obtain
Pt → Pt+1 from pt → pt+1, we first estimate the 3D keypoint locations P0 in the first frame by
unprojecting p0 into 3D with depth estimates d:

P0 = π−1(p0, d), (10)
where d comes from a metric-depth model [52] and π−1 is an inverse-projection function. Then,
for each adjacent frames, we obtain Pt → Pt+1 from Pt and pt+1 by optimizing the following
objective:

min
Pt→Pt+1

|π(Pt+1)− pt+1|+ λLarap, (11)

where the as-rigid-as-possible loss Larap is represented as

Larap = Σi,j∈P|(Pt+1
i −Pt+1

j )− (Pt
i −Pt

j)|. (12)

By minimizing the re-projection errors while keeping the object skeleton as rigid as possible, we
obtain a robust estimate of the 3D keypoint motions Pt → Pt+1. Notably, without reliance on
per-frame depth estimation, our method circumvents the inconsistent video depth estimation problem
and enables more robust 3D motion estimates.

Next, we leverage the sparse keypoint motions Pt → Pt+1 to control the per-Gaussian motions
x̂t → x̂t+1 via

x̂ = αiPi + αjPj + αkPk, (13)
where the Equation 13 is the barycentric interpolation, Pi,j,k are the 3-nearest neighbors of x̂, and
the coefficients αi,j,k are computed in the first frame and fixed in the following frames. The sparse
keypoints P characterize the object skeletons and control the fine-grained Gaussian positions x̂. Com-
pared to the 3D scene flow approach that directly tracks each Gaussian’s motion, estimating sparse
keypoint motions Pt → Pt+1 reduces the prediction space and demonstrates superior robustness and
accuracy, allowing us to obtain high-quality x̂t → x̂t+1 for optimizing the force field.

Finally, we optimize the force f(x, t) using the motion-tracking loss Lmotion in Equation 9, with
the estimated Gaussian motions x̂t → x̂t+1. Moreover, we add two regularization terms Lspace and
Ltime for spatial and temporal smoothness, respectively:

L = Lmotion + λ1Lspace + λ2Ltime, (14)
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where Lspace follows [56] and penalize the total variation in space, and Ltime encourages temporal
smoothness by penalizing the parameter differences of the time encoder φ(·):

Ltime = |φt+1
θ − φt

θ|, (15)

where φt
θ is the parameters of the time encoder φ at the time t in Equation 3. With the losses in

Equation 14, we are able to recover the force f(x, t) by tracking the Gaussian motions x̂t → x̂t+1

extracted from videos.

4 Experiments

In this section, we conduct comprehensive experiments to investigate the following key questions:

• Can our method successfully recover forces from both synthetic and real-world videos? (Sec-
tion 4.2)

• How do the proposed components, i.e., force representation and loss function affect the final
performance, and how robust is the proposed VLM framework to variations in object physical
properties?(Section 4.3)

• How can our method be applied to physics-based video generation and editing? (Section 4.4)

4.1 Experimental Setup

We conduct experiments on both real-world and synthetic data. For real-world data, we leverage
Internet videos to verify the physical plausibility of recovered forces by visualizing the force field.
In addition, we conduct real physical experiments with a force gauge to measure the actual forces,
and we evaluate our recovered forces via re-simulation. For synthetic data, we use synthetic objects
in [63, 18] to evaluate the numerical accuracy of recovered forces. We leverage objects from 3 distinct
material types, i.e., elastic, elastoplastic, viscoplastic, 6-8 unique force fields, and 2 different camera
viewpoints to build the synthetic scenarios in the physics simulator [24]. We use rendered videos
as inputs to our system to estimate the forces and compare them with the ground truth forces in the
simulator. For numerical comparisons in synthetic scenarios, we adopt image reconstruction metrics,
i.e., PSNR, SSIM [64], and LPIPS [65], to compare the re-simulated videos with the recovered forces
and the original input videos, to demonstrate the accuracy of recovered forces to match the ground
truth object motions in simulation. Moreover, we compare the recovered forces with the ground
truth forces using two metrics: average magnitude error (reported as percentages) and direction error
(measured in degrees).

4.2 Force Recovery

In-the-Wild Videos. We evaluate our method on real Internet videos to demonstrate its ability to
recover plausible force fields from natural object motions. Figure 4 presents qualitative results on var-
ious scenes. Our method successfully infers the underlying forces by observing object deformations
and trajectories over time. The visualized forces dynamically adapt to object motion, demonstrating a
physically plausible force field that varies over time.

Controlled Real-World Physics Experiments. Since the ground truth forces in real Internet videos
are unknown, we conduct controlled real-world experiments to further validate our method. Using a
force gauge, we apply known forces to an object while capturing its motion on video. We then use
our method to recover the force field and reapply it to the object in simulation. As shown in Figure
3, our method successfully reconstructs the object’s motion and deformation, closely aligning with
real-world observations. The experimental results demonstrate the accuracy of our recovered forces
in real-world scenarios.

Synthetic Scenarios. To evaluate the numerical accuracy of recovered forces, we build synthetic
scenarios in the physics simulator to obtain the “ground truth" forces. As shown in Table 1, our
method successfully recovers the original force fields with low numerical errors. These quantitative
results provide strong evidence that our approach accurately estimates the underlying force dynamics
and generalizes well across various objects and physical properties.
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Observed Re-simulation Observed Re-simulation

Figure 3: Comparison of observed data (left in
each frame) and re-simulated results (right in each
frame) for two different frames in the real-world
experiment.

Material type Object PSNR SSIM LPIPS Mag. Error (%) Dir. Error (◦)

Elastic Lego 33.70 0.98 0.01 19.53 7.02
Ficus 25.92 0.94 0.03 23.97 11.55
Sunflower 34.08 0.99 0.01 14.38 7.85

Elastoplastic Toy 41.35 0.99 0.00 29.19 8.11
Chair 40.10 0.99 0.00 33.31 23.40

Viscoplastic Hotdog 30.63 0.96 0.02 15.09 11.63

Table 1: Force recovery in synthetic scenarios.

Material Type Method PSNR SSIM LPIPS Mag. Error (%) Dir. Error (◦)

Elastic Point 20.57 0.94 0.04 95.91 76.48
K-Planes 26.25 0.96 0.03 18.03 39.83
Ours 39.79 0.99 0.01 5.14 4.38

Elastoplastic Point 31.40 0.98 0.01 98.36 26.8
K-planes 30.14 0.98 0.01 87.81 61.42
Ours 39.93 0.99 0.01 75.06 45.50

Viscoplastic Point 17.49 0.95 0.12 98.30 92.02
K-planes 41.73 0.99 0.03 89.04 33.09
Ours 39.00 0.99 0.01 21.44 7.50

Table 2: Quantitative comparison of force repre-
sentations.

Loss functions PSNR SSIM LPIPS Mag. Error(%) Dir. Error (◦)

Image Loss 37.24 0.99 0.01 86.74 50.23
Flow+Depth Loss 41.54 0.99 0.01 27.90 16.07
Ours 39.79 0.99 0.01 5.14 4.38

Table 3: Quantitative comparison of loss func-
tions.

Material Type #Samples Type F1 ρ MAPE (%) E log-MAPE(%)

Elastic 6 1 2.38 5.31
Elastoplastic 6 1 10.80 3.36
Viscoplastic 5 1 0 13.98

Overall 17 1 4.65 7.17

Table 4: VLM performance on the daily-item
dataset.

Input Video

Recovered Force Field

Input Video

Recovered Force Field

Figure 4: Our method estimates invisible force fields from real-world videos, producing physically
plausible motion interpretations.

4.3 Empirical Study

Force Representations. To evaluate the effectiveness of our force representation in Section 3.2, we
compare our causal tri-plane with other 4D representations such as K-planes [56] and point contact
forces. The results in Table 2 demonstrate that our causal tri-plane force representation performs
better than other 4D representations. This is mainly because our force representation accurately
models the spatial continuity and temporal dependence of forces.

Loss Functions. To evaluate the effectiveness of our loss functions in Section 3.4, we compare our
sparse tracking loss with the image reconstruction loss and the dense 3D scene flow loss derived from
depth and flow estimation (Flow+Depth loss). The results in Table 3 demonstrate that our sparse
tracking loss shows better performance than others, especially in force accuracy. This is because
sparse tracking provides more robust motion estimates that can be leveraged as more accurate signals
to optimize the forces.

VLM Material-Property Estimation. To evaluate the robustness of leveraging a vision-language
model for physical parameter estimation, we measure the estimation errors by utilizing the GPT-
4o-Vision to infer material type and material properties(density ρ and Young’s modulus E) from a
single image and comparing with the ground truth values. A small benchmark of 17 everyday objects
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Input Video

Recovered Force Field

New Object Insertion

2x Mass

1.5x External Force

Figure 5: Our method recovers force fields from input videos and enables the insertion of novel
objects while maintaining physically plausible motion. We demonstrate new object insertion, and
modifications of physical conditions (e.g. mass and external force), showcasing the model’s ability to
generate physically plausible videos.

Input Video

Physics-based Motion Editing

Input video

Physics-based Motion Editing

Figure 6: Our method allows modifying object motion by adjusting external constraints while
preserving physical realism. We demonstrate how altering boundary conditions (e.g., fixing parts
of an object) influences motion under the same estimated force field. These results highlight the
flexibility of our approach for controllable, physics-based video editing.

is collected, each made of a single, well-documented engineering material. Ground-truth ρ and E
values are taken from MatWeb database[66]. Results are summarised in Table 4. The model achieves
an overall F1 of 1.0 for material classification, an 4.65% mean-absolute-percentage error (MAPE) on
density, and a log-MAPE of 7.17%, which indicates that the VLM can have a robust initial estimate
of the physical parameters.

Moving Cameras For non-stationary cameras we adopt 4D reconstruction pipelines to supply camera
poses and trajectories, which we consume without retraining. Qualitative videos for dynamic-camera
sequences are best viewed on the project page.

4.4 Physics-based Generation

With the recovered force field, we demonstrate the potential of our approach for physics-based video
generation and editing. Figure 5 shows the results of physics-based video generation. Our framework
enables the replacement of novel objects within the same force field, generating physically plausible
motions for novel objects via physics simulation. This flexibility also allows us to modify the object’s
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physical properties and force strengths to create distinct object motions that adhere to physical
laws. Compared to other video generation methods, our approach produces more controllable and
physically-accurate videos. Figure 6 shows the results of physics-based video editing, where we can
modify the boundary conditions in the scenes, e.g., fixing a point, to generate different physically
plausible object motions in the same video. These results highlight the versatility of our framework
in generating and editing videos while maintaining physical consistency.

We qualitatively compare against interactive editing / motion-driven methods [48, 49] and velocity-
field learning baselines [50, 51] on matched inputs. These approaches optimize displacements or
velocities under strong priors and thus yield kinematically plausible results, but they do not estimate
identifiable physical forces and do not enforce Newtonian consistency when physical parameters
are edited (e.g., doubling mass). Consequently, the resulting motion may continue to “match” an
appearance prior yet diverge from the dynamics implied by the edited parameters. By explicitly
recovering time-varying forces inside a differentiable simulator, our method preserves dynamical
consistency under parameter edits and non-uniform fields. Qualitative videos are best viewed on the
project page.

5 Conclusion
In this work, we introduced a differentiable inverse graphics framework to recover invisible forces
from video object motions, bridging vision and physics. By modeling object properties, forces, and
physical processes, our method enables robust force estimation via backpropagation. Experiments
in both real-world and synthetic data have demonstrated accurate force recovery and controllable
physics-based video generation and editing of our approach.

Limitations. Our framework is primarily applied to objects with small deformation or bending-only
deformation. Fluids or other object types that require different, differentiable physical processes are
out of the scope of this paper, which is left for future works.

As in our demo, we model foreground physics and composite over a static background, as off-the-shelf
per-frame inpainting can introduce temporal flicker that obscures our contribution.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our papers main contribution has been clearly declared in the abstract and
introduction
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include the limitation part in conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

15



Justification: We present a comprehensive formulation of our proposed framework, with
detailed descriptions provided in each subsection.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: A detailed description of our method is provided, and a demonstration code
will be released upon acceptance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code is not included for now. A demonstration code will be released upon
acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include them in implementation details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We perform the experiments multiple times and compute the average. We also
have 2-sigma error results in appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide sufficient information on the computer resources for experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the potential positive social impact of our work, as we outlined
some of its applications in the main text. As for negative social impacts, since this work
represents a relatively new and early-stage direction, we have not yet identified significant
negative implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The codebase we use has been properly cited in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The demo dataset will be released with well documentation.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We clearly state the usage of VLM in our method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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