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Figure 1. We propose WonderPlay, a framework that takes a single image and actions as inputs, and then generates dynamic 3D
scenes that depict the consequence of the actions. WonderPlay allows users to interact with various scenes of diverse physical materials,
e.g., the hat and wine glass (rigid body), the hair (thin strands), the steam (gas), the mushroom (elastic), honey (liquid), and more. See
https://kyleleey.github.io/WonderPlay/ for interactive video results.

Abstract

WonderPlay is a novel framework integrating physics
simulation with video generation for generating action-
conditioned dynamic 3D scenes from a single image. While
prior works are restricted to rigid body or simple elastic
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dynamics, WonderPlay features a hybrid generative simu-
lator to synthesize a wide range of 3D dynamics. The hy-
brid generative simulator first uses a physics solver to sim-
ulate coarse 3D dynamics, which subsequently conditions
a video generator to produce a video with finer, more re-
alistic motion. The generated video is then used to update
the simulated dynamic 3D scene, closing the loop between
the physics solver and the video generator. This approach
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enables intuitive user control to be combined with the accu-
rate dynamics of physics-based simulators and the expres-
sivity of diffusion-based video generators. Experimental re-
sults demonstrate that WonderPlay enables users to inter-
act with various scenes of diverse content, including cloth,
sand, snow, liquid, smoke, elastic, and rigid bodies – all
using a single image input. Code will be made public.

1. Introduction
Recent years have seen rapid progress in image, video,
and 3D and 4D scene generation, culminating in models
that achieve great visual quality [6, 46] and dynamic re-
alism [11]. This has directly motivated recent interest in
generative world models, which, beyond their relevance to
AR/VR and embodied AI [51], can also be created and ex-
plored as standalone experiences. However, while signifi-
cant efforts have been devoted to enhancing the generation
quality [12, 14], relatively little attention has been paid to
enabling action-based interaction. In this work, we study
action-conditioned dynamic 3D scene generation from a
single image: given an input image and a 3D action, such
as wind or a point force, we aim to generate the resulting
dynamic 3D scene in the near future. In particular, we fo-
cus on three types of actions: gravity, force fields like wind,
and point forces like pushes or pulls.

Existing methods often rely exclusively on physics sim-
ulation for computing dynamic 3D scenes given user ac-
tion input [59, 67, 73]. These methods face two critical
limitations. First, they require accurate physics solvers
for all types of dynamics involved in the scene. Neverthe-
less, accurate physics solvers such as solid-fluid two-way
coupling [16] still remain an open problem. Second, they
require full reconstruction of physical states from limited
observations. However, reconstructing complete physical
states for materials like snow, sand, cloth, and fluids from
a single image is often infeasible. Consequently, existing
methods are constrained to a narrow range of dynamics
types, primarily rigid body dynamics [43] and simple elas-
ticity [59, 73].

This motivates us to incorporate data priors from video
generation models [8, 11, 70], which are trained on ex-
tensive real-world videos of diverse physical phenomena.
However, video generation models cannot accept precise
3D actions as inputs and simulate the resulting dynam-
ics. In this work, we reconsider the relationship between
physics simulators and video generation models for action-
conditioned dynamic 3D scene generation. Our novel
framework, WonderPlay, enables users to interact with
3D scenes encompassing diverse materials—including rigid
bodies, cloth, liquids, gases, and granular substances—from
a single input image, as shown in Figure 1.

Our core technical idea is a hybrid generative simula-
tor. First, we let the physics simulator provide a coarse sim-

ulation of action-induced dynamic consequences to a video
generator. Conditioned on the coarse simulation, the video
generator synthesizes a video with realistic motion. Finally,
the synthesized video is used to update the coarse simula-
tion.

In the conditional video generation stage, we explore a
novel strategy to optimally use the simulator conditioning
signal: a motion–appearance bimodal control scheme, de-
signed to improve the quality and realism of the dynamics in
the generated video. Additionally, to reduce the video gen-
erator hallucination in simulator-trustable spatial regions
such as static backgrounds, we introduce a spatially vary-
ing masking scheme for the bimodal control.

In summary, our contributions are three-fold:
• We tackle the challenging problem of single-image,

action-conditioned dynamic 3D scene generation with di-
verse physical materials.

• We propose WonderPlay, featuring a hybrid generative
simulator that integrates a physics solver and video diffu-
sion to acquire both high simulation fidelity in response
to actions and high visual quality.

• We demonstrate that WonderPlay significantly outper-
forms both pure physics-based methods and adapted
video generation models in terms of visual quality and
physical plausibility under various interactions.

2. Related Work

Action-conditioned dynamic scene generation. Early
work on generating action-conditioned dynamic scenes ap-
proached the problem by extracting modal bases of vibrat-
ing objects in 2D image space [19, 20], essentially repre-
senting motion as a series of vibrations with different fre-
quencies and intensities. Following the advent of generative
diffusion modeling [25, 56, 57], this approach was later ex-
tended by retaining the same motion representation but gen-
erating the modal basis with a diffusion model [38]. While
this representation can be effective for motions similar to
vibrations, modal basis functions struggle to represent more
general motions, prompting the emergence of an alternative
line of research that explicitly uses physics solvers. For ex-
ample, PhysGen [43] focused on the 2D domain using a
rigid-body physics solver to handle colliding objects.

Recently, several physics-based approaches have been
developed to synthesize dynamic 3D scenes [2, 15, 17, 28,
34, 39, 41, 67, 73, 78]. However, due to the requirements
of physics solvers, all of these techniques require complete
3D geometric reconstructions of the scene, requiring com-
plex, multi-view captures. For example, Virtual Elastic Ob-
jects [17] reconstructs the geometry, appearances, and phys-
ical parameters of elastic objects from a multi-view cap-
ture setup. Later work, such as PAC-NeRF [36], PhysGaus-
sian [67], and PhysDreamer [73], integrates physics-based
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Figure 2. Overview of WonderPlay. Given a single image, we first reconstruct the 3D scene and estimate material properties. Then
our hybrid generative simulator uses physics solver and input actions to infer coarse 3D dynamics. The simulated appearance and motion
signals are used to condition the video generator through spatially varying bimodal control to synthesize the realistic motion. The dynamic
3D scene is refined using the synthesized video, finishing the hybrid generative simulation.

simulations with NeRF or 3D Gaussians from multi-view
reconstruction. A concurrent approach, PhysMotion [59],
is closest to our work. Both approaches take a single image
as input and use a combination of a 3D physics solver and
a video generation model. Unlike ours, however, PhysMo-
tion [59] relies on a physics solver to compute the dynamics
for the entire scene, only using the video generator to refine
the appearance. Due to the restrictive assumption that the
physics solver will specify all the dynamics, PhysMotion
is limited to rigid and elastic dynamics. In contrast, Won-
derPlay uses both a physics solver and the video generator
to compute dynamics, enabling realistic action-conditioned
dynamics for various types of physical phenomena, and
generates a dynamic 3D scene as opposed to a video.
Controllable video generation. In recent years, video gen-
eration has rapidly improved, making significant strides in
both visual quality and realistic dynamics [8, 10, 11, 22,
26, 54, 70]. Recent video generation methods, such as
Sora [11], have demonstrated great promise in generating
diverse real-world physical phenomena. However, despite
this promise, these models are conditioned with text and/or
images and lack controllability regarding general actions
and other physical inputs. While there has been consider-
able work on adding controls to video models, most of this
work has focused on camera control [24, 27, 58, 66, 68, 77]
and various types of motion control [18, 21, 37, 49, 50, 53,
62, 65, 71, 74], including drag-based, trajectory-based, and
optical flow-based approaches. However, most of these mo-
tion control models require the resulting dynamics of an ac-
tion as input to generate a trajectory-following video. Con-
currently, Motion Prompting [21] uses temporally sparse
trajectories as conditioning to generate videos that adhere
to an initial trajectory and then continue using a generative
video prior. Nevertheless, many actions, such as those in-
volving fluids or wind, are difficult or impossible to rep-
resent as trajectory signals. In contrast, we aim to take
physics-based 3D actions as input and model a dynamic 3D

scene, rather than just a video.
World models. Along with the rise in video models,
there has been a growing interest in interactive world mod-
els [23], which recurrently generate world states from
prior state and actions. While this area has seen consid-
erable research, the focus has been on video game do-
mains [12, 14, 60] due to the data availability of action-
video pairs. Consequently, both the generated worlds and
the actions considered are centered around those found in
video games. Only a few concurrent works have explored
this for the real world (e.g., [1, 7]) and none provides inter-
action beyond camera control or text. In contrast, we focus
on physics-based actions in realistic worlds.
Dynamic 3D scene generation. Text-conditioned genera-
tion of 3D scenes with motion has primarily been tackled
by distilling video generation into dynamic 3D representa-
tions [55]. Most of the existing works focus on objects or
simple scenes composed of a few objects [4, 5, 40, 52, 75],
while recent methods also attempt to deal with more com-
plex scenes including nature [35, 42]. Recent work [63, 64,
76] has focused on training generators which model 4D it-
self, conditioning on time and camera pose. Yet, they do not
have the ability to simulate dynamics in response to actions.

3. WonderPlay

Formulation. Our goal is action-conditioned 3D scene dy-
namics synthesis. The input is a single image I and actions.
We model actions as three types of forces: gravity fg, 3D
force fields fw(x, y, z, t) such as wind, and 3D point forces
fp(t) which is defined on a point of an object. The output
is a dynamic 3D scene {St}Tt=0 that is the consequence of
applying the actions to the input scene, where S0 denotes
our initial 3D scene representation recovered from the input
image I, and T denotes the total simulation time steps.
Overview. We aim to simulate the dynamics of diverse ma-
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t eri als i n cl u di n g ri gi d, el asti c, cl ot h, s m o k e, li q ui d, gr a n u-
l ar, a n d t h eir i nt er a cti o ns. T o t his e n d, w e pr o p os e W o n d er-
Pl a y. As ill ustr at e d i n Fi g ur e 2 , w e first r e c o nstr u ct t h e 3 D
s c e n e S 0 fr o m t h e i n p ut i m a g e I (t o p l eft of Fi g ur e 2 ). O ur
m ai n t e c h ni c al i n n o v ati o n is t h e h y bri d g e n er ati v e si m ul a-
t or ( mi d dl e l eft of Fi g ur e 2 ). It t a k es t h e 3 D s c e n e S 0 a n d
t h e a cti o ns as i n p ut a n d pr e di cts t h e 3 D d y n a mi cs { S t }

T
t = 1

( mi d dl e ri g ht of Fi g ur e 2 ).

3. 1. 3 D S c e n e R e c o nst r u cti o n

O ur 3 D s c e n e r e pr es e nt ati o n S t = B t ∪ O t c o nsists of a
b a c k gr o u n d B t a n d o bj e cts O t at a ti m est e p t. O ur first st e p
is t o r e c o nstr u ct/ g e n er at e S 0 fr o m t h e i n p ut i m a g e I . We
r e c o nstr u ct t h e 3 D b a c k gr o u n d B 0 a n d t h e 3 D o bj e cts O 0

s e p ar at el y t o j oi ntl y f or m S 0 = B 0 ∪ O 0 .

B a c k g r o u n d. We r e pr es e nt t h e b a c k gr o u n d wit h F ast L a y-
er e d G a ussi a n S urf els ( F L A G S) [ 7 2 ]. F or m all y, t h e b a c k-
gr o u n d B t = { p B , q B , s B , o B , c B

t } c o nsists of N B G a ussi a n
s urf els, p ar a m et eri z e d b y 3 D s p ati al p ositi o ns p B ∈ R 3 N B ,
ori e nt ati o n q u at er ni o ns q B , s c al es s B , o p a citi es o B , a n d
vi e w-i n d e p e n d e nt R G B c ol ors c B

t . We d et ail t h e r e c o nstr u c-
ti o n of b a c k gr o u n d i n A p p e n di x B. 2 a n d tr e at it as a st ati c
b o u n d ar y i n si m ul ati o n.

O bj e cts. A n “ o bj e ct ” i n W o n d er Pl a y r ef ers t o a d y-
n a mi c e ntit y w e si m ul at e i n t h e p h ysi cs s ol v er, i n cl u d-
i n g ri gi d o bj e ct, cl ot h, gr a n ul ar m at eri al, a n d fl ui ds. T o
r e pr es e nt a si m ul at a bl e o bj e ct t h at is c o m p ati bl e wit h o ur
p h ysi cs s ol v ers, w e b uil d a si m ul ati o n-r e a d y r e pr es e nt a-
ti o n o n t o p of t h e G a ussi a n s urf els b y a d di n g c o n n e cti v-
it y t o t h e m, t ur ni n g t h e m i nt o “t o p ol o gi c al G a ussi a n s ur-
f els ”. F or m all y, t h e t o p ol o gi c al G a ussi a n s urf els c o nsist
of N O G a ussi a n s urf els wit h e d g es a n d v el o citi es, O t =
{ E , v t , p

O
t , q O

t , s O
t , o O

t , c O
t } , w h er e t h e e d g e m atri x E ∈

{ 0 , 1 } N O × N O i n di c at es t h e t o p ol o gi c al c o n n e cti vit y of t h e
s urf els, a n d v t ∈ R 3 N O d e n ot es t h e v el o cit y.

We cr e at e t h e i niti al t o p ol o gi c al G a ussi a n s urf els O 0 b y
first g e n er ati n g a n o bj e ct m es h fr o m a n i m a g e s e g m e nt of
t h e o bj e ct usi n g a n i m a g e-t o- m es h m o d el I nst a nt M es h [6 9 ].
T h e n, w e bi n d a G a ussi a n s urf el t o e a c h of t h e m es h v er-
ti c es. We d et ail t his pr o c ess i n A p p e n di x B. 3 .

M at e ri als. B esi d es t h e g e o m etr y a n d a p p e ar a n c e r e pr es e n-
t ati o n O , a n o bj e ct als o h as m at eri al pr o p erti es m . T h e d ef-
i niti o n of o bj e ct m at eri al d e p e n ds o n t h e o bj e ct t y p e, w hi c h
f oll o ws a 6- w a y cl assi fi c ati o n: ri gi d, el asti c, cl ot h, s m o k e,
li q ui d, a n d gr a n ul ar. We d et ail t h e m at eri al pr o p erti es i n
A p p e n di x B. 4 .

3. 2. H y b ri d G e n e r ati v e Si m ul at o r

M ai n i d e a. T h e r e c o nstr u ct e d s c e n e g e o m etr y S 0 a n d esti-
m at e d m at eri al pr o p erti es m ar e i n h er e ntl y i n a c c ur at e a n d
i n c o m pl et e, a n d a c c ur at e p h ysi cs s ol v ers f or all m at eri-
als a n d t h eir c o m pl e x i nt er a cti o ns ar e still a n o p e n pr o b-
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Fi g ur e 3. Ill ustr ati o n o n o ur s p ati all y v ar yi n g bi m o d al c o ntr ol,
w hi c h dri v es t h e vi d e o g e n er at or wit h i n p ut i m a g e I , pi x el-s p a c e
fl o w F a n d si m ul ati o n r e n d er e d Ṽ .

l e m. T h er ef or e, e xisti n g m et h o ds ar e li mit e d t o si m pl e
ri gi d/ el asti c si m ul ati o ns [4 3 , 5 9 , 7 3 ]. O ur m ai n i d e a t o a d-
dr ess t his c h all e n g e is e xtr a cti n g t h e d y n a mi cs k n o wl e d g e
fr o m a vi d e o g e n er at or w hi c h h as b e e n tr ai n e d o n n u m er-
o us vi d e os of r e al- w orl d p h ysi cs.

I n p arti c ul ar, w e us e p h ysi cs s ol v ers t o esti m at e a c o ars e
a n d i n c o m pl et e d y n a mi c s c e n e { S̃ t }

T
t = 1 gi v e n i niti al s c e n e

S 0 a n d a cti o ns fg , fw , fp . T h e c o ars e d y n a mi c s c e n e is us e d
t o dri v e t h e vi d e o g e n er at or t o s y nt h esi z e a vi d e o V t h at
h as r e alisti c d y n a mi cs. We o bt ai n t h e o ut p ut d y n a mi c s c e n e
{ S t }

T
t = 1 b y u p d ati n g { S̃ t }

T
t = 1 t o m at c h t h e vi d e o V t hr o u g h

diff er e nti a bl e r e n d eri n g.

P h ysi cs s ol v e rs. At e a c h si m ul ati o n ti m e st e p, a p h ysi cs
s ol v er t a k es t h e c urr e nt s c e n e S̃ t a n d f or c es fg , fw (t), fp (t)
as i n p ut, a n d s ol v es f or t h e o bj e ct d y n a mi cs attri b ut es i n-
cl u di n g t h e v el o cit y v t + 1 , p ositi o n p O

t + 1 , a n d ori e nt ati o n
q O

t + 1 at t h e n e xt ti m e st e p:

v t + 1 , p O
t + 1 , q O

t + 1 = s o l v e r ( S̃ t , fg , fw (t), fp (t)), ( 1)

w h er e S̃ 0 = S 0 . T h e n, w e c o nstr u ct t h e c o ars e s c e n e at t h e
n e xt ti m e st e p S̃ t + 1 b y

S̃ t + 1 = B 0 ∪ { E , v t + 1 , p O
t + 1 , q O

t + 1 , s O
0 , o O

0 , c O
0 } , ( 2)

w h er e w e k e e p all n o n- d y n a mi cs attri b ut es t h e s a m e as S 0 .
T o c o m p ut e t h e d y n a mi cs attri b ut es of v ari o us m at eri als, w e
e m pl o y m ulti pl e t y p es of p h ysi cs s ol v ers. T h es e s ol v ers ar e
c o u pl e d t o t a c kl e m ulti- p h ysi cs s c e n es, e. g., fl ui d a n d ri gi d
as s h o w n i n Fi g ur e 2 . Pl e as e s e e d et ails f or diff er e nt s ol v ers
i n A p p e n di x B. 4 .

C o n diti o ni n g t h e vi d e o g e n e r at o r. Gi v e n t h e c o ars e d y-
n a mi c s c e n e { S̃ t }

T
t = 0 , w e c o n diti o n a vi d e o g e n er at or t o

s y nt h esi z e a vi d e o V ∈ R ( T + 1 ) × H × W × 3 t h at h as m or e
d et ail e d m oti o n w hil e a d h eri n g t o t h e a cti o n c o ns e q u e n c e
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Fi g ur e 4. Q u alit ati v e c o m p a ris o ns b et w e e n W o n d er Pl a y ( o urs) a n d t h e b as eli n e m et h o ds. T h e t o p r o w s h o ws t h e i n p ut i m a g es, a cti o ns,
a n d t h e t e xts d es cri bi n g t h e a cti o ns f or C o g Vi d e o X [ 7 0 ].

d e pi ct e d b y t h e c o ars e d y n a mi c s c e n e. T o t his e n d, w e i n-
tr o d u c e a bi m o d al c o ntr ol s c h e m e t h at us es t w o m o d aliti es
f or c o ntr ol: m oti o n (r e pr es e nt e d b y fl o w) a n d a p p e ar a n c e
( R G B). I n p arti c ul ar,

V = g (F , Ṽ , I ), ( 3)

w h er e g d e n ot es t h e vi d e o g e n er at or, F ∈ R T × H × W × 2

d e n ot es t h e pi x el-s p a c e fl o w r e n d er e d usi n g t h e v el o cit y
{ v t }

T
t = 1 , Ṽ ∈ R ( T + 1 ) × H × W × 3 d e n ot es t h e vi d e o r e n d er e d

fr o m t h e c o ars e s c e n e { S̃ t }
T
t = 0 , a n d I d e n ot es t h e i n p ut i m-

a g e. We s h o w a n ill ustr ati o n i n Fi g ur e 3 .

M oti o n c o ntr ol. We l e v er a g e a pr e-tr ai n e d m oti o n-
c o ntr oll e d i m a g e-t o- vi d e o diff usi o n m o d el,  G o- wit h-
t h e- Fl o w [1 3 ], as o ur g .  T h e m oti o n c o ntr ol is b as e d
o n n ois e w ar pi n g. I n s h ort, i nst e a d of usi n g a n u n-
str u ct ur e d r a n d o m G a ussi a n n ois e distri b uti o n, it us es a
w ar pi n g- b as e d str u ct ur e d n ois e N (F ) ∈ R ( T + 1 ) × H × W × 3 .
N (F ) is cr e at e d b y first s a m pli n g a r a n d o m G a ussi a n
N 0 ∈ R H × W × 3 a n d t h e n it er ati v el y d oi n g w ar pi n g s u c h
t h at N t + 1 = w a r p (N t , F t + 1 ) w h er e F t + 1 ∈ R H × W × 2

d e n ot es t h e fl o w at t + 1 . T h e str u ct ur e d n ois e N (F ) is t h e n
f us e d wit h s o m e r a n d o m n ois e t o i m pr o v e vis u al q u alit y,

c o ntr oll e d b y a d e gr a d ati o n f a ct or γ [1 3 ].1

R G B c o ntr ol. T o i n c or p or at e a d diti o n al c o ntr ol wit h R G B
fr a m es Ṽ , w e us e S D E dit [4 5 ]. S p e ci fi c all y, t h e diff usi o n-
b as e d g e n er ati o n pr o c ess is gr a d u all y d e n oisi n g N (F ), s u c h
t h at V s − 1 = D e n o i s e (V s , s) w h er e s = S, S − 1 , · · · , 1
d e n ot es t h e diff usi o n ti m est e p, V S = N (F ) is t h e i niti al
n ois e, a n d t h e g e n er at e d vi d e o is gi v e n b y V = V 0 . We
c o ntr ol t his pr o c ess b y s ki p pi n g first s e v er al st e ps a n d di-
r e ctl y st arti n g t h e d e n oisi n g fr o m st e p s 1 < S wit h

V s 1
= α s 1

Ṽ + 1 − α 2
s 1

N (F ), ( 4)

w h er e α i d e n ot es t h e diff usi o n c o ef fi ci e nt at ti m est e p i.
T his h as b e e n s h o w n t o c o ntr ol t h e m ai n c o nt e nt of t h e g e n-
er ati o n, w hil e all o wi n g d et ails t o b e s y nt h esi z e d [ 4 5 ].

Dis c ussi o n. Wit h o ur bi m o d al c o ntr ol, w e p ass t h e c o ars e
m oti o n a n d a p p e ar a n c e i nf or m ati o n fr o m t h e p h ysi cs si m-
ul at or t o t h e vi d e o g e n er at or. T his all o ws n ot o nl y g e n er-

1 T h e vi d e o m o d el is a l at e nt diff usi o n m o d el [ 7 0 ] w hi c h d o w ns a m pl es
t h e s p ati ot e m p or al di m e nsi o ns H, W, T a n d u ps a m pl es f e at ur e di m e nsi o n
fr o m 3 t o C . B ut f or n ot ati o n al si m pli cit y, w e d o n ot disti n g uis h t h e l at e nt
s p a c e fr o m t h e pi x el s p a c e.
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ati n g m or e r e alisti c m oti o n, b ut als o fi x es a p p e ar a n c e arti-
f a cts c a us e d b y i m p erf e ct 3 D s c e n e r e c o nstr u cti o n a n d t h e
l a c k of li g hti n g i nf or m ati o n t o r es ol v e a p p e ar a n c e c h a n g es.
T h e q u esti o n is h o w m u c h w e tr ust t h e g e n er at or t o o v er-
writ e t h e c o ars e i nf or m ati o n. I nt uiti v el y, t his is di ct at e d b y
s 1 : If s 1 is cl os e t o 0 , t h e n t h e g e n er at or o nl y m o di fi es t h e
c o ars e vi d e o Ṽ a bit; if s 1 is cl os e t o S , t h e n it c a n o v er writ e
Ṽ m or e a n d h all u ci n at e n e w c o nt e nts. T h us, s 1 p ositi v el y
c orr es p o n ds t o t h e r es p o nsi bilit y of t h e vi d e o g e n er at or.

S p ati all y v a r yi n g r es p o nsi bilit y. T h e r es p o nsi bilit y of t h e
vi d e o g e n er at or is i n h er e ntl y u n e v e n a cr oss s p ati al r e gi o ns
i n e v er y fr a m e. F or e x a m pl e, m ost of o ur b a c k gr o u n d r e-
m ai ns st ati c i n t h e d y n a mi c pr o c ess, w hi c h w e w a nt t o tr ust
t h e si m ul at or o ut p ut Ṽ m or e, r at h er t h a n t h e vi d e o g e n er-
at or, b e c a us e t h e vi d e o g e n er at or m a y h all u ci n at e i n c orr e ct
d et ails s u c h as g h ost o bj e cts. T o t his e n d, w e i ntr o d u c e t h e
s p ati all y v ar yi n g bi m o d al c o ntr ol.

I n t his w or k, w e c o nsi d er t w o r es p o nsi bilit y l e v els i n o ur
s p ati all y v ar yi n g bi m o d al c o ntr ol f or t h e b a c k gr o u n d a n d
t h e d y n a mi c o bj e cts, r es p e cti v el y, s u c h t h at w e s et a l o w er
r es p o nsi bilit y s 2 < s 1 of t h e vi d e o g e n er at or o n m o dif yi n g
t h e b a c k gr o u n d. S p e ci fi c all y, at t h e st e p s 2 , w e c o m p ut e

V̂ s 2 = M ⊙ V s 2 + ( 1 − M ) ⊙ (α s 2 Ṽ + 1 − α 2
s 2

N (F )),

( 5)
w h er e V s 2 is c o m p ut e d fr o m gr a d u all y d e n oisi n g V s 1 .
M ∈ { 0 , 1 } ( T + 1 ) × H × W × 3 d e n ot es t h e bi n ar y m as k t h at
us es 1 t o m ar k a pi x el of d y n a mi c o bj e cts a n d 0 t o m ar k a
pi x el of t h e b a c k gr o u n d, w hi c h is r e n d er e d fr o m t h e c o ars e
s c e n e. Aft er t his c o m p ut ati o n, w e s et V s 2

← V̂ s 2
a n d c o n-

ti n u e t h e d e n oisi n g t o g e n er at e V .

U p d ati n g s c e n e d y n a mi cs. Fi n all y, w e us e t h e g e n er at e d
vi d e o V as a s u p er visi o n t o u p d at e t h e c o ars e d y n a mi c
s c e n e { S̃ t }

T
t = 0 . T his is d o n e b y mi ni mi zi n g a p h ot o m etri c

L 1 l oss: mi n { c B
t ,O t } T

t = 0
∥ V − Ṽ ∥ 1 o v er t h e f or e gr o u n d o b-

j e ct’s m oti o n tr aj e ct or y a n d a p p e ar a n c e { O t }
T
t = 0 . We als o

u p d at e t h e b a c k gr o u n d c ol or c B
t f or s h a di n g eff e cts. T his

o pti mi z ati o n yi el ds t h e fi n al d y n a mi c s c e n e { S t }
T
t = 0 .

4. E x p e ri m e nts

I m pl e m e nt ati o n d et ails. F or p h ysi cs si m ul ati o n, w e a d o pt
t h e G e n esis [3 ] fr a m e w or k, w hi c h u ni fi es s e v er al diff er e nt
p h ysi cs s ol v ers. F or all s c e n es, w e r u n p h ysi c al si m ul ati o n
f or 9 6 0 st e ps a n d r e n d er o n e fr a m e f or e a c h 2 0 st e ps. We
i n cl u d e a d diti o n al i m pl e m e nt ati o n d et ails i n A p p e n di x B. 1 .

B as eli n es. We c o m p ar e a g ai nst t w o t y p es of b as eli n es f or
a cti o n- c o n diti o n e d 3 d d y n a mi c s c e n e g e n er ati o n: p h ysi cs-
b as e d a n d c o n diti o n al vi d e o g e n er ati o n m et h o ds. F or
p h ysi cs- b as e d m et h o ds, w e c o m p ar e wit h P h ys G e n [ 4 3 ] a n d
P h ys G a ussi a n [ 6 7 ]. P h ys G e n d e c o m p os es a n i m a g e i nt o
2 D ri gi d b o di es a n d r u n ri gi d si m ul ati o n gi v e n c ert ai n a c-
ti o n. P h ys G a ussi a n m o d els t h e 3 D s c e n e as el asti c o bj e cts

P h ysi cs Pl a usi bilit y M oti o n Fi d elit y Vis u al Q u alit y

O v er P h ys G e n [ 4 3 ] 7 8 .0 % 7 8 .0 % 8 0 .1 %

O v er P h ys G a ussi a n [ 6 7 ] 8 0 .2 % 8 1 .2 % 8 5 .2 %

O v er T or a [ 7 4 ] 7 7 .0 % 7 2 .0 % 7 1 .0 %

O v er C o g Vi d e o X-I 2 V [ 7 0 ] 8 0 .2 % 7 3 .0 % 7 4 .6 %

Ta bl e 1. H u m a n st u d y 2 A F C r es ults of f a v or r at e of W o n d er-
Pl a y ( O urs) o v er b as eli n e m et h o ds.

M et h o ds I m a gi n g ( ↑ ) A est h eti c (↑ ) M oti o n (↑ ) C o nsist e n c y (↑ ) P h ys R e al (↑ )

P h ys G e n 0 .6 9 2 0 .5 9 3 0 .9 9 2 0 .2 1 2 0 .5 4 5

P h ys G a ussi a n 0 .4 9 2 0 .5 6 4 0 .9 9 4 0 .2 0 6 0 .3 5 0

C o g Vi d e o X 0 .6 8 6 0 .5 7 4 0 .9 9 3 0 .2 1 9 0 .6 7 0

T or a 0 .6 4 4 0 .6 2 0 0 .9 9 2 0 .2 1 0 0 .5 3 0

O u rs 0 .6 9 5 0 .6 1 0 0 .9 9 5 0 .2 1 7 0 .7 0 0

Ta bl e 2. Q u a ntit ati v e c o m p aris o n t o b as eli n es o n 1 5 s c e n es.

wit h t h e M P M [ 3 0 ] fr a m e w or k. Si n c e P h ys G e n o nl y r e-
q uir es a si n gl e i m a g e as t h e i n p ut, w e dir e ctl y f oll o w t h eir
pr e pr o c essi n g f or i m a g e d e c o m p ositi o n. P h ys G a ussi a n r e-
q uir es m ulti vi e w i m a g es t o r e c o nstr u ct t h e u n d erl yi n g s c e n e
first, s o w e pr o vi d e as i n p ut o ur r e c o nstr u ct e d 3 D s c e n e
a n d t h e n r u n si m ul ati o n wit h gi v e n a cti o ns. F or c o n diti o n al
vi d e o g e n er ati o n m et h o ds, w e c o m p ar e a g ai nst t w o m et h-
o ds: C o g Vi d e o X-I 2 V [ 7 0 ] wit h t e xt pr o m pts a n d T or a [7 4 ]
wit h dr a g- b as e d c o n diti o ni n g. F or T or a, w e us e t h e tr aj e c-
t ori es fr o m o ur si m ul ati o n as t h e dr a g i n p ut.

M et ri cs. We r e n d er vi d e os fr o m t h e i n p ut vi e w p oi nt
t o c o m p ut e q u a ntit ati v e m etri cs. We a d o pt t h e i m a gi n g,
a est h eti c, m oti o n q u alit y, a n d c o nsist e n c y m etri cs fr o m
V B e n c h [ 2 9 ]. We als o a d o pt t h e G P T- 4 o- b as e d p h ysi c al
r e alis m m etri c [1 5 ]. We c ur at e 1 5 e x a m pl es, i n cl u di n g 7
r e al p h ot os a n d 8 r e alisti c s y nt h eti c i m a g es, c o v eri n g di-
v ers e t y p es of s c e n es c o nt e nts i n cl u di n g cl ot h, ri gi d b o d y,
el asti c o bj e cts, li q ui d, g as, gr a n ul ar s u bst a n c e, et c.

4. 1. R es ults

C o m p a ris o n t o b as eli n es. We s h o w si d e- b y-si d e c o m p ar-
is o ns o n t w o s c e n es i n Fi g ur e 4 . T h e t o p r o w s h o ws i n-
p ut i m a g es, a cti o ns ( gr a vit y f or d u c k dr o p pi n g, f or c e t o
p ull t h e r e d b o at t o w ar ds t h e ri g ht) a n d t h e t e xt pr o m pt f or
C o g Vi d e o X-I 2 V [ 7 0 ], f oll o w e d b y t h e a cti o n- c o n diti o n e d
g e n er at e d d y n a mi cs fr o m o ur m et h o d a n d t h e b as eli n es.

D es pit e t h eir a bilit y t o pr o d u c e pl a usi bl e vis u al q u al-
it y, vi d e o g e n er ati o n m et h o ds str u g gl e t o a d h er e t o t h e a c-
ti o ns. I n t h e d u c k- dr o p pi n g-i nt o- w at er s c e n e, T or a [7 4 ] s u b-
m er g es t h e d u c k u n d er t h e w at er a n d t h e n c h a n g es its s h a p e
aft er it r e- e m er g es. C o g Vi d e o X-I 2 V str u g gl es t o g e n er at e
r e alisti c d y n a mi cs f or t h e d u c k’s dr o p a n d a d ds u n d esir a bl e
d y n a mi cs b y m o vi n g t h e d u c k t o t h e l eft. B ot h m o d els als o
str u g gl e wit h t h e b o ats s c e n e. T or a c o m pl et el y alt ers t h e
s c e n e mi d- vi d e o, w hil e C o g Vi d e o X-I 2 V f ails t o g e n er at e
m e a ni n gf ul d y n a mi cs.

As f or t h e p h ysi cs- b as e d m et h o d, P h ys G e n [ 4 3 ] is li m-
it e d t o ri gi d b o d y si m ul ati o n i n 2 D s p a c e, m a ki n g it h ar d t o
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Input Images & Actions  Action-conditioned Dynamic 3D Scenes

Figure 5. Qualitative results of the proposed WonderPlay. In the left column we show the input scene image and actions, where , ,
indicate gravity action, wind field action and 3D point force action, respectively.

Figure 6. Different actions on the same scene. WonderPlay supports to use different 3D actions on the same scene. Here we show four
different scenes and the corresponding dynamics from two different actions within each scene.

handle scene with complex materials such as water. Phys-
Gaussian [43] typically requires multiview images and as
a result, struggles to produce a reasonable 3D representa-
tion with only one input image. Also due to the lack of

a complete 3D physical state, both physics-based methods
fail to properly handle the shading effect in the boats scene
and make the reflections move with the boats. Our method,
in contrast, offers the advantages of both physical simula-
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Figure 7. Ablation on hybrid generative simulator. Top row:
Coarse simulation (i.e., only physics solver is used without video
generator for refinement). Bottom row: Refined dynamic scene.

Full model

w/o RGB

w/o flow

Figure 8. Ablation on the motion signal and the appearance signal
to condition the video generator.

tion and video generation: the physical simulation handles
a wide range of materials and ensures the desired dynam-
ics, and the video generation model provides visual realism
by successfully synthesizing water waves and bubbles sur-
rounding the duck, as well as the following reflections. Also
shown in Table 2, WonderPlay (ours) achieve the best or
second-best performance across all metrics, showing strong
motion quality, visual quality, and physical plausibility.
User study. To evaluate the generation results with human
preference, we recruit 200 participants and conduct a user
study. We employ a Two-alternative Forced Choice (2AFC)
protocol. Each participant evaluates 10 scenes. The partic-
ipants view an action description alongside a randomly or-
dered side-by-side comparison video: one from our method
and one from a baseline. Participants then select which
video demonstrates superior performance in one of three
criteria: physics plausibility which measures the correctness
of the predicted motion in response to the action, motion fi-
delity that reflects the quality and naturalness of the gener-
ated motion, and visual quality.

We show the averaged results on all scenes in Table 1. In
comparison to all baselines, about 70% to 80% of the par-
ticipants prefer WonderPlay (ours) across all three aspects,
proving the superior performance of combining the physi-
cal simulator and video generator for dynamics with fidelity
in response to actions and realistic visual appearance.
Diverse scenes and materials. In Figure 5, we present the
generated dynamic 3D scenes on a variety of input images
with diverse actions. It is important to note that achieving

realistic visual quality in simulations of complex materials
from a single image input with limited physical state infor-
mation is extremely challenging. However, with the aid of
the video generator, the sticky jam appears vivid as it pours
onto the cake, and the river waves look natural in response
to the boat’s movement. Notably, the underlying physical
simulator ensures that all dynamics follow the input actions.
For example, the roses are initially blown to the right by the
wind and then move back due to their elasticity.
Condition on different actions. A significant advantage
of our method is that it enables generating different interac-
tions with different actions in the same scene. In Figure 6,
we present four scenes, each with two different actions and
their corresponding output dynamic 3D scenes.

4.2. Ablation on Hybrid Generative Simulator
In the following we discuss an ablation study on the hybrid
generative simulator. We leave quantitative numbers and
further ablation in Appendix A.
Video generator refines both dynamics and appearance.
In Figure 7, we compare a dynamic scene created solely
with the physics simulator, i.e., the coarse simulation (top
row), and the refined dynamic scene created by our full
model (bottom row). In the coarse simulation, we observe
unrealistic motion: the motion of the smoke looks too sticky
due to numerical viscosity that exists for almost all fluid
solvers. The video model refines it so that the fluid mo-
tion looks smooth with swirls. There are also appearance
artifacts in the coarse simulation such as the grainy smoke,
where the video model can also refine them.
Both signals to condition the video generator are neces-
sary. To demonstrate the benefit of conditioning the video
generator on both motion and appearance signals, we show
ablation results in Figure 8. The top row shows the syn-
thesized video from our full model with both signals; “w/o
RGB” uses motion but no appearance; and “w/o flow” uses
appearance but no motion. Using only RGB conditioning
(“w/o flow”), the video model fails to retain or improve de-
tailed dynamics in the sand grains. Using only a motion
signal (“w/o RGB”) leads to unexpected hallucinations be-
yond user action input, e.g., it hallucinates a pile of sand
standing in the back and the background texture unexpect-
edly changes. In contrast, using both signals produces the
best results.

5. Conclusion
In this work, we propose WonderPlay, a novel framework
for action-conditioned dynamic 3D scene generation from a
single image. WonderPlay features a hybrid generative sim-
ulator for simulation fidelity and visual quality. We show-
case superior performance of WonderPlay on diverse scenes
with various interactions.
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modal bases for plausible manipulation of objects in video.
ACM Transactions on Graphics (TOG), 2015. 2

[21] Daniel Geng, Charles Herrmann, Junhwa Hur, Forrester
Cole, Serena Zhang, Tobias Pfaff, Tatiana Lopez-Guevara,
Carl Doersch, Yusuf Aytar, Michael Rubinstein, et al. Mo-
tion prompting: Controlling video generation with motion
trajectories. arXiv preprint arXiv:2412.02700, 2024. 3

[22] Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Du-
val, Samaneh Azadi, Sai Saketh Rambhatla, Akbar Shah, Xi
Yin, Devi Parikh, and Ishan Misra. Emu video: Factoriz-
ing text-to-video generation by explicit image conditioning.
arXiv preprint arXiv:2311.10709, 2023. 3

[23] David Ha and Jürgen Schmidhuber. World models. arXiv
preprint arXiv:1803.10122, 2018. 3

[24] Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo
Dai, Hongsheng Li, and Ceyuan Yang. Cameractrl: Enabling
camera control for text-to-video generation, 2024. 3

[25] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. NeurIPS, 33:6840–6851, 2020.
2

[26] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 3

9088



[27] Chen Hou, Guoqiang Wei, Yan Zeng, and Zhibo Chen.
Training-free camera control for video generation. arXiv
preprint arXiv:2406.10126, 2024. 3

[28] Tianyu Huang, Haoze Zhang, Yihan Zeng, Zhilu Zhang, Hui
Li, Wangmeng Zuo, and Rynson WH Lau. Dreamphysics:
Learning physical properties of dynamic 3d gaussians with
video diffusion priors. arXiv preprint arXiv:2406.01476,
2024. 2

[29] Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si,
Yuming Jiang, Yuanhan Zhang, Tianxing Wu, Qingyang Jin,
Nattapol Chanpaisit, et al. Vbench: Comprehensive bench-
mark suite for video generative models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 21807–21818, 2024. 6

[30] Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey
Stomakhin, and Andrew Selle. The material point method
for simulating continuum materials. Acm siggraph 2016
courses, 2016. 6, S2

[31] Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Met-
zger, Rodrigo Caye Daudt, and Konrad Schindler. Repurpos-
ing diffusion-based image generators for monocular depth
estimation. In CVPR, 2024. S1

[32] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM TOG, 2023. S1

[33] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. S1

[34] Simon Le Cleac’h, Hong-Xing Yu, Michelle Guo, Tay-
lor Howell, Ruohan Gao, Jiajun Wu, Zachary Manchester,
and Mac Schwager. Differentiable physics simulation of
dynamics-augmented neural objects. IEEE Robotics and Au-
tomation Letters, 2023. 2

[35] Yao-Chih Lee, Yi-Ting Chen, Andrew Wang, Ting-Hsuan
Liao, Brandon Y Feng, and Jia-Bin Huang. Vividdream:
Generating 3d scene with ambient dynamics. arXiv preprint
arXiv:2405.20334, 2024. 3

[36] Xuan Li, Yi-Ling Qiao, Peter Yichen Chen, Krishna Murthy
Jatavallabhula, Ming Lin, Chenfanfu Jiang, and Chuang
Gan. Pac-nerf: Physics augmented continuum neural ra-
diance fields for geometry-agnostic system identification.
arXiv preprint arXiv:2303.05512, 2023. 2

[37] Yaowei Li, Xintao Wang, Zhaoyang Zhang, Zhouxia Wang,
Ziyang Yuan, Liangbin Xie, Yuexian Zou, and Ying Shan.
Image conductor: Precision control for interactive video syn-
thesis. arXiv preprint arXiv:2406.15339, 2024. 3

[38] Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander
Holynski. Generative image dynamics. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024. 2

[39] Jiajing Lin, Zhenzhong Wang, Shu Jiang, Yongjie Hou, and
Min Jiang. Phys4dgen: A physics-driven framework for con-
trollable and efficient 4d content generation from a single
image. arXiv preprint arXiv:2411.16800, 2024. 2

[40] Huan Ling, Seung Wook Kim, Antonio Torralba, Sanja Fi-
dler, and Karsten Kreis. Align your gaussians: Text-to-4d

with dynamic 3d gaussians and composed diffusion models.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 8576–8588, 2024. 3

[41] Fangfu Liu, Hanyang Wang, Shunyu Yao, Shengjun Zhang,
Jie Zhou, and Yueqi Duan. Physics3d: Learning physical
properties of 3d gaussians via video diffusion. arXiv preprint
arXiv:2406.04338, 2024. 2

[42] Jinxiu Liu, Shaoheng Lin, Yinxiao Li, and Ming-Hsuan
Yang. Dynamicscaler: Seamless and scalable video genera-
tion for panoramic scenes. arXiv preprint arXiv:2412.11100,
2024. 3

[43] Shaowei Liu, Zhongzheng Ren, Saurabh Gupta, and Shen-
long Wang. Physgen: Rigid-body physics-grounded image-
to-video generation. In ECCV, 2024. 2, 4, 6, 7, S1

[44] Miles Macklin and Matthias Müller. Position based fluids.
ACM Transactions on Graphics (TOG), 2013. S2

[45] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jia-
jun Wu, Jun-Yan Zhu, and Stefano Ermon. Sdedit: Guided
image synthesis and editing with stochastic differential equa-
tions. ICLR, 2022. 5

[46] Midjourney. https://www.midjourney.com/, 2023. 2
[47] Matthias Müller, Bruno Heidelberger, Matthias Teschner,

and Markus Gross. Meshless deformations based on shape
matching. ACM transactions on graphics (TOG), 2005. S2

[48] Matthias Müller, Bruno Heidelberger, Marcus Hennix, and
John Ratcliff. Position based dynamics. Journal of Visual
Communication and Image Representation, 2007. S2

[49] Koichi Namekata, Sherwin Bahmani, Ziyi Wu, Yash Kant,
Igor Gilitschenski, and David B Lindell. Sg-i2v: Self-guided
trajectory control in image-to-video generation. arXiv
preprint arXiv:2411.04989, 2024. 3

[50] Muyao Niu, Xiaodong Cun, Xintao Wang, Yong Zhang,
Ying Shan, and Yinqiang Zheng. Mofa-video: Control-
lable image animation via generative motion field adaptions
in frozen image-to-video diffusion model. arXiv preprint
arXiv:2405.20222, 2024. 3

[51] Mohammad Nomaan Qureshi, Sparsh Garg, Francisco Yan-
dun, David Held, George Kantor, and Abhisesh Silwal.
Splatsim: Zero-shot sim2real transfer of rgb manipula-
tion policies using gaussian splatting. arXiv preprint
arXiv:2409.10161, 2024. 2

[52] Jiawei Ren, Liang Pan, Jiaxiang Tang, Chi Zhang, Ang Cao,
Gang Zeng, and Ziwei Liu. Dreamgaussian4d: Genera-
tive 4d gaussian splatting. arXiv preprint arXiv:2312.17142,
2023. 3

[53] Xiaoyu Shi, Zhaoyang Huang, Fu-Yun Wang, Weikang Bian,
Dasong Li, Yi Zhang, Manyuan Zhang, Ka Chun Cheung,
Simon See, Hongwei Qin, et al. Motion-i2v: Consistent and
controllable image-to-video generation with explicit motion
modeling. In ACM SIGGRAPH 2024 Conference Papers,
pages 1–11, 2024. 3

[54] Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An,
Songyang Zhang, Qiyuan Hu, Harry Yang, Oron Ashual,
Oran Gafni, et al. Make-a-video: Text-to-video generation
without text-video data. arXiv preprint arXiv:2209.14792,
2022. 3

9089



[55] Uriel Singer, Shelly Sheynin, Adam Polyak, Oron Ashual,
Iurii Makarov, Filippos Kokkinos, Naman Goyal, Andrea
Vedaldi, Devi Parikh, Justin Johnson, et al. Text-to-4d dy-
namic scene generation. arXiv preprint arXiv:2301.11280,
2023. 3

[56] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In ICML, 2015. 2

[57] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In ICLR, 2021. 2, S1

[58] Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi
Duan, Jun Zhang, and Yikai Wang. Dimensionx: Create any
3d and 4d scenes from a single image with controllable video
diffusion. arXiv preprint arXiv:2411.04928, 2024. 3

[59] Xiyang Tan, Ying Jiang, Xuan Li, Zeshun Zong, Tianyi
Xie, Yin Yang, and Chenfanfu Jiang. Physmotion: Physics-
grounded dynamics from a single image. arXiv preprint
arXiv:2411.17189, 2024. 2, 3, 4

[60] Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi
Fruchter. Diffusion models are real-time game engines.
arXiv preprint arXiv:2408.14837, 2024. 3

[61] Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris
Chidlovskii, and Jerome Revaud. Dust3r: Geometric 3d vi-
sion made easy. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2024.
S1

[62] Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li,
Tianshui Chen, Menghan Xia, Ping Luo, and Ying Shan.
Motionctrl: A unified and flexible motion controller for
video generation. In ACM SIGGRAPH 2024 Conference Pa-
pers, 2024. 3

[63] Daniel Watson, Saurabh Saxena, Lala Li, Andrea Tagliasac-
chi, and David J Fleet. Controlling space and time with dif-
fusion models. arXiv preprint arXiv:2407.07860, 2024. 3

[64] Rundi Wu, Ruiqi Gao, Ben Poole, Alex Trevithick, Changxi
Zheng, Jonathan T Barron, and Aleksander Holynski. Cat4d:
Create anything in 4d with multi-view video diffusion mod-
els. arXiv preprint arXiv:2411.18613, 2024. 3

[65] Weijia Wu, Zhuang Li, Yuchao Gu, Rui Zhao, Yefei He,
David Junhao Zhang, Mike Zheng Shou, Yan Li, Tingting
Gao, and Di Zhang. Draganything: Motion control for any-
thing using entity representation. In European Conference
on Computer Vision, 2024. 3

[66] Zeqi Xiao, Yifan Zhou, Shuai Yang, and Xingang Pan. Video
diffusion models are training-free motion interpreter and
controller. arXiv preprint arXiv:2405.14864, 2024. 3

[67] Tianyi Xie, Zeshun Zong, Yuxing Qiu, Xuan Li, Yutao Feng,
Yin Yang, and Chenfanfu Jiang. Physgaussian: Physics-
integrated 3d gaussians for generative dynamics. In CVPR,
2024. 2, 6, S1, S2

[68] Dejia Xu, Weili Nie, Chao Liu, Sifei Liu, Jan Kautz,
Zhangyang Wang, and Arash Vahdat. Camco: Camera-
controllable 3d-consistent image-to-video generation. arXiv
preprint arXiv:2406.02509, 2024. 3

[69] Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang,
Shenghua Gao, and Ying Shan. Instantmesh: Efficient 3d
mesh generation from a single image with sparse-view large

reconstruction models. arXiv preprint arXiv:2404.07191,
2024. 4, S1

[70] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072, 2024. 2, 3, 5, 6

[71] Shengming Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang
Li, Gong Ming, and Nan Duan. Dragnuwa: Fine-grained
control in video generation by integrating text, image, and
trajectory. arXiv preprint arXiv:2308.08089, 2023. 3

[72] Hong-Xing Yu, Haoyi Duan, Charles Herrmann, William T
Freeman, and Jiajun Wu. Wonderworld: Interactive 3d
scene generation from a single image. arXiv preprint
arXiv:2406.09394, 2024. 4, S1

[73] Tianyuan Zhang, Hong-Xing Yu, Rundi Wu, Brandon Y
Feng, Changxi Zheng, Noah Snavely, Jiajun Wu, and
William T Freeman. Physdreamer: Physics-based interac-
tion with 3d objects via video generation. In ECCV, 2024. 2,
4

[74] Zhenghao Zhang, Junchao Liao, Menghao Li, Zuozhuo Dai,
Bingxue Qiu, Siyu Zhu, Long Qin, and Weizhi Wang. Tora:
Trajectory-oriented diffusion transformer for video genera-
tion. arXiv preprint arXiv:2407.21705, 2024. 3, 6

[75] Yuyang Zhao, Zhiwen Yan, Enze Xie, Lanqing Hong, Zhen-
guo Li, and Gim Hee Lee. Animate124: Animating one im-
age to 4d dynamic scene. arXiv preprint arXiv:2311.14603,
2023. 3

[76] Yuyang Zhao, Chung-Ching Lin, Kevin Lin, Zhiwen Yan,
Linjie Li, Zhengyuan Yang, Jianfeng Wang, Gim Hee Lee,
and Lijuan Wang. Genxd: Generating any 3d and 4d scenes.
arXiv preprint arXiv:2411.02319, 2024. 3

[77] Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu,
and Xi Li. Cami2v: Camera-controlled image-to-video dif-
fusion model. arXiv preprint arXiv:2410.15957, 2024. 3

[78] Licheng Zhong, Hong-Xing Yu, Jiajun Wu, and Yunzhu Li.
Reconstruction and simulation of elastic objects with spring-
mass 3d gaussians. In European Conference on Computer
Vision, 2024. 2

9090


