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Abstract

We introduce the WorldScore benchmark, the first uni-
fied benchmark for world generation. We decompose world
generation into a sequence of next-scene generation tasks
with explicit camera trajectory-based layout specifications,
enabling unified evaluation of diverse approaches from 3D
and 4D scene generation to video generation models. The
WorldScore benchmark encompasses a curated dataset of
3,000 test examples that span diverse worlds: static and
dynamic, indoor and outdoor, photorealistic and stylized.
The WorldScore metric evaluates generated worlds through
three key aspects: controllability, quality, and dynamics.
Through extensive evaluation of 20 representative models,
including both open-source and closed-source ones, we
reveal key insights and challenges for each category of
models. Our dataset, evaluation code, and leaderboard
can be found at https://haoyi-duan.github.io/
WorldScore/.

1. Introduction
Recent advances in visual generation have sparked grow-
ing interest in world generation—the creation of large-scale,
diverse worlds with various scenes, which finds wide applica-
tions in entertainment, education, simulation, and embodied
AI. The rapid progress in video generation [1, 6, 10, 88],
3D scene generation [11, 16, 90, 91], and 4D scene genera-
tion [3, 85, 89] has shown generating high-quality individual
scenes, demonstrating the potential of these models as world
generation systems. However, as the concept of world gener-
ation expands, users demand to generate more comprehen-
sive worlds that seamlessly integrate multiple varied scenes
with detailed spatial layout controls rather than disconnected
individual environments.

Achieving this vision requires a unified evaluation bench-
mark that systematically assesses different types of world
generation models across large-scale, diverse worlds, which
is currently absent. Existing benchmarks mainly focus on
video generation [15, 45, 46, 48, 92] and evaluate only indi-
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Figure 1. While existing video benchmarks like VBench [26]
rate Models A and B similarly based on single-scene video qual-
ity, our WorldScore benchmark differentiates their world gen-
eration capabilities by identifying that Model B fails to gener-
ate a new scene or follow the instructed camera movement. In
https://haoyi-duan.github.io/WorldScore/, we
show the videos to explain our WorldScore metrics.

vidual scene generation. For example, VBench [26] primar-
ily evaluates text-to-video (T2V) tasks using curated prompts
without explicit spatial layout control, restricting their eval-
uations to single scenes (Figure 1). Moreover, despite the
promising potential of 3D and 4D scene generation methods
for world generation, current benchmarks lack essential com-
ponents such as camera specifications and reference images,
making them incompatible with many state-of-the-art 3D/4D
scene generation methods that require an image or a camera
trajectory as inputs [11, 16, 39, 90, 91].

We introduce WorldScore, a unified benchmark for world
generation. Our key design is to decompose world generation
into a sequence of next-scene generation tasks, where each
step is characterized by a triplet of (current scene,
next scene, layout). For unified evaluation across
different methods, we provide both an image and a text
prompt for a current scene, as well as both camera
matrices and a textual description for a layout specifi-
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Benchmark # Examples Multi-Scene Unified Long Seq. Image Cond. Multi-Style Camera Ctrl. 3D Consist.

TC-Bench [15] 150 ✁ ✁ ✁ ✂ ✁ ✁ ✁
EvalCrafter [45] 700 ✁ ✁ ✁ ✁ ✁ ✁ ✁
FETV [46] 619 ✁ ✁ ✁ ✁ ✁ ✁ ✁
VBench [26] 800 ✁ ✁ ✁ ✁ ✁ ✁ ✁
T2V-CompBench [71] 700 ✁ ✁ ✁ ✁ ✁ ✁ ✁
Meng et al. [48] 160 ✁ ✁ ✁ ✁ ✁ ✁ ✁
Wang et al. [78] 423 ✁ ✁ ✂ ✁ ✁ ✁ ✁
ChronoMagic-Bench [92] 1649 ✁ ✁ ✁ ✁ ✁ ✁ ✁
WorldModelBench [40] 350 ✁ ✁ ✁ ✂ ✁ ✁ ✁
WorldScore (Ours) 3000 ✂ ✂ ✂ ✂ ✂ ✂ ✂

Table 1. Comparison of Benchmarks. Our WorldScore benchmark is designed to evaluate various world generation approaches including
3D, 4D, I2V and T2V models. It is designed to generate multiple scenes with varying sequence lengths. Our benchmark also features
multiple visual styles, accurate camera control evaluation, and 3D consistency evaluation, all of which are important factors in world
generation yet currently missing in existing benchmarks.

cation. This design allows our WorldScore benchmark to
evaluate various approaches including 3D, 4D, text-to-video,
and image-to-video models on large-scale world generation.
All methods are evaluated on a common output format, i.e.,
rendered or generated videos, to enable direct comparison
of generation across different types of approaches.

Our evaluation metric, WorldScore, is computed by ag-
gregating three key aspects: controllability, which measures
the adherence of the generated worlds w.r.t. control inputs;
quality, which measures the fidelity and consistency; dynam-
ics, which measures how much the generated worlds exhibit
accurate and stable motions. Each of these aspects comprises
a few distinct metrics, leading to a total of 10 metrics that
contribute to computing the WorldScore.

To enable a comprehensive assessment, we curate a di-
verse dataset covering both static and dynamic world gener-
ation scenarios across different visual domains. For static
worlds, we include 5 categories of indoor scenes and 5 cat-
egories of outdoor scenes with varying sequence lengths.
For dynamic worlds, we include 5 distinct types of dynam-
ics such as rigid motion and fluid motion. Additionally,
each example in our dataset has a corresponding stylized
counterpart sampled from a rich set of candidate styles, al-
lowing the evaluation of various visual domains. In total, our
dataset comprises 3000 high-quality test examples that span
indoor/outdoor environments and photorealistic/stylized vi-
sual domains.

We conduct extensive experiments by evaluating 20 di-
verse models, including 6 image-to-video models (with 2
leading closed-source models), 7 text-to-video models, 6 3D
scene generation models, and a 4D generation model. In
summary, our contributions are fourfold:
• We propose the first world generation benchmark, World-

Score, which allows unified evaluation across various ap-
proaches including 3D, 4D, I2V, and T2V models.

• We curate a high-quality, diverse dataset for our bench-
mark evaluation. Our dataset covers diverse static and

dynamic scenes across various categories with multiple
visual styles.

• We introduce the WorldScore metrics, which aggregate
critical aspects in world generation model performances,
including controllability, quality, and dynamics.

• Through the comprehensive evaluation of 18 open-source
and 2 closed-source models, we reveal key insights and
challenges in current world generation approaches, provid-
ing valuable guidance for future research.

2. Related Work

Video generation benchmarks. The progress of both open-
source [1, 10, 84, 88] and closed-source [2, 6, 20, 58] video
generation models has stimulated the proposal of numer-
ous benchmarks [15, 26, 45, 46, 48, 92]. However, most
existing benchmarks, such as VBench [26] and WorldMod-
elBench [40], focus on evaluating video generation models
based on single-scene video quality without layout control
and multi-scene generation. Furthermore, their designs are
incompatible with 3D/4D scene generation methods that
require camera specification. In contrast, our WorldScore
benchmark is designed to focus on evaluating world gener-
ation approaches with multi-scene generation tasks, and it
is designed to accommodate 3D, 4D, I2V and T2V models.
We show a detailed comparison in Table 1.

Video generation models. Recent advances in image gener-
ation, including VAEs [36], GANs [5, 18, 30–33, 49], VQ
approaches [13, 73], and Diffusion models [23, 52, 68, 70],
have fueled explorations in video generation [25, 47, 65,
76, 77]. The advent of Sora [6] has further demonstrated
the potential of video models as world generation mod-
els [29, 48, 83]. While most recent models focus on text-
to-video (T2V) generation [9, 10, 14, 41], developments in
image-to-video (I2V) [1, 84, 86, 88, 97] have also been sig-
nificant. In our WorldScore benchmark, we evaluate both
T2V and I2V models as world generation approaches, thanks
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Figure 2. Overview of the WorldScore benchmark design. Top left: World generation is decomposed into a sequence of next-scene
generation tasks, where each step follows a structured world specification defining both spatial layout and semantic content. Bottom left: The
unified world specification is used to instruct different types of models, including video generation and 3D/4D generation models. Bottom
right: All models output videos for evaluation. Top right: Output videos are evaluated using the WorldScore metrics, which assess three
fundamental aspects including controllability, quality, and dynamics.

to our unified design that accommodates both image and text
conditioning strategies.
3D scene generation. Besides video models, our World-
Score benchmark also includes 3D and 4D generation meth-
ods. Recent 3D scene generation models rely mainly
on generative diffusion models [16, 90], which formulate
generating scenes in a sequential manner using supervi-
sion from 2D image outpainting models. These meth-
ods [11, 12, 24, 91] project the synthesized 2D scene exten-
sions into a 3D representation by leveraging depth estimation
models [4, 34, 37, 87].

To incorporate dynamics, 4D generation methods [39, 43,
56, 66, 95, 96, 96] further integrate multi-view and video dif-
fusion priors. Due to the difficulty of scene-level generation,
most of existing methods focus on object-level generation.
Nevertheless, we include 4D-fy [3] in our benchmark due to
its open-source accessibility.

3. The WorldScore Benchmark

Design overview. Our goal is to establish an evalua-
tion benchmark for world generation that unifies different
methodological approaches. Our WorldScore benchmark
introduces three key components: (1) a standardized world
specification, (2) a carefully curated dataset, and (3) multi-
faceted metrics. We show an overview in Figure 2. We
decompose world generation into a sequence of next-scene
generation tasks, where each step is defined by a world
specification encompassing both spatial layout and semantic
content (top left of Figure 2). This world specification en-
ables us to instruct different types of models ranging from
3D/4D scene generation to video generation approaches. The

generated outputs, standardized as videos (bottom right of
Figure 2), are then evaluated using the WorldScore metrics
(top right of Figure 2) that assess three critical aspects: con-
trollability, quality, and dynamics. This unified evaluation
approach ensures fair comparison across different method-
ological paradigms.

3.1. World Specification

Formulation. We decompose the world generation task into
a sequence of next-scene generation tasks, where each step
is specified by a triplet of (C,N ,L), where C = {I,P}
denotes the current scene given by a scene image I and a
text prompt P , N denotes the next-scene text prompt, and
L = {T ,Y} denotes the layout given by a camera trajectory
T = (C1,C2, · · · ,CN ) where Ci denotes a camera matrix
and a text prompt of camera movement Y . Then, a world
generation model is instructed to generate a video:

V = gworld(wproc(C,N ,L)), (1)

where V denotes a video, gworld denotes the world generation
model, and wproc denotes a model-specific pre-processing
which we detail in Supp. A.
Static and dynamic worlds. We explicitly disentangle the
evaluation of dynamics aspect from the controllability and
quality aspects due to their distinct natures. To this end, we
have two types of tasks:
Static world generation: We instruct a model to generate
varying-length scene sequences for controllability and qual-
ity assessment. Here, the next-scene text prompt N describes
the new scene contents, and the layout L describes large cam-
era movements.
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Figure 3. Showcasing of the current scene images. Top two rows: Static world generation examples are categorized into indoor (first row)
and outdoor (second row) scenes, each containing 5 categories. Bottom row: Dynamic world generation examples are divided into 5 motion
types. Each dynamic example comes with an annotation of motion mask that indicates where the motion should happen.

PhotorealisticDatasets Filtering

Style Set Prompt Text-to-Image

Captioning

Stylized

• Unsplash

• LHQ

…

• Quality

• Manual

…

“Yellow taxi in 

street …”

• Anime

• Ukiyo-E

…

“Anime. Yellow 

taxi in street …”

• Style control

• Prompt

Figure 4. Curation on the current scene C. Top: Photorealistic
worlds. Bottom: Stylized counterparts.

Dynamic world generation: We instruct a model to generate
in-scene motion for dynamics assessment. Here, the next-
scene text prompt N describes the same scene content as
C but with dynamics changes, e.g., an animal moving. The
layout L explicitly specifies a fixed camera position without
any camera motion.

3.2. Dataset Curation
Our dataset consists of 3000 examples (world specifications),
including 2000 for static world generation and 1000 for
dynamic world generation. We show a detailed statistics in
Table S4 in the supplementary material.
Curation on current scene C. The current scene C =
{I,P} is given by an image I and its text prompt P . We
show an illustration of our curation process in Figure 4.

For static world generation, we define 10 categories of
scenes including 5 indoor and 5 outdoor scene types. Then,
we source images from open-source scene datasets [8, 38, 42,
57, 62, 67, 69, 74, 98] and supplement with an online source,
Unsplash [7]. We apply a very rigorous filtering strategy to
ensure high quality and high diversity (Supp. B.1), leading
to approximately 5000 images I in photorealistic style (they
are either real photos or physically-based rendered images).
Then, we query a Vision-Language Model (VLM), GPT-
4o [51], to generate captions P for these images and do a
10-way classification to put each of them into a category.
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Figure 5. Curation on layouts L. Left: Camera paths T and text
Y . Right: A move-right example.

Finally, we further filter each category by keeping the first
100 highest-quality images, leading to 1000 images I and
their corresponding prompts P .

Then, we create a stylized counterpart for each example in
the photorealistic domain. For each example, we randomly
pick a style from a set of 7 style candidates, and create a
new text prompt P by adding the style text to the prompt
of the photorealistic example (Supp. B.2). Then, we lever-
age a commercial style-controlled text-to-image generation
model [55] to generate the stylized counterpart image I. We
show examples in the top two rows in Figure 3.

For dynamic world generation, we define 5 categories
of motion types and source Unsplash to manually curate
100 images for each of the category. We follow a similar
process as in the static world generation examples to create
text prompts and stylized counterpart, eventually leading to
a total of 1000 examples. We show examples in the bottom
row in Figure 3.
Curation on next-scene text prompts N . Each world gen-
eration consists of a sequence of next-scene generation tasks.
The next-scene text prompt N can have varying lengths. In
particular, we consider two cases: (1) a small world where
N consists of only one new scene, and (2) a large world
where N consists of three new scenes.

To generate coherent and contextually relevant scene se-
quences, we adopt an auto-regressive scene description gen-
eration process [90], that is, we instruct an LLM to generate
the next-scene text prompt that should be different from all
current scene text prompts. For example, for a small world,

N = LLM(J ,P), (2)

where the LLM takes two inputs: (1) the task specification
J = “Generate a scene description different from the past
scenes.” 1, and (2) a collection of past and current scene
descriptions. For a large world which consists of 4 scenes,
we repeat this process for 3 times, so that N = N1 +N2 +
N3 consists of three individual next-scene prompts. In our

1This is a brief summary of the actual prompt provided in Supp. B.3.

generation, 20% of our static world generation examples are
large worlds, and the others are small worlds.
Curation on layouts L. A layout L = {T ,Y} is given
by a camera trajectory T = (C1,C2, · · · ,CN ) and a text
prompt of camera movement Y . We curate a set of 8 camera
movements (left of Figure 5) which are widely used in movie
industry. This design achieves two objectives: Firstly, it
covers all spatial directions; secondly, it facilitates text-to-
video models to take the instruction Y as most of them
are trained on movie clips that often contain these camera
movement descriptions. These movements include both
intra-scene movements, such as moving into a scene, as well
as inter-scene transitions, such as pulling out the camera. For
each static scene generation example, we randomly assign
a layout L to a next-scene generation task. We show an
example in the right of Figure 5. When the assigned layout
is intra-scene, we perform a replacement of N with P .

We leave details of our dataset curation in Supp. B.

3.3. The WorldScore Metrics
Our WorldScore metrics include two overall scores:
WorldScore-Static which measures only the static world
generation capability, and WorldScore-Dynamic which mea-
sures dynamic world generation capability in addition to
static worlds. They are defined as the aggregation of several
individual metrics in the three key aspects: controllability,
quality, and dynamics. We briefly introduce each individual
metric in the following, and we leave details in Supp. C.
Controllability. We have three metrics.
Camera controllability: To evaluate how the models adhere
to the instructed layout L = {T ,Y}, we compute camera
errors as follows:

ecamera =
→
eω · et, (3)

where eω and et are scale-invariant rotation and translation
errors with respect to the ground truth trajectory T , respec-
tively. We compute camera errors across all the frames of
the generated video V. We leave more details in Supp. C.1.
Object controllability: We evaluate whether the objects spec-
ified in the next-scene prompt N appear in the generated
next scene. To this end, we measure the success rate of
object detection. Specifically, we leverage a state-of-the-
art open-set object detection model [44]. We extract one
or two individual object descriptions from the text prompt
N . We compute the success rate by matching the detected
objects with the object descriptions. This provides a quanti-
tative measure of how well the generated foreground objects
adheres to the world specification.
Content alignment: Besides the objects (which typically oc-
cupies approximately only 1

4 of the text prompt length), we
also assess whether the generated scenes are aligned with
the entire text N using CLIPScore [22].
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Next scene Good examples Bad examples

High 3D consistency: 92.88 Low 3D consistency: 0.00

High photometric consistency: 94.28 Low photometric consistency: 11.95

High motion accuracy: 100.00 Low motion accuracy: 0.00

“Seaside 
dining,

seagull”

“Octopus 
moves”

“Peaks,
clouds”

Figure 6. Typical examples. Top: 3D consistency. The bad example on the right-hand-side has a sudden change in geometry rather
than smooth transition. Middle: Photometric consistency. The bad example exhibits severe texture shift in the mountain grassland.
Bottom: Motion accuracy. In the good example, the octopus moves while the jellyfish remains static. For bad example on the right, the
jellyfish moves while the octopus remains static. A full version of all metrics is in Figure S3 and Figure S4 in supplementary material. In
https://haoyi-duan.github.io/WorldScore/, we show videos to explain our WorldScore metrics.

Quality. We have four metrics.
3D consistency: We evaluate the 3D consistency in the static
world videos. This metric focuses on how the geometry of
a scene remains stable across frames, regardless of slight
changes in visual textures. To this end, we use DROID-
SLAM [72], a standard SLAM method, to estimate dense
pixel-wise depth for each frame, and then we compute the
reprojection error between a pair of co-visible pixels in con-
secutive frames. Since DROID-SLAM is designed to be
robust against appearance changes, this metric measures ge-
ometric inconsistency. We show an example in Figure 6, and
we leave more details in Supp. C.2.
Photometric consistency: While 3D consistency exclusively
focuses on geometry, photometric consistency focuses on
appearance (e.g., textures). Many video generation models
struggle with maintaining consistent object textures, leading
to appearance inconsistency issues such as texture flickering.
Existing consistency metrics, such as those with CLIP or
DINO features [26, 27], focus on categorical identity but fail
to capture fine-grained texture changes. For example, the
mountain in the middle row of Figure 6 remains a mountain
(i.e., the same geometry and semantic class) across frames,
but the texture (grass) has been shifted and distorted over
time. This cannot be captured by CLIP/DINO features.

To detect photometric artifacts, our photometric consis-
tency metric estimates the optical flow between consecutive
frames and computes the Average End-Point Error (AEPE).
This metric effectively identifies unstable visual appearance,

as shown in Figure 6. We leave more details in Supp. C.3.
Style consistency: We evaluate the style consistency by com-
puting the differences (F-norm) between the Gram matri-
ces [17] of the first frame and the last frame of a single
next-scene generation task.
Subjective quality: We use automatic metrics to evaluate the
human perceptual quality of the generated scenes. There
exists some automatic image assessment metrics [82] and
aesthetic metrics [75], and thus we consider ensemble them.
To find a combination that best fits human perception, we per-
form a human study of 400 participants, enumerate different
metric combinations, and we pick the combination (CLIP-
IQA+ [75] with CLIP Aesthetic [63]) that best matches hu-
man preference. We leave more details in Supp. C.4.
Dynamics. We have three metrics.
Motion accuracy: Accurate motion placement is essential
in dynamics generation. For example, if a prompt specifies
that a car should move while nearby pedestrians remain still,
the model should animate the car, not the pedestrians. To
quantify this, we introduce motion accuracy, which measures
whether the motion specified in the next-scene prompt N
occurs in the designated regions. As shown in the bottom
row of Figure 6, the score is calculated by comparing optical
flow within the intended region with the flow outside the
region. We need to consider the outside flow as it cancels out
the global motion caused by unintended camera movements.
Motion magnitude: We measure a world generation model’s
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Models
WorldScore Controllability Quality Dynamics

-Static -Dynamic Camera
Ctrl

Object
Ctrl

Content
Align

3D
Consist

Photo
Consist

Style
Consist

Subjective
Qual

Motion
Acc

Motion
Mag

Motion
Smooth

Gen-3 [58] 60.71 57.58 29.47 62.92 50.49 68.31 87.09 62.82 63.85 54.53 27.48 68.87
Hailuo [20] 57.55 56.36 22.39 69.56 73.53 67.18 62.82 54.91 52.44 63.46 27.20 70.07

DynamiCrafter [84] 52.09 47.19 25.15 47.36 25.00 72.90 60.95 78.85 54.40 41.11 39.25 26.92
VideoCrafter1-T2V [9] 47.10 43.54 21.61 50.44 60.78 64.86 51.36 38.05 42.63 11.76 75.00 18.87
VideoCrafter1-I2V [9] 50.47 47.64 25.46 24.25 35.27 74.42 73.89 65.17 54.85 55.63 25.00 42.49
VideoCrafter2 [9] 52.57 47.49 28.92 39.07 72.46 65.14 61.85 43.79 56.74 47.12 30.40 29.39
T2V-Turbo [41] 45.65 40.20 27.80 30.68 69.14 38.72 34.84 49.65 68.74 34.87 40.09 7.48
EasyAnimate [86] 52.85 51.65 26.72 54.50 50.76 67.29 47.35 73.05 50.31 75.00 31.16 40.32
Allegro [97] 55.31 51.97 24.84 57.47 51.48 70.50 69.89 65.60 47.41 54.39 40.28 37.81
Vchitect-2.0 [14] 42.28 38.47 26.55 49.54 65.75 41.53 42.30 25.69 44.58 33.59 33.81 21.31
LTX-Video [19] 55.44 56.54 25.06 53.41 39.73 78.41 88.92 53.50 49.08 76.22 29.95 71.09
CogVideoX-T2V [88] 54.18 48.79 40.22 51.05 68.12 68.81 64.20 42.19 44.67 25.00 47.31 36.28
CogVideoX-I2V [88] 62.15 59.12 38.27 40.07 36.73 86.21 88.12 83.22 62.44 69.56 26.42 60.15

SceneScape [16] 50.73 35.51 84.99 47.44 28.64 76.54 62.88 21.85 32.75 0.00 0.00 0.00
Text2Room [24] 62.10 43.47 94.01 38.93 50.79 88.71 88.36 37.23 36.69 0.00 0.00 0.00
LucidDreamer [11] 70.40 49.28 88.93 41.18 75.00 90.37 90.20 48.10 58.99 0.00 0.00 0.00
WonderJourney [90] 63.75 44.63 84.60 37.10 35.54 80.60 79.03 62.82 66.56 0.00 0.00 0.00
InvisibleStitch [12] 61.12 42.78 93.20 36.51 29.53 88.51 89.19 32.37 58.50 0.00 0.00 0.00
WonderWorld [91] 72.69 50.88 92.98 51.76 71.25 86.87 85.56 70.57 49.81 0.00 0.00 0.00

4D-fy [3] 27.98 32.10 69.92 55.09 0.85 35.47 1.59 32.04 0.89 22.22 22.88 80.06

Table 2. WorldScore evaluation of 20 world generation models. Top: Close-source video models. Middle: Open-source video models.
Bottom two rows: 3D and 4D models. Abbreviations: Ctrl=Controllability, Align=Alignment, Consist=Consistency, Photo=Photometric,
Qual=Quality, Acc=Accuracy, Mag=Magnitude, Smooth=Smoothness.

ability to create large motions by estimating the optical flow
between the consecutive frames of the generated video.
Motion smoothness: Temporal jittering is a common failure
mode in dynamic world generation. We utilize a standard
video frame interpolation model [93] to generate smooth in-
terpolation as ground truth to evaluate the temporal smooth-
ness of generated videos V. We leave details in Supp. C.7.
Score normalization and aggregation. After computing in-
dividual evaluation metrics, we apply a linear normalization
and mapping process based on empirical bounds (Supp. C.8)
to ensure that the final scores fall within the range between
zero to one, and then we scale it by 100. Then, we com-
pute the arithmetic mean of the dimension scores within
control and quality aspects to obtain our WorldScore-Static.
Additionally, we further incorporate three dynamics dimen-
sion scores into the aggregation, resulting in WorldScore-
Dynamic. For 3D scene generation models that do not sup-
port dynamic tasks, we assign 0 to each dynamics metric.

4. Results

Validation. We validate our metrics by human study. Our
results suggest that WorldScore’s metrics align with human
preference, and WorldScore is robust to different video reso-
lutions and aspect ratios. We leave details in Supp. D.

Models. We evaluate 20 available world generation models
on our WorldScore benchmark. We assess 13 video gen-
eration models, including two leading commercial closed-
source I2V models—Gen-3 [58] and Hailuo [20], along with
7 well-known open-source I2V models: DynamiCrafter [84],
VideoCrafter1-I2V [9], VideoCrafter2 [10], EasyAni-
mate [86], CogVideoX-I2V [88], LTX-Video [19] and Al-
legro [97], and 4 open-source T2V models: VideoCrafter1-
T2V, T2v-Turbo [41], Vchitect-2.0 [14], and CogVideoX-
T2V. Additionally, we evaluate six well-known 3D scene
generation models: SceneScape [16], Text2Room [24], Lu-
cidDreamer [11], WonderJourney [90], InvisibleStitch [12],
and WonderWorld [91]. Moreover, we include an open-
source 4D generation model, 4D-fy [3]. We leave details of
these models in Table S1 in supplementary material.

4.1. Observations and Challenges
We show the WorldScore benchmark results in Table 2. We
identify key challenges in world generation:
3D models excel in static world generation. From the
WorldScore-Static results, we observe that 3D scene gen-
eration models generally perform better, e.g., Wonder-
World [91] (72.69) and LucidDreamer [11] (70.40) are the
top-2, much better than the best video model CogVideoX-
I2V [88] (62.15). This is because 3D models inherently have
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Figure 7. WorldScore-Static across different subdomains.

high camera controllability and, thus, better content align-
ment due to the larger space they can create, as well as high
3D and photometric consistency. However, they do not allow
for the generation of dynamic worlds. When extended to 4D
for dynamics, 4D-fy [3] does not perform well, likely due to
the intrinsic difficulty in 4D scene generation.

Video models lack camera controllability. Even
CogVideoX-T2V [88], the best video generation model in
camera controllability (40.22), scored much lower than any
3D/4D generation model. This is the main challenge for
video generation models to achieve good static world gener-
ation. Recent work in injecting camera conditioning [21, 81]
might be a promising solution.

The best open-source video models are as good as closed-
source video models. Comparing CogVideoX-I2V [88],
with Gen-3 and Hailuo [20], we observe that CogVideoX-
I2V scored even higher than both closed-source models in
both WorldScore-Static (62.15) and WorldScore-Dynamic

(59.12). However, CogVideoX-I2V is not better than them
in every aspect. For instance, we observe that CogVideoX-
I2V is better at camera controllability yet worse at object
controllability and content alignment.
Trade-offs in motion smoothness and magnitude. Com-
paring motion smoothness and motion magnitude metrics
for each method, we observe that larger motion often comes
at the cost of lower smoothness, revealing current challenge
for video models in maintaining both significant motion and
natural transitions.
Larger motion does not necessarily mean more accurate
motion placement. The correlation between the motion
magnitude and accuracy is weak. This implies that models
that can produce large motion do not guarantee correct mo-
tion placement to follow instructions. Instead, they could
hallucinate unintended camera motion or irrelevant motion.
More robust motion modeling may be needed to balance the
three dynamics metrics.
Video models are weak in long sequence generation and
in outdoor scenes. We further evaluate model performance
across different subdomains, and we show WorldScore-Static
results in Figure 7. We observe that video generation mod-
els struggle significantly with long-sequence (large world
generation) tasks. In addition, video models are significantly
weaker than 3D models in outdoor scenes, while the gap is
smaller in indoor scenes.
T2V models are easier to steer than I2V models. Com-
pare T2V models to I2V models, e.g., CogVideoX-T2V
and CogVideoX-I2V, we observe that T2V models generally
have higher scores in the controllability aspect and larger
motion magnitude, while I2V models have higher scores in
quality aspect. Through empirical examination, we find that
this is because T2V models are willing to generate larger
camera motion, while I2V models tend to stick to the input
image viewpoint. This reveals a challenging in controlling
I2V models to generate new scene contents. We leave further
visualizations in Supp. E.

5. Conclusion
The WorldScore benchmark reveals current limitations in
world generation approaches. For 3D models, while they
excel in static world generation, extending them to 4D repre-
sentations and incorporating dynamics remains challenging.
For video models, the main challenges include controllabil-
ity, long-sequence generation, and generating outdoor scenes.
These insights point to directions for future research: bridg-
ing the gap between 3D and 4D representations, developing
more robust controllability mechanisms, and designing ar-
chitectures capable of handling extended scene sequences.
We believe the WorldScore benchmark will serve as a valu-
able tool for measuring progress toward more capable and
versatile world generation systems.
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