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In this paper, we find a natural four dimensional analog of the moderate

deviation results for the capacity of the random walk, which corresponds to

Bass, Chen and Rosen [6] concerning the volume of the random walk range

for d = 2. We find that the deviation statistics of the capacity of the ran-

dom walk can be related to the following constant of generalized Gagliardo-

Nirenberg inequalities,

inf
f :‖∇f‖

L2<∞

‖f‖
1/2
L2

‖∇f‖
1/2
L2

[
∫
(R4)2 f

2(x)G(x− y)f2(y)dxdy]1/4
.
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1. Introduction. In this paper, we study the moderate deviation results for the capacity

of the random walk for d= 4. Given an arbitrary set A in Z
d, the capacity of A is defined as

follows: let τA denote the first positive hitting time of a finite set A by a simple random walk
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(Sm)m≥0 on Z
d and recall that the corresponding (Newtonian) capacity is given for d ≥ 3,

by

Cap(A) :=
∑

x∈A
P x(τA =∞) = lim

‖z‖→∞

P z(τA <∞)

GD(z)
.

Here, GD is the Green’s function for the random walk on the lattice. ‖ · ‖ denotes the Eu-

clidean distance.

There has been much significant interest in studying the capacity of the range of random

walk in d-dimensions. As revealed in many other works, understanding the capacity of the

range of the random walk relates to questions regarding the volume of a random walk or the

intersection of two random walks. This, in turn, has a multitude of applications in various

fields. For instance, random walk intersection estimates appear in the study of quantum field

theories [21], conformal field theories [14], and in the study of the self-avoiding walk [9].

For a more detailed discussion, one can see the references in [3].

In this direction, there are many works in the mathematical literature studying the capacity.

Let S[1, n] := {S1, . . . ,Sn}. Jain and Orey [16] proved a strong law of large numbers, that

is, almost surely,

lim
n→∞

Cap(S[1, n])
n

= αd, for d≥ 3

for some constant αd depending on the dimension. If one defines Brownian capacity as,

CapB(D) :=

(

inf

{
∫∫

G(x− y)µ(dx)µ(dy) : µ(D) = 1

})−1

,

and G is the Green’s function for the Brownian motion, then, when d = 3, Chang [10] has

shown that

Cap(S[1, n])√
n

D
=⇒ 1

3
√
3

CapB(B[0,1]).

Here, B[0,1] is the image of the Brownian motion from time 0 to 1.

In addition, the paper [2] provides lower and upper bounds for the large deviation of the

capacity of the range of a random walk in various dimensions, though without obtaining the

optimal constant. The works [3, 4] also established a law of large numbers and a central limit

theorem for the capacity of the range of a random walk in Z
4. As a consequence of these

results, one conjectures a curious link between the behavior of the capacity in d dimensions

and the self-intersection of random walks in d− 2 dimensions.

One can observe some of these links when looking at Central Limit Theorem type behavior

for the volume of the range of a random walk in two dimensions and the capacity of a walk

in four dimensions. For example, Le Gall, J-F. [19] showed that for d= 2,

(logn)2

n
{Vol(S[1, n])−EVol(S[1, n])} D

=⇒−π2γ([0,1]),

where it is formally defined by understanding a corresponding quantity for Brownian mo-

tions:

γ([0,1]) :=

∫ 1

0

∫ 1

0
δ0(Bs −Br)dsdr− E

[∫ 1

0

∫ 1

0
δ0(Bs −Br)dsdr

]

.

By looking at the form of this equation, it is quite similar to the result of Asselah et al. for

the central limit theorem behavior of the capacity of a random walk in four dimension. [4]

showed that for d= 4,

(logn)2

n
{Cap(S[1, n])−ECap(S[1, n])} D

=⇒−π2

4
γG([0,1]),
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where it is also formally defined by looking at a corresponding quantity for Brownian mo-

tions:

γG([0,1]) :=

∫ 1

0

∫ 1

0
G(Bs −Br)dsdr− E

[
∫ 1

0

∫ 1

0
G(Bs −Br)dsdr

]

.

However, as of yet, no deeper mechanism found to explain these parallels.

More recently, Dembo and the second author [13] found such a parallel when they wanted

to understand the more detailed question of a law of iterated logarithms for the capacity. In

four dimensions, the main result of [13] was the following. Then, the following estimates

were shown, almost surely,

lim sup
n→∞

Cap(S[1, n])− E[Cap(S[1, n])]
π2

8
n log(log(logn))

(logn)2

= 1,

lim inf
n→∞

Cap(S[1, n])−E[Cap(S[1, n])]
c∗

n log(logn)
(logn)2

=−1,

for some constant c∗ > 0. Via subadditivity arguments, the upper tail of the law of iterated

logarithms can reduce to the computation of an explicit limit.

By contrast, the constant associated with the lower tail of the large deviation is a far more

delicate question. In [13], it was only shown that the lim inf exists; the value of the constant

depends on quite precise large deviation statistics of the capacity. However, rather than being

merely a technical question, the exact value of the constant can reveal deep connections to

other fields.

Indeed, much like how Chen et al [11, 6] showed that the precise value of the large devi-

ation constant for the intersection of random walks was related to the Gagliardo-Nirenberg

inequality, we demonstrate here that the constant for the large deviation of the lower tail

of the capacity of the random walk range is related to the generalized Gagliardo-Nirenberg

inequality. This generalized Gagliardo-Nirenberg inequality was key in the study of the po-

laron and many other physical processes of interest [15, 20]. If we look at [15, Theorem 2.3],

this inequality is derived from the Hardy-Littlewood-Sobolev inequality and is used to study

the Hartree equation. Hence, we find a new relationship between the capacity of the random

walk and the field of analysis. Furthermore, the value of the large deviation constant for the

capacity of the random walk range should give great information on the corresponding large

deviation statistics of the capacity of the Wiener sausage.

1.1. Main results. In our main result, we find that the moderate deviation of Cap(S[1, n])
for d = 4 is related to best constant of the generalized Gagliardo-Nirenberg inequality (see

[15, (6)]). Namely, it is the smallest constant κ̃(4,2) such that the following inequality should

hold among g with ‖∇g‖L2 <∞:
[

∫

(R4)2
g2(x)G(x− y)g2(y)dxdy

]1/4

≤ κ̃(4,2)‖g‖1/2L2 ‖∇g‖1/2L2 ,

where G(x− y) = 2−1π−2‖x− y‖−2 for d= 4.

THEOREM 1. Assume bn →∞ and bn =O(log logn). For d= 4 and λ > 0,

lim
n→∞

1

bn
logP

(

Cap(S[1, n])−E[Cap(S[1, n])]≤− λn

(logn)2
bn

)

=−I4(λ),

where

I4(λ) =
2

π4
κ̃(4,2)−4λ.
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COROLLARY 1. For d= 4, almost surely,

lim inf
n→∞

(logn)2

n log logn

(

Cap(S[1, n])− E[Cap(S[1, n])]
)

=−π4

2
κ̃(4,2)4.

REMARK 1.1. We conjecture that the optimal order of bn is o(logn) assuming that it is

the same as that of the volume of random walks in d= 2. This conjecture is inspired by the

discussion of the rate function for the moderate deviation of the mutual intersection of two

random walks in dimension 2 as discussed in [12, Section 7.2]. However, just as in the case

of the volume, obtaining the optimal scale of large deviations is challenging, and we chose

the scale bn = O(log logn) as this is sufficient to obtain the exact constant for the law of

the iterated logarithm. However, we do expect that with some technical improvements, our

methods can get much closer to the optimal scale of large deviations.

1.2. Strategy. As mentioned before, to find the exact value of the constant associated

with the lower tail of the law of the iterated logarithms, one would need to first prove a form

of the large deviation principle. To do this, one would need to have control over exponential

moments of the quantity in question. Now, one can find some control over such moments in

the works of [13]. However, if one exactly wants the constant, then these estimates have to be

optimal. Even with the rather technical bounds of [13], there were still multiple times when

one could not precisely track the exponential factor associated with the high moments. While

this is perfectly fine for proving that some law of iterated logarithm holds, it is impossible to

deduce anything about the value of the lower tail of the law of the iterated logarithm.

Inspired by the connection between the capacity and the self-intersection, one might try to

see if there are any parallels one can draw from the proof of the large deviation principle for

the self-intersection in 2-dimensions. Indeed, Bass, Chen, Kumagai and Rosen [6, 8] were

able to establish an exact form for the constant associated with the large deviation principle

for the self-intersection of random walks.

As observed in [6, 8], a vital tool in both these analyses is a splitting formula. The self-

intersection of a random walk can be written as the sum of two self-intersections of the first

and second half of the walks and the mutual intersection of the first and second half. The

large deviation behavior when d = 2 is largely determined by this mutual intersection. For

the capacity, one can perform a similar splitting with the quantity χ like in the work [3].

For two arbitrary sets A and B, χ is defined as,

(1.1)

χ(A,B) :=
∑

y∈A

∑

z∈B
P(R′

y ∩ (A∪B) = ∅)GD(y − z)P(R′
z ∩B = ∅)

+
∑

y∈A

∑

z∈B
P(R′

y ∩A= ∅)GD(y − z)P(R′
z ∩ (A∪B) = ∅),

where R′
y is the range of an infinite random walk range after time 1 starting at the point y at

time 0. To show the result, we will substitute two independent simple random walk ranges

until time n, A+ S1 and B = S2 (which are also independent of R′
y). The large deviation

behavior should also be determined by this ‘mutual capacity’, χ. However, after this step,

if one tries to imitate the strategy of Bass, Chen, and Rosen [6] to analyze χ, fundamental

difficulties arise at the very beginning that prevent one from proceeding forward.

First of all, observe that each line of χ, due to the probability term P(R′
y ∩ (S1∪S2) = ∅),

is asymmetric in A and B. Furthermore, the same probability term couples the first and sec-

ond parts of the random walk. In general, many formulas that one would like to apply to

compute moments, such as the Feynman-Kac formula for lower bounds on the asymptotic

moments, would first require one to separate the two halves of the random walk from each
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other. Usually, such a separation can be justified by applying the Cauchy-Schwartz inequal-

ity, and, as in the works of [12] for the cross term occurring when studying the moderate

deviations of the range of a random walk, one will not incur too much loss by performing

this procedure. This is no longer the case when one deals with an asymmetric cross-term

like χ. Indeed, the key first step in trying to determine the exact constant for the moderate
deviations would be to try to identify a symmetric main term contribution for χ.

The first guess that one might have would be to show that the terms P(R′
y∩ (S1∪S2) = ∅)

could be replaced by the expected value (1 + o(1)) π2

8 logn . This replacement was performed

in the papers [4, 13] in order to establish a CLT and a LIL, respectively. However, the mo-

ment estimates required to prove such results are insufficiently strong to demonstrate a large
deviation principle or determine an exact constant. Indeed, the paper [2] remarked that it is

possible that in the large deviation regime, it would be more effective for the random walk

to reorganize itself into configurations such that P(R′
y ∩ (S1 ∪ S2) = ∅,0 6∈ S1) is far away

from its expected value of (1 + o(1)) π2

8 logn .

Indeed, since we cannot replace these probability terms with their expectation, we have
to determine the main and error terms via manipulations that preserve the structure of these

probability terms. Indeed, our main term can be guessed to be of the form,
∑

y∈S1

∑

z∈S2

P(R′
y ∩ S1 = ∅)GD(y − z)P(R′

z ∩ S2 = ∅).

By decomposingGD = G̃D ∗G̃D , the convolutional square root of GD , we see that we indeed
have a decomposition that could split the two sets S1 and S2 from each other. Namely, the

quantity above can be written as,
∑

a∈R4

∑

y∈S1

P(R′
y ∩ S1 = ∅)G̃D(y − a)

∑

z∈S2

P(R′
z ∩ S2 = ∅)G̃D(z − a).

This term will indeed be symmetric, and one has more tools for computing the exact value of

the asymptotic moments. The full analysis of this term is given in section 5. This main term
will lead to the corresponding error term,

∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x1 − x2)P(R′

x2 ∩ S2 = ∅,R′
x2 ∩ S1 6= ∅).

The main observation is that this error term should approximately be of order n
(logn)3 . This is

one logn factor less than the expected order of the main term. One still needs to determine

the value of high moments of this error term; however, one no longer needs to care about

the exact values. Indeed, one only needs to derive an upper bound for the high moments of

this error term. Section 3 will justify the splitting of χ into its main and error terms, while

Section 4 will analyze the error term. The analysis of this error term involved multiple steps;

the first step was to represent the cumbersome P(R′
x2 ∩ S2 = ∅,R′

x2 ∩ S1 6= ∅) into another
term that is fit for moment computation. Afterward, we had to carefully exploit a version of

monotonicity for the non-intersection probability P(R′
x1 ∩ S1 = ∅) that would allow us to

justify the replacement of P(R′
x1 ∩ S1 = ∅) with its expectation. When considering a law of

iterated logarithms, we see that the size on this scale will be larger by a factor of log logn.

Thus, the random walk has atypical behavior and one has to be very precise with the analysis

and can no longer rely on heuristics coming from analyzing typical behavior.

2. Proof of Theorem 1 and Corollary 1. In this section, we show our main results,

that is, Theorem 1 and Corollary 1. In the proof, we write f(n) . g(n) if there exists a
(deterministic) constant c > 0 such that f(n)≤ cg(n) for all n, and f(n)& g(n) if g(n) .
f(n). S[a, b] means the random walk range between time a and b. Let Px (resp. Ex) be the

probability of the simple random walk (or the Brownian motion) starting at x. We usually

write P (resp. E) for P0 (resp. E0).
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2.1. Reduction to the study of mutual capacity. In order to determine the exact moderate

deviation asymptotic for Cap(S[1, n]) − E[Cap(S[1, n])], it suffices to derive a moderate

deviation for the term χ. For two random walks S1 and S2, recall the cross-term in (1.1)

χ(S1,S2) :=
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ (S1 ∪ S2) = ∅)

+
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ (S1 ∪ S2) = ∅)GD(x

1 − x2)P(R′
x2 ∩ S1 = ∅).

Later, we assume that S1,S2 are independent random walks of duration n and S is also a

random walk of duration n, that is, S[1, n].

THEOREM 2. Consider χ= χ(S1,S2) and let bn =O(log logn) with limn→∞ bn =∞.

Then, for any λ > 0,

(2.1) lim
n→∞

1

bn
logP

(

χ≥ λ
nbn

(logn)2

)

=−I4(λ).

We will show it in Section 3. We will give the proof of Theorem 1 assuming the above

result.

PROOF OF THEOREM 1. Splitting the Walk

For simplicity in the presentation of the argument, we will perform computations when n
is a multiple of a large power of 2. For a complete formalization of the argument, one can

consider a continuous time random walk rather than a discrete time random walk as in [6,

Chapter 6] to derive large deviation estimates, but the essential difference in the proofs are

minimal.

First, fix a large integer L; we first subdivide our random walk S into 2L parts over various

iterations. Set ml = n/2l and let S(k),ml denote S[(k − 1)ml, kml]; namely, it is the k-th

portion of the random walk once divided into 2l equal parts. With this notation in hand, we

can define the cross-term,

Λl =

2l−1
∑

j=1

χ(S(2j−1),ml ,S(2j),ml).

We also have the following decomposition of Cap(S),

Cap(S) =
2L
∑

i=1

Cap(S(i),mL)−
L
∑

l=1

Λl + ǫL.

The error ǫL has the moment bound E[ǫ2L] =O((logn)2) from [3, Proposition 2.3]. It is actu-

ally better to deal with a slightly modified cross-term. Consider two random walks, S1,S2 of

the same length n. Define, as in equation (5.1) which will appear in the sequel, the modified

cross term:

TL(S1,S2) =
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x1 − x2)P(R′

x2 ∩ S2 = ∅).

The results of Theorem 4 show that for any ǫ > 0, we have that,

lim
n→∞

1

bn
logP

(

|χ(S(2j−1),ml ,S(2j),ml)− 2TL(S(2j−1),ml ,S(2j),ml)| ≥ ǫ
nbn

(logn)2

)

=−∞.
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Accordingly, it is natural to consider the modified term,

Λ̃l := 2

2l−1
∑

j=1

TL(S(2j−1),ml ,S(2j),ml).

Furthermore, the moment bound on ǫL combined with Markov’s inequality shows that

1

bn
logP

(

ǫL ≥ ǫ
n

(logn)2

)

.
− logn+ log logn+ log ǫ

bn
.

Thus,

lim
n→∞

1

bn
logP

(

ǫL ≥ ǫ
n

(logn)2

)

=−∞.

Combining these facts, we see that if we fix L and take n→∞, we have that

lim
n→∞

1

bn
logP

(

−Cap(S) + E[Cap(S)]≥ λ
bnn

(logn)2

)

= lim
n→∞

1

bn
logP



−
2L
∑

i=1

(Cap(S(i),mL)−E[Cap(S(i),mL)]) +

L
∑

l=1

(Λ̃l − E[Λ̃l])≥ λ
bnn

(logn)2



 .

Note that in the previous expression, we used the fact that E[ǫL] and E[|Λl − Λ̃l|], would not

contribute to the expectations.

Our goal now is to show the following:

(2.2)

lim
L→∞

lim
n→∞

1

bn
logP





2L
∑

i=1

(−Cap(S(i),mL) +E[Cap(S(i),mL)]) +

L
∑

l=1

(Λ̃l − E[Λ̃l])≥ λ
bnn

(logn)2





=−I4(λ).

We will start with showing the upper bound of (2.2).

Upper Bound in (2.2): It is manifest that E[Λ̃l] is a positive number. Thus, if we only care

about obtaining upper bounds on the probability found in equation (2.2), we can drop the

term −E[Λ̃l] in the computation for the upper bound. We have,

P





2L
∑

i=1

(−Cap(S(i),mL) +E[Cap(S(i),mL)]) +

L
∑

l=1

Λ̃l ≥ λ
bnn

(logn)2



(2.3)

≤P





2L
∑

i=1

(E[Cap(S(i),mL)]−Cap(S(i),mL))≥ ǫ
λn

(logn)2
bn





+

L
∑

l=1

P

(

Λ̃l ≥ (1− ǫ)2−l λn

(logn)2
bn

)

.

By using Lemma 1 and [12, Theorem 1.2.2], we can derive that

(2.4)

lim sup
n→∞

1

bn
logP





2L
∑

i=1

(E[Cap(S(i),mL)]−Cap(S(i),mL))≥ ǫ
λn

(logn)2
bn



≤−2LCλǫ.
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Now recall that Λ̃l is a sum of i.i.d. random variables. We can apply our Theorem 3 along

with [12, Theorem 1.2.2] to assert that

(2.5) lim sup
n→∞

1

bn
logP

(

Λ̃l ≥ (1− ǫ)2−l λn

(logn)2
bn

)

≤−I4(λ− ǫ).

If we combine equations (2.5) and (2.4) in equation (2.3), we see that,

lim sup
n→∞

1

bn
logP





2L
∑

i=1

(−Cap(S(i),mL) + E[Cap(S(i),mL)]) +

L
∑

l=1

Λ̃l ≥
λnbn

(logn)2





≤−min
(

2LCλǫ, I4(λ− ǫ)
)

.

If we first take L to ∞ and then ǫ→ 0, we derive the desired upper bound on the probability.

Lower bound in (2.2):

First consider the quantity SLn as in equation (3.4) given by,

SLn =
∑

x1∈S

∑

x2∈S
P(R′

x1 ∩ S = ∅)GD(x1 − x2)P(R′
x2 ∩ S = ∅).

Since

SLn ≤
2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅)GD(x

1 − x2)P(R′
x2 ∩ S(i),mL = ∅)

+
∑

x1∈S(i),mL ,x2∈S(j),mL ,
1≤i6=j≤2L

P(R′
x1 ∩ S = ∅)GD(x1 − x2)P(R′

x2 ∩ S = ∅)

and the second term in the right hand side is bounded by

2

L
∑

l=1

2l−1
∑

j=1

∑

x1∈S(2j−1),ml ,
x2∈S(2j),ml

P(R′
x1 ∩ S = ∅)GD(x1 − x2)P(R′

x2 ∩ S = ∅)≤
L
∑

l=1

Λ̃l,

we have that,

2L
∑

i=1

(−Cap(S(i),mL) + E[Cap(S(i),mL)]) +

L
∑

l=1

(Λ̃l −E[Λ̃l])

≥ SLn −E[SLn] +

2L
∑

i=1

(−Cap(S(i),mL) + E[Cap(S(i),mL)])−
L
∑

l=1

E[Λ̃l]

−
2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅)GD(x

1 − x2)P(R′
x2 ∩ S(i),mL = ∅) +E[SLn].
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Noting that
∑L

l=1E[Λ̃l] = O
(

n
(logn)2

)

, the term
∑L

l=1E[Λ̃l] will not contribute to the

large deviation statistics to the order we are concerned with. In addition,

E[

2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅)GD(x

1 − x2)P(R′
x2 ∩ S(i),mL = ∅)]− E[SLn]

≤E[

2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅)GD(x

1 − x2)P(R′
x2 ∩ S(i),mL = ∅)]

−E[

2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S = ∅)GD(x

1 − x2)P(R′
x2 ∩ S = ∅)] + Cn

(logn)2

≤2E[

2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅,R′

x1 ∩ S 6= ∅)GD(x1 − x2)P(R′
x2 ∩ S(i),mL = ∅)]

+
Cn

(logn)2
.

n

(logn)2
.

The final inequality is very similar to the type of error terms we have dealt with in Section 4.

Thus, we omit the proof. Thus, we have that

(2.6)

P





2L
∑

i=1

(−Cap(S(i),mL) + E[Cap(S(i),mL)]) +

L
∑

l=1

Λ̃l ≥
λnbn

(logn)2





≥ P

(

SLn −E[SLn]≥
(λ+ ǫ)nbn
(logn)2

)

− P





2L
∑

i=1

(Cap(S(i),mL)− E[Cap(S(i),mL)])≥ ǫnbn
2(logn)2





− P

( 2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅)GD(x

1 − x2)P(R′
x2 ∩ S(i),mL = ∅)

−E[

2L
∑

i=1

∑

x1,x2∈S(i),mL

P(R′
x1 ∩ S(i),mL = ∅)GD(x

1 − x2)P(R′
x2 ∩ S(i),mL = ∅)]≥ ǫnbn

2(logn)2

)

.

Now, we note that the negative quantities on the right hand side are the sum of i.i.d random

variables; the term on the last line are also of the form SLn2−L . By using Lemma 1 and the

result for SLn from Corollary 2 as well as [12, Theorem 1.2.2], we have that the probabilities

in the last two lines are bounded by exp[bn(−2LCǫ)] for some constant C .

Furthermore, Corollary 2 also gives us that limn→∞
1
bn

logP (SLn−E[SLn]≥ (λ+ǫ)nbn
(logn)2 ) =

−I4(λ+ ǫ). Given ǫ, if we first choose L such that −2LCǫ≪−I4(λ+ ǫ), we see that,

lim inf
n→∞

1

bn
logP





2L
∑

i=1

(−Cap(S(i),ml) +E[Cap(S(i),ml)]) +

L
∑

l=1

Λ̃l ≥
λnbn

(logn)2





≥− I4(λ+ ǫ).

We can then take the limit as L to ∞ and then ǫ→ 0 to show equation (2.2). This completes

the proof of the result.
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We can quickly derive our corollary for the exact constant of the LIL for the lower tail of

Cap(S)− E[Cap(S)].

PROOF OF COROLLARY 1 . This will follow by carefully applying the Borel-Cantelli

lemma. The large deviation estimates of Theorem 1 are used to derive the appropriate conver-

gence or divergence conditions. We should take λbn = (1 + ǫ)I4(1)
−1 logn and then choose

the sequence an = en in Theorem 1. While we obtain the lower bound by the first Borel-

Cantelli lemma taking ǫ < 0, the upper bound by second taking ǫ > 0. The details are the

same as those found in [12, Theorem 8.6.2].

2.2. A priori Estimates on Cap(S). In this section, we will prove the following large

deviation principle on Cap(S). The following lemma will give a sufficient a-priori large

deviation estimate to bound the second term of the second line of (2.6).

LEMMA 1. Let bn = O(log logn) with limn→∞ bn =∞. There exists some constant C
such that for any λ > 0,

(2.7) lim sup
n→∞

1

bn
logP

(

|Cap(S)− E[Cap(S)]| ≥ λn

(logn)2
bn

)

≤−Cλ.

PROOF. We will consider proving this when n is a power of 2. By changing the constant

C that appears on the right hand side of (2.7), one can use our subdivision formula of Rn in

order to obtain estimates on general n via a binary decomposition in terms of powers of n.

Now, assume n is power of 2 and let L= 4 log(logn). We can decompose rn iteratively L
times to notice that,

Cap(S) =
2L
∑

i=1

Cap(S(i),mL)−
L
∑

l=1

Λl + ǫL,

where we use the notation from the proof of Theorem 1. This time ǫL can be shown to be

of O((logn)10). (There will at most 1 + 2 + 4 + . . .+ 2L = O((logn)4) many error terms

of the form ǫ in the decomposition. Each of these error terms has moment O((logn)2).) By

applying Chebyshev’s inequality, we see that the error term ǫL provides no change to the

probability at the scale bn. Thus, we freely drop this error term ǫL in what follows.

Bounding Upper tails of Cap(S)−E[Cap(S)]
If one wants to bound the probability P(Cap(S) − E[Cap(S)] ≥ λnbn

(logn)2 ) from above,

then since all the terms Λl are positive and
∑L

i=1E[Λl] =O( n
(logn)2 ), it suffices to bound the

probability,

P





2L
∑

i=1

Cap(S(i),mL)−E[Cap(S(i),mL)]≥ λnbn
(logn)2



 .

Now, the sequence Cap(S(i),mL)− E[Cap(S(i),mL)] are the sequence of i.i.d. random vari-

ables with the property that E exp
[

θ
n |Cap(S)−E[Cap(S)]|

]

<∞. (This is due the the fact

that Cap(S)≤ n.) We can apply [6, Lemma 4.4] to assert that there is some constant θ > 0
such that

lim sup
n→∞

E



exp





θ

2L/2

∣

∣

∣

∣

∣

∣

2L
∑

i=1

2L

n
(Cap(S(i),mL)− E[Cap(S(i),mL)])

∣

∣

∣

∣

∣

∣







<∞.
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Since 2L/2 ≥ (logn)2 by choice, this implies that,

lim sup
n→∞

E



exp



θ
(logn)2

n

∣

∣

∣

∣

∣

∣

2L
∑

i=1

(Cap(S(i),mL)− E[Cap(S(i),mL)])

∣

∣

∣

∣

∣

∣







<∞.

By Chebyshev’s inequality, this shows that there is some constant C such that,

(2.8) lim sup
n→∞

1

bn
logP

(

∣

∣

∣

∣

∣

∣

2L
∑

i=1

(Cap(S(i),mL)−E[Cap(S(i),mL)])

∣

∣

∣

∣

∣

∣

≥ λnbn
(logn)2

)

≤−Cλ.

Upper Bounds on the lower tail of Cap(S)−E[Cap(S)]
Due to our control on

∣

∣

∣

∑2L

i=1(Cap(S(i),mL)−E[Cap(S(i),mL)])
∣

∣

∣ from equation (2.8). It

suffices to bound P

(

∑L
l=1Λl ≥ λnbn

(logn)2

)

.

If we define,

αl,j :=

(2j−1)ml
∑

a=(2j−2)ml+1

(2j)ml
∑

b=(2j−1)ml+1

P(R′
Sa

∩ S(2j−1),ml = ∅)GD(Sa −Sb)P(R
′
Sb

∩ S(2j),ml = ∅),

notice that we can bound,

χ(S(2j−1),ml ,S(2j),ml)≤ αl,j.

Finally, in order to show lim supn→∞
1
bn

logP(
∑L

l=1Λl ≥ λnbn
(logn)2 )≤−Cλ for some con-

stant C . It suffices to prove that the exponential moment,

(2.9) lim sup
n→∞

E



exp





θ(logn)2

n

L
∑

l=1

2l−1
∑

k=1

αl,k







<∞.

By the consequence of Lemma 7, there is a parameter θ > 0 such that each αl,k has the

exponential moment,

lim sup
n→∞

E

[

exp

[

θ
(log(2−ln))2

2−ln
αl,k

]]

<∞.

Thus, we can follow the argument of [6, Theorem 5.4] from equation (5.30) onwards to prove

that the desired result (2.9). This completes the proof of the lemma.

3. Theorem 2: Large Deviations of the Cross Term. In this section, we provide a

decomposition for χ that will give us a proof of Theorem 2. Analyzing χ is not directly

tractable due to the lack of symmetry in each individual product. Recall that S1,S2 are in-

dependent random walks of duration n. To deal with this issue, we can write this in terms of

the following difference,

(3.1)

χ= χ(S1,S2)

= 2
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2 = ∅)

−
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x1 − x2)P(R′

x2 ∩ S2 = ∅,R′
x2 ∩ S1 6= ∅)

−
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅,R′

x1 ∩ S2 6= ∅)GD(x
1 − x2)P(R′

x2 ∩ S2 = ∅).



12

Now, in order to obtain asymptotics on χ, our goal is two-fold.

(1) An upper bound on χ is found by merely considering the top line

(3.2) TLn :=
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2 = ∅).

Thus, one can obtain upper bounds on the moderate deviation statistics of χ merely

from analyzing the moderate deviation statistics of TLn.

(2) Obtaining lower bounds on the moderate deviation statistics of χ needs more steps. First,

one needs to show that the second line of (3.1), which we denote as χ′ is sub-leading

relative to the first line. (The analysis of the third line would be similar to that of the

second.)

(3.3) χ′ :=
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2 = ∅,R′

x2 ∩ S1 6= ∅).

Once this is established, lower bounds on the large deviation statistics of χ will be the

same as those of TLn. Furthermore, observe that only an upper bound on χ′ is necessary.

We will have two intermediate goals,

THEOREM 3. Recall TLn as in equation (3.2). Fix bn =O(log logn) with limn→∞ bn =
∞. We have that, for any λ > 0,

lim
n→∞

1

bn
logP

(

TLn ≥ λ
bnn

(logn)2

)

=−2I4(λ).

We remark that by following the same proof, we could obtain the following statement; this

is analogous to our statement on TLn and [12, Theorem 8.2.1], but uses the same random

walk rather than two independent copies.

COROLLARY 2. Let bn =O(log logn) with limn→∞ bn =∞. Define SLn as,

(3.4) SLn :=
∑

x1∈S

∑

x2∈S
P(R′

x1 ∩ S = ∅)GD(x
1 − x2)P(R′

x2 ∩ S = ∅).

Then, we have that,

lim
n→∞

1

bn
logP

(

SLn − E[SLn]≥ λ
bnn

(logn)2

)

=−I4(λ).

THEOREM 4. Recall χ′ as in (3.3). Fix bn =O(log logn) with limn→∞ bn =∞. For any

ǫ > 0, we have that,

lim
n→∞

1

bn
logP

(

χ′ ≥ ǫ
bnn

(logn)2

)

=−∞.

It is clear that Theorem 2 is a consequence of Theorems 3 and 4 along with the decompo-

sition (3.1). The next few sections will be devoted to proving these theorems.
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4. Controlling The Third Order Intersections: Proof of Theorem 4. For any A, let

GA(a, b) =

∞
∑

m=0

P
a(Sm = b,S(0,m) ∩A= ∅).

Here, GA(a, b) is a restricted Green’s function. Via a path decomposition, one can see that

we have the following expression for the more complicated probability term in χ′,

(4.1) P(R′
x2 ∩ S2 = ∅,R′

x2 ∩ S1 6= ∅) =
∑

x1∈S1

GS2(x2, x1)P(R′
x1 ∩ (S1 ∪ S2) = ∅).

It computes the total sum of all probabilities of random walk paths from a to b that do not

intersect A.

The equality in (4.1) comes from a path decomposition. Namely, since R′
x2 ∩S1 6= ∅, then

the random walk R′
x2 must intersect S1 at some final point x1. After this point, the random

walk starting from x1 must not intersect either one of S1 or S2. Then, we can further bound

χ′ ≤
∑

x1
1,x

1
2∈S1

∑

x2∈S2

P(R′
x1
1
∩ S1 = ∅)GD(x11 − x2)GS2(x2, x12)P(R

′
x1
2
∩ S1 = ∅).

Though we have simplified the probability term in question, we are still not ready to ana-

lyze this due to the appearance of the term GS2 . We have to introduce a more sophisticated

analysis in order to deal with this term. First we fix parameter β < 1, the specific value will

be chosen later in accordance with what is appropriate for later upper bounds. It is important

to decompose the walk S2 into appropriate intervals of size nβ . We define,

S2
β,j := S2[(j − 1)nβ , jnβ].

By adding back points when necessary, and also using the fact that if A ⊂ B then

GB(x, y)≤GA(x, y) for all points x and y, we see that we have,

χ′ ≤ χ′
β :=

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x2)

×GS2
β,j
(x2, x12)P(R

′
x1
2
∩ S1 = ∅).

(Note that χ′ or χ′
β is a random variable determined by S1 and S2.)

One way to express the modified Green’s function GS2
β,j

is as follows. Note that Green’s

function satisfies the following system of equations: for any x ∈ S2
β,j and m≥ 0,

P
x(Sm = x12) =

m
∑

i=0

∑

x̃∈S2
β,i

P
x(Si = x̃)Px̃(S(0,m− i)∩ S2

β,j = ∅,Sm−i = x12)

and hence

GD(x− x12) =
∑

x̃∈S2
β,i

GD(x− x̃)GS2
β,j
(x̃, x12).

If we define the matrix with size |S2
β,j|

(4.2) [GS2
β,j ]a,b =GD(a− b), for a, b∈ S2

β,j,

we see that,

(4.3)











GS2
β,j
(a1, x

1
2)

GS2
β,j
(a2, x

1
2)

...

GS2
β,j
(a|S2

β,j |, x
1
2)











= (GS2
β,j )−1











GD(a1, x
1
2)

GD(a2, x
1
2)

...

GD(a|S2
β,j |, x

1
2)











,
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where a varies over all the points in S2
β,j .

The analysis of the matrix inverse will depend on the distance between the points in x12 and

the set S2
β,j . Observe that if x12 were far away from the set S2

β,j , then the terms in the vector

on the right hand side of equation (4.3) would approximately be constant. Furthermore, it is

also rather unlikely that the x12 would be close to the set S2
β,j . Following this intuition, we

divide the the points x12 into two categories,

(1) In category 1, the point x12 is of distance at least
√
n
1−δ

away from all the points in S2
β,j .

(2) In category 2, the point x12 is not of distance at least
√
n
1−δ

away from some point in

S2
β,j

If we are in the first category, we have a superior analysis, as will be illustrated by the

following manipulations. Indeed, assume that the point x12 is of distance at least
√
n
1−δ

from

all points in S2
β,j . Now, let a and b be two points in S2

β,j . Then, we must have

(4.4)
∣

∣GD(a− x12)−GD(b− x12)
∣

∣.

∣

∣

∣

∣

1

‖a− x12‖2
− 1

‖b− x12‖2
∣

∣

∣

∣

+
1

‖a− x12‖4
+

1

‖b− x12‖4

.
‖a− b‖

‖a− x12‖3
+2

(

1
√
n
1−δ

)4

.
nβ

(
√
n)

3−3δ
.

Note that here, we have applied the estimates of [18, Theorem 4.3.1]. Then we use the fact

that ‖a− b‖ is less than nβ when both are in the neighborhood of S2
β,j and our assumption

that ‖x12 − a‖ ≥ (
√
n)

1−δ
. Let







Ea1,x1
2

...

Ea|S2
β,j

|,x
1
2






:= (GS2

β,j )−1







GD(a1 − x12)−GD(a1 − x12)
...

GD(a|S2
β,j | − x12)−GD(a1 − x12)






.

In this case, we can further write the inverse formula as in equation (4.3) as,

(4.5)






GS2
β,j
(a1, x

1
2)

...

GS2
β,j
(a|S2

β,j|, x
1
2)






= (GS2

β,j )−1







GD(a1 − x12)
...

GD(a|S2
β,α,j| − x12)







= (GS2
β,j )−1







1
...

1






×GD(a1 − x12) + (GS2

α,β,j )−1







GD(a1 − x12)−GD(a1 − x12)
...

GD(a|S2
β,j | − x12)−GD(a1 − x12)







=







P(R′
a1

∩ S2
β,j = ∅)

...

P(R′
a|S2

β,j
|
∩ S2

β,j = ∅)






×GD(a1 − x12) +







Ea1,x1
2

...

Ea|S2
β,j

|,x
1
2






.

Thus, we have the following representation of χ′
β . In what follows, we let I(y, j) be the

indicator function of the event

I(y, j) := 1[dist(y,S2
β,j)≥

√
n
1−δ

].
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For each set S2
β,j choose a point x̃2j . This point will serve as the central point used in the

decomposition used in equation (4.5):

(4.6)

χ′
β =

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x2)

× P(R′
x2 ∩ S2

β,j = ∅)GD(x̃
2
j − x12)P(R

′
x1
2
∩ S1 = ∅)

+
∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x̃2j )

×Ex2,x1
2
P(R′

x1
2
∩ S1 = ∅)

+
∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)

× [GD(x
1
1 − x2)−GD(x

1
1 − x̃2j )]Ex2,x1

2
P(R′

x1
2
∩ S1 = ∅)

+
∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

[1−I(x12, j)I(x11, j)]P(R′
x1
1
∩ S1 = ∅)GD(x11 − x2)

×GS2
β,j
(x2, x12)P(R

′
x1
2
∩ S1 = ∅)

=:MTn + E1 + E2 + E3.
The analysis of χ′

β now devolves into the following three lemmas.

LEMMA 2. Fix m ∈N. There exists a constant depending only on m(and not on n) such

that, if we define,

(4.7)
MTn : =

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x2)

× P(R′
x2 ∩ S2

β,j = ∅)GD(x̃2j − x12)P(R
′
x1
2
∩ S1 = ∅),

then,

E[(MTn)
m]≤Cm

nm(log logn)2m

(logn)3m
.

By Markov’s inequality, we obtain the following as a consequence,

COROLLARY 3. Recall MTn and fix any ǫ > 0. If bn =O(log logn) with limn→∞ bn =
∞, we see that we have,

lim
n→∞

1

bn
logP

(

MTn ≥ ǫ
bnn

(logn)2

)

=−∞.
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PROOF. By applying Markov’s inequality to (4.7) for some fixed power E[(MTn)
m], we

can derive that,

lim sup
n→∞

1

bn
logP

(

MTn ≥ ǫ
bnn

(logn)2

)

≤ lim sup
n→∞

−m

bn

[

log ǫ− logCm

m
+ log logn− 2 log log logn+ log bn

]

≤−m
log logn

bn
.

The quantity above will go to ∞ as one takes m to ∞.

PROOF OF LEMMA 2. Since the proof is similar to Claim 2 and the estimate of E2, we

explain it very briefly. We estimate MTn by decomposing the term of GD(x
1
1 − x2) in MTn

by GD(x
1
1 − x2)−GD(x

1
1 − x̃2j) and GD(x

1
1 − x̃2j). Concerning the term of MTn including

GD(x
1
1 − x̃2j), note that by [17, Theorem 3.5.1],

P(S1(0,∞)∩ (S2[0, n]∪ S3[0, n]) = ∅). (logn)−1,(4.8)

where S3 is an independent random walk from S1 and S2. If one could freely replace the

probability of non-intersection of the random walks appearing in the above expression of

(4.7) with O
(

1
logn

)

, then the term of MTn including GD(x
1
1 − x̃2j) is a consequence of

Lemma 3 and repeating the proof of Claim 2 with the aid of (4.8). Concerning the term of

MTn including GD(x
1
1−x2)−GD(x

1
1− x̃2j), notice that here we could make the replacement

GD(x
1
1 − x2)≈GD(x

1
1 − x̃2j) since ‖x2 − x̃2j‖ ≤ nβ as they are both elements of S2

β,j under

I(x11, j). Then we can estimate the term of MTn including GD(x
1
1 − x2)−GD(x

1
1 − x̃2j ) by

a similar argument to the estimate of E2.

LEMMA 3. Consider the following quantity,

MT ′
n : =

∑

x1
1,x

1
2∈S1

∑

x2∈S2

GD(x
1
1 − x2)GD(x

2 − x12).

There exists some constant Cm(not depending on n) such that

E[(MT ′
n)

m]≤Cmnm(log logn)2m.

PROOF. Let α > 4m. First, we show that for any yi ∈ Z
4 with inf1≤i≤2m ‖yi‖ ≥

n1/2(logn)−α,

(4.9) E





n
∑

k1,...,k2m=1

2m
∏

i=1

GD(S1
ki
− yi)



≤Cm,α(log logn)
2m.
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Let Ai = {‖S1
ki−1

− yi‖ ≥ n1/2(logn)−2α}. Indeed,

∑

1≤k1≤...≤k2m≤n

2m
∏

i=1

GD(S1
ki
− yi)

=
∑

1≤k1≤...≤k2m≤n

GD(S1
k2m

−S1
k2m−1

+ S1
k2m−1

− y2m)

2m−1
∏

i=1

GD(S1
ki
− yi)

=
∑

1≤k1≤...≤k2m≤n

GD(S1
k2m

−S1
k2m−1

+ S1
k2m−1

− y2m)1A2m

2m−1
∏

i=1

GD(S1
ki
− yi)

+
∑

1≤k1≤...≤k2m≤n

GD(S1
k2m

−S1
k2m−1

+ S1
k2m−1

− y2m)1Ac
2m

2m−1
∏

i=1

GD(S1
ki
− yi).

Note that [17, Thm. 1.2.1] that for any x ∈ Z
4, i≥ 1,

P(S1
i = x). i−2

[

e−2‖x‖2/i + (‖x‖2 ∨ i)−1
]

.(4.10)

Hence if ‖y‖ ≥ n1/2(logn)−2α,

E





∑

1≤k≤n

GD(S1
k − y)



. log logn

and

E





∑

1≤k2m−1≤n

1Ac
2m
GD(S1

k2m−1
− y2m−1)



. (logn)−4α × logn.

In addition,

max
y1,...,y2m

E





n
∑

k1,...,k2m=1

2m
∏

i=1

GD(S1
ki
− yi)



≤Cm(logn)2m.

Then,

E





∑

1≤k1≤...≤k2m≤n

GD(S1
k2m

−S1
k2m−1

+ S1
k2m−1

− y2m)1A2m

2m−1
∏

i=1

GD(S1
ki
− yi)





.(log logn)×E





∑

1≤k1≤...≤k2m−1≤n

2m−1
∏

i=1

GD(S1
ki
− yi)



 .

and by Lemma 15,

E





∑

1≤k1≤...≤k2m≤n

GD(S1
k2m

−S1
k2m−1

+ S1
k2m−1

− y2m)1Ac
2m

2m−1
∏

i=1

GD(S1
ki
− yi)





.(logn)E





∑

1≤k1≤...≤k2m−1≤n

1Ac
2m

2m−1
∏

i=1

GD(S1
ki
− yi)





≤Cm(logn)2m(logn)−4α.



18

Hence, we obtain (4.9). Moreover, if inf{i1, . . . , im} ≥ n(logn)−α,

E[1D] := E

[

∪m
i=11{‖S2

i ‖ ≤ n1/2(logn)−α}
]

≤Cm(logn)−4α

and
∑

inf{i1,...,im}≤n(logn)−α

1≤ nm(logn)−α.

Hence,

E[(MT ′
n)

m]≤ E





n
∑

i1,...,im=1

n
∑

k1,...,k2m=1

2m
∏

j=1

GD(S1
kj
−S2

i⌈j/2⌉)





≤Cmnm(logn)m(logn)−α +E





∑

inf{i1,...,im}≥n(logn)−α

n
∑

k1,...,k2m=1

2m
∏

j=1

GD(S1
kj
−S2

i⌈j/2⌉)





≤Cmnm(logn)m(logn)−α +E





∑

inf{i1,...,im}≥n(logn)−α

n
∑

k1,...,k2m=1

1Dc

2m
∏

j=1

GD(S1
kj
−S2

i⌈j/2⌉)





≤Cmnm(log logn)2m.

Therefore, we obtain the desired result.

The other terms of equation (4.6) are of much smaller order.

LEMMA 4. Consider the second summand on the right hand side of equation (4.6).

Namely, let

(4.11)
E1 :=

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x̃2j )

×Ex2,x1
2
P(R′

x1
2
∩ S1 = ∅).

We have that,

(4.12) E[|E1|]. n2β+ 3

2
δ+ 1

2 .

We also have a similar estimate for the third summand on the right hand side of equation

(4.6). Namely, we have that,

(4.13)
E2 :=

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)

× [GD(x
1
1 − x2)−GD(x

1
1 − x̃2j)]Ex2,x1

2
P(R′

x1
2
∩ S1 = ∅),

will satisfy,

(4.14) E[|E2|]. n3β+2δ.

Lemma 4 will be shown later in this section. As before, Markov’s inequality will give. one

can derive that,
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COROLLARY 4. Recall the terms E1 and E2 from equations (4.11) and (4.13). Fix any

ǫ > 0 and set bn =O(log logn) with limn→∞ bn =∞. We have that,

(4.15) lim
n→∞

1

bn
logP

(

max(|E1|, |E2|)≥ ǫ
nbn

(logn)2

)

=−∞.

PROOF. By Markov’s inequality applied to (4.12) and (4.14), we have that

1

bn
logP

(

|E1| ≥ ǫ
nbn

(logn)2

)

≤ − log ǫ− (12 − 2β − 3
2δ) logn+2 log logn

bn
,

and,

1

bn
logP

(

|E2| ≥ ǫ
nbn

(logn)2

)

≤ − log ǫ− (1− 3β − 2δ) log n+2 log logn

bn
.

The desired conclusion (4.15) follows from taking the limit n→∞.

Finally, the last error term, the fourth summand of (4.6) will also be of smaller order.

LEMMA 5. Consider the last summand of (4.6),

E3 :=
∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

[1−I(x12, j)I(x11, j)]P(R′
x1
1
∩ S1 = ∅)(4.16)

GD(x
1
1 − x2)GS2

β,j
(x2, x12)P(R

′
x1
2
∩ S1 = ∅).

We have that, for some δ′ > 0,

E [E3]. n1−δ′ .

PROOF. By (4.10), we remark that for any point a that,

(4.17) E

[

∑

x2∈S2

GD(a− x2)

]

≤
n
∑

j=0

∞
∑

i=j

P(Si = a).

n
∑

j=0

∞
∑

i=j

i−2
+ . logn,

where i+ := 1∨ i. By symmetry,

E[E3]≤E

[ n
∑

i,j,k=0

[1− 1[‖S1
i −S2

j ‖ ≥
√
n
1−δ

]1[‖S1
k −S2

j ‖ ≥
√
n
1−δ

]]

×GD(S1
i −S2

j )GD(S2
j −S1

k)

]

≤2E

[ n
∑

i,j,k=0

1[‖S1
i −S2

j ‖ ≤
√
n
1−δ

]GD(S1
i −S2

j )GD(S2
j −S1

i − (S1
k −S1

i ))

]

.

By (4.17) and Markov’s property, it is bound by

C(logn)×E





n
∑

i,j=0

1[‖S1
i −S2

j ‖ ≤
√
n
1−δ

]GD(S1
i −S2

j )



 .

Now, by [13, Lemma 4.1],

E





n1−δ/2
∑

i,j=0

1[‖S1
i −S2

j ‖ ≤
√
n
1−δ

]GD(S1
i −S2

j )



≤ E





n1−δ/2
∑

i,j=0

GD(S1
i −S2

j )



. n1−δ/2
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and

E





n
∑

i=n1−δ/2

n
∑

j=0

1[‖S1
i −S2

j ‖ ≤
√
n
1−δ

]GD(S1
i −S2

j )





≤nmax
y∈Z4

E

[

n
∑

i=n1−δ/2

1[‖S1
i − y‖ ≤√

n
1−δ

]GD(S1
i − y)

]

.nmax
y∈Z4

n
∑

i=n1−δ/2

∑

‖x−y‖≤√
n

1−δ

‖x− y‖−2
P(S1

i = x).

Then again by (4.10), it is bound by

C(logn)n1−δ/2 +Cn(logn)max
y∈Z4

n
∑

i=n1−δ/2

∑

‖x−y‖≤√
n

1−δ

‖x− y‖−2i−2
+ . (logn)n1−δ/2.

Therefore, by symmetry, it completes the proof.

As before, one can show the following from Markov’s inequality,

COROLLARY 5. Recall the term E3 from (4.16). Fix any ǫ > 0 and set bn =O(log logn)
with limn→∞ bn =∞. Then, we see that,

(4.18) lim
n→∞

1

bn
logP

(

E3 ≥ ǫ
nbn

n(logn)2

)

=−∞.

The proof is similar to that of Corollary 4 and will not be shown here.

Using the previous corollaries, one can now prove Theorem 4.

PROOF OF THEOREM 4. It is clear that,

P

(

χ′ ≥ ǫ
nbn

(logn)2

)

≤ P

(

χ′
β ≥ ǫ

nbn
(logn)2

)

≤ P

(

MTn ≥ ǫ

4

bnn

(logn)2

)

+

3
∑

i=1

P

(

|Ei| ≥
ǫ

4

bnn

(logn)2

)

.

By computing 1
bn

log to both sides, we see that the conclusion of Theorem 4 is a conse-

quence of Corollaries 3, 4, and 5.

4.1. Proof of Lemma 4. The proof of this lemma requires novel techniques beyond care-

ful computations of Green’s functions due to the presence of the error terms E occurring

from the matrix inversion. We will present the proof here.

PROOF OF LEMMA 4. First, we deal with E1. We have that,

E1 =
∑

x1
1∈S1

n1−β
∑

j=1

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x̃2j)

×
∑

x1
2∈S1

∑

x2∈S2
β,j

Ex2,x1
2
P(R′

x1
2
∩ S1 = ∅).
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We now consider, under the indicator function I(x12, j),
∑

x1
2∈S1

∑

x2∈S2
β,j

|Ex2,x1
2
|P(R′

x1
2
∩ S1 = ∅)

≤
∑

x1
2∈S1

√

|S2
β,j|

∑

x2∈S2
β,j

|Ex2,x1
2
|2 . n

√

n2β
n2β

n3−3δ
. n2β+3/2δ−1/2.

To get the first inequality, we used the Cauchy-Schwartz inequality on the sum over S2
β,j .

From Lemma 16, the matrix GS2
β,j is positive definite and has minimum eigenvalue greater

than 1/2. Recall that a1 is defined in Ex2,x1
2

in (4.5). Thus, the inverse matrix has l2 → l2

operator norm less than 2. Thus, we know that, under the indicator function I(x12, j),
√

∑

x2∈S2
β,j

|Ex2,x1
2
|2 ≤ 2

√

∑

x2∈S2
β,j

|GD(a1 − x12)−GD(x2 − x12)|2 .
√

nβ
n2β

n3−3δ
.

In the final inequality, we used the deterministic bound (4.4) to bound the differences of the

Green’s function in the region S2
β,j . Thus, we have that, deterministically,

∣

∣

∣

∣

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x11 − x̃2j )

×Ex2,x1
2
P(R′

x1
2
∩ S1 = ∅)

∣

∣

∣

∣

.
∑

x1
1∈S1

n1−β
∑

j=1

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x̃2j)n

2β+3/2δ−1/2

. n2β+3/2δ−1/2
n
∑

i=1

n
∑

j=1

GD(S1
i −S2

j ).

Therefore,

E

[∣

∣

∣

∣

∑

x1
1,x

1
2∈S1

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)

× I(x11, j)P(R′
x1
1
∩ S1 = ∅)GD(x

1
1 − x̃2j)Ex2,x1

2
P(R′

x1
2
∩ S1 = ∅)

∣

∣

∣

∣

]

.n2β+3/2δ−1/2
E





n
∑

i=1

n
∑

j=1

GD(S1
i −S2

j )



. n2β+3/2δ+1/2.

The computation of the expectation in the last line above comes from [13, Lemma 4.1]. The

value of this last line is approximately n−1/2 the scale of the main order term (provided β, δ
are all chosen relatively small).
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Now, the other error term involving E can be dealt with in a similar way to E3. To recall,

the other error term is,

|E2| ≤
∣

∣

∣

∣

∑

x1
1,x

1
2∈S2

n1−β
∑

j=1

∑

x2∈S2
β,j

I(x12, j)I(x11, j)P(R′
x1
1
∩ S1 = ∅)

× [GD(x
1
1 − x2)−GD(x

1
1 − x̃2j)]Ex2,x1

2
P(R′

x1
2
∩ S1 = ∅)

∣

∣

∣

∣

.

We first use the improved estimate,

|GD(x
1
1 − x2)−GD(x

1
1 − x̃2j )|.GD(x

1
1 − x̃2j )

nβ

n1/2−δ/2

under the indicator function I(x11, j). We remark here that the factor of GD(x
1
1 − x̃2j ) is an

improved error term in the case that ‖x11 − x̃2j‖ is relatively large. With this deterministic

bound in hand, bounding this error term in E reduces to the error term we just treated.

5. The Leading Term of χ: Proof of Theorem 3. In this section, we will consider the

large deviation statistics of the following quantity,

TLn :=
∑

x1∈S1

∑

x2∈S2

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2 = ∅).

We will prove Theorem 3 by separately proving lower and upper bounds for the asymptotic

moments.

5.1. Introduction of the Auxiliary TL′
n. For technical reasons, TLn is not the most con-

venient quantity to manipulate. Instead, we consider the following auxiliary quantity. We

let Sk,i denote the portion of the random walk in between the part of the random walk

Sk
[

(i− 1) n
bn
, i n

bn

]

and

(5.1) TL′
n :=

bn
∑

i,j=1

∑

x1∈S1,i

∑

x2∈S2,j

P(R′
x1 ∩ S1,i = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2,j = ∅).

We have the following relationship between TLn and TL′
n.

PROPOSITION 1. Let bn be a sequence satisfying bn = O(log logn) and limn→∞ bn =
∞. Fix λ≥ 0. Then, we have that,

(5.2) lim
n→∞

1

bn
logP

(

TL′
n ≥ λ

nbn
(logn)2

)

= lim
n→∞

1

bn
logP

(

TLn ≥ λ
nbn

(logn)2

)

.

PROOF. We remark that TL′
n ≥ TLn. This immediately shows that,

P

(

TL′
n ≥ λ

nbn
(logn)2

)

≥ P

(

TLn ≥ λ
nbn

(logn)2

)

.
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To derive the opposite inequality, we first observe that TL′
n − TLn can be bounded from

above by,

(5.3)
TL′

n − TLn

≤
bn
∑

i,j=1

∑

x1∈S1,i

∑

x2∈S2,j

P(R′
x1 ∩ S1,i = ∅,R′

x1 ∩ S1 6= ∅)GD(x
1 − x2)P(R′

x2 ∩ S2,j = ∅)

+

bn
∑

i,j=1

∑

x1∈S1,i

∑

x2∈S2,j

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2,j = ∅,R′

x2 ∩ S2 6= ∅)

+

bn
∑

i1 6=i2,j=1

∑

x1∈S1,i1∩S1,i2

∑

x2∈S2,j

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2 = ∅)

+

bn
∑

i,j1 6=j2=1

∑

x2∈S2,j1∩S2,j2

∑

x1∈S1,i

P(R′
x1 ∩ S1 = ∅)GD(x

1 − x2)P(R′
x2 ∩ S2 = ∅)

=:J1 + J2 + J3 + J4.

For each line on the right hand side above, we will show that for 1≤ i≤ 4

(5.4) lim
n→∞

1

bn
logP

(

Ji ≥ ǫ
nbn

(logn)2

)

=−∞.

The first two lines of the right hand side of (5.3) are very similar to the type of error terms

we have dealt with in Section 4. One can follow the analysis of said section to show the

relation (5.4) for these two lines.

The last two lines will be controlled by bounding the moments and applying Markov’s

inequality. We present the analysis with the term on the third line, since the term on the

fourth line can be dealt with similarly. We first bound all the probability terms on the line by

1.

By (4.10) and (4.17), for any x and y,

E





n
∑

i,j=0

1{S1
i + x= S2

j + y}



=

n
∑

i,j=0

P(S1
i+j = y − x)

.

n
∑

i,j=0

(i+ j)−2
+ . logn.

Thus, we see that,

E [J3]≤ ES1





bn
∑

i1 6=i2=1

∑

x1∈S1,i1∩S1,i2

ES2

[

∑

x2∈S2

GD(x
1 − x2)

]





. E





bn
∑

i1 6=i2=1

Ii1,i2 logn



. b2n(logn)
2.

On the second line ESi is the expectation with respect to only the randomness of Si. Ii1,i2
is the number of points of intersection between S1

i1
and S1

i2
. We remark that S1

i2
−S1

i2
n

bn

and

S1
i1 −S1

i1
n

bn

are independent random walks. Then, E[Ii1,i2 ]. logn by a similar computation



24

to [17, Proposition 4.3.1]. Thus, this term will not contribute to the large deviation statistics

of TL′
n on the scale of nbn

(logn)2 .

The quantity TL′
n is easier to deal with since we can obtain exact moment asymptotics.

Namely,

PROPOSITION 2. Recall TL′
n from equation (5.1). Let bn =O(log logn) and limn→∞ bn =

∞. Then, for any θ > 0, we have the following exact moment asymptotics on TL′
n:

(5.5) lim
n→∞

1

bn
log

∞
∑

m=0

1

m!
θm

(√
bn logn√

n

)m

E[(TL′
n)

m]1/2 = κ̃(4,2)4
π4θ2

8
.

As a consequence of the previous two propositions, one can now prove Theorem 3.

PROOF OF THEOREM 3. By [12, Theorem 1.2.7], equation (5.5) would be equivalent to

showing,

lim
n→∞

1

bn
logP

(

TL′
n ≥ λ

nbn
(logn)2

)

=− 4

π4
κ̃(4,2)−4λ.

Now, since by Proposition 1 we have that

lim
n→∞

1

bn
logP

(

TLn ≥ λ
nbn

(logn)2

)

= lim
n→∞

1

bn
logP

(

TL′
n ≥ λ

nbn
(logn)2

)

,

we complete the proof of the proposition.

The remainder of this section is devoted to deriving upper and lower bounds to the quantity

in equation (5.5).

5.2. Large Deviation Upper Bounds. In this section, we establish the upper bound found

in Proposition 2.

PROPOSITION 3. Let bn be a sequence satisfying bn = O(log logn) and limn→∞ bn =
∞. Then, for any θ > 0, we satisfy,

lim sup
n→∞

1

bn
log

∞
∑

m=0

1

m!
θm

(√
bn logn√

n

)m

E[(TL′
n)

m]1/2 ≤ κ̃(4,2)4
π4θ2

8
.

The proposition above is an immediate consequence of the following lemma and claim.

CLAIM 1. There exists some constant C > 0 such that for all n,m> 0, we have that,

(5.6) E[(TL′
n)

m]≤Cmm!

(

n

(logn)2

)m

.

The proof of the above claim will be postponed to later. We now present the second nec-

essary lemma.

LEMMA 6. For any θ > 0,

lim sup
n→∞

1

bn
log

∞
∑

m=0

1

m!
θm

(√
bn logn√

n

)m

E[(TL′
n)

m]1/2 ≤ κ̃(4,2)4
π4θ2

8
.
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PROOF. Let (B1
s )s≥0 and (B2

s )s≥0 be independent Brownian motions for d= 4. The need

for the bound in (5.6) and [7, (2.3)] are to ensure that one can apply dominated convergence

to the terms E
[(

(logn)2

n TL′
n

)m]

when needed, and replace them with the term:

(

π4

4

)m

E

[(∫ 1

0

∫ 1

0
G(B1

t −B2
s )dtds

)m]

.

The reason why this can be done is due to the fact that

(logn)2

n
TL′

n
D
=⇒ π4

4

∫ 1

0

∫ 1

0
G(B1

t −B2
s )dtds

following the proof of [4, Proposition 6.1].

We can follow the proof of [12, Theorem 7.2.1] to derive the appropriate upper bound.

Finally, by Remark A.3, we see we obtain our desired constant.

It is manifest that Proposition 3 is a consequence of Claim 1 and Lemma 6. We devote the

rest of this subsection to deriving Claim 1.

5.2.1. A proof of Claim 1. Our first remark is that the quantity TL′
n is less than,

(5.7)

TLn,α :=

n
∑

i,j=1

P(R′
S1

i
∩ S1[i− nα, i+ nα]∩ S1 = ∅)GD(S1

i −S2
j )

× P(R′
S2

j
∩ S2[j − nα, j + nα]∩ S2 = ∅).

We will analyze the moments of TLn,α via a subadditivity argument along with a careful

moment analysis. Our first subadditivity argument allows us to reduce our moment analysis

of TLn,α to a slightly weaker analysis.

LEMMA 7. If one knows that there exists some constant C such that for all n and m that

(5.8) E[(TLn,α)
m]≤Cm(m!)2

(

n

(logn)2

)m

,

then there is some other constant C ′ such that,

(5.9) E[(TLn,α)
m]≤ (C ′)m(m!)

(

n

(logn)2

)m

.

PROOF. We start by using a subadditivity argument. Recall that GD = G̃D ∗G̃D . To match

the notation of [12, Chapter 6.1], we also define

Fa
S(n′,n] =

n
∑

i=n′

G̃D(Si − a)P(R′
Si

∩ S[i− (n− n′)α, i+ (n− n′)α]∩ S(n′, n] = ∅).

The main thing to observe about this function is that,

TLn,α =
∑

a∈Z4

Fa
S1[1,n]Fa

S2[1,n].

Furthermore, it is trivially true that for times t < s that

Fa
S[1,s] ≤Fa

S[1,t] +Fa
S(t,s]
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and Fa
S has the translation symmetry,

Fa+z
S+z =Fa

S .

For these reasons, we can apply all the results of [12, Section 6.1]. In particular, we can

apply the argument of [12, Theorem 6.2.1].

It remains to prove equation (5.8).

LEMMA 8. Equation (5.8) holds. Namely, there is a constant such that for all n and m
we have that,

E[(TLn,α)
m]≤Cm(m!)2

(

n

(logn)2

)m

.

Before we start proving the above lemma, we will finish the proof of Claim 1.

PROOF OF CLAIM 1. Since TL′
n ≤ TLn,α, we have by Lemmas 8 and 7 that

E[(TL′
n)

m]≤ E[(TLn,α)
m]≤Cmm!

(

n

(logn)2

)m

.

This is exactly what was desired.

We now return to the proof of Lemma 8.

5.2.2. The proof of Lemma 8. To show Lemma 8, we first need the following claim:

CLAIM 2. Define

TL
m
n,α :=

∑

i1,...,im
|ia−ib|≥n3α∀a,b

∑

j1,...,jm
|ja−jb|≥n3α∀a,b

m
∏

k=1

P(R′
S1

ik

∩ S1[ik − nα, ik + nα]∩ S1 = ∅)

×GD(S1
ik −S2

jk)P(R
′
S2

jk

∩ S2[jk − nα, jk + nα]∩ S2 = ∅).

Then, there exists some constant B such that,

E[TL
m
n,α]≤ (m!)2Bm nm

(logn)2m
.

We will show it after the proof of Lemma 8.

PROOF OF LEMMA 8. In what follows, the constant C may not remain the same from line

to line. Since TLn,α ≤∑n
i,j=1GD(S1

i − S2
j ), it is clear that there is some constant C such

that

E[(TLn,α)
m]≤ E









n
∑

i,j=1

GD(S1
i −S2

j )





m

≤Cmm!nm.

This latter estimate immediately follows from the large deviation statistics of
∑n

i,j=1GD(S1
i −

S2
j ) from [13, Lemma 4.1]. Now, observe that when m≥ (logn)2. One has that

m!≥mme−m ≥ (logn)2me−m.
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Thus, for m≥ (logn)2, we have that,

Cmm!nm ≤ (eC)m(m!)2
(

n

(logn)2

)m

.

It suffices to prove an upper bound for moments when m≤ (logn)2.

Bounding the moments when m≤ (logn)2

We will show that there exists a constant C such that,

E[(TLn,α)
m]≤ (m!)2Cm nm

(logn)2m

by induction on m.

Since the points ik are all spaced far apart, we are able to use in some form that the

probability terms P(R′
S1

ik

∩ S1[ik − nα, ik + nα] ∩ S1 = ∅) should be rather independent of

each other. We will return to the proof of the claim later. Assuming the claim we have the

following result; the moments of TLn,α can be bounded from above by

(5.10)

E[(TLn,α)
m]≤ E[TL

m
n,α]

+ 2m2
E

[

∑

i1,...,im
|i1−i2|≤n3α

∑

j1,...,jm

m
∏

k=1

P(R′
S1

ik

∩ S1[ik − nα, ik + nα]∩ S1 = ∅)

×GD(S1
ik −S2

jk)P(R
′
S2

jk

∩ S2[jk − nα, jk + nα]∩ S2 = ∅)
]

.

Namely, if there is a term in the mth moment of TLn,α that is not already contained in the

term TL
m
n,α, there must be some pair of points (ia, ib) or (ja, jb) that are of a distance closer

than n3α. By symmetry, we may assume that the two points are i1 and i2. There are at most

2m2 such choices of pairs (ia, ib) or (ja, jb). We will now bound the moment of the second

term above.

If could only sum over the terms i2, . . . , im and j2, . . . , jm, then this would be the m− 1th

moment of (TLn,α). We could then apply induction to this quantity. The main idea is that if

we fix i2 there are at most 2n3α choices of i1. Thus, intuitively, this term should be no more

than n3α times E[(TLn,α)
m−1]. The problem is to deal with the sum over j1.
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Observe the following,

(5.11)

E

[

∑

i1,...,im
|i1−i2|≤n3α

∑

j1,...,jm

m
∏

k=1

P(R′
S1

ik

∩ S1[ik − nα, ik + nα]∩ S1 = ∅)

×GD(S1
ik −S2

jk)P(R
′
S2

jk

∩ S2[jk − nα, jk + nα]∩ S2 = ∅)
]

≤
m
∑

k=2

E

[

∑

i1,...,im
|i1−i2|≤n3α

∑

j1,...,jm
|j1−jk|≤n3α

m
∏

k=1

P(R′
S1

ik

∩ S1[ik − nα, ik + nα]∩ S1 = ∅)

×GD(S1
ik −S2

jk)P(R
′
S2

jk

∩ S2[jk − nα, jk + nα]∩ S2 = ∅)
]

+E

[

∑

i1,...,im
|i1−i2|≤n3α

∑

j1,...,jm
|j1−jk|≥n3α∀k

m
∏

k=1

P(R′
S1

ik

∩ S1[ik − nα, ik + nα]∩ S1 = ∅)

×GD(S1
ik −S2

jk)P(R
′
S2

jk

∩ S2[jk − nα, jk + nα]∩ S2 = ∅)
]

.

If we bound the product

P(R′
S1

i1

∩S1[i1−nα, i1+nα]∩S1 = ∅)GD(S1
i1−S2

j1)P(R
′
S2

j1

∩S2[j1−nα, j1+nα]∩S2 = ∅)

by 1, we see that the first term on the right hand side above in equation (5.11) can indeed be

bounded by .mn6α
E[(TLn,α)

m−1].
To deal with the second term, we do the following. First, fix the terms i2, . . . , im and

j2, . . . , jm. Without loss of generality, we can assume that we order j2 ≤ j3 ≤ . . .≤ jm−1 ≤
jm, and that j2 ≤ j1 ≤ j3. (We can apply similar logic regardless of the relative position of

j1 in the ordering j2 ≤ . . . ≤ jm.) Notice that upon conditioning on the values of S2
j2+nα

and S2
j3−nα , the walk S2[j2 + nα, j3 − nα] becomes independent of the rest of the walk. We

exploit this fact by using that

(5.12) ES2





∑

j2+nα≤j1≤j3−nα

GD(S1
i1 −S2

j1)

∣

∣

∣

∣

S2
j2+nα = x,S2

j3−nα = y



. logn

for any pairs of values x and y by Lemma 15. The expectation above is only taken over the

random walk S2. (Note, here we are bounding the probability term P(R′
S2

j1

∩S2[j1−nα, j1+

nα]∩ S2 = ∅) by 1 to simplify further computations.)

As a consequence, we see that we have,

E

[

∑

i1,...,im
|i1−i2|≤n3α

∑

j1,...,jm
|j1−jk|≥n3α∀k

m
∏

k=1

P(R′
S1

ik

∩ S1[ik − nα, ik + nα]∩ S1 = ∅)

×GD(S1
ik −S2

jk)P(R
′
S2

jk

∩ S2[jk − nα, jk + nα]∩ S2 = ∅)
]

.mn3α(logn)E[TLm−1
n,α ].mCm−1n3α(logn)(m− 1)!2

nm−1

(logn)2m−2
.
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The factor of n3α comes from the possible choices of x1 (given its distance from x2) and

the factor of m comes from the fact that j1 can be located in between any of the m regions

[ji, ji+1] in the ordering j2 ≤ j3 . . .≤ jm. At the final step, we applied the induction hypoth-

esis.

Returning to equation (5.11), we see that,

L.H.S. of (5.11)

.mn6αCm−1(m− 1)!2
nm−1

(logn)2m−2
+m(logn)(m− 1)!2Cm−1 nm−1

(logn)2m−2
.

Substituting this back into equation (5.10), we have,

E[(TLn,α)
m]≤ (m!)2Bm nm

(logn)m
+Km3n6αCm−1(m− 1)!

nm−1

(log n)2m−2
.

Notice that the right hand side is less than Cm(m!)2 nm

(logn)2m provided,

1≥
(

B

C

)m

+KC−1n6α−1(logn)3 ≥
(

B

C

)m

+KC−1mn6α−1(logn)2.

Provided C is chosen large relative to B and the universal constant K, there is a value of C
such that the above inequality will be satisfied for all n and m≤ (logn)2. This completes the

induction provided that Claim 2 holds.

Now we start complete the proof of Claim 2.

PROOF OF CLAIM 2. Without loss of generality, we may order the times as i1 ≤ i2 ≤
i3 . . .≤ im. Our first step is to condition on the values of the random walk at specific points

as S1
ik = xck , S1

ik+nα = xrk , S1
ik−nα = xlk and S2

jk = yck, S2
jk+nα = yrk , S2

jk−nα = ylk. With the

endpoints of the neighborhoods S1[ik − nα, ik + nα] specified, the neighborhoods involved

in the probability terms above become independent of each other. This is the key observation

used to simplify the computations that proceed. In what follows, we let pt(x) denote the

probability that a SRW transitions to the point x at time t.
To simplify what proceeds, we introduce the following notation,

(5.13)

NI(S, i, xc, xr, xl) := E[P(R′
Si
∩S[i−nα, i+nα]∩S = ∅)|Si = xc,Si+nα = xr,Si−nα = xl].

This finds the expected value of the probability that an independent random walk R′
Si

starting at Si does not intersect the portion of the random walk S[i−nα, i+nα] conditioned

on the random walk being at points xc at time i, xr at time i+ nα and xl at time i − nα.

If it is not necessary to condition xr and xl, we will slightly abuse notation and denote this

by dropping the appropriate argument on the left hand side. Let Πm be the collection of all

permutations on m points. Note that c as a superscript is used as a shorthand for ‘center’

while r and l are ‘right’ and ‘left’ respectively. We can write the expectation of E[TL
m
n,α] as,
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(5.14)

(m!)
∑

σ∈Πm

∑

1≤i1≤i2−n3α≤...
≤im−(m−1)n3α≤n−(m−1)n3α

∑

1≤jσ(1)≤jσ(2)−nα...
≤jσ(m)−(m−1)n3α≤n−(m−1)n3α

∑

xr
k,x

l
k,x

c
k,

yr
k,y

l
k,y

c
k∈Z4,∀k

pi1(x
c
1)pnα(xr1 − xc1)pi2−i1−2nα(xl2 − xr1)NI(S1, i1, x

c
1, x

r
1)

× pjσ(1)(y
c
σ(1))pnα(yrσ(1) − ycσ(1))pjσ(2)−jσ(1)−2nα(yrσ(2) − ylσ(1))NI(S2, jσ(1), y

c
σ(1), y

r
σ(1))

m−1
∏

k=2

NI(S1, ik, x
c
k, x

r
k, x

l
k)pnα(xck − xrk)pnα(xlk − xck)pik+1−ik−2nα(xlk+1 − xrk)

×NI(S2, jσ(k), y
c
σ(k), y

r
σ(k), y

l
σ(k))pnα(ycσ(k) − yrσ(k))pnα(ylσ(k) − ycσ(k))

pyσ(k+1)−yσ(k)−2nα(ylσ(k+1) − yrσ(k))

NI(S1, im, xcm, xlm)pnα(xcm − xlm)NI(S2, jσ(m), y
c
σ(m), y

r
σ(m))pnα(ycσ(m) − ylσ(m))

×
m
∏

k=1

GD(x
c
k − yck).

The main observation to notice now is that if we were able to freely sum over the values

xrk, x
l
k, then we would have that, by (4.8),

∑

xr
k,x

l
k

NI(S1, ik, x
c
k, x

r
k, x

l
k)pnα(xck − xrk)pnα(xlk − xck)

=E[P(R′
Si

∩ S[i− nα, i+ nα] = ∅)]. 1

log(min{n− i+2, i+ 1}α) ,

because this just computes the averaged probability that an infinite random walk does not

intersect a the union of two independent random walks of length nα starting from the origin.

The only term that prevents us from freely summing over xrk and xlk for all k is the term

pik+1−ik−2nα(xlk+1 − xrk). However, if we could bound this term from above by a constant

times pik+1−ik(x
c
k+1−xck), then we would be able to freely sum over the variables xrk and xlk

as desired. This is what we will argue now.

It is clear that ‖xlk−xck‖ ≤ nα and ‖xrk−xck‖ ≤ nα. Provided that ‖xlk+1−xrk‖ ≤ (ik+1−
ik)

1/2+ǫ for some small ǫ, we can apply the local central limit as in [18, Theorem 2.3.12,

equation (2.46)] along with the fact that ik+1 − ik ≥ n3α to show that,

pik+1−ik−2nα(xlk+1 − xrk)≤ (1 + o(1))pik+1−ik(x
c
k+1 − xck).

Otherwise, the probability that ‖xlk+1 − xrk‖ ≥ (ik+1 − ik)
1/2+ǫ is exponentially unlikely

with probability at most exp[−n6αǫ]. Thus, we always have the bound,

pik+1−ik−2nα(xlk+1 − xrk)

≤(1 + o(1))pik+1−ik(x
c
k+1 − xck)

+ 1[‖xlk+1 − xrk‖ ≥ (ik+1 − ik)
1/2+ǫ]pik+1−ik−2nα(xlk+1 − xrk).

Similar statements also hold for j and y.

Furthermore, this term can be substituted into equation (5.14) by replacing each appear-

ance of pik+1−ik−2nα(xlk+1−xrk) with the right hand side above. We can expand each of these



DEVIATIONS FOR THE CAPACITY OF THE RANGE OF A RANDOM WALK 31

products to get a sum over 24m terms (in each of these terms, pik+1−ik−2nα(xlk+1 −xrk) is re-

placed with either pik+1−ik(x
c
k+1−xck) or 1[‖xlk+1−xrk‖ ≥ (ik+1−ik)

1/2+ǫ]pik+1−ik−2nα(xlk+1−
xrk)). There is only one of these terms in which each pik+1−ik−2nα(xlk+1 − xrk) is replaced

with pik+1−ik(x
c
k+1 − xck).

We remark that if even one of the pik+1−ik−2nα(xlk+1−xrk) were replaced with 1[‖xlk+1−
xrk‖ ≥ (ik+1 − ik)

1/2+ǫ]pik+1−ik−2nα(xlk+1 − xrk), then such a term would be exponentially

suppressed. Indeed, we could trivially bound all the terms of the form GD(x−y) and P(R′
St
∩

S[t−nα, t+nα]∩S = ∅) by a constant. Performing a trivial summation shows that this term

can be no more than n2m exp[−n6αǫ]≪ (m!)2 nm

(logn)2m provided m≤ (logn)2. Furthermore,

there are no more than 24m such terms. Thus, these terms are clearly negligible.

Now we consider the term in which all pik+1−ik−2nα(xlk+1 − xrk) are replaced with (1 +

o(1))pik+1−ik(x
c
k+1 − xck). In such a term, we can finally sum over xrk, x

l
k, y

r
k, y

l
k for all k.

Such a term will be bounded by,
(

C

logn

)2m

m!
∑

σ∈Πm

∑

i1≤...≤im

∑

j1≤...≤jm

∑

xc
1,...,x

c
k

∑

yc
1,...,y

c
k

pi1(x
c
1)pjσ(1)

(ycσ(1))

×
m−1
∏

k=1

pik+1−ik(xk+1 − xk)pjσ(k+1)−jσ(k)
(yσ(k+1) − yσ(k))

m
∏

k=1

GD(x
c
k − yck).

However, the last term computes the m-th moment of
∑n

i=1

∑n
j=1GD(S1

i − S2
j ). This is

bounded by Cmm!nm for some C > 0. Thus, we can bound the line above by

m!

(

Cn

(logn)2
(1 + o(1))

)m

.

This completes the proof of the claim.

5.3. Lower Bound for the Large Deviation of TL′
n. Our goal in this section is to show

the following statement.

In this section, our goal is to understand the lower bound of,

1

bn
log

∞
∑

m=0

1

m!
θm

(

bn(logn)
2

n

)m/2
(

E[(TL′
n)

m]
)1/2

.

THEOREM 5. If bn = O(log logn) and satisfies limn→∞ bn =∞, one has that for any

θ > 0,

lim inf
n→∞

1

bn
log

∞
∑

m=0

1

m!
θm

(

bn(logn)
2

n

)m/2
(

E[(TL′
n)

m]
)1/2 ≥ κ̃(4,2)4

π4θ2

8
.

PROOF. Recall that we let Sk,i = Sk
[

(i− 1) n
bn
, i n

bn

]

. Without loss of generality, we as-

sume that bn is odd. First, notice that

TL′
n =

∑

a∈Z4

bn
∑

i=1

∑

x1∈S1,i

G̃D(x
1−a)P(R′

x1∩S1,i = ∅)
bn
∑

j=1

∑

x2∈S2,j

G̃D(x
2−a)P(R′

x2∩S2,j = ∅).

If we let

Gn(a) := E

[

bn
∑

i=1

∑

x1∈S1,i

G̃D(x
1 − a)P(R′

x1 ∩ S1,i = ∅)
]

,
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we see that,

E[(TL′
n)

m] =
∑

a1,...,am

m
∏

i=1

(Gn(ai))
2.

If we now let f be any smooth function with finite support satisfying
∫

R4 f(a)
2da= 1 and

Cn
f :=

∑

a∈Z4 f

(

√

bn
n a

)2

, by the Cauchy-Schwartz inequality, we see that we obtain that,

E[(TL′
n)

m]1/2 = (Cn
f )

−m/2

(

∑

a1,...,am

m
∏

i=1

(Gn(ai))
2

)1/2




∑

a1,...,am

m
∏

i=1

f

(
√

bn
n
ai

)2




1/2

≥ (Cn
f )

−m/2
∑

a1,...,am

m
∏

i=1

Gn(ai)f

(
√

bn
n
ai

)

.

Defining

F i
n := (Cn

f )
−1/2

∑

x1∈S1,i

∑

a∈Z4

G̃D(x
1 − a)f

(
√

bn
n
a

)

P(R′
x1 ∩ S1,i = ∅),

we see that

E[(TL′
n)

m]1/2 ≥ E

[(

bn
∑

i=1

F i
n

)m]

.

Thus, we see that,

(5.15)

∞
∑

m=0

1

m!
θm

(

bn(logn)
2

n

)m/2
(

E[(TL′
n)

m]
)1/2 ≥ E

[

exp

[

θ

√
bn(logn)√

n

bn
∑

i=1

F i
n

]]

.

Furthermore, F i
n is a function of only the portion S1,i of the random walk. Hence, notice that

for any ǫ > 0, we have,

1

bn
logE

[

exp

[

θ

√
bn logn√

n

bn
∑

i=1

F i
n

]]

≥ 1

bn
(1 + ǫ) logE

[

exp

[

1

1 + ǫ
θ

√
bn logn√

n

bn
∑

i=2

F i
n

]]

− 1

bn
ǫ logE

[

exp

(

−1 + ǫ

ǫ
θF1

n

)]

.

Notice that for any fixed ǫ, an upper bound on the large deviation statistics of F1
n (which

can be inherited from an upper bound large statistics on TL′
n

bn

as in equation (5.15)) shows

that as n→ ∞ the term on the right goes to 0. Finally, we can take ǫ to 0 to note that the

term,

lim inf
n→∞

1

bn
logE

[

exp

[

θ

√
bn logn√

n

bn
∑

i=1

F i
n

]]

≥ lim
ǫ→0

lim inf
n→∞

1

bn
(1 + ǫ) logE

[

exp

[

1

1 + ǫ
θ

√
bn logn√

n

bn
∑

i=2

F i
n

]]

.

To find the lower bound on the term on the left hand side, it suffices to find a bound for

the right hand side. We are now in a very similar situation to that of [12, Theorem 7.1.2].
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The functions F i
n are not exactly in the same format. However, one can see that F i

n takes the

same role as that of the term
∑

x∈S1,i f(
√

bn
n x). Indeed, we can define the operator,

Bnξ(x) :=E

(

exp

{√
bn(logn)√

n

∑

y−x∈S[1,nb−1
n ]

(Cn
f )

−1/2
∑

a∈Z4

G̃D(y − a)f

(
√

bn
n
a

)

× P
(

R′
y−x ∩ S[1, bnn−1] = ∅

)

}

ξ(x+ Snb−1
n
)

)

.

We define ξn as the following discretization of g. Namely, ξn(x) =
1

C1/2
g

g( x√
det(Γ)

√
n
)

where Cg :=
∑

x∈Z4 g2( x√
det(Γ)

√
n
), where Γ = 4−1I .

This operator is a symmetric operator and following the proof of [12, Lemma 7.1.3].

We see that we can derive the following bound. Let g be a bounded function on R
4 that

is infinitely differentiable and supported on a finite box with
∫

R4 g
2(x)dx = 1. By the

Cauchy–Schwarz inequality, there exists a constant δ depending only on g (but not on n)

that (recall that bn − 1 is even)

E

[

exp

[

θ

√
bn logn√

n

bn
∑

i=2

F i
n

]]

≥ δ〈ξn,Bbn−1
n ξn〉 ≥ δ〈ξn,Bnξn〉bn−1,

where 〈ξn,Bnξn〉 is given by

(5.16)

〈ξn,Bnξn〉= (1 + o(1))

∫

R4

dxg(x)

×E

(

exp

[

θ

√
bn logn√

n

∑

y∈S[1,nb−1
n ]

(Cn
f )

−1/2
∑

a∈Z4

G̃D(y + x− a)f

(
√

bn
n
a

)

× P(R′
y ∩ S[1, nb−1

n ] = ∅)
]

g

(

x+

√

bn
n
Snb−1

n

)

)

→
∫

R4

dxg(x)E

(

exp

{
∫ 1

0

π2

4
(G̃ ∗ f)(x+B(t/4))dt

}

g(x+B(1/4))

)

as n→∞, where B is the 4− d Brownian motion. Note that by Lemmas 9 and 10, G̃ ∗ f
is a bounded continuous function and G̃D ∗ f uniformly converges to 2G̃ ∗ f . Then, the

invariance principle shows the convergence above. By [12, (4.1.25)], if we take log to the

most right hand side in (5.16), it is equal to

sup
h∈F

{

π2

4

∫

R4

G̃ ∗ f(Γ1/2x)h(x)2dx− 1

2

∫

R4

|∇h(x)|2dx

}

,

where F := {h :
∫

h(x)2dx = 1,
∫

|∇h(x)|2dx < ∞}. Taking the supremum over f with
∫

f(x)2dx= 1, it is larger than or equal to,

sup
h∈F

{

π2

4

(
∫ ∫

(R4)2
G(x− y)h(x)2h(y)2dxdy

)1/2

− 1

8

∫

R4

|∇h(x)|2dx

}

.

Therefore, by the same proof as [1, Proposition 4.1], we obtain the desired result.

Let us explain some steps in the derivation in (5.16). First, we remark that the term inside

the exponential has finite expectation. Secondly, we also have the second moment comparison
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estimate

(5.17)

E

[√
bn logn√

n

∑

y∈S[1,nb−1
n ]

(Cn
f )

−1/2
∑

a∈Z4

G̃D(y + x− a)f

(
√

bn
n
a

)

P(R′
y ∩ S[1, nb−1

n ] = ∅)

− π2

8

√
bn√
n
(Cn

f )
−1/2

nb−1
n

∑

i=1

∑

a∈Z4

G̃D(Si + x− a)f

(
√

bn
n
a

)

]2

→ 0

as n→∞. As before, this follows from computations similar to those found in the proof of

Claim 2 to allow us to replace the term of P(R′
y ∩S[1, nb−1

n ] = ∅) with (1+ o(1)) π2

8 logn with

the aid of [4, Theorem 5.1]. Combining these observations, we see that as n→∞
∣

∣

∣

∣

∫

R4

dxg(x)E

(

exp

[

θ

√
bn logn√

n

∑

y∈S[1,nb−1
n ]

(Cn
f )

−1/2
∑

a∈Z4

G̃D(y + x− a)f

(
√

bn
n
a

)

× P(R′
y ∩ S[1, nb−1

n ] = ∅)
]

g

(

x+

√

bn
n
Snb−1

n

)

)

−
∫

R4

dxg(x)E

(

exp

[

θ
π2

8

√
bn√
n

nb−1
n

∑

i=1

(Cn
f )

−1/2
∑

a∈Z4

G̃D(Si + x− a)f

(
√

bn
n
a

)

]

× g

(

x+

√

bn
n
Snb−1

n

)

)∣

∣

∣

∣

→ 0.

Then we obtain the result.

APPENDIX A: GREEN’S FUNCTION ESTIMATES

In this section, we will establish various technical estimates necessary to show weak con-

vergence of discrete quantities to continuum quantities.

A.1. The property of G̃ ∗ f . In this subsection, we show that G̃ ∗ f is a bounded con-

tinuous function and establish the uniform convergence of G̃D ∗f → 2G̃ ∗f . We assume that

f is smooth bounded function with finite support.

LEMMA 9. There is some constant such that the following estimates hold uniformly in a,

|(G̃ ∗ f)(a)|. 1, |(G̃ ∗ f)(a+ κ)− (G̃ ∗ f)(a)|. κ.

PROOF. First see that,

(G̃ ∗ f)(a) =
∫

‖e‖≤1
f(a− e)G̃(e)de+

∫

‖e‖≥1
f(a− e)G̃(e)de

≤ sup
z∈R4

|f(z)|
∫

‖e‖≤1
G̃(e)de+

[∫

R4

f2(a− e)de

]1/2
[

∫

‖e‖≥1
G̃2(e)de

]1/2

.
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By applying a similar inequality, we also have that,
∫

R4

‖∇f(a− e)‖G̃(e)de≤
∫

‖e‖≤1
||∇f(a− e)||G̃(e)de+

∫

‖e‖≥1
‖∇f(a− e)‖G̃(e)de

≤ sup
z∈R4

‖∇f(z)‖
∫

‖e‖≤1
G̃(e)de+

[∫

R4

||∇f(a− e)||2de

]1/2
[

∫

‖e‖≥1
G̃2(e)de

]1/2

. 1.

Thus, we see that,

|(G̃ ∗ f)(a+ κ)− (G̃ ∗ f)(a)| ≤
∫

R4

|f(a+ κ− e)− f(a− e)|G̃(e)de

≤
∫ κ

0
dt

∫

R4

∣

∣

∣

∣

〈

∇f(a+ t− e),
κ

||κ||

〉∣

∣

∣

∣

G̃(e)de

≤
∫ κ

0
dt

∫

R4

||∇f(a+ t− e)||G̃(e)de. κ

and we obtain the desired result.

To introduce the next lemma, we define,

(G̃D ∗ f)(√na) = (Cf )
−1/2 1

n2

∑

z∈ 1√
n
Z4

G̃D(
√
n(a− z))f(z), a ∈ 1√

n
Z
4

and

Cf =
1

n2

∑

z∈ 1√
n
Z4

f2(z).

LEMMA 10. Uniformly in a, we have that as n→∞,

(A.1)
∣

∣

∣

∣

∣

∣

∣

2

∫

R4

G̃(⌊a⌋n − e)f(e)de− (Cf )
−1/2 1

n2

∑

e∈ 1√
n
Z4

n3/2G̃D(
√
n(⌊a⌋n − e))f(e)

∣

∣

∣

∣

∣

∣

∣

= o(1).

We start with a few intermediate lemmas. The first lemma allows us to reduce the domain

of integration of G̃ ∗ f(a) from all of R4, to an integration over a region of finite support.

LEMMA 11. Fix some δ2 > δ1 > 0. Let χ be a smooth positive function supported on

[−nδ2 , nδ2 ]4 bounded by 1 and such that χ is 1 on [−nδ1 , nδ1 ]4. Then, uniformly in a ∈ R
4

such that the following estimate holds,

(A.2)

∣

∣

∣

∣

∫

R4

G̃(a− e)f(e)de−
∫

R4

χ(a− e)G̃(a− e)f(e)de

∣

∣

∣

∣

. n−δ1 .

REMARK A.1. By similar methods to Lemma 11, we would also have a corresponding

equation for G̃D . Namely, we would have,
∣

∣

∣

∣

1

n2

∑

e∈ 1√
n
Z4

n3/2G̃D(
√
na−√

ne)f(e)

− 1

n2

∑

e∈ 1√
n
Z4

χ(a− e)n3/2G̃D(
√
na−√

ne)f(e)

∣

∣

∣

∣

. n−δ1 .
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PROOF. By the Cauchy-Schwartz inequality, we see that we have,
∣

∣

∣

∣

∫

R4

G̃(a− e)f(e)de−
∫

R4

χ(a− e)G̃(a− e)f(e)de

∣

∣

∣

∣

≤
∫

R4

G̃(a− e)(1− χ(a− e))f(e)de

≤
[∫

R4

(G̃(a− e)(1− χ(a− e)))2de

]1/2 [∫

R4

f2(e)de

]1/2

≤
[
∫

R4

f2(e)de

]1/2
[

∫

‖e‖≥nδ1

G̃2(e)de

]1/2

.
1

nδ1
.

It yields the desired result.

After the reduction to a region of finite support, our next lemma allows us to replace

G̃ ∗ f with an appropriate discrete form closer to one found in the expression of the discrete

computation.

LEMMA 12. We have the following estimates uniform in a. Fix some δ1 > δ2 > 0 suffi-

ciently small, then there is some constant such that,

(A.3)

∣

∣

∣

∣

∣

(G̃ ∗ f)(a)− 1

n2

∑

z∈ 1√
n
Z

4

‖z‖≥n−δ1

‖⌊a⌋n−z‖≤nδ2

f(⌊a⌋n − z)G̃(z)

∣

∣

∣

∣

∣

. n−δ1 .

Here, ⌊a⌋n denotes the element in the lattice 1√
n
Z
4 that is formed by considering

1√
n
(⌊√na1⌋, . . . , ⌊

√
na4⌋), where we apply the least integer function to each coordinate.

Similarly, one can show that, uniformly in a ∈ 1√
n
Z
4,

(A.4)
∣

∣

∣

∣

∣

1

n2

∑

z∈ 1√
n
Z4

n3/2G̃D(
√
n(a− z))f(z)− 1

n2

∑

z∈ 1√
n
Z

4

‖z‖≥n−δ1

‖a−z‖≤nδ2

f(a− z)n3/2G̃D(
√
na)

∣

∣

∣

∣

∣

. n−δ1 .

PROOF. We will only consider proving equation (A.3); the proof for (A.4) would be sim-

pler. First, observe that

(A.5)

∫

‖z‖≤n−δ1

f(a− z)G̃(z)dz .

∫

‖z‖≤n−δ1

1

‖z‖3 dz . n−δ1 .

Secondly, we have that, for all sufficiently large n,

(A.6)

∫

‖z‖≥n−δ1

‖a−z‖≥nδ2

f(a− z)G̃(z)dz = 0.

Combining estimates (A.5) and (A.6), we can deduce that,
∣

∣

∣

∣

∣

∣

(G̃ ∗ f)(a)−
∫

‖z‖≥n−δ1

‖z−a‖≤nδ2

f(a− z)G̃(z)dz

∣

∣

∣

∣

∣

∣

. n−δ1 .
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Now, we compute the difference between the quantity on the right hand side above, and the

appropriate discretization. If we let ⌊z⌋n denote the point in the lattice 1√
n
Z
4 that is closest

to z, then we can observe the following,

|G̃(z)− G̃(⌊z⌋n)|. nδ1−1/2G̃(z), ∀‖z‖ ≥ n−δ1 .

This comes from the fact that the gradient of ‖z‖−3 is 3‖z‖−4[z1, . . . , z4] which equals

3G(z)‖z‖−2 [z1, . . . , z4] and that ‖z‖−1 ≤ nδ1 .

In addition, if we assume that the domain of the support of f is I ,

|f(a− z)− f(a− ⌊z⌋n)|. n−1/2
1[a− z ∈ I]

since f is a smooth function with a bounded derivative. Hence, applying the triangle inequal-

ity, we ultimately see that,
∣

∣

∣

∣

∫

‖z‖≥n−δ1

‖a−z‖≤nδ2

f(a− z)G̃(z)dz −
∑

z∈ 1√
n
Z

4

‖z‖≥n−δ1

‖a−z‖≤nδ2

f(⌊a⌋n − z)G̃(z)

∣

∣

∣

∣

.

∫

‖z‖≥n−δ1

‖a−z‖≤nδ2

|f(a− z)G̃(z)− f(⌊a⌋n − ⌊z⌋n)G̃(⌊z⌋n)|dz

.max[nδ1−1/2, n−1/2]

∫

a−z∈I
G̃(z)dz . nδ1−1/2.

This completes the proof of the lemma.

As a corollary of the lemma, we have the following estimates.

COROLLARY 6. First, fix some ǫ not changing with n. Additionally, fix parameters δ1 >
δ2 sufficiently small. For ‖a‖ ≤ 2nδ2 , we have the following estimate,

∣

∣

∣
2G̃ ∗ f(a)− n3/2(Cf )

−1/2G̃D ∗ f(⌊√na⌋)
∣

∣

∣
.

n20δ1+2δ2

n
+ n−δ1 .

PROOF. By using (A.3) and (A.4), it suffices to estimate,
∣

∣

∣

∣

∣

1

n2

∑

z∈ 1√
n
Z

4

‖z‖≥n−δ1

‖a−z‖≤nδ2

f(a− z)
[

n3/2(Cf )
−1/2G̃D(

√
nz)− 2G̃(z)

]

∣

∣

∣

∣

∣

.

From equation (A.8), which we can apply since if ‖a‖ ≤ nδ2 , then ‖z‖ ≤ 2nδ2 in the sum

above, we can bound the quantity above as,

.

∣

∣

∣

∣

∣

1

n2

∑

z∈ 1√
n
Z

4

‖z‖≥n−δ1

‖a−z‖≤nδ2

f(a− z)
n20δ1

n‖z‖2

∣

∣

∣

∣

∣

.

∣

∣

∣

∣

∣

1

n2

∑

z∈ 1√
n
Z

4

‖z‖≥n−δ1

‖a−z‖≤2nδ2

n20δ1

n‖z‖2

∣

∣

∣

∣

∣

. n20δ1

∫

3nδ2≥‖z‖≥n−δ1

1

n‖z‖2 dz .
n20δ1+2δ2

n
.

In our application of equation (A.8), we made the choice of parameter ǫ= 8δ1.
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We finally have all results necessary to prove Lemma 10.

PROOF OF LEMMA 10. Fix parameters δ1, δ2, δ3 > 0 sufficiently small satisfying 1
400 >

δ1 > 20δ2 > 20δ3 > 0. Recalling the function χ from Lemma 11, we set χ to a be a smooth

function supported on the interval [−nδ2 , nδ2 ]4 and 1 on [−nδ3 , nδ3 ]4,
∣

∣

∣

∣

∣

2

∫

R4

χ(a− e)G̃(a− e)f(e)de

− 1

n2

∑

e∈ 1√
n
Z4

χ(⌊a⌋n − e)n3/2G̃D(
√
n⌊a⌋n −

√
ne)f(e)

∣

∣

∣

∣

∣

= o(1).

Thus, we see that it suffices to show that,
∫

R4

χ(a− e)
∣

∣

∣
2G̃(a− e)− n3/2G̃D(

√
n(⌊a⌋n − e))

∣

∣

∣
f(e)de= o(1).

By Corollary 6, we can bound the difference of G̃ and G̃D in the region on which χ is not

equal to 0. Thus, we have,
∫

R4

χ(a− e)
∣

∣

∣
2G̃(a− e)− n3/2G̃D(

√
n(⌊a⌋n − e))

∣

∣

∣
f(e)de

.

∫

R4

χ(a− e)n−δ1f(e)de. n−δ1 .

We used the fact that χ is supported on [−nδ2 , nδ2 ]. This completes the proof of the lemma.

A.2. Additional Green’s function computations. In this subsection, we will give vari-

ous useful estimates concerning Green’s function.

LEMMA 13. The Green’s function of the discrete random walk GD(x) has a positive

convolutional square root with the following form,

G̃D(z) =

∞
∑

n=0

(2n)!

22n(n!)2
pn(z).

Recall that pn(z) is the transition probability that a simple random walk starting from 0

reaches the point z at time n. There is an L1 function
ˆ̃GD(l) whose Fourier transform is the

function G̃D(x).

PROOF. Part 1: Derivation of the form of G̃D

Consider the Taylor expansion of (1− x)−1/2 as,

1√
1− x

=

∞
∑

k=0

Ckx
k.

We will show that G̃D has to take the functional form,

G̃D(z) =

∞
∑

k=0

Ckpk(z).
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We can check this by directly computing G̃D ∗ G̃D . Thus, we have that, for any z ∈ Z
4,

G̃D ∗ G̃D(z) =
∑

x∈Z4

∞
∑

k1,k2=0

Ck1
Ck2

pk1
(x)pk2

(z − x)

=

∞
∑

k1,k2=0

Ck1
Ck2

pk1+k2
(z)

=

∞
∑

k=0

pk(z)

k
∑

k1=0

Ck1
Ck−k1

=

∞
∑

k=0

pk(z).

To get the last line, we used the fact that

1

1− x
=

(

1√
1− x

)2

=

( ∞
∑

k=0

Ckx
k

)2

=

∞
∑

k=0

xk
k

∑

k1=0

Ck1
Ck−k1

.

This gives the identity that
∑k

k1=0Ck1
Ck−k1

= 1 by comparing coefficients of the Taylor

Series. By using similar manipulations, one can show that G̃(x) =
∫∞
0

1√
πt
Pt(x)dt, where

Pt(x) is the probability density that a Brownian motion starting from zero would reach posi-

tion x at time t.
Part 2: Derivation of the Fourier Transform

Now, we discuss the Fourier transform of G̃D(x). Consider the following function,

F (l1, . . . , l4) =
1

√

1− 1
4

∑4
i=1 cos(2πli)

.

We will show that,

G̃D(a1, . . . , a4) =

∫

(−1/2,1/2]4
F (l1, . . . , l4)

4
∏

i=1

exp[−2πiliai]dli.

First of all, observe that F (l1, . . . , l4) only has a singularity around the origin and, further-

more, around the origin, F behaves like 1√
l21+...+l24

. Thus, F is integrable around 0. If we let

Bǫ(x) be the ball of radius ǫ around x , we have,

(A.7)

∫

(−1/2,1/2]4
F (l1, . . . , l4)

4
∏

i=1

exp[−2πiliai]dli

= lim
ǫ→0

∫

(−1/2,1/2]4\Bǫ(0)

1
√

1− 1
4

∑4
i=1 cos(2πli)

4
∏

i=1

exp[−2πiliai]dli.

Now, away from the singularity at 0, we can expand 1√
1− 1

4

∑
4
i=1 cos(2πli)

as,

∞
∑

k=0

Ck

(

1

4

4
∑

i=1

cos(2πli)

)k
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and observe that,

∫

(−1/2,1/2]4

(

1

4

4
∑

i=1

cos(2πli)

)k 4
∏

i=1

dli

≤





∫

(−1/2,1/2]4

(

1

4

4
∑

i=1

cos(2πli)

)2k 4
∏

i=1

dli





1/2

=
√

p2k(0),

where the last equality comes from direct integration. By using the asymptotic that Ck .√
k
−1

and p2k(0). k−2. We see that,

∞
∑

k=0

Ck

∫

(−1/2,1/2]4

∣

∣

∣

∣

∣

1

4

4
∑

i=1

cos(2πli)

∣

∣

∣

∣

∣

k 4
∏

i=1

dli .

∞
∑

k=1

k−1/2−1 <∞.

This control on the absolute value of the integral allows us to freely exchange the summation

of the power series, the limit as ǫ→ 0, and the integration in (A.7). Thus, we have that,

lim
ǫ→0

∫

(−1/2,1/2]4\Bǫ(0)

∞
∑

k=0

Ck

(

1

4

4
∑

i=1

cos(2πli)

)k 4
∏

i=1

exp[−2πiliai]dli

=

∞
∑

k=0

Ck lim
ǫ→0

∫

(−1/2,1/2]4\Bǫ(0)

(

1

4

4
∑

i=1

cos(2πli)

)k 4
∏

i=1

exp[−2πiliai]dli

=

∞
∑

k=0

Ck

∫

(−1/2,1/2]4

(

1

4

4
∑

i=1

cos(2πli)

)k 4
∏

i=1

exp[−2πiliai]dli =

∞
∑

k=0

Ckpk(a1, . . . , a4).

To get the last line, observe that 1
4

∑4
i=1 cos(2πli) can be written as,

1

4

4
∑

i=1

cos(2πli) =
1

8

(

4
∑

i=1

[exp[2πli] + exp[−2πli]]

)

.

The Fourier integral in the last line thus determines the coefficient of the term
∏4

i=1 exp[2πiliai]
in the expansion of the polynomial. This is exactly the number of ways that a simple random

walk will reach the point (a1, . . . , a4) at time k.

Though, this will be more useful in the sequel, we also present the following result com-

paring G̃D to G̃.

LEMMA 14. We have the following asymptotics relating G̃D(z) with G̃(z). Fix some

ǫ > 0 and let ‖z‖ ≥ n−ǫ/4. Then, we have the following comparison,

(A.8) |(√n)3G̃D(
√
nz)− 2G̃(z)|. n5ǫ/2

n‖z‖2 + n2 exp[−nǫ/2].

REMARK A.2. The bound found in the inequality (A.8) is most effective when ‖z‖ ≤ nǫ,

which will be the regime in which we will actually apply the bound in question.
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PROOF. Part 1: Discretization of the integral form of G̃
We will begin our computation by first finding an appropriate discretization of the integral

form of G̃. Recall that we can write G̃ as,

G̃(z) =

∫ ∞

0

1√
πt

Pt(z)dt.

Let Qz(t) be a shorthand for the function Qz(t) =
1√
πt
Pt(z). We can estimate the difference

as follows:
∣

∣

∣

∣

∣

∣

∫ ∞

0
Qz(t)dt−

∑

k∈ 1

n
Z+

Qz(k)

∣

∣

∣

∣

∣

∣

≤
∑

k∈ 1

n
Z+

∫ k

n

(k−1)

n

dj

∫ k

n

j
|Q′

z(l)|dl

=
∑

k∈ 1

n
Z+

∫ k

n

(k−1)

n

(

l− k− 1

n

)

|Q′
z(l)|dl≤

1

n

∫ ∞

0
|Q′

z(l)|dl.(A.9)

One can explicitly compute |Q′
z(l)| as Q′

z(l)∝ exp[−‖z‖2/(2l)]
[

−5l−7/2 + ‖z‖2l−9/2
]

. By

scaling, we observe that
∫∞
0 |Q′

z(l)|dl = 1
‖z‖5

∫∞
0 |Q′

e1(l)|dl, where e1 is the unit vector in

the first dimension and the latter integral is finite. Thus, the error between
∫∞
0 Qz(t)dt and

its discretization with lattice 1
nZ

+ is of order O
(

1
n‖z‖5

)

, where the implicit constant does

not depend on either ‖z‖ or n.

Furthermore, we claim that we can ignore the portion of the integral of Qz(t) from t
between 0 and n−ǫ in our regime of interest. By observing the form of the derivative of

Qz(t), we notice that Qz(l) is an increasing function as long as ‖z‖2 ≥ 5l. For, l≤ n−ǫ and

‖z‖ ≥ n−ǫ/4, we see that Qz(l) is increasing between l= 0 and l= n−ǫ. Thus,
∫ n−ǫ

0
Qz(l)dl≤ n−ǫQz(n

−ǫ). n3ǫ/2 exp[−nǫ/2].(A.10)

Combining (A.9) and (A.10), we see that,

(A.11)

∣

∣

∣

∣

∣

∣

G̃(z)− 1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

1√
πt

Pt(z)

∣

∣

∣

∣

∣

∣

.
1

n‖z‖5 + n3ǫ/2 exp[−nǫ/2].

Part 2: Estimates on G̃D

First, we will bound the contribution of n
∑n1−ǫ

k=0 Ckpk(
√
nz). Since ‖z‖ ≥ n−ǫ/4, we have

that
√
n‖z‖ ≥ n1/2−ǫ/4. By exponential tail estimates on discrete random walks, we know

that pk(
√
nz). exp[−n‖z‖2/k]. exp[−nǫ/2]. Thus, the contribution of n2

∑n1−ǫ

k=0 Ckpk(n
1/2z).

n2 exp[−nǫ/2]. Ultimately, we see that,

(A.12)

∣

∣

∣

∣

∣

∣

n3/2G̃D(n
1/2z)− 1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

(
√
nCnk)(n

2pnk(
√
nz))

∣

∣

∣

∣

∣

∣

. n2 exp[−nǫ/2].

By Stirling’s approximation, we have,

Cnk =
(2nk)!

22nk((nk)!)2
≤

√

2π(2nk)
(

2nk
e

)2nk
exp[ 1

12(2nk) ]

22nk
(

√

2π(nk)
(

nk
e

)nk
)2

exp[ 2
12nk+1 ]

=
1√
πnk

[

1 +
O(1)

nk

]

,

Cnk =
(2nk)!

22nk((nk)!)2
≥

√

2π(2nk)
(

2nk
e

)2nk
exp[ 1

12(2nk)+1 ]

22nk
(

√

2π(nk)
(

nk
e

)nk
)2

exp[ 2
12nk ]

=
1√
πnk

[

1 +
O(1)

nk

]

.
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Thus, we see that,
∣

∣

∣

∣

√
nCnk −

1√
πk

∣

∣

∣

∣

.
1

nk3/2
.

By the local central limit theorem [18, Thm 2.1.1], we also have that,

|n2pnk(
√
nz)− n2Pnk/4(

√
nz)|. 1

nk3‖z‖2 .

Furthermore, by scaling, n2Pnk/4(
√
nz) is equal to 16Pk(2z). If we combine these estimates,

we see that,
∣

∣

∣

∣

∣

∣

1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

(
√
nCnk)(n

2pnk(
√
nz))− 1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

16√
πk

Pk(2z)

∣

∣

∣

∣

∣

∣

.
1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

(
√
nCnk)|n2pnk(

√
nz)− 16Pk(2z)|

+
1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

∣

∣

∣

∣

√
nCnk −

1√
πk

∣

∣

∣

∣

16Pk(2z)

.
1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

1√
k

1

nk3‖z‖2 .
n5ǫ/2

n‖z‖2 .

In the last line, we used the estimates
√
nCnk .

1√
k

and Pk(z).
1

k‖z‖2 . This, in itself, comes

from the estimate that exp[−‖z‖2/k]≤ k/‖z‖2. Combining this with equation (A.12) shows

that,
∣

∣

∣

∣

∣

∣

n3/2G̃D(
√
nz))− 1

n

∑

k∈ 1

n
Z+,k≥n−ǫ

1√
πk

16Pk(2z)

∣

∣

∣

∣

∣

∣

.
n5ǫ/2

n‖z‖2 + n2 exp[−nǫ/2].

Finally, combining this estimate with equation (A.11) will give us the desired inequality in

equation (A.8).

The following lemma gives a rough estimate on sum of the Green’s function over a random

walk whose beginning and end are pinned to certain points.

LEMMA 15. For any y and z ∈ Z
4,

E

[

n
∑

i=0

GD(Si − z)

∣

∣

∣

∣

Sn = y

]

. logn.

PROOF. We let B√
n(z) be the ball of radius

√
n around the bound z. Let τ1 be the (random

variable) that is the first time that the random bridge touches a point in B√
n(z). Let τ2 be the

last time that the random bridge touches a point in B√
n(z).
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We see that,

E

[

n
∑

i=0

GD(Si − z)

∣

∣

∣

∣

Sn = y

]

= E

[

∑

0≤k1≤k2≤n

∑

a1,a2∈B√
n(z)

1[τ1 = k1, τ2 = k2,Sτ1 = a1, Sτ2 = a2]

×E

[

n
∑

i=0

GD(Si − z)

∣

∣

∣

∣

τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y

]

∣

∣

∣

∣

Sn = y

]

= E

[

∑

0≤k1≤k2≤n

∑

a1,a2∈B√
n(z)

1[τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2]

×E

[

k2
∑

i=k1

GD(Si − z)

∣

∣

∣

∣

τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y

]

∣

∣

∣

∣

Sn = y

]

+ E

[

∑

0≤k1≤k2≤n

∑

a1,a2∈B√
n(z)

1[τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y]

×E

[

k1
∑

i=0

GD(Si − z)

∣

∣

∣

∣

τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y

]

∣

∣

∣

∣

Sn = y

]

+ E

[

∑

0≤k1≤k2≤n

∑

a1,a2∈B√
n(z)

1[τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2]

×E

[

n
∑

i=k2

GD(Si − z)|τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y

]

∣

∣

∣

∣

Sn = y

]

.

For the last two summands, we can make the following observation. Since we have that

GD(Si − z). 1
n for i≤ τ1 and i≥ τ2. Thus,

τ1
∑

i=0

GD(Si − z). n
1

n
= 1,

and

n
∑

i=τ2

GD(Si − z). 1.

Hence,

E

[

∑

0≤k1≤k2≤n

∑

a1,a2∈B√
n(z)

1[τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2]

× E

[

k1
∑

i=0

GD(Si − z)|τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y

]

∣

∣

∣

∣

Sn = y

]

≤ E

[

∑

0≤k1≤k2≤n

∑

a1,a2∈B√
n(z)

1[τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2]

∣

∣

∣

∣

Sn = y

]

. 1.
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Now, all that is left to check is that,

E

[

k2
∑

i=k1

GD(Si − z)

∣

∣

∣

∣

τ1 = k1, τ2 = k2,Sτ1 = a1,Sτ2 = a2,Sn = y

]

≤ E

[

k2
∑

i=k1

GD(Si − z)

∣

∣

∣

∣

Sk1
= a1,Sk2

= a2

]

. logn.

It suffices to find a bound on the following for general T and a random walk S :

E

[

T
∑

i=1

GD(Si)

∣

∣

∣

∣

S0 = x,ST = y

]

. logT.

Recall [17, Thm. 1.2.1] yields that for some C finite and any ‖x‖ ≤ i1/2,

P(Si = x)& i−2.

Then, with (4.10), if ‖x− y‖ ≤ T 1/2,

P(S0 = x,ST = y)& T−2 exp(−‖x− y‖2
T

)& T−2

and

E

[

T
∑

i=1

GD(Si)1{S0 = x,ST = y}
]

=

T/2
∑

i=0

∑

z∈Z4

GD(z)P
x(Si = z)Pz(ST−i = y) +

T
∑

i=T/2

∑

z∈Z4

GD(z)P
z(Si = x)Py(ST−i = z)

.

T/2
∑

i=0

∑

z∈Z4

GD(z)P
x(Si = z)(T − i)−2

+ +

T
∑

i=T/2

∑

z∈Z4

GD(z)P
y(ST−i = z)i−2

+

=

T/2
∑

i=0

E[GD(Si)](T − i)−2
+ +

T
∑

i=T/2

E[GD(ST−i)]i
−2
+

.

T/2
∑

i=0

i−1
+ (T − i)−2

+ +

T
∑

i=T/2

(T − i)−1
+ i−2

+ .
logT

T 2
.

Therefore, we have the result.

LEMMA 16. Recall the matrix GS2
β,α,j from equation (4.2). This matrix GS2

β,α,j is positive

definite and has minimum eigenvalue greater than 1
2 .

PROOF. We will show this proposition for any general matrix of the form,

[G]i,j =GD(ai − aj),

where {ai} is a collection of n distinct points. Note that we have the Fourier transformation,

GD(x) =

∫

[0,1]4

1

1− 1
4

∑4
i=1 cos(2πki)

exp[2πi〈k,x〉]dk,
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where 〈k,x〉 is the inner product between the vector k and x. Let (v1, . . . , vn) be any vector

with l2 norm 1. Thus, we have,

∑

i,j

vi[G]i,jvj =
∫

[0,1]4

|∑n
i=1 vi exp[2πi〈k, ai〉]|2

1− 1
4

∑4
i=1 cos(2πki)

dk

≥ 1

2

∫

[0,1]4

∣

∣

∣

∣

∣

n
∑

i=1

vi exp[2πi〈k, ai〉]
∣

∣

∣

∣

∣

2

dk =
1

2
‖v‖2.

This shows that any matrix of the form G.

A.3. Generalized Gagliardo-Nirenberg constant. In our previous manuscript [1], we

showed that the large deviation constant associated to the quantity
∫ 1
0

∫ 1
0 G(B1

t − B2
s )dsdt

can be associated to the optimal constant of the generalized Gagliardo-Nirenberg inequality.

Namely,

REMARK A.3. We have

lim
T→∞

T−1 logP

(
∫ 1

0

∫ 1

0
G(B1

t −B2
s )dtds≥ T

)

=−κ̃−4(4,2).

We remark that this large deviation constant was also obtained by Bass-Chen-Rosen in

[7, (1.10)]. Their result is not presented in the same manner, since they do not identify the

generalized Gagliardo-Nirenberg inequality. Some manipulations, based on Section 4 of [1]

and Section 7 of [7], can demonstrate the link between these constants. We remark that in

order to adapt the results of [7] to the case of the Brownian motion, one has to adjust the

Fourier transform appearing in [7, equation (1.1)] by a factor of 1/2.
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