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Abstract—In Manufacturing Industrial Internet, Deep Neu-
ral Networks (DNNs) are widely used to improve production
efficiency and quality via computation services. The resilience
of DNNs in inference tasks is easily affected by data quality,
computation pipeline, and cyber-physical layer of manufacturing.
To create a proactive-adaptive resilient Artificial Intelligence (AI)
models, it is important to predict the AI model performance
based on online streaming data, such as runtime metrics of
computation tasks. The class imbalance (i.e., a small percentage
of AI performance degradation under hazardous conditions)
and time-varying distribution are commonly encountered, which
makes the AI model performance prediction difficult. We propose
a contrastive ensemble active learning (ConEAL) framework that
couples a contrastive representation learner with a contextual-
bandit ensemble active-learning policy proposed in our earlier
work. The representation learning module standardizes predic-
tors and creates stochastic views for each sample to learn more
stable representation space. By employing a staged loss function
to train the encoder, the representation space adapts to the
data stream as new classes emerge. Based on the projected
representation, ConEAL ensembles different sampling agentsand
adaptively weights them with a composite reward in order to
acquire informative samples to reduce the annotation efforts.
Validation is performed based on an AI resilience experiment in
the Fog-Cloud Manufacturing Industrial Internet testbed, where
ConEAL achieves better prediction performance of abnormal AI
model performance than benchmark methods while requiring
fewer labeled samples.

Index Terms—AI resilience, anomaly detection, contrastive
learning, ensemble active learning, Manufacturing Industrial
Internet

I. INTRODUCTION

In Manufacturing Industrial Internet (MII), Deep Neural
Networks (DNNs) are increasingly deployed to improve pro-
duction efficiency and quality through computation services.
These services include quality inspection, predictive mainte-
nance, and process optimization, all of which depend on low-
latency inference and continuous sensing [1]. However, the
resilience of DNNs in such environments is easily affected
by hazardous from multiple layers: noisy and incomplete
input data, instability and singularity in computation pipelines,
and failures in the cyber–physical infrastructure [2]. When
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resilience of AI models is compromised, manufacturing perfor-
mance may degrade, leading to incorrect decisions and system-
level risks.

Resilience in industrial AI systems should not be lim-
ited to detecting anomalies after they occur. Instead, proac-
tive–adaptive resilience is required: the capability to predict
the performance of AI models in inference tasks (e.g., the
deployment stage of AI models after training) in advance and
adapt accordingly. Such prediction based on online streaming
data (e.g., runtime computation metrics) enables timely inter-
vention and adjustment to sustain reliable operation. Without
this forward-looking capacity, conventional AI systems remain
reactive, providing only delayed warnings that may come too
late to prevent costly disruptions in manufacturing. There-
fore, building proactive–adaptive resilience, i.e., the ability
to predict potential AI performance degradation and adapt to
changing conditions, is critical for resilient manufacturing AI
systems.

As shown in Fig. 1, manufacturing computation services
are deployed in a fog–cloud architecture, where AI models
are executed on distributed fog nodes coordinated by the
cloud. The AI pipelines process raw data streams and return
inference results that are used for decision-making in real time.
Meanwhile, the runtime metrics which record the operation
status of each computation node such as CPU and memory
utilization, download and upload bandwidths etc., [3] are col-
lected to monitor the resilience of the AI system. However, the
collected runtime metrics are inevitably affected by multiple
hazards. These hazards contain data-level issues such as noisy
data, shifting distribution, imbalanced class distribution, which
directly reduce the quality of the features provided to the AI
pipeline. In addition, there also exist system-level failures at
the fog or communication layer. These potential failures hinder
the reliable execution of inference tasks. Together, they create
noisy, imbalanced, and time-varying data streams that cause
the AI models to degrade into low-performance states. More-
over, because anomaly detection modules cannot proactively
adapt to these conditions, the system often fails to provide
early warnings, highlighting the need for resilience-oriented
learning frameworks. Contrastive Learning (CL) [4] offers a
promising direction, as it can build robust representations from



Fig. 1. Challenges of AI resilience in a Manufacturing Industrial Internet. AI pipelines are deployed on distributed fog nodes, where the performance metrics
and runtime metrics are generated and collected during the inference tasks. However, these metrics are often affected by unexpected hazards such as noisy
data, shifting distribution, and imbalanced class distribution, which can lead to degraded AI models with poor anomaly detection ability. Red crosses on the
dataset icons indicate the impact of these unexpected hazards on both performance metrics and runtime metrics.

normal-only data and adaptively refine them once anomalies
appear, thereby supporting more reliable prediction of AI
performance under such streaming hazards.

To overcome the challenges of data imbalance, time-
varying distribution, and one-class initialization, we pro-
pose a contrastive-learning–enhanced ensemble active-learning
(ConEAL) framework. Firstly, we build a contrastive repre-
sentation learner. The encoder standardizes predictors, creates
two stochastic views per instance to introduce perturbations
that encourage invariance, so that a robust representation space
can be learned with missing data. Then, it is trained with a
staged loss function to progressively adapt the representation
space as new classes emerge. During the one-class initial-
ization phase (i.e., the first stage), unsupervised contrastive
learning is employed to extract invariant and robust feature
representations without requiring abnormal samples. When
abnormal classes emerge (i.e., the second stage), contrastive
signals are incorporated to transform the representation space,
thereby making anomalies more distinguishable and enhancing
downstream classification performance. Furthermore, based on
the proposed Ensemble Active Learning by Contextual Bandits
(CBEAL) [5], we design a novel composite reward function
that adaptively tunes the weights of integrated active learning
agents, This enables the framework to acquire streaming data
more efficiently and improve the overall predictive resilience.

We validated the performance of the proposed ConEAL on
a dataset collected from an AI system in MII testbed [3].
ConEAL achieves higher Macro-F1 scores with fewer labeled
samples, directly enhancing resilience in streaming MII set-
tings, rather than relying on exhaustive annotations.

The remainder of this paper is organized as follows. Section
II summarizes the related work. Section III introduces the pro-
posed ConEAL method. The methodology is further validated
by a real MII case study in Section IV. Finally, the conclusions
and future work are discussed in Section V.

II. RELATED WORK

A. AI Computation System

In the MII, AI methods, particularly DNNs, are widely
adopted for tasks such as quality modeling and virtual inspec-
tion [6]. These models learn informative representations from
complex industrial data, thereby enhancing product quality,
improving production efficiency, and lowering operational
costs [7]. As a result, AI computation systems have become
essential to manufacturing processes and decision-making
chains [8].

The AI computation systems operate in highly dynamic
and uncertain environments, where data may contain noise,
missing values, and distribution shifts [3]. In addition, AI
pipelines are vulnerable to singularity, while computation and
communication infrastructures can experience node crashes,
latency, or instability [2]. These challenges make it critical
to ensure that AI computation systems remain uninterrupted
under such complex conditions.

B. Anomaly Prediction and AI Resilience

To address the reliability challenges of AI computation
systems in complex environments, the concept of AI resilience
has become essential to ensuring stable operation in the MII.
The prediction of abnormal AI model performance serves as a
key mechanism to enhance AI resilience, as it enables the AI
system to detect early signs of abnormal behavior and initiate
timely interventions before severe performance degradation
occurs [9]–[11].

Existing methods for anomaly prediction include supervised
classification models and deep learning techniques. For ex-
ample, supervised models such as Random Forest classifiers
have been successfully applied to network anomaly prediction,
achieving a great performance improvement in real-world
traffic datasets [12]. For deep learning methods, autoencoder-
based approaches are widely used in industrial monitoring
study employs an autoencoder to model normal multimodal
sensor behavior and uses reconstruction error thresholds to



detect anomalies in cooling systems [13]. However, these
approaches face several limitations. Most of approaches rely
heavily on large amounts of labeled anomaly data, which is
often scarce in real-world settings. They also suffer from data
imbalance, making it difficult for them to generalize well in
real-world scenarios.

C. Contrastive Learning

In recent years, contrastive learning has been applied to
address class imbalance in various modeling tasks by im-
proving the representation of minority classes [14]–[16]. For
example, in medical image segmentation, contrastive learning
has been used to minimize intra-class distance and maximize
inter-class separation, enabling clearer clustering of minority
samples in the feature space [17]. The BaCon method targets
imbalanced semi-supervised learning by designing contrastive
objectives at the feature level and incorporating class centers
with temperature scaling to mitigate pseudo-label bias [18].
ResCom introduces a class-balanced contrastive loss with a
Siamese queue and hard pair mining strategy to improve
discrimination under long-tailed distributions [19].

Given its ability to learn robust representations under class
imbalance, contrastive learning holds strong potential for AI
system anomaly prediction. In real-world manufacturing en-
vironments, abnormal system states are often rare and un-
derrepresented. By leveraging contrastive objectives to model
the differences between normal and abnormal states, we can
enhance the AI system’s ability to recognize subtle deviations
before explicit failures occur. Unlike traditional approaches
that rely on extensive labeled anomaly data or fixed thresholds,
contrastive learning provides a more flexible and data-efficient
solution. This makes contrastive learning a promising solution
for early and accurate anomaly prediction in AI systems,
especially when labeled anomaly data is extremely scarce.

III. PROPOSED METHODOLOGY

We propose a ConEAL framework that learns a representa-
tive space with discriminative and structure-aware capabilities
via contrastive learning, on which an ensemble active learn-
ing model is developed to efficiently and effectively select
informative samples from the full dataset to improve modeling
performance.

The overview of the proposed method is shown in Fig.
2. Consider the online data annotation scenario with a raw
data Xt collected by sensors or computation logs at time
t, t = 1, 2, . . . , T . In Xt, there are multivariate time series
data including runtime metrics and computation records of
varying length, together with tabular outputs describing the
learning performance of deployed AI pipelines. The feature
space combines static process variables with window-level
summaries of time series measurements: raw streams are seg-
mented into windows and converted into statistical descriptors
(e.g., mean, standard deviation, skewness, kurtosis). After pre-
processing and alignment, features are retained as tabular
inputs xt for the base learner ft. Here we define the inputs
xt as predictors. The streaming data are first encoded by

the proposed contrastive learning module, where the encoder
ft extracts latent representations ht and the projection head
gϕ maps them into normalized embeddings zt for contrastive
optimization. Once pretrained, the base learner outputs class
probability vector Pf (ŷt | Dt) serve as the representation for
downstream prediction.

These predictions are then passed to a set of heterogeneous
active learning agents AG1, AG2, . . . , AGQ. Each agent pro-
duces an acquisition decision based on its own sampling cri-
terion. Their outputs are aggregated into a weighted ensemble
decision vector, where the agent weights α1,t, α2,t, . . . , αQ,t

are adaptively updated using the Exp4.P-EWMA strategy
according to the reward rt received from annotation feedback
[5]. If the ensemble decision accepts the sample, the true
label yt is queried from the annotator; otherwise the sample is
discarded without annotation. However, if the labeled pool has
already reached the budget B, additional samples are rejected
even if they were selected by the ensemble. This ensures that
annotation costs remain bounded while focusing effort on the
most informative instances.

We assume that the classification problem has c classes,
and yt ∈ C = {0, 1} is the label of the sample
xt. Denote the labeled data pool at time t as Dt =
(x1, y1), (x2, y2), ..., (xmt , ymt) with |Dt| = mt. The base
learner f0 is first trained by initial dataset D0. To develop
the active learning agents for ConEAL framework, we make
some assumptions: (i) The sample size of the initial training
set D0 is not large enough to guarantee satisfactory modeling
performance and the samples in D0 are all from normal
class. (ii) The streaming data have highly imbalanced class
distribution. (iii) There is an unlabeled sample xt in the stream
data at each time stamp without a cost. (iv) Human annotators
can provide the error-free, accurate anotations of a sample xt

if the model decides to acquire it. (v) The base learner ft will
be online updated (i.e., online machine learning) whenever
acquiring certain number (po) of samples.

A. Contrastive Learning Representation Framework

A contrastive learning framework is tailored to stream
multivariate data for binary detection. The previous assump-
tion is that we have 2 classes. The core idea of contrastive
learning is to learn a representation space by enforcing samples
from the same instance (i.e., positive pairs) to be mapped
closer together, while pushing the representations of different
instances (i.e., negative pairs) apart [4]. This property makes
contrastive learning especially useful in scenarios with limited
labels or missing classes, since the model can first learn a
general representation space from unlabeled data and later
adapt to specific classes when labels become available.

Specifically, we firstly standardize inputs and generate two
stochastic views per instance via elementwise masking and
small Gaussian noise. Then, we pretrain each view with a
lightweight multilayer perceptron (MLP) [20] encoder and a
non-linear projection head with ℓ2-normalized outputs. During
the pretraining stage, both the encoder and a projection head
are jointly optimized with contrastive objectives and we adopt



Fig. 2. Overview of the proposed ConEAL framework. During the one-class initialization phase, the streaming data are standardized and augmented with
stochastic views by the encoders, and then projected to a representation space by contrastive learning as the pretraining process. In the online training phase,
the streaming data are encoded and projected with encoders and projector heads to the informative representation space and then selectively annotated by
Ensemble Active Learning by Contextual Bandits (CBEAL) [5] with a novel reward function adaptively tuning the sampling strategy to the data stream with
imbalanced classs and shifting distribution.

a staged training strategy: (i) When only a single class has been
observed, we pretrain with an unsupervised NT-Xent loss [21].
This contrastive loss constructs positive pairs from different
stochastic views of the same instance and treats other instances
as negatives, thereby encouraging the model to learn invari-
ant and discriminative representations without requiring class
labels. Such pretraining is particularly suitable for the normal
data initialization phase in streaming settings, as it allows the
model to exploit structural information from unlabeled data.
(ii) Once more classes are available, we switch to a margin
triplet loss constructed across classes [22], which explicitly
enforces inter-class separability by pulling samples of the
same class closer while pushing apart samples from different
classes. This staged design ensures that the representation
space is robustly created under limited supervision and then
progressively refined for class-discriminative prediction as
more abnormal samples emerge. After pretraining is completed
, the projection head is discarded, and a class-balanced logistic
classifier is trained on the frozen encoder representation.

Through enforcing invariance across augmented views, this
procedure yields representations that are robust to noisy
features, stabilizing downstream decision boundaries. Since

staged contrastive objectives will progressively incorporate
new abnormal classes, the learned latent space becomes more
class-separable, with intra-class samples clustered tightly and
inter-class samples pushed farther apart, so that a simple linear
head suffices under limited labels.

1) Preliminaries and Notation: Let x ∈ Rd denote the
predictors of a training sample. We first standardize features

x̃ = diag(σ)−1
(
x− µ

)
, (1)

where µ is the feature-wise mean vector and σ is the feature-
wise standard deviation matrix. Then, two stochastic views are
generated by a light-weight augmentation for tabular data:

t(x̃) = m⊙ x̃+ϵ, m∼Bernoulli(p)d, ϵ∼N (0, σ2
nI), (2)

where ⊙ denotes elementwise product. Eq. (2) implements
random feature dropout and small Gaussian noise. p is the
keep probability that controls the masking strength in the
stochastic view generation step. This sugmentation mimics
label missingness and acquisition perturbations in streams.
By considering these scenarios in the framework, it improves
the robustness of the learned representation via contrastive
learning.



2) Encoder and Projection Head: We use a two-layer MLP
encoder fθ : Rd→R128 to produce a representation

h = fθ
(
t(x̃)

)
. (3)

The encoder output dimension is set to 128, following com-
mon practice in contrastive learning frameworks [4], which
balances representation capacity and computational efficiency.
The non-linear projection head gϕ : R128 → RP further
maps h into a P dimensional latent space for contrastive
training, where P is a tunable hyperparameter used only
during pretraining and discarded afterward. To ensure that
similarity is measured only by angular distance and not by
vector magnitude, the output is further normalized by the ℓ2
norm:

z = gϕ(h), z̄ =
z

∥z∥2
. (4)

This normalization step projects z onto the unit hypersphere,
which is standard in contrastive learning frameworks [4], and
facilitates stable training with cosine similarity. As observed
by SimCLR [4], the contrastive objective on a small non-linear
head improves the quality of the representation h used for
downstream tasks.

3) Contrastive Loss Function: When only a single class
has been observed, we optimize the unsupervised NT-Xent
contrastive loss [21] to exploit invariances across augmented
views of the same sample. Once both normal and abnormal
classes appear, we switch to a margin-based triplet loss [22] in
the encoder space to explicitly enforce inter-class separability.
These two losses are grouped as subequations of Eq. (5).

ℓi,j = − log
exp

(
s(z̄i, z̄j)/τ

)∑2N
k=1 1[k ̸= i] exp

(
s(z̄i, z̄k)/τ

) . (5a)

LCL =
1

2U

U∑
u=1

(ℓ2u−1,2u + ℓ2u,2u−1) . (5b)

L(i)
tri = max

{
0, ∥hi − hp∥22 − ∥hi − hn∥22 +m

}
. (5c)

Ltri =
1

|T |
∑

(i,p,n)∈T

L(i)
tri . (5d)

Eq. 5a computes the log-softmax contrastive objective.
Given a positive pair (i, j), the cosine similarity s(z̄i, z̄j) is
contrasted against similarities with all other 2N − 1 negatives
in the batch. The temperature τ > 0 scales the logits.

Eq. 5b averages ℓi,j across U unsupervised pairs, ensuring
that different augmented views of the same instance are pulled
together while pushing apart different instances. This stage is
suitable for normal-only initialization, as it does not require
class labels.

Eq. 5c compares an anchor i with a positive p (i.e., same
class) and a negative n (i.e., different class). Triplets are
formed across classes in the encoder space h: for an anchor i
of class C ∈ {0, 1}, the positive p is sampled from the same
class and the negative n from the other class, i.e., i, p ∈ DC

and n ∈ Dc
C . By enforcing a margin m > 0, the encoder learns

to keep same-class representations closer than different-class
ones by at least m in Euclidean space.

Eq. 5d averages across all sampled triplets T . T is triplet
participating in loss summation, which consists of i, p and n.
This stage becomes active once abnormal classes appear, refin-
ing the representation space to achieve class-level separability
[22].

So the loss function for our contrastive learning presentation
can be written as:

L =

{
LCL, |Cobs| < 2,

Ltri, |Cobs| ≥ 2,
(6)

where Cobs is the set of classes observed up to the current
time instance.

4) Classification and Evaluation: The downstream task in
our setting is binary anomaly detection of AI performance
states, where the objective is to distinguish between normal
inference (i.e., the AI model delivers predictions within the
expected performance range) and abnormal or degraded in-
ference (i.e., the AI model exhibits performance deterioration
due to hazardous conditions) in streaming industrial data. After
pretraining, the projection head gϕ is discarded because it is
introduced only to facilitate contrastive learning by shaping the
representation space; it does not contribute to the downstream
prediction. Instead, a linear classifier is trained on the frozen
encoder representation h to perform the anomaly detection
task. This setup evaluates whether the learned representations
are sufficiently robust and separable to support reliable clas-
sification under limited labeled data. The base learner output
p(y=C | h) ∈ Pf (ŷt | Dt), C = {0, 1} thus become the input
to the next Section B, where it is further integrated with active
learning for efficient annotation. We adopt a multinomial
logistic regression (softmax) linear classifier [23] for anomaly
detection:

p(y=C | h) = exp(w⊤
Ch+ bC)∑1

r=0 exp(w
⊤
r h+ br)

, C = {0, 1},

min
W,b

E

[
−

1∑
C=0

yC log p(y=C | h)

]
,

(7)

where W = [w0,w1] is the weight matrix of the classifier,
b = [b0, b1] is the bias vector, and yC is the one-hot target.

B. Ensemble Active Learning Model

After we obtain the predicted probability Pf (ŷ | Dt)
through the proposed staged contrastive learning framework,
the next challenge is to effectively utilize limited annotation
resources in the streaming setting. Although the representation
space already improves class separability and robustness,
accurate prediction of AI model performance still depends
on selectively labeling informative samples under class im-
balance and budget constraints. To address this, we integrate
an ensemble active learning framework [5] that builds on
predicted probability Pf as the input feature representation



Algorithm 1 Implementation of ConEAL
1: Input: set of agents AG1, AG2, . . . , AGQ, f0, D0, B, S
2: Initialize: t = 0, remaining budget = B, S = 0
3: while remaining budget > 0 do
4: if at = 1 then
5: Acquire yt, Dt+1 = Dt ∪ (xt, yt)
6: S = S + 1
7: B = B - 1
8: if S = po then
9: Train the base learner ft+1 ← Dt+1

10: S = 0
11: end if
12: else
13: Dt+1 = Dt, ft+1 = ft
14: end if
15: Update AG1, AG2, . . . , AGQ, t = t+ 1
16: end while
17: Output: Dt+1, ft+1

and adaptively queries samples from the data stream for
annotation.

As summarized in Algorithm 1, ConEAL follows the idea
of [5] by integrating multiple acquisition agents and adaptively
weighting their contributions. The base learner f0 is first
trained by initial dataset D0. At time t, the incoming sample
xt is evaluated by a base learner ft trained with dataset Dt

to obtain the predicted label and class probabilities. Each
agent AGi then provides a sample annotation decision to
update the prediction model, and these decisions are combined
into a weighted ensemble vote. If the sample is selected for
annotation, its ground-truth label yt is acquired, and a reward
rt is computed. The ensemble weights αi,t are updated online
using the Exp4.P-EWMA strategy [5], balancing short-term
performance with long-term exploration . This design enables
ConEAL to leverage the strengths of different agents, improve
label efficiency, and achieve higher cumulative rewards than
individual acquisition strategies.

1) Reward Function: The reward function is designed to
better classify potential valuable samples. At time t, the reward
rt will only be received when ConEAL decides to annotate the
samples. Otherwise, the reward will be zero.

We design a bounded, composite reward that integrates
multiple components tailored to streaming active learning: (i) it
supplies a low-variance global signal by evaluating predictive
quality (e.g., Macro-F1 score) on a validation set consisting
of the most recent W annotated samples; (ii) it explicitly
incentivizes the discovery of samples from previously un-
seen classes—particularly first-time abnormal states in the bi-
nary classification of normal vs. abnormal inference—thereby
preventing the acquisition strategy from collapsing into the
majority (i.e., normal) class; (iii) it discourages redundant
queries by penalizing instances that the model already predicts
with high confidence or correctly, so that annotation resources
are concentrated on error-prone regions near the decision
boundary; and (iv) it counteracts class imbalance by granting a

small bonus to abnormal samples when the estimated abnormal
rate is low, improving recall and boundary calibration. This
composite design provides a reward signal that is both stable
and responsive, making it well-suited for budget-constrained,
streaming active learning in industrial AI settings.

The total reward rt at time t is defined as a bounded
weighted sum:

rt = wf1 r
f1
t + wpred r

pred
t + wexp r

exp
t + wrare r

rare
t , (8)

where wf1, wpred, wexp, wrare ≥ 0 and wf1 + wpred + wexp +
wrare = 1. The weights are treated as tunable hyperparameters,
initialized following prior work and further selected via grid
search based on empirical performance in our experiments.

The first term supplies a low-variance, global learning signal
by evaluating the model on a validation set including the most
recent W annotated samples using the Macro-F1 score. Be-
cause Macro-F1 score simultaneously penalizes false positives
and false negatives, it is well-suited for imbalanced binary
monitoring, where accuracy alone may be misleading [24].
The second component explicitly incentivizes early discovery
of previously unseen class occurrences so that the policy does
not collapse onto the normal class in the cold-start phase.
Implementation maintains a set Dt of observed classes; when
yt ̸∈ Dt, a one-time exploration bonus is issued and the class
is added to Dt to avoid repeated triggering.

The third sample-level term directs annotation budget to-
ward regions where the model is currently weak:

rpredt =

{
ρ+, ŷt ̸= yt,

ρ−, ŷt = yt,
(9)

where ρ+ > 0 encourages querying informative mistakes
and ρ− < 0 discourages redundant annotations on correct
predictions. If the current sample has been already predicted
correctly or with high certainty, the term contributes a negative
value, signaling a low marginal value for querying; if the
prediction is incorrect, it contributes a positive value, reflecting
expected information gain. Thus, it rapidly sharpens the deci-
sion boundary by prioritizing uncertain or error-prone samples
while suppressing repeated labels in saturated regions.

For the last term, we maintain an estimate of the abnormal
rate q+ ∈ [0, 1]. When the estimated abnormal rate q+ is low,
those samples typically carry higher operational value and are
underrepresented; this term grants a small bonus if the current
instance is abnormal and q+ falls below a threshold τ . These
agents supplement the ensemble and allow the overall policy
to balance global utility, local exploration, and robustness to
imbalance.

2) Sampling Agents: In addition to the reward-driven en-
semble policy, ConEAL incorporates two agents: the Low-
Density Exploration Agent and the Reinforced Active Learn-
ing Agent. Following the design in [5], the low-density explo-
ration agent (LD-agent) [25] promotes sampling in underrepre-
sented regions of the feature space, and the reinforced active
learning agent (RAL-agent) [26] adaptively adjusts decision
thresholds based on online rewards from the prediction. These



Algorithm 2 Low-density Based Exploration Agent
1: Input: xt, W , L, D0, δL
2: Calculate Isf(xt)
3: for j = 1, 2, . . . , L do
4: if d(xi,xj) > MaxDist(xj ,W) then
5: MaxDist(xj ,W)← d(xi,xj)
6: end if
7: end for
8: Output: Acquisition probability pt =

Isf(xt)

L · δL
9: if |W| > L then

10: W ←W \ {xt−L}
11: end if
12: W ←W ∪ {xt}

two agents complement uncertainty-based strategies by diver-
sifying acquisition decisions and sharpening class boundaries
online, which balance the trade-off between exploration and
exploitation. We follow the parameterization in [5], where the
LD-agent uses a fixed window size and sparsity ratio and the
RAL-agent updates a certainty threshold with a small learning
rate, and we further adjust these values empirically for stable
convergence in streaming experiments.

3) Low-density Based Agent: This agent adopts a density-
based criterion and encourages model to explore the input
variable space [27]. It will encourage the model to label data
around the cluster boundary such that new clusters will be
discovered by annotating samples lying in a sparse region with
low density. We apply the idea in [25] to build our agent.

Let W be a first-in–first-out window that stores the L
most recent observations, and let d(·, ·) denote a distance
metric on the sample space. Define the function MaxDist
by MaxDist(xj ,W) = maxxℓ∈W d(xj ,xℓ), i.e., the largest
distance from xj to any element in W . To approximate the
local density around an incoming sample, we quantify its low-
density for a candidate point xi as the number of items in W
for which xi is farther than their current farthest neighbor, as
follows:

Isf(xi) =
∑

xj∈W
I{MaxDist(xj ,W) < d(xi,xj) } . (10)

Algorithm 2 outlines the procedure for preferring points
in sparse regions. When a streaming instance xt arrives,
the low-density agent first computes the local sparsity score
Isf(xt) and converts it into the acquisition probability pt. After
making the decision, both the sliding bufferW and the cached
maximum of pairwise distances MaxDist(·,W) are refreshed.
The window length L and the sparsity fraction δL are tunable
hyperparameters that govern the aggressiveness of exploration
and thus the scale of pt.

4) Reinforced Active Learning Agent: To refine the classi-
fier’s decision boundary, the reinforced active learning agent
preferentially queries instances whose class assignment is
ambiguous [28], [29]. Following the idea in [26], we cast

Algorithm 3 Reinforced Active Learning Agent
1: Input: xt, θ0, η, penalty
2: if c(xt) < θt then
3: pt ← 1 {acquire the sample and obtain the reward

rt}
4: Update the certainty threshold θt+1 ← min

{
θt
(
1 +

η(1− 2 rt/penalty)
)
, 1
}

5: else
6: pt ← 0
7: end if
8: Output: Acquisition probability pt

TABLE I
EXPERIMENT FACTORS IN MANUFACTURING INDUSTRIAL INTERNET

TESTBED DATA [3]

Factors Definitions Levels

A % of Sensors Contaminated or Failed 3
B S/N ratio 2
C Distribution Changes of Input Variables 3
D Balanceness 3
E # of Singular Pipelines 3
F # of Fog Node Failures 3
G # of Communication Channel Failures 3

the acquisition rule as a reinforcement-learning (RL) control
problem: the policy is an adaptive threshold on predictive
certainty. An RL controller adjusts a certainty threshold θ by
leveraging feedback from past acquisition outcomes. Specifi-
cally, when a sample xt arrives, the base learner ft produces
c(xt) = maxk P

f (ŷ = k | xt), and the agent requests a label
if c(xt) < θt; otherwise it skips. If a query is made, a scalar
reward rt is observed, after which the threshold is updated as:

θt+1 = min
{
θt

(
1 + η ·

(
1− 2 rt/penalty

))
, 1

}
. (11)

Algorithm 3 presents the procedure for the reinforcement-
driven active learning agent. When a positive reward is
observed, it produces a policy that adapts to the decision
boundary learned by the base learner.

IV. CASE STUDY

We evaluate the efficiency and effectiveness of ConEAL
based on a dataset from AI inference tasks in a Fog–Cloud
MII testbed [3]. The infrastructure consists of five Raspberry
Pi fog nodes and a centralized Cloud server that functions
both as an orchestrator and as an additional computation node.
From the collected runtime and performance metrics, ConEAL
derives feature representations and addresses a classification
task aimed at identifying whether the system is in a normal
or abnormal operational state. The experiment is implemented
on a PC with 2.30 GHz Intel Core i7-11800 Processor with
32.0 GB RAM and Windows 11.

A. Data Description

The dataset is generated from the MII testbed [3], where a li-
brary of 256 DNN computation pipelines and their parameter-



TABLE II
MANUFACTURING INDUSTRIAL INTERNET TESTBED DATA DESCRIPTION [3]

Data Type Sample Size Remark

Normal(Class 0) 4676 If all factors A-E are 0, the AI model performance is labeled as “normal”.
Abnormal(Class 1) 291 If any of A-E is 1 or 2, the AI model performance is labeled as “abnormal”.

Non-Executable 2323 The AI pipelines cannot be executed thus these samples are excluded from training and evaluation.
Total 7290

perturbed variants are deployed across Cloud and Fog nodes.
Experimental conditions are parameterized by seven factors
(A–G) as shown in Table I, which control data hazards (A–D),
AI pipeline singularity (E), and cyber-layer failures (F–G). Full
combinations yield 7,290 treatment–machine tasks [3].

Tasks affected by Fog node failures (F>0) or communica-
tion failures (G>0) are excluded, since inference tasks will
not be carried out and AI model performance is not collected.
After data pre-processing, we retain 4,967 executable tasks or
samples (E), on which inference results and runtime metrics
are collected. Within E, samples are labeled as “normal”
(Factors A-E are normal) or “abnormal” (one or more of
factors A–E are abnormal), as summarized in Table II. An
additional 2,323 Non-Executable (NE) cases are excluded from
training and evaluation for ConEAL.

This setting naturally defines a binary classification prob-
lem. At time t, the input consists of the feature vector
xt from the incoming sample and the labeled data pool
Dt = (x1, y1), . . . , (xmt , ymt). The base learner ft encodes
x1, . . . ,xmt

into a representation space h, which is further
used to fine-tune a linear classification head with the cor-
responding labels y1, . . . , ymt

. The response variable is the
system state label at time t, with yt ∈ {normal, abnormal}.
Then ft is validated on a separate test set to compute per-
formance metrics, and the reward rt is derived from these
evaluations. The reward then updates agent weights and guides
subsequent sampling decisions, ensuring that informative ab-
normal samples are efficiently acquired under streaming and
imbalanced conditions. By prioritizing the most informative
samples, the system can achieve reliable anomaly detection
with reduced annotation cost, thereby enhancing the resilience
of AI inference in Fog–Cloud manufacturing environments.

B. ConEAL Experiments

In this section, we will evaluate performance of the pro-
posed ConEAL method on the dataset described in last section
and compare it with other benchmark methods. Due to the
imbalance of the dataset, we use Macro-F1 score [30] as an
indicator to measure the performance of each method. For a V -
class classification problem, the F1 score of class v is defined
in a one-vs-rest manner, i.e., by treating class v as the positive
class and all other classes as negative. Formally, the F1 score
for class v is

F1(v) =
2 · Precision(v) · Recall(v)
Precision(v) + Recall(v)

, (12)

where

Precision(v) =
TP(v)

TP(v) + FP(v)
, (13)

Recall(v) =
TP(v)

TP(v) + FN(v)
. (14)

Here, TP(v), FP(v), and FN(v) denote the true positives, false
positives, and false negatives for class v, respectively, under
the one-vs-rest evaluation.

The Macro-F1 score is then obtained by averaging the F1
scores across all classes:

Macro-F1 =
1

V

V∑
v=1

F1(v). (15)

In the binary case considered in this work (V = 2), F1(1)

corresponds to the abnormal class and F1(0) corresponds to the
normal class, and the Macro-F1 is calculated as their simple
average so it can better reflect the quality of small categories
when the categories are unbalanced.

To emulate online prediction and annotation in streaming
industrial data, the dataset is first subdivided into three subsets:
the initial training set D0, the streaming training set, and the
testing set. At time t, ConEAL adaptively queries labels from
the unlabeled stream under a total annotation budget B, and
the base learner ft is updated online. To build the base learner,
we use the softmax linear classifier defined in Eq. (7), trained
on the frozen encoder representation h obtained from the two-
stage contrastive pretraining. Model performance is evaluated
dynamically during online updates. At time t, a validation
set is constructed by selecting the most recent W annotated
samples from the labeled pool Dt, which serves as a sliding
evaluation window. This mechanism approximates the model’s
generalization ability without requiring a separate held-out set
when online updating. The feature space is derived from raw
multivariate time series collected in the testbed and tabular
outputs describing the learning performance of deployed AI
pipelines. The raw multivariate time series data were converted
into statistical descriptors (e.g., mean, standard deviation,
skewness, kurtosis). Combined with tabular outputs, these
data consist of streaming industrial data. After standardization,
missing-value imputation, and outlier filtering, 32 features are
retained as model input (i.e., xt). To preserve the streaming
nature of the task, the chronological order of samples (i.e., the
execution order of the inference tasks via the AI system) is
maintained. The testing set is held out at the task level and
remains fixed throughout the experiments, providing unbiased



TABLE III
THE PREDICTION OF AI MODEL PERFORMANCE OVER 10 REPLICATIONS

Method Training Sample Size (Percentage in All Samples) Average Macro-F1 Score (Standard Error)

RS 87.9(2.21%) 0.93(0.09)
US 90(2.26%) 0.94(0.16)

QBC-PYP 90(2.26%) 0.87(0.14)
DBALStream 90(2.26%) 0.96(0.08)

ConEAL(Proposed) 51.4(1.29%) 0.99(0.11)
All Training Data 3975(100%) 1

performance metrics for comparison across methods. This
setup captures the challenges of imbalanced, temporally corre-
lated data streams that are common in manufacturing quality
inspection, and provides a realistic scenario for evaluating
ConEAL.

Four benchmark methods are used for comparison with
the proposed ConEAL framework. Random Sampling (RS)
[31] explores the input space by acquiring samples uniformly
at random, without considering model confidence or class
distribution; it serves as a naive baseline emphasizing pure
exploration. Uncertainty Sampling (US) [32] instead exploits
the current model by querying labels for instances where the
prediction confidence is lowest (e.g., samples closest to the
decision boundary), thereby refining the classifier in regions
of ambiguity. DBALStream [25] and QBC-PYP [33] are
two state-of-the-art composite active learning strategies that
combine exploration and exploitation: DBALStream balances
uncertainty-based selection with density-aware exploration of
the feature space, while QBC-PYP leverages model diver-
sity to identify informative samples that reduce disagreement
among committee members.

Table III shows the average Macro-F1 score and sample
sizes of different methods after selecting a subset of samples
for annotation, over 10 replications. In each replication, 20%
samples are randomly selected from the whole dataset as the
testing set for Macro-F1 score evaluation, with the remaining
for training. Based on the suggestion in [5], [34], [35] and
grid search, we set the following values: weights in the reward
function as wf1 =0.2, wpred =0.5,wexp =0.15, wrare =0.15,
respectively; the first 10 samples based on the time of execu-
tion in the training set will be used for model pretraining (i.e.,
the base dataset) and the sampling budget is set as 80.

As shown in Table III, the proposed ConEAL method
provides higher or tied-best testing Macro-F1 scores while
requiring fewer labeled samples than other benchmark meth-
ods. This improvement can be attributed to the integration of
contrastive representation learning with ensemble active learn-
ing. In particular, contrastive learning constructs an invariant
and discriminative feature space under one-class initialization,
allowing the model to incorporate abnormal samples as they
emerge and maintain robustness under time-varying distribu-
tions. Combined with the ensemble active learning policy,
which adaptively balances exploration and exploitation under
severe class imbalance, ConEAL is able to identify informative
samples more effectively and thus achieve superior label

(a) Visualization of the samples selected by agents in ConEAL-EN2

(b) The weight trend during the sampling process

Fig. 3. Results of ConEAL under certain learning scenario.

efficiency compared with traditional annotation strategies.
Notably, ConEAL reaches its peak Macro-F1 well before the

annotation budget is exhausted, leaving a substantial portion
of the budget unused; in contrast, most baselines require
nearly the full budget to approach their best scores, evidencing
superior label efficiency. In addition, the standard error of our
method is on par with that of DBALStream, and the overall
variability of the prediction performance is manageable. RS
and single-point uncertainty-based US tend to overly favor the
dominant class under severe imbalance.

As shown in Fig. 3a, a t-SNE [36] projection is used
to visualize the feature representations of executable tasks,
where blue and orange points denote normal and abnormal
samples, respectively, and red markers indicate the instances
selected for annotation by ConEAL-EN2. The visualization
demonstrates that the selected samples are not confined to
a single region but are distributed across multiple clusters,



Fig. 4. Online Macro-F1 over accepted queries — ConEAL & benchmarks

reflecting the ability of the agents to explore diverse areas of
the feature space. In particular, the sampling density is higher
near abnormal clusters, suggesting that ConEAL effectively
prioritizes minority-class instances. This behavior highlights
ConEAL’s capability to balance exploration of the overall data
distribution with targeted exploitation near decision bound-
aries, thereby improving anomaly detection performance under
class imbalance.

In Fig. 3b, we visualize the standardized weights of the
Low-Density Exploration Agent and the Reinforced Active
Learning Agent evolve differently over the update steps.
Initially, both agents start with comparable influence, but with
increasing update steps the Reinforced Active Learning Agent
gains higher weight, shifting the strategy toward exploita-
tion while maintaining residual exploration [5]. This adaptive
balance explains the stable and efficient online annotation
achieved by ConEAL. In Fig. 4, ConEAL variants, including
using two agents (-EN2), four agents (-EN4), and six agents
(-EN6), achieve higher Macro-F1 with fewer labeled samples
than other benchmark methods. All ConEAL variants converge
to 0.9 or higher within about 25 samples, whereas most bench-
mark methods converge slower. These results indicate superior
sample efficiency of ConEAL for online learning. Therefore,
the proposed method not only reduces the annotation efforts
but also contributes to the prediction of AI model performance.

In summary, ConEAL performs active learning that explic-
itly balances exploration and exploitation to select the most
informative and representative samples for annotation. This
targeted acquisition improves data quality and computational
efficiency, addressing an essential challenge in AI model
performance prediction to achieve proactive-adaptive resilient
AI system.

V. CONCLUSION

DNNs are widely used to improve manufacturing per-
formance via computation services in MII. However, the
performance of DNNs at the inference stage is frequently
affected by data quality, computation pipeline, and cyber-
physical layer of manufacturing. The capability to predict the
AI model performance at the inference stage is the foundation

for proactive-adaptive resilient AI models. However, there
are significant challenges on extreme imbalanced samples of
abnormal AI model performance, time-varying distributions,
and one-class initialization. This paper proposed a contrastive
learning-based framework for AI model performance anomaly
prediction. By combining contrastive representation learning
and ensemble active learning, ConEAL can detect subtle ab-
normal states with limited labeled data. The method effectively
balances prediction performance and annotation cost in real-
world streaming data scenarios. Experimental results on a
resilient AI experiment in a Fog-Cloud testbed demonstrate
that ConEAL outperforms existing benchmark methods with
faster learning efficiency.

The paper provides a few future research directions. First,
we aim to generalize the framework to handle multi-label
anomaly prediction tasks [37], where an AI system may be
simultaneously affected by multiple abnormal root causes,
as defined in Table I. Second, we will investigate the in-
tegration of ConEAL with multi-modal, incompatible data
streams for online contrastive learning strategies to improve
adaptability across changing environments and time-varying
distributions [38]. Third, an adaptive adjustment strategy will
be explored to ensure uninterupted AI model performance in
online settings, based on the prediction of abnormal AI model
performance [39].
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