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Abstract

We investigated a multimodal dataset sharing method to share valuable text data from technical documents and narratives to improve
Artificial Intelligence (AI) models in manufacturing. High-quality and informative datasets are essential for AI model training and
deployment performances. The sharing of privacy-preserving proxy datasets, distilled from numerical raw data owned by other
manufacturing stakeholders, can augment the local datasets and has proven to improve the AI model performance. However, it
is challenging to share manufacturing text data under privacy preserving constraints, which is critical to protect know-how and
IP information. The text data come from technical narratives about manufacturing. There is limited approach to share them due
to limited access to such text data. In this paper, we modeled manufacturing domain knowledge and perceptions by employing
multiagent-based large language models (LLMs) to generate high-quality, personalized text data. Then we integrate Multimodal-
Aligned Variational Autoencoder (MAVAE) to fuse both text and numerical datasets to achieve privacy-preserving data sharing.
We validated the proposed method based on microbial fuel cell (MFC) anode design problem with a focus to use text data to
improve the design feasibility prediction by AI models. Different LLM agents are tuned to simulate different design styles, such as
design space preferences and design rule configurations. The MAVAE encodes both numerical and text features into a shared latent
space and predicts the post-sharing AI model performances for data-sharing decision-making. This method achieves an average F1
score of 0.928, outperforming baseline approaches such as Differential Privacy (0.898). This method is expected to be adopted by
practitioners to share both numerical and text data in a data market.
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1. Introduction
With the advancement of smart manufacturing and Industry 4.0, artificial intelligence (AI) plays a crucial role in
optimizing production efficiency, improving product quality, enhancing the product design flexibility, enabling the
supply chain resilience, and reducing manufacturing costs. However, the effectiveness of AI models depends on high-
quality multimodal data collaboration, requiring solutions for cross-modal knowledge fusion under privacy constraints
and efficient heterogeneous data representation [1, 2].

In manufacturing multimodal data sharing, federated learning (FL) and differential privacy (DP) have advanced pri-
vacy protection and analysis for numerical data, yet privacy-preserving text data sharing remains challenging [1].
Current frameworks use numerical data (e.g., design variables, process parameters, in situ process data) for AI model
training, but they fall short in capturing the contextual depth of design intent and rules [2]. While text data can supple-
ment this implicit knowledge, its issues with missing information, unstructured formats, and privacy risks complicate
meaningful representation learning; simple noise perturbation undermines semantic integrity [3, 4]. There is a lack of
federated semantic modeling and privacy-enhanced text representation learning, which limits data security and shar-
ing efficiency. Moreover, integrating numerical and text data is challenging due to structural and semantic differences
[2, 5]. Although variational autoencoders (VAEs) and contrastive learning have been applied to image-numerical data
fusion [6], they are less effective in text-numerical fusion, often failing to capture complex text semantics and leading
to information redundancy [4].

To address these challenges, this paper proposes a privacy-preserving multimodal data-sharing framework that enables
effective data fusion and secure sharing through a Multimodal-Aligned Variational Autoencoder (MAVAE) and multi-
agent large language models (LLMs). The key innovation lies in MAVAE’s dual-encoder structure, which integrates
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numerical and textual data to generate proxy datasets, preserving essential design information while ensuring privacy
protection. This approach allows secure data sharing without exposing sensitive process details. Additionally, KL
divergence regularization and cross-modal alignment loss enhance modality consistency, improving heterogeneous
data fusion. Multi-agent LLMs further refine text generation by simulating domain-specific design styles, enhancing
semantic adaptability. Compared to flexible dataset distillation (FDD) [4], the proposed method enables privacy-aware
multimodal fusion while maintaining high data utility for feasibility prediction. In this study, Privacy-preserving means
protecting confidential data, securing target AI task details, and controlling access before data sharing [2]. Utility
refers to the effectiveness of these shared proxies in supporting downstream AI tasks. The objective of this study is to
maximize data utility while adhering to strict privacy constraints. In other words, our evaluation metric focuses solely
on model performance.

The framework is validated using microbial fuel cell (MFC) anode design as a case study. Results demonstrate sig-
nificant improvements in feasibility prediction accuracy and enhanced adaptability in cross-designer collaborative
optimization. The remainder of this paper is organized as follows: Section 2 details the proposed method; Section 3
presents experimental validation; and Section 4 concludes the study with future research directions.

2. Methodology
2.1 Overview of the Proposed Methodology
This study explores a multi-designer data-sharing problem in MFC, where diverse design styles create variations in
variable spaces, criteria, and combinatorial logic, resulting in a binary feasibility indicator [7]. The objective is to
improve feasibility modeling via privacy-preserving data sharing.Table 1 presents an example dataset.

Figure 1: Overview of the Proposed Method Framework (Redrawn from [2] with authors’ permission)

Figure 1 illustrates the LLM-based multimodal data-sharing framework. The process consists of three key compo-
nents: (1) Text generation via LLMs: Multi-agent LLMs generate text descriptions of design styles, enriching the rep-
resentation of domain-specific knowledge in manufacturing. (2) Multimodal fusion with MAVAE: MAVAE employs a
modality-separated encoder to learn aligned representations of numerical and text data, integrating them into a shared
latent space. Generative models further refine the multimodal representation Zi, reducing heterogeneity while retaining
critical task-related information. (3) Privacy-preserving data sharing via DiGNN: A DiGNN encodes dataset-sharing
decisions among stakeholders, leveraging Zi as node features to efficiently encode sharing decisions and predict post-
sharing AI performance. The key innovation of our paper is the structured fusion of textual and numerical data for
privacy-preserving data sharing in manufacturing. Compared with our earlier work [2], we employed multiagent-based
large language models (LLMs) to generate high-quality, personalized text data and integrated a Multimodal-Aligned
Variational Autoencoder (MAVAE) to enhance multimodal learning while protecting sensitive information.

The proposed method offers two major advantages: (1) Multimodal data fusion: MAVAE enables effective integration
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of high-quality LLM-generated text with numerical data, ensuring a unified, low-dimensional representation while
reducing heterogeneity. (2) Privacy-preserving sharing: Instead of direct raw data exchange, proxy data sharing
protects sensitive information while balancing data utility and privacy.

Table 1: Design Samples with Numerical and Text Data

Sample Numerical Data Text Data Design Feasibility {0,1}

1

cell_type = SchwarzPrimitive
cell_count = 4
...

"Based on the design input provided, the fea-
sibility analysis indicates that..." 1

2

cell_type = BCC
cell_count = 3
...

"The design input includes a “BCC” cell type,
a cell count of ..." 0

. . .

2.2 Text Generation
LLM agents are trained to generate text data reflecting different design styles for each design sample from various
stakeholders (i.e., designers in this paper). Each stakeholder Si, associated with a numerical dataset Ni, follows goal
definition, data type and text style analysis, and customized output prioritization to generate text data for different
design scenarios. An optimization process ensures that the generated text aligns with specific requirements.

Figure 1 illustrates the text generation workflow, where soft prompt tuning is applied before LLM inference to optimize
input prompts. It refines text generation by training soft prompt embeddings, guiding the LLM without modifying its
core parameters [8]. These trainable vector prompts replace manual templates, adapting automatically to different
manufacturing and design contexts.

In soft prompt tuning, a sequence of learnable embeddings is defined as P=(p1, p2, ..., pn), where each pi is a trainable
vector in the LLM’s token embedding space. The modified input is given by X soft

input = (P,Xinput). The LLM generates
text Ti, and its output ŷt is optimized using cross-entropy loss: Ltext = −∑

T
t=1 yt log ŷt , where only P is updated via

gradient descent, preserving pre-trained LLM parameters. Soft prompting enables the LLM to efficiently adapt to new
tasks, improve contextual understanding, and reduce the dependency on manual prompt engineering.

To improve tuning performance, we curate high-quality training data, pairing numerical inputs with annotated text
reflecting stakeholder requirements, industry terminology, and stylistic nuances, ensuring context-aware and consistent
text generation. Due to space limitations, details are omitted.

2.3 Multimodal-Aligned Variational Autoencoder
To ensure privacy while creating a universal embedding for high-dimensional multimodal inputs, MAVAE processes
numerical data Ni, i ∈ N and text data Ti by utilizing proxy datasets, which serve as privacy-preserving representations
of the raw data. MAVAE was selected over other methods because it enables cross-modal alignment and latent-
space regularization, which are essential for fusing heterogeneous modalities while preventing exposure of sensitive
information [6]. MAVAE projects the modality of input data into a latent space zi using modality-specific encoders
EN

i and ET
i . The encoded representations are then reconstructed using decoders DN

i and DT
i , ensuring that the data

remains informative while preventing direct access to raw values.

To train the MAVAE effectively, we employ a variational autoencoder (VAE) loss, which consists of reconstruction
losses for both numerical and text data, as well as a KL divergence regularization term[6]

LVAE = ∑
i

[
− log pθ(Ni|z

(N)
i )− log pθ(Ti|z

(T )
i )+λDKL(qφ(z

(N)
i ,z(T )i |xi)∥pθ(z))

]
(1)

where z(N)
i = EN

i (Ni) is the latent representation of numerical data, z(T )i = ET
i (Ti) is the latent representation of text

data, DN
i (z

(N)
i ) reconstructs numerical data from the latent space, DT

i (z
(T )
i ) reconstructs text data from the latent space,

and DKL(qφ∥pθ) ensures the latent space follows a prior distribution.

Additionally, we introduce a cross-modality alignment loss to encourage consistency between the numerical and text
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latent representations as
LCA = ∑

i
∥z(N)

i − z(T )i ∥2. (2)

We concatenate the latent representations of numerical and text data to form the combined latent variable as zi =

[z(N)
i ;z(T )i ]. To incorporate AI task-specific objectives such as the design feasibility selection in this paper, a classifica-

tion loss is added when the task is classification-based. This loss is designed to optimize the latent representations zi
for downstream tasks, which is defined as

Lclf =−∑
i
[yi log ŷi +(1− yi) log(1− ŷi)] (3)

where yi represents the ground truth label, and fclf(zi) denotes the classifier’s prediction logit derived from the latent
space representation zi. These losses ensure that the shared latent space zi effectively captures the multimodal re-
lationships between numerical and text data while optimizing for privacy-preserving, high-performance downstream
tasks. Once trained, MAVAE enables the generation of proxy datasets by sampling latent variables from the learned
distribution as zp

i = zi+ε, ε ∼ N (0,σ2I). This ensures that the generated proxy dataset zp
i retains essential informa-

tion while preserving privacy. The sampled latent variables can then be used for downstream tasks such as feasibility
assessment and design optimization.

2.4 Directed Graph Neural Network for Dataset-Sharing Decisions
To facilitate dataset-sharing decisions and enhance AI model performance, we formulate the problem as a graph-
based learning task. Each stakeholder, with a dataset containing numerical and text data, is represented as a node
v ∈ V . Directed edges (u,v) ∈ E denote dataset-sharing actions from data owner to receiver, forming a directed graph
G = (V ,E). The edge direction reflects dataset transfer, and performance gains on the target testing set DT

i serve as
evaluation metrics.

Graph neural networks (GNNs) encode node features and aggregate representations [2, 9]. We adopt a directed acyclic
graph (DAG)-based structure where each node representation is iteratively updated using message passing. At the
t-th layer, the aggregated message for node v is computed as hG = fFC

(
Max-Poolv∈V

(
[h1

v , . . . ,h
L
v ]
))

. where MLP
is a multi-layer perceptron that processes the aggregated information from neighboring nodes and edge features to
learn higher-level representations, ht−1

u is the previous layer’s representation of node u, and γ(u,v) encodes edge
features. The node representation is updated via a Gated Recurrent Unit (GRU) as ht

v = fGRU(ht−1
v ,mt

v). The final
graph representation is obtained by max-pooling all node embeddings

hG = fFC
(
Max-Poolv∈V

(
[h1

v , . . . ,h
L
v ]
))

. (4)

Dataset-sharing performance is evaluated using the F1 score on the target testing set at the data receiver. The graph-
level loss for a single decision is defined as LG = 1

n ∑
n
j=1(y

G
j −hG

j )
2, where yG

j is the ground truth F1 score and hG
j is

the predicted score. Thus, DiGNN predicts post-sharing AI performance based on the latent representations of each
stakeholder’s dataset as nodes and sharing decisions as directed edges.

3. Case Study
The proposed method evaluates privacy-preserving data sharing among six MFC designers to predict binary design
feasibility. MFCs generate electricity via microbial metabolism, offering a sustainable energy solution [7]. Assess-
ing feasibility before production is crucial for optimizing design, reducing lead time, and increasing manufacturing
success. However, the vast design space and diverse styles limit individual designers’ predictive capabilities due to
insufficient data, motivating the need for privacy-preserving data sharing. To validate the design feasibility prediction,
we adopt a DNN-based classification model using both numerical and text features [2].

Data sharing enables collaboration among designers with similar rules and parameters, improving feasibility prediction
accuracy by integrating diverse expertise.

3.1 Datasets Information
During the design phase, designers define the design space using variables such as unit type, unit quantity, volume
fraction factor, layer thickness, and rotation angles. Intermediate 3D properties (e.g., minimum feature size, cavity
thickness, and number of discontinuous volumes) are simulated and evaluated for feasibility based on predefined
design rules [7]. Differences in design spaces and rules lead to distinct design styles, categorized as passionate,
traditional, and eco-friendly. Passionate designers push design limits with extreme values, traditional designers favor
mid-range stable parameters, and eco-friendly designers prioritize material efficiency to reduce environmental impact.
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To model these styles, we developed three LLM agents to generate style-specific text descriptions. By encoding design
rules and parameter characteristics, the agents captured stylistic preferences and integrated them into text generation.
The synthesized data accurately reflects both design constraints and designer philosophies, aiding decision-making
and collaborative optimization. This study used datasets from six designers (two per style) modifying design spaces
and rules to create six MFC design datasets. Each dataset includes numerical design variables, LLM-generated text
descriptions, and binary feasibility labels.

3.2 Hyperparameter Settings and Benchmark Methods
In the text generation process, the model used is specified as model="gpt-3.5-turbo", with max_tokens=1000 and
temperature=0.7. For the MAVAE process, The dimension of zi is set as 32, resulting in a shared space with 64
dimensions. The KL-weight λ is tuned to be 0.1 based on empirical validation using cross-validation and grid search.
We evaluate the proposed framework in benchmark comparison. Although there is no approach that can address
all the challenges mentioned in the literature, we adopt the following benchmark methods that partially address the
challenges in dataset sharing as state-of-the-art solutions: (1) Differential Privacy (DP): Protects data privacy by adding
carefully calibrated noise to data or model updates, ensuring that individual data points cannot be distinguished and
preventing information leakage during dataset sharing [1]. (2) OptimShare: Enables privacy-preserving data sharing
and collaborative model optimization through federated learning, allowing multiple parties to jointly train machine
learning models without exposing their raw data [10].

3.3 Experimental Results
In a data market with six designers, each designer can share data in 31 possible ways with the remaining five designers
(5+ 10+ 10+ 5+ 1 = 31), resulting in 31× 6 = 186 dataset-sharing decisions. The proposed method is evaluated
using 10-fold cross-validation to train DiGNN and assess feasibility classification. Table 2 compares classification
performance under different data-sharing strategies, highlighting the impact of text data integration and cross-designer
sharing. Each column (D1-D6) represents a designer, with Row 1 showing the varying sample sizes of local datasets.
The results indicate that incorporating text data (Rows 2-3) improves F1 scores, demonstrating its importance in feasi-
bility prediction. Additionally, the results show that data sharing improves F1 scores compared to local datasets(Rows
3-6), and DiGNN (Rows 8-9) achieves performance close to the best dataset combination (Rows 6-7) while being
more efficient than exhaustive search.

Data sharing consistently improved model performance by increasing parametric and stylistic diversity. Cross-designer
integration expanded design space coverage, enriched pattern recognition, and provided complementary solutions
to design challenges. This combinatorial approach enhanced model adaptability for complex tasks and improved
prediction accuracy, particularly for extreme parameter configurations.

Table 2: F1 Score Comparison of Different Data Sharing Strategies

Row D1 D2 D3 D4 D5 D6

1 Sample Size from Each Designer 154 179 100 96 253 224
2 Local F1 Score using Numerical Data 0.668 0.764 0.731 0.715 0.730 0.652
3 Local F1 Score using both Numerical and Text Data 0.691 0.835 0.816 0.741 0.935 0.818
4 Best F1 from One Shared Proxy Dataset 0.759 0.875 1 0.881 0.975 1
5 Best One Shared Proxy Dataset D5 D5 D1 D6 D2 D1
6 Best F1 from All Comb. of Shared Proxy Datasets 0.798 0.913 1 0.937 1 1
7 Best Comb. of Shared Proxy Datasets D3, D5 D3, D5, D6 D4, D5 D2, D3, D5, D6 D1, D2, D3, D4, D6 D3, D5
8 Our Method (F1 using DiGNN from 10-Fold CV) 0.798 0.890 1 0.881 1 1
9 Our Method (Shared Datasets) D3, D5 D4, D5, D6 D4, D5 D3, D5, D6 D1, D2, D3, D4, D6 D3, D5

The proposed method, calculated across six datasets, achieves an average F1 score of 0.928, which is better than Dif-
ferential Privacy (0.898) and OptimShare (0.902) over 10-fold CV. This improvement stems from the MAVAE frame-
work, which integrates numerical and textual data through a dual-encoder structure, generating privacy-preserving
proxy datasets that maintain essential design information. By leveraging KL divergence regularization and cross-
modal alignment loss, MAVAE ensures effective modality fusion while preserving data privacy. Additionally, the
method optimizes dataset-sharing decisions by encoding stakeholder relationships using DiGNN, leading to better
generalization and improved feasibility prediction.
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4. Conclusion
This study presents a privacy-preserving multimodal data-sharing framework integrating multi-agent large language
models (LLMs) and a Multimodal-Aligned Variational Autoencoder (MAVAE) to enhance manufacturing machine
learning models. By leveraging LLMs, the proposed method generates high-fidelity text data, capturing diverse design
styles and improving design feasibility predictions. MAVAE fuses numerical and text data while ensuring privacy
protection through latent space transformations, preventing direct exposure of sensitive information. The framework
was validated using MFC design as a case study, demonstrating significant improvements in feasibility prediction
accuracy after privacy-preserving data-sharing decisions. Experimental results show that data-sharing strategies among
designers enhance predictive performance by integrating knowledge across different design schemes. Compared to
existing methods, the proposed approach achieves superior F1 scores while maintaining strong privacy constraint.

In future research, there are several promising directions to perform further investigations: (1) the paper assumes one
dataset for each stakeholder, which can be relaxed for multiple datasets with similar statistical distributions for data
sharing; (2) there is only one AI modeling task for each stakeholder, which will be extended to multiple AI tasks based
on the same source of datasets; and (3) larger scale validation will be performed, especially based on different types
of stakeholders with different objectives in AI tasks.
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