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In this paper, we find a natural four dimensional analog of the moderate
deviation results for the capacity of the random walk, which corresponds to
Bass, Chen and Rosen [6] concerning the volume of the random walk range
for d = 2. We find that the deviation statistics of the capacity of the ran-
dom walk can be related to the following constant of generalized Gagliardo-
Nirenberg inequalities,
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1. Introduction. In this paper, we study the moderate deviation results for the capacity
of the random walk for d = 4. Given an arbitrary set A in Z%, the capacity of A is defined as
follows: let 74 denote the first positive hitting time of a finite set A by a simple random walk
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(Sm)m>0 on Z% and recall that the corresponding (Newtonian) capacity is given for d > 3,
by

P14 <
Cap(A) := Z P*(1p=00)= lim %
= lel=o0  Gp(2)
Here, Gp is the Green’s function for the random walk on the lattice. || - || denotes the Eu-

clidean distance.

There has been much significant interest in studying the capacity of the range of random
walk in d-dimensions. As revealed in many other works, understanding the capacity of the
range of the random walk relates to questions regarding the volume of a random walk or the
intersection of two random walks. This, in turn, has a multitude of applications in various
fields. For instance, random walk intersection estimates appear in the study of quantum field
theories [21], conformal field theories [14], and in the study of the self-avoiding walk [9].
For a more detailed discussion, one can see the references in [3].

In this direction, there are many works in the mathematical literature studying the capacity.
Let S[1,n]:={Si,...,S,}. Jain and Orey [16] proved a strong law of large numbers, that
is, almost surely,

fim SRR s

n—+00 n

for some constant «y depending on the dimension. If one defines Brownian capacity as,

Capp(D) := <inf {//G(w — y)p(dz)p(dy) : p(D) = 1} > _1,

and G is the Green’s function for the Brownian motion, then, when d = 3, Chang [10] has
shown that

Cap(S[L,n]) p 1
NV

Here, B|0, 1] is the image of the Brownian motion from time O to 1.

In addition, the paper [2] provides lower and upper bounds for the large deviation of the
capacity of the range of a random walk in various dimensions, though without obtaining the
optimal constant. The works [3, 4] also established a law of large numbers and a central limit
theorem for the capacity of the range of a random walk in Z*. As a consequence of these
results, one conjectures a curious link between the behavior of the capacity in d dimensions
and the self-intersection of random walks in d — 2 dimensions.

One can observe some of these links when looking at Central Limit Theorem type behavior
for the volume of the range of a random walk in two dimensions and the capacity of a walk
in four dimensions. For example, Le Gall, J-F. [19] showed that for d = 2,

(logn)?
n
where it is formally defined by understanding a corresponding quantity for Brownian mo-

tions:
7([0,1]) :== /Ol/oléo(Bs—Br)dsdr—E[Al/oldo(Bs—B,)dsdr .

By looking at the form of this equation, it is quite similar to the result of Asselah et al. for
the central limit theorem behavior of the capacity of a random walk in four dimension. [4]
showed that for d = 4,

ogn 2 7T2
UOEN)  Cap(s1t.n]) ~ ECap(S[L )} 2 -~ a6([0.1]),

Capp(B|0,1]).

{Vol(S[1,n]) — EVol(S[1,n])} = —72y([0,1]),

n
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where it is also formally defined by looking at a corresponding quantity for Brownian mo-

tions:
7a([0,1]) == /01 /01 G(Bs — B,)dsdr —E [/01 /01 G(B, — B,)dsdr| .

However, as of yet, no deeper mechanism found to explain these parallels.

More recently, Dembo and the second author [13] found such a parallel when they wanted
to understand the more detailed question of a law of iterated logarithms for the capacity. In
four dimensions, the main result of [13] was the following. Then, the following estimates
were shown, almost surely,

Cap(S[L,n]) — E[Cap(S[1, n])]

hmsup 2 nlog(log(logn :1’
P S

o Co0(Sn) ~ECop(S[L)]
e Cx Tlogm)?

for some constant c, > 0. Via subadditivity arguments, the upper tail of the law of iterated
logarithms can reduce to the computation of an explicit limit.

By contrast, the constant associated with the lower tail of the large deviation is a far more
delicate question. In [13], it was only shown that the lim inf exists; the value of the constant
depends on quite precise large deviation statistics of the capacity. However, rather than being
merely a technical question, the exact value of the constant can reveal deep connections to
other fields.

Indeed, much like how Chen et al [11, 6] showed that the precise value of the large devi-
ation constant for the intersection of random walks was related to the Gagliardo-Nirenberg
inequality, we demonstrate here that the constant for the large deviation of the lower tail
of the capacity of the random walk range is related to the generalized Gagliardo-Nirenberg
inequality. This generalized Gagliardo-Nirenberg inequality was key in the study of the po-
laron and many other physical processes of interest [15, 20]. If we look at [15, Theorem 2.3],
this inequality is derived from the Hardy-Littlewood-Sobolev inequality and is used to study
the Hartree equation. Hence, we find a new relationship between the capacity of the random
walk and the field of analysis. Furthermore, the value of the large deviation constant for the
capacity of the random walk range should give great information on the corresponding large
deviation statistics of the capacity of the Wiener sausage.

1.1. Main results. Inour main result, we find that the moderate deviation of Cap(S[1,n|)
for d = 4 is related to best constant of the generalized Gagliardo-Nirenberg inequality (see
[15, (6)]). Namely, it is the smallest constant £(4, 2) such that the following inequality should
hold among g with [|Vg||r2 < oo:

1/4
[/(R4)2 g2(x)G(x - y)gz(y)dxdy < i(4, 2)Hg”1L/22 ”ngyf’

where G(z —y) =277 2|z — y|| 2 for d = 4.

THEOREM 1. Assume b, — 0o and b, = O(loglogn). For d =4 and X\ > 0,
lim bilogIP) (Cap(S[l,n]) — E[Cap(S[1,n])] < —Lb ) =—I;(N),

n—o0 b, (logn)?™

where
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L (logn)? o
hnn_1>1£f loglogn <Cap(5[1,n]) - E[Cap(S[l,n])]) = —7/{(4, 2)4,

REMARK 1.1.  'We conjecture that the optimal order of b, is o(logn) assuming that it is
the same as that of the volume of random walks in d = 2. This conjecture is inspired by the
discussion of the rate function for the moderate deviation of the mutual intersection of two
random walks in dimension 2 as discussed in [12, Section 7.2]. However, just as in the case
of the volume, obtaining the optimal scale of large deviations is challenging, and we chose
the scale b, = O(loglogn) as this is sufficient to obtain the exact constant for the law of
the iterated logarithm. However, we do expect that with some technical improvements, our
methods can get much closer to the optimal scale of large deviations.

1.2. Strategy. As mentioned before, to find the exact value of the constant associated
with the lower tail of the law of the iterated logarithms, one would need to first prove a form
of the large deviation principle. To do this, one would need to have control over exponential
moments of the quantity in question. Now, one can find some control over such moments in
the works of [13]. However, if one exactly wants the constant, then these estimates have to be
optimal. Even with the rather technical bounds of [13], there were still multiple times when
one could not precisely track the exponential factor associated with the high moments. While
this is perfectly fine for proving that some law of iterated logarithm holds, it is impossible to
deduce anything about the value of the lower tail of the law of the iterated logarithm.

Inspired by the connection between the capacity and the self-intersection, one might try to
see if there are any parallels one can draw from the proof of the large deviation principle for
the self-intersection in 2-dimensions. Indeed, Bass, Chen, Kumagai and Rosen [6, 8] were
able to establish an exact form for the constant associated with the large deviation principle
for the self-intersection of random walks.

As observed in [6, 8], a vital tool in both these analyses is a splitting formula. The self-
intersection of a random walk can be written as the sum of two self-intersections of the first
and second half of the walks and the mutual intersection of the first and second half. The
large deviation behavior when d = 2 is largely determined by this mutual intersection. For
the capacity, one can perform a similar splitting with the quantity x like in the work [3].

For two arbitrary sets A and B, y is defined as,

X(A,B):=Y "> P(R,N(AUB) =0)Gp(y — 2)P(R, N B =)
yEAzEB

+> Y P(R,NA=0)Gp(y—2)P(R.N(AUB) =),

yeAzeB

(1.1)

where Rz,/ is the range of an infinite random walk range after time 1 starting at the point y at
time 0. To show the result, we will substitute two independent simple random walk ranges
until time n, A + S' and B = S? (which are also independent of R;). The large deviation
behavior should also be determined by this ‘mutual capacity’, x. However, after this step,
if one tries to imitate the strategy of Bass, Chen, and Rosen [6] to analyze x, fundamental
difficulties arise at the very beginning that prevent one from proceeding forward.

First of all, observe that each line of y, due to the probability term P(R; N (S'US?) =0),
is asymmetric in A and B. Furthermore, the same probability term couples the first and sec-
ond parts of the random walk. In general, many formulas that one would like to apply to
compute moments, such as the Feynman-Kac formula for lower bounds on the asymptotic
moments, would first require one to separate the two halves of the random walk from each
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other. Usually, such a separation can be justified by applying the Cauchy-Schwartz inequal-
ity, and, as in the works of [12] for the cross term occurring when studying the moderate
deviations of the range of a random walk, one will not incur too much loss by performing
this procedure. This is no longer the case when one deals with an asymmetric cross-term
like x. Indeed, the key first step in trying to determine the exact constant for the moderate
deviations would be to try to identify a symmetric main term contribution for y.

The first guess that one might have would be to show that the terms P(R), N (S lus?) =0)

could be replaced by the expected value (1 + o(1)) %. This replacement was performed
in the papers [4, 13] in order to establish a CLT and agLIL, respectively. However, the mo-
ment estimates required to prove such results are insufficiently strong to demonstrate a large
deviation principle or determine an exact constant. Indeed, the paper [2] remarked that it is
possible that in the large deviation regime, it would be more effective for the random walk
to reorganize itself into configurations such that P(R; N (ST US?)=0,0¢ S1) is far away

from its expected value of (1 + 0(1))%.

Indeed, since we cannot replace these probability terms with their expectation, we have
to determine the main and error terms via manipulations that preserve the structure of these
probability terms. Indeed, our main term can be guessed to be of the form,

>N P(R,NS =0)Gp(y — 2)P(R,NS*=0).

YS! 2£82

By decomposing Gp = G p * G p, the convolutional square root of G, we see that we indeed
have a decomposition that could split the two sets S' and S? from each other. Namely, the
quantity above can be written as,

S PR NS '=0)Gply—a) Y P(R.NS*=0)Gp(z—a).

a€R* yeS?t 2€82
This term will indeed be symmetric, and one has more tools for computing the exact value of
the asymptotic moments. The full analysis of this term is given in section 5. This main term
will lead to the corresponding error term,

> Y PR, NS =0)Gp(at —2*)P(R,. NS =0, R, NS £0).
€S 2282

The main observation is that this error term should approximately be of order W. This is
one logn factor less than the expected order of the main term. One still needs to determine
the value of high moments of this error term; however, one no longer needs to care about
the exact values. Indeed, one only needs to derive an upper bound for the high moments of
this error term. Section 3 will justify the splitting of x into its main and error terms, while
Section 4 will analyze the error term. The analysis of this error term involved multiple steps;
the first step was to represent the cumbersome P(R’, NS =0, R’ , N S* # () into another
term that is fit for moment computation. Afterward, we had to carefully exploit a version of
monotonicity for the non-intersection probability P(R/, NS 1 = ) that would allow us to
justify the replacement of P(R/, NS 1= ()) with its expectation. When considering a law of
iterated logarithms, we see that the size on this scale will be larger by a factor of loglogn.
Thus, the random walk has atypical behavior and one has to be very precise with the analysis
and can no longer rely on heuristics coming from analyzing typical behavior.

2. Proof of Theorem 1 and Corollary 1. In this section, we show our main results,
that is, Theorem 1 and Corollary 1. In the proof, we write f(n) < g(n) if there exists a
(deterministic) constant ¢ > 0 such that f(n) < cg(n) for all n, and f(n) 2 g(n) if g(n) <
f(n). S[a,b] means the random walk range between time a and b. Let P? (resp. E*) be the
probability of the simple random walk (or the Brownian motion) starting at z. We usually
write P (resp. E) for PV (resp. E?).



2.1. Reduction to the study of mutual capacity. In order to determine the exact moderate
deviation asymptotic for Cap(S[1,n|) — E[Cap(S][1,n])], it suffices to derive a moderate
deviation for the term . For two random walks S' and S2, recall the cross-term in (1.1)

X848 = 3" 3 B(RL NS =0)Gp(a! — 2?)B(RL: N (S US?) = 0)

eSSt 2282

+ 30 ) P(RL N (ST USY) =0)Gp(at — 2)P(R,. N S' =0).

eSSt x2€8?

Later, we assume that S, S? are independent random walks of duration n and S is also a
random walk of duration n, that is, S[1, n].

THEOREM 2. Consider x = x(S',8?) and let b, = O(loglogn) with lim,, . b, = o0.
Then, for any A > 0,

1 nby,
2.1 lim —loglP Ar—— | = —11(N).
2D e by, 8 (X (logn)? > 1)

We will show it in Section 3. We will give the proof of Theorem 1 assuming the above
result.

PROOF OF THEOREM 1. Splitting the Walk

For simplicity in the presentation of the argument, we will perform computations when n
is a multiple of a large power of 2. For a complete formalization of the argument, one can
consider a continuous time random walk rather than a discrete time random walk as in [6,
Chapter 6] to derive large deviation estimates, but the essential difference in the proofs are
minimal.

First, fix a large integer L; we first subdivide our random walk S into 2” parts over various
iterations. Set m; = n/2! and let S*)™ denote S[(k — 1)my, kmy]; namely, it is the k-th
portion of the random walk once divided into 2! equal parts. With this notation in hand, we
can define the cross-term,

2l—1
Al — Z X(S(zj_l)vml75(2])7ml)

Jj=1

We also have the following decomposition of Cap(S),

2L L
Cap(S) = Z Cap(St)me) — ZA; +er.
i=1 =1

The error ¢/, has the moment bound E[e? ] = O((log n)?) from [3, Proposition 2.3]. It is actu-
ally better to deal with a slightly modified cross-term. Consider two random walks, S*, S? of
the same length n. Define, as in equation (5.1) which will appear in the sequel, the modified
Cross term:

LS',8) = > Y PR,.NS' =0)Gp(a' —2*)P(R. NS> =0).
rleSt 2282

The results of Theorem 4 show that for any ¢ > 0, we have that,

. . - b
1 S@i—1)mi g(27)muy (25=1),mu g(24),muy| > "On =
nlinéo b, 2" <‘X( ST RIS SN2 6(logn)2> -
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Accordingly, it is natural to consider the modified term,

21
Ay _QZTL SEI=Dm §@j)mr)

Furthermore, the moment bound on €;, combined with Markov’s inequality shows that

1 n —logn +loglogn + loge
—logP > < )
by " (q - €<1ogn>2> ~ by

Thus,

n
i o toe® (0> ) =

Combining these facts, we see that if we fix L and take n — co, we have that

lim bilogIP) (—Cap(S) + E[Cap(S)] > /\bnin>

n—o0 by, (logn)?
1 2L ' L bnn
= Jim o~ logP | — ) (Cap(S®™) — E[Cap(S®™)]) + (A, D= iogmye
n i=1 =1

Note that in the previous expression, we used the fact that E[e;] and E[|A; — A;|], would not
contribute to the expectations.

Our goal now is to show the following:

2.2)
2k L bon
— _ (8),mu, (4),m, A — EIAT) > n
Lliﬂonhl%ob log P ;( Cap(S®™) 4 E[Cap(S )])+;(Al E[Al])_)\(logn)Z
= —I4(\).

We will start with showing the upper bound of (2.2).

Upper Bound in (2.2): It is manifest that E[[\l] is a positive number. Thus, if we only care
about obtaining upper bounds on the probability found in equation (2.2), we can drop the
term —E[A;] in the computation for the upper bound. We have,

2L

L
) . ~ bn
_ (Z)me (Z)me > n
2.3) P ;( Cap(S™) + E[Cap(S )])+§Al_)\ Togn)?
2" AN
<P E (8)mryy _ ()mrLyy > N
< ; [Cap(§7)] = Cap(SV™)) 2 eg=agh
L n
P(A>(1—-e2 22 b, ).
3 (fez 002 )
By using Lemma 1 and [12, Theorem 1.2.2], we can derive that
2.4)
1 2" . . AN
lim sup -~ log P > (E[Cap(S¥™)] — Cap(SWmr)) > € by | <—2C)e.

n—oo Op i1 n (IOg n)2



Now recall that A; is a sum of i.i.d. random variables. We can apply our Theorem 3 along
with [12, Theorem 1.2.2] to assert that

. 1 < 1 An
(2.5) lim sup ™ log P <Al >(1—¢)2 oz n)2bn> < —Ii(A—e).

n— oo n

If we combine equations (2.5) and (2.4) in equation (2.3), we see that,

2L
1
lim sup 7= log I ;( Cap(§¥™) 4 E[Cap(S¥)+) +Z ligi
< —min (28CAe, Is(A — ¢))..

If we first take L to co and then € — 0, we derive the desired upper bound on the probability.
Lower bound in (2.2):
First consider the quantity SL,, as in equation (3.4) given by,

SL, = Z Z P(R,, NS =0)Gp(z' — 2*)P(R.. NS =0).
zleSz2eS

Since

SL,<> > P(RLNSD™ =()Gp(a' — 2®)P(R,. NS =)

=1 ZBl,ZBZES(i)'mL

+ > P(R, NS =0)Gp(z! — 2?)P(R.. NS =10)

zl 68(71),771L 7m268(j)w7”L s
1<i#j<2F

and the second term in the right hand side is bounded by

L
2.3 3 BEanS=0Gp6! —aRRaNS=0) <) A,

=1 j=1 glesCi-1)m

x2€S(Ri)
we have that,
2L L
Z( Cap(SW™r) + E[Cap(S® )+ Z
i=1 =1
2L

E[A

Mh

> 5Ly ~E[SLa] + ) (~Cap(S®™+) + E[Cap(S
i=1 =1

=3 Y PRLNSD™ =0)Gp(at — 2?)P(R,. NS =) + E[SLy).

i=1 g1 g2€S)mL
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Noting that S~ E[A;] = O (W), the term "/, E[A;] will not contribute to the
large deviation statistics to the order we are concerned with. In addition,

EY - ) PR.NSD™ =0)Gp(a' — 2?)P(R. NSO = ()] — E[SLy)]

i=1 x171‘268(i)amL

2
<ED . > P(RLNSD =0)Gp(a! - 2*)P(R, NSO = )]

=1 ZBl,ZBZES(i)'mL

2L
EY. Y PRLNS=0)Gpa' — PR, NS =0)] + Cn_
=1 xl’x268(i),mL (IOg’I’L)
2 .
<ED > PR nSD™ =0, R, NS #0)Gp(a! — 2?)P(R,. N SD™ = )]
=1 I1,$2€S(i)me
C'n n

+ < .

(logn)? ™ (logn)?
The final inequality is very similar to the type of error terms we have dealt with in Section 4.
Thus, we omit the proof. Thus, we have that

(2.6)
2L L Anb
(1),mr (@), mL A, >
P ;( Cap(S )+ E[Cap(S z::A = (logn)?
(A + €)nb, - (i),m (i),m €nbn
> B > ALY Aaael] _ ELLLT 20 R IThL > — 5
>P <SLn E[SL,] > Tog )2 P ;(Cap(é’ ) — E[Cap(S )]) = 2(log n )2

9L
— P(Z Z ]P)(R;J N S(i)mu — @)GD(ﬂjl o $2)P(R/x2 N S(i)me _ @)

=1 (El,(EQES(i)'mL

2L
_ ! Sms L PR, N S0me — €nbn
E[Z Z» P(R., N SWme = )G p (2! — 22)P(R,. NSO = )] > Sz )
i=1 gl z2€S®.mL
Now, we note that the negative quantities on the right hand side are the sum of i.i.d random
variables; the term on the last line are also of the form SL,,5-.. By using Lemma 1 and the
result for S L,, from Corollary 2 as well as [12, Theorem 1.2.2], we have that the probabilities

in the last two lines are bounded by explb,, (—2%Ce¢)] for some constant C..
Furthermore, Corollary 2 also gives us that lim,, é log P(SL,,—E[SL,] > (E\ligﬁ)rgl;" )=
—I4(\ + €). Given ¢, if we first choose L such that —2FCe < —I,(\ + €), we see that,

2t L
' ; Anby,
lim 1nf— logP —Cap(SW™) 4 E[Cap(SO™))) + Y A, >
ity togP | 3 _(~Cap(SO™) + BCap(SU ™) +3 K2 1t
> —Ii(A+e).

We can then take the limit as L to co and then € — 0 to show equation (2.2). This completes
the proof of the result.
O
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We can quickly derive our corollary for the exact constant of the LIL for the lower tail of
Cap(S) — E[Cap(5)].

PROOF OF COROLLARY 1 . This will follow by carefully applying the Borel-Cantelli
lemma. The large deviation estimates of Theorem 1 are used to derive the appropriate conver-
gence or divergence conditions. We should take Ab,, = (1 + €)I;(1)~! logn and then choose
the sequence a,, = ¢" in Theorem 1. While we obtain the lower bound by the first Borel-
Cantelli lemma taking € < 0, the upper bound by second taking ¢ > 0. The details are the
same as those found in [12, Theorem 8.6.2]. O

2.2. A priori Estimates on Cap(S). In this section, we will prove the following large
deviation principle on Cap(S). The following lemma will give a sufficient a-priori large
deviation estimate to bound the second term of the second line of (2.6).

LEMMA 1. Let b, = O(loglogn) with lim,, o b, = co. There exists some constant C
such that for any A > 0,

1
2.7) lim sup b—logIP’ <|Cap(8) — E[Cap(S)]| > Lb > < —CA\.

n—oo Un (108; ’I’L)2 "

PROOF. We will consider proving this when 7 is a power of 2. By changing the constant
C that appears on the right hand side of (2.7), one can use our subdivision formula of R,, in
order to obtain estimates on general n via a binary decomposition in terms of powers of n.

Now, assume n is power of 2 and let L = 4log(log n). We can decompose r,, iteratively L
times to notice that,

2L L
Cap(S) = Z Cap(S(i)’mL) — ZA; +er,
=1 =1

where we use the notation from the proof of Theorem 1. This time e, can be shown to be
of O((logn)'Y). (There will at most 1 +2 +4 + ... + 2 = O((logn)*) many error terms
of the form ¢ in the decomposition. Each of these error terms has moment O((logn)?).) By
applying Chebyshev’s inequality, we see that the error term €7, provides no change to the
probability at the scale b,,. Thus, we freely drop this error term €7, in what follows.
Bounding Upper tails of Cap(S) — E[Cap(S)]
If one wants to bound the probability P(Cap(S) — E[Cap(S)] > W) from above,

then since all the terms A; are positive and Zle E[A] = O(m), it suffices to bound the
probability,

Anb,
1o,

2L

7 mr, 7 mr, Anbn

P (> Cap(S¥m) —E[Cap(S@m)] > Togn}?
i=1

Now, the sequence Cap(S®)™t) — E[Cap(S®)"+)] are the sequence of i.i.d. random vari-
ables with the property that Eexp [£|Cap(S) — E[Cap(S)]|] < oco. (This is due the the fact
that Cap(S) < n.) We can apply [6, Lemma 4.4] to assert that there is some constant 6 > 0
such that
0 |em 2l
limsupE |exp Y] Z (Cap(S®)™m) — E[Cap(S®™)]) < 0.

n—00 X n
=1
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Since 25/2 > (logn)? by choice, this implies that,

logn)? | - -
timsupE |exp (60570 1 (Cap(s ) — E[Cap(s 7)) || | < oc.

n—00 ;
=1

By Chebyshev’s inequality, this shows that there is some constant C' such that,

2L
(2.8) limsup%logl?’( Z(Cap(s(i),mL)—E[Cap(S(i),mL)]) > Anby, >§—C’)\.

n—oo Un i1 n (IOgn)2

Upper Bounds on the lower tail of Cap(S) — E[Cap(S)]
Due to our control on ‘Zzil (Cap(S®)me) — E[Cap(S(i)’mL)])‘ from equation (2.8). It

suffices to bound P (Zl 1A > —(bgl;) )
If we define,
Qp =
(25—-1)my (29)mu ' .
> S P(RE, NSEDM 2 0)G(S, — S)P(R, NS =),

a=(2j—2)m;+1b=(2j—1)m,+1
notice that we can bound,
X(S(2]_1)7ml , S(zj)vml) é al,j‘

Anb

Finally, in order to show limsup,, _, . 7 log P(Zlel A > W) < —C'\ for some con-

stant C. It suffices to prove that the exponential moment,

O(logn) 2 L2
(2.9) limsupE |exp L08R E E ok | | <oo.
oo 1=1 k=1

By the consequence of Lemma 7, there is a parameter # > 0 such that each «; ; has the
exponential moment,

1 2—l 2
limsupE |exp G(Og(iln))al k|| <oo.
n—00 27'n '
Thus, we can follow the argument of [6, Theorem 5.4] from equation (5.30) onwards to prove
that the desired result (2.9). This completes the proof of the lemma. ]

3. Theorem 2: Large Deviations of the Cross Term. In this section, we provide a
decomposition for y that will give us a proof of Theorem 2. Analyzing y is not directly
tractable due to the lack of symmetry in each individual product. Recall that S!, S? are in-
dependent random walks of duration n. To deal with this issue, we can write this in terms of
the following difference,

X:X(817S2)
=2 Y Y P(RLNS'=0)Gp(a' —2*)P(R,. NS> =0)
eSSt x2€82
GD o S S PR, NS =0)Gp(a! —2?)P(R,. NS =0, R,. NS #0)

rleSt 2282

= > D PRNS ' =0,RL NS £N)Gp(a' - 2*)P(R, NS> =0).

rleSt 2282
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Now, in order to obtain asymptotics on Y, our goal is two-fold.

(1) Anupper bound on Y is found by merely considering the top line
(32  TLy= Y Y PERLNS'=0)Gp(a' —2*)P(R,. NS> =0).
rleSt 2282
Thus, one can obtain upper bounds on the moderate deviation statistics of y merely
from analyzing the moderate deviation statistics of T'L,,.
(2) Obtaining lower bounds on the moderate deviation statistics of x needs more steps. First,
one needs to show that the second line of (3.1), which we denote as x’ is sub-leading

relative to the first line. (The analysis of the third line would be similar to that of the
second.)

33 Y=Y > PRLNS'=0)Gp(z' —a*)P(R,.NS* =0,R,. NS #0).
eS8t x2e82

Once this is established, lower bounds on the large deviation statistics of x will be the
same as those of T'L,,. Furthermore, observe that only an upper bound on Y’ is necessary.

We will have two intermediate goals,

THEOREM 3. Recall T L,, as in equation (3.2). Fix b, = O(loglogn) with lim,_,~ b, =
oo. We have that, for any A > 0,
bn

1
— > _ ‘
nh_)r{)lo ™ logP <TLn > A(logn)2> 214(N)

We remark that by following the same proof, we could obtain the following statement; this
is analogous to our statement on 7'L,, and [12, Theorem 8.2.1], but uses the same random
walk rather than two independent copies.

COROLLARY 2. Let b, = O(loglogn) with lim,,_, b, = 00. Define SL,, as,
(3.4) SLy=>_ Y P(RLNS=0)Gp(a' —2*)P(R,: NS =0).
eSS x2eS

Then, we have that,

1 bon
im — - > =— .
nhm b log P (SLn E[SL,] > )\(logn)2> Iy(N)

THEOREM 4. Recall X' as in (3.3). Fix b, = O(loglog n) with lim,,_, . b, = co. For any

€ > 0, we have that,
.1 , bpn
- > —
nhm b log P <X > e(log n)2>

It is clear that Theorem 2 is a consequence of Theorems 3 and 4 along with the decompo-
sition (3.1). The next few sections will be devoted to proving these theorems.



DEVIATIONS FOR THE CAPACITY OF THE RANGE OF A RANDOM WALK 13

4. Controlling The Third Order Intersections: Proof of Theorem 4. For any A, let
Z PY(S, ,S(0,m)NA=0).

Here, G 4(a,b) is a restricted Green’s function. Via a path decomposition, one can see that
we have the following expression for the more complicated probability term in x/,

@.1) P(R,NS*=0,R.NS" £0)= Y Gs:(a?, 2" )P(R,: N (S'US?) =0).
rleSt

It computes the total sum of all probabilities of random walk paths from « to b that do not
intersect A.

The equality in (4.1) comes from a path decomposition. Namely, since R/, NS 1—£ (), then
the random walk R’. must intersect S 1 at some final point 2. After this point, the random
walk starting from 2! must not intersect either one of S or S2. Then, we can further bound

X< Y > PRLNS' =0)Gp(z] —2?)Gs: (27, 25)P(R,; NS' =0).
xi,x3eSt v2€852

Though we have simplified the probability term in question, we are still not ready to ana-
lyze this due to the appearance of the term G's2. We have to introduce a more sophisticated
analysis in order to deal with this term. First we fix parameter S < 1, the specific value will
be chosen later in accordance with what is appropriate for later upper bounds. It is important
to decompose the walk S? into appropriate intervals of size n”. We define,

8= 38(j — )n”, jnf].

By adding back points when necessary, and also using the fact that if A C B then
Gp(z,y) < G4(x,y) for all points x and y, we see that we have,

n'=#
< X,B = Z Z Z IP’(R;% NS'=0)Gp(zt — 2?)
xi,x5€St j=1 22€S53 ;

XG82 (x 1'2) (R/1 ﬂSl @)

(Note that x’ or X,ﬁ is a random variable determined by S! and S2.)
One way to express the modified Green’s function GSE ; is as follows. Note that Green’s

function satisfies the following system of equations: for any z € 857 j and m > 0,
PE(Sp=ab) =Y Y PS8 =2P"(S(0,m—i)NS3,;=0,Sm =x3)

and hence

If we define the matrix with size |Sj |

4.2) [ng’j]a,b = GD(a — b), for a,b € Séj,
we see that,
ng,j(ahl"%) Gp(ar,zd)
Gsz _(ag,:L'l) 5 GD((IQ,ZL'l)
(4.3) P = (g8 : 7

‘ 1
ng,j(awg,ﬂ’x%) GD((I|S§,J_|,$2)
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where a varies over all the points in Sg I

The analysis of the matrix inverse will depend on the distance between the points in 3 and
the set Sg ;- Observe that if x3 were far away from the set S; 2 3 ;» then the terms in the vector
on the right hand side of equatlon (4.3) would appr0x1mately be constant. Furthermore, it is
also rather unlikely that the x5 would be close to the set 867 ;- Following this intuition, we

divide the the points 3 into two categories,

(1) In category 1, the point z3 is of distance at least \/ﬁl_(S away from all the points in 857 i
(2) In category 2, the point x1 is not of distance at least \/ﬁl_é away from some point in
S5
If we are in the first category, we have a superior analysis, as will be illustrated by the

following manipulations. Indeed, assume that the point z} is of distance at least \/ﬁl_é from
all points in S? j- Now, let a and b be two points in S5 2 .. Then, we must have
(4.4)

Gola— ) — Go(b— 1 1 1 1

- + +
la =231 o —a23)?| * lla—azl* (1o — x3)l*

)| 3

S H ?H +2 11 6 g ni 36°
la —a3? N (Vn)*~
Note that here, we have applied the estimates of [18, Theorem 4.3.1]. Then we use the fact
that ||a — b|| is less than n® when both are in the neighborhood of Sg ; and our assumption

that ||z} — a| > (v/n)'~°. Let
Eq, 2} Gpl(a — :L'2) Gpl(ay — 3:%)
= (g% :
Fagy b Gplasz | —x3) — Gplar — x3)

In this case, we can further write the inverse formula as in equation (4.3) as,
4.5)

ng,j (alaw%) GD(CLl — x%)
: = (%)™ :
Gsz (a2, 72) Golasz, | —2)
1 Gplay —x3) — Gp(ag — )
=(G%)7" | 1| x Gplar —ah) + (G520) 7! :
1 GD(CL'S?M' —w%)—GD(al —x%)
P(R:ll ﬂ ngj = @) Ealﬂ?é
- x Gp(ar — w%) + :
P(R, , NS;,=0) Ey .
153 ;1 J 155,172

Thus, we have the following representation of X,B‘ In what follows, we let Z(y,j) be the
indicator function of the event

(y,j) = Lldist(y,S3,) > vn' °].
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For each set Sg j choose a point i? This point will serve as the central point used in the
decomposition used in equation (4.5):

n'=#
> D T(ws )I(an, )P(RL NS =0)Gp(a) —a?)
xi,x5€ST j=1 22€S53 ;
X IP’(R‘{EQ QSEJZQ))GD(x —xz) (R/l ﬂSl @)
n'=#
+ Z Z Z I(‘T%h]) ‘Tla ) (Rllmsl (Z))GD( ~§)
zi,x5€ST j=1 22€S53 ;
X Byt P(R,, NS' =)
n'=#
+ Z Z Z I(‘T%h]) ‘Tla ) (Rllmsl (Z))
zi,x5€ST j=1 22€S53 ;

x [Gp(z] —2®) — Gp(x]

(4.6)

— #)|Ey2 i P(Ry NS = 0)

nt=8

+ 3 S Y 1T )T PR, N ST =0)Gp(at — 2?)

zi,x5€ST j=1 22€S53 ;
x Gy (2%, 23)P(R,, NS =10)
=:MT, +& + & +&s.

The analysis of X/B now devolves into the following three lemmas.

LEMMA 2. Fix m € N. There exists a constant depending only on m(and not on n) such
that, if we define,

S 3 N 2 Il )RR, NS =0)Gp(a] — 2?)

4.7 ol alest j=1 2?€S3
XP(R;z 0557] :(D)GD(x —IIJ‘2) (Rll ﬂSl @)
then,

™ (loglogn)*™
(logn)?m

E[(MT,)™] < Cpn™

By Markov’s inequality, we obtain the following as a consequence,

COROLLARY 3. Recall M T, and fix any € > 0. If b, = O(loglogn) with lim,_,~ b, =
00, we see that we have,

lim bilog]P<MT S bnn )Z_

n—c0 by, (logn)?
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PROOF. By applying Markov’s inequality to (4.7) for some fixed power E[(MT,,)™], we
can derive that,

1 b,n
li —loglP ( MT,, > e——
P b, 8 ( —angn)?)

loglogn

log Oy
glimsup—bE [loge— Oif + loglogn — 2logloglogn + log b, | < —m 2

n—o0 n
The quantity above will go to oo as one takes m to co.
O

PROOF OF LEMMA 2. Since the proof is similar to Claim 2 and the estimate of &, we
explain it very briefly. We estimate M T}, by decomposing the term of G p(z1 — 22) in MT,,
by Gp(xi —2?) — Gp(z1 — Z7) and Gp(x1 — 3). Concerning the term of M T}, including
Gp(ri— :f?), note that by [17, Theorem 3.5.1],

(4.8) P(S*(0,00) N (S%0,n] US3[0,n]) =0) < (logn) L,

where S? is an independent random walk from S! and S2. If one could freely replace the
probability of non-intersection of the random walks appearing in the above expression of

(4.7) with O (@), then the term of MT,, including Gp(x1 — 5:3) is a consequence of
Lemma 3 and repeating the proof of Claim 2 with the aid of (4.8). Concerning the term of

MT, including Gp (2} — %)~ Gp(zi— :i?), notice that here we could make the replacement

Gp(rl —2?)~Gp(xl - 5:?) since ||z% — iJQH < n? as they are both elements of Sg ; under
Z(x1,7). Then we can estimate the term of MT,, including Gp (1 — 2*) — Gp(x] — Z7) by
a similar argument to the estimate of &;.

LEMMA 3. Consider the following quantity,
MT) : = Z Z Gp(zt —2*)Gp(x? — ).
ol oleSt 12€8?
There exists some constant Cy,(not depending on n) such that
E[(MT.)™] < C\,n™(loglogn)?™.

PROOF. Let o > 4m. First, we show that for any y; € Z* with infi<;<on |lyil| >
n!/2(logn)~,

n 2m
(4.9) E| > JIGo(St —v)| < Cmalloglogn)™™.
kl,...,k27n21 Z:1



DEVIATIONS FOR THE CAPACITY OF THE RANGE OF A RANDOM WALK

Let A; = {||S}. = yill > n'/?(logn)~2*}. Indeed,

2m
Z H Gp(S, — i)

1<k <..<kam<ni=1

2m—1
= > Go(Sh, =Sk Sk —vam) [ Go(Sh —w)
1<k <...<kam<n i=1
2m—1
= > Go(Sh,, =Sk Sk, —vem)la, [] Go(SE —wi)
1<k <...<kam<n i=1
2m—1
+ Z GD(Sklzm - S]iszl + Sklzm 1 y2m ]lAC H G(D - yl)
1Sk1§---§k27n§n 1=1
Note that [17, Thm. 1.2.1] that for any x € 740> 1,
(4.10) P(S! = z) <2 [6_2”””||2/i + (2] v z‘)—l].

Hence if ||y| > n'/?(logn)~2,

> Gp(Si —y)| Sloglogn

1<k<n

and

E Z ]lz‘lémGD(‘S’/lizm,1 —yam—1)| S (log n)_40‘ x logn.

1§k2m7 1<n
In addition,

n 2m

max E| Y [[Go(Sk —wi)| < Cum(logn)®™

Yo am=1i=1
Then,
2m—1
El > Go(Sh, Sk, +Sh,, —va)la, [] Go(St —w)
1<k <..<kym<n i=1
2m—1
S(loglogn) x E > 11 Go(Si, — i)
1<k1<...<kapm_1<n i=1
and by Lemma 15,
2m—1
E Z Gp(St,, =Sk, + Sk, —v2m)lag, H Gp(Sk — i)

1<k <..<ksm<n

2m—1

S(logn)E > Las,, HGD =)

1<k <...<kam-1<n

<Cpn(logn)?™(logn)~*.

17
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Hence, we obtain (4.9). Moreover, if inf{i1,...,i,} > n(logn)~?,

E[1p] :=E [Uf 1{|S?] < n'/(logn)~*}| < Cpn(logn) =

and
Z 1<n™(logn)" .
inf{i1,...,.im }<n(logn)—«
Hence,
n
BT <El Yy H Go(St, = SF,,u)
i1yt =1k1,...,kom=17=1

<Cpn™(logn)"(logn) 4+ E Z Z H Gp( Sk m/zw )

_inf{i1,...,im}zn(logn)*a k1yeoskom=17=1

[ n
<Cpn™(logn)™(logn) "+ E Z Z H Gp( Sk zr /21 )

_inf{i1,...,z}n]»zn(logn)*‘1 k1,yeokom=1 j=1
<C,,n™(loglogn)*™
Therefore, we obtain the desired result. O

The other terms of equation (4.6) are of much smaller order.

LEMMA 4. Consider the second summand on the right hand side of equation (4.6).
Namely, let

S 3 Y T )I(t )P(RL NS =0)Gp (o] — i2)

(4.11) ri,23€8 j=1 22€83 ;

X Eg2 3P(R,, NS =10).
We have that,
(4.12) E[|&1]] S n?0+30+s,

We also have a similar estimate for the third summand on the right hand side of equation
(4.6). Namely, we have that,

= > Z Y I(eh )T}, PR, NS =0)

(4.13) 21o3eSt j=1 22683,

x [Gp (a1 —a*) = Gp(w] — #5)|Bye 1y P(R,, N S' =),
will satisfy,
(4.14) E[|&]] < n30+28

Lemma 4 will be shown later in this section. As before, Markov’s inequality will give. one
can derive that,
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COROLLARY 4. Recall the terms £, and &, from equations (4.11) and (4.13). Fix any
€ > 0 and set b, = O(log log n) with lim,,_,~ b, = 0. We have that,

. 1 nby,
4.15) nh_}rrgo b log P (max(]é’l\, |Ea]) > 6(logn)2> -

PROOF. By Markov’s inequality applied to (4.12) and (4.14), we have that
—loge — (% — 28— %5) logn + 2loglogn

1 nb

—logP ( |&1] > n <

by <' 1|_€(logn)2> - by ’
and,

1 nby, —loge— (1—38—2d)logn + 2loglogn

— log P > < .

by o <’52‘ - e(logn)2> - b
The desired conclusion (4.15) follows from taking the limit n — oc. O

Finally, the last error term, the fourth summand of (4.6) will also be of smaller order.

LEMMA 5. Consider the last summand of (4.6),
nt=8
(4.16) Eg:= Y Y > [1—Z(w5,5)Z(xf,)P(R, NS' =)
r1,03€ST j=1 22€S3 ;
Gp(zl — :E2)G5§ ) (xz,x%)P(R;% NSt =0).
We have that, for some &' > 0,

E [53] 5 ’I’Ll_é,.

PROOF. By (4.10), we remark that for any point a that,

4.17) E Z GD(a—aj2)] SiiP(Si:a)SXn:ii;2§logn,
2282 j=0 i=j j=0 i=j

where 74 : =1V ¢. By symmetry,
n

El&s] <E| Y- [1-1[l8! — 8}l = va' LISt - S7ll = va' ]
i,5,k=0

< Gp(S! — §2)Gp(S? - 8&)}

<E| > 1|8} - S} < va' IGp(S! - §))Gp(8] - 8! - (SL-Sh)|.
i,7,k=0
By (4.17) and Markov’s property, it is bound by
Cllogn) < E | > 1[IS! = 87| < v/n' 1Gp(S! = 87)
i,j=0
Now, by [13, Lemma 4.1],
nl—6/2 nl—6/2

E| Y 18! -8 <va 'IGp(St-SH| <E| Y Gp(st-8H)| gnt?

~

i,j=0 1,j=0
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and
E|l Y Y ulst -8 < v ’lGp(st - 8?)

i=nl—96/2 j:(]

n

n
Somax SN e—yl RSt =)
yezt . —5/2 1-5
=0t la—y|| <v/n

Then again by (4.10), it is bound by

o 1-6/2 Cn(l 2,2 < 1 1—5/2'
(logn)n + Cn(logn) I;éazii' Zw “ E/_l& |z =yl 7%iy" < (logn)n
=n z—y||<y/N

Therefore, by symmetry, it completes the proof.

As before, one can show the following from Markov’s inequality,

COROLLARY 5. Recall the term Es from (4.16). Fix any € > 0 and set b,, = O(loglogn)
with lim,,_,~o b, = 00. Then, we see that,

1 nb,,
4.18 lim — logP >e—— | = —00.
4.18) i by, 8 <53 - 6n(log n)2> >

The proof is similar to that of Corollary 4 and will not be shown here.
Using the previous corollaries, one can now prove Theorem 4.

PROOF OF THEOREM 4. It is clear that,

nb nb
Py > n <P(+y,> n
(X - 6<logn>2> = <Xﬁ - €<logn>2>

By computing bi log to both sides, we see that the conclusion of Theorem 4 is a conse-
quence of Corollaries 3, 4, and 5.
O

4.1. Proof of Lemma 4. The proof of this lemma requires novel techniques beyond care-
ful computations of Green’s functions due to the presence of the error terms E occurring
from the matrix inversion. We will present the proof here.

PROOF OF LEMMA 4. First, we deal with £;. We have that,

nt=p#
Ei=> Y I(x3,5)L(x1,§)P(R,: NS' =0)Gp(x} — 37)
zieST j=1

x> Y B PR, NS =0).

x5St 12€S]
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We now consider, under the indicator function Z (a:%, 7),

S N B P(R, NSt =0)

eS8t 22€83

8
= Z \55,]-! Z | E o x2]2<nW<n2B+3/% 1/2

r3€S! r2€83 ;

To get the first inequality, we used the Cauchy-Schwartz inequality on the sum over Sg I

From Lemma 16, the matrix G55 is positive definite and has minimum eigenvalue greater
than 1/2. Recall that a; is defined in E,. ,; in (4.5). Thus, the inverse matrix has (* — [
operator norm less than 2. Thus, we know that, under the indicator function 7 (x%, 7)s

n2p
Z ‘Ex2,x§‘2 <2 Z ‘GD(al —Z’%)—GD(Q,Q—JZ%)Pg nﬁng_g(g'

z2€S} ; z2€S} ;

In the final inequality, we used the deterministic bound (4.4) to bound the differences of the
Green’s function in the region Sg’ e Thus, we have that, deterministically,

> YN T )Tl PR, NS =0)Gp(at - 7))

xi,x5€St j=1 22€S53 ;

X Eyo yB(R,, NS' = @)'

nt—#
> T(wy, §)L(x1, J)P(RL N S' = 0)Gp(a] — &5)n*P /207172
x%esl j=1
5 n26+3/25—1/2 Z ZGD(Sil B Sf)
i=1 j=1
Therefore,
nt=F

?

> D > Ind)

xi,x5 €S j=1 22€S57 ;

x (a1, j)P(Rly NS' = 0)Gp (a1 — 32) B,z yP(R,, NS' = @)H

n n
<p26+3/26-1/2 ZZGD(S} B 3]2) < 20+48/2041/2
i=1 j=1
The computation of the expectation in the last line above comes from [13, Lemma 4.1]. The

value of this last line is approximately n~ /2 the scale of the main order term (provided /3, §
are all chosen relatively small).
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Now, the other error term involving £ can be dealt with in a similar way to £3. To recall,
the other error term is,

|Ea] <

Z:E:E: (k)T (wk, J)P(R, N S* = 0)

r1,25€8? j=1 22€857 ;

x [Gp(z] —2%) — Gp(a} — )] Eye 3 P(RL, NS = 0)).
We first use the improved estimate,

B
~ - n
|Gp(x1 — 2%) — Gp(x] ?)|§GD($%—$?)W

under the indicator function Z(z1, j). We remark here that the factor of Gp(x] — Z7) is an

improved error term in the case that ||x1 — JZ?H is relatively large. With this deterministic
bound in hand, bounding this error term in £ reduces to the error term we just treated. [

5. The Leading Term of x: Proof of Theorem 3. In this section, we will consider the
large deviation statistics of the following quantity,

- Z Z P(R,, NS'=0)Gp(z' —2*)P(R,. NS*=0).
mlesl m2€82

We will prove Theorem 3 by separately proving lower and upper bounds for the asymptotic
moments.

5.1. Introduction of the Auxiliary TL},. For technical reasons, T'L,, is not the most con-
venient quantity to manipulate. Instead, we consider the following auxiliary quantity. We
let S*' denote the portion of the random walk in between the part of the random walk

Sk (i — Dy, z%} and

(5.1) TL.: Z > Y P(RLNSY =0)Gp(at — 2?)P(R. N S* =0).

"] 1x16811m2682j

We have the following relationship between T'L,, and T'L,.

PROPOSITION 1. Let b, be a sequence satisfying b, = O(loglogn) and lim,,_, o, b, =
0o. Fix A > 0. Then, we have that,

1 nb nb,,
5.2 lim —logP ( TL, >\—"—_ 1 logP | TL, >\
2 J&m°g< "—a%ma J&b°g< a%m>

PROOF. We remark that T'L, > T'L,,. This immediately shows that,

P TL;LE)\L)" >P(TL,>\—s b
(logn)? (logn)?
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To derive the opposite inequality, we first observe that T'L!, — T'L,, can be bounded from
above by,
(5.3)
TL, —TL,

bn
<> Y ) P(RLNSY =0,R,. NS £0)Gp(a’ — 2”)P(R,. NS> =)

i,j=lxleSt x2€852%7

b,
+>° > > P(RLNS' =0)Gp(a' — 2*)P(R,. NS =0, R, N S* £0)

i,j=1laleS1 i x2e827

b,
+ > > > PRLNS' =0)Gp(z' — 2?)P(R,. NS* =)

7:1757:2,‘]‘:1 "Elesl’il NSti2 $26$2’j

b,
+ > > > PR, NS =0)Gp(at —2*)P(R. N S* =)

i1 A2 =1 22 €S2 NS2I2 1 €S
=:J1 4+ Jo+ J3+ Jy.

For each line on the right hand side above, we will show that for 1 <7 <4

.1 nb,

. — > - _
5.4) nh—{%o bn, log (JZ =€ (log n)2>

The first two lines of the right hand side of (5.3) are very similar to the type of error terms
we have dealt with in Section 4. One can follow the analysis of said section to show the
relation (5.4) for these two lines.

The last two lines will be controlled by bounding the moments and applying Markov’s
inequality. We present the analysis with the term on the third line, since the term on the
fourth line can be dealt with similarly. We first bound all the probability terms on the line by
1.

By (4.10) and (4.17), for any z and v,

E|Y 1{Si+2=8+y}| =) PSk;=y—=)
i,j=0 ,j=0

n
S (i+4)7 Slogn.
i,j=0

Thus, we see that,

by
E[B<Esi | Y. Y Es [ > Go(a! —x2)]

1 Fla=1xteSH11NS 2 x2e€852

bn
SE Z I, i, logn | <b2(logn)?.
7:1757:2:1

On the second line Eg: is the expectation with respect to only the randomness of S. I;

1,02

is the number of points of intersection between S} and ;.. We remark that S}, — S} .. and
bn

Sil1 - Sil1 = are independent random walks. Then, E[I;, ;,] < logn by a similar computation
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to [17, Proposition 4.3.1]. Thus, this term will not contribute to the large deviation statistics
of T'L!, on the scale of %.

O

The quantity T'L/, is easier to deal with since we can obtain exact moment asymptotics.
Namely,

PROPOSITION 2. Recall TL!, from equation (5.1). Let b,, = O(loglog n) and lim,,_, o, b, =
oo. Then, for any 6 > 0, we have the following exact moment asymptotics on T L), :

m ((Vbnlogn ym1/2 _ 492
(5.5) nhrgo—logZ—e < 7 ) E[(TL.)™] 7(4,2)* <

As a consequence of the previous two propositions, one can now prove Theorem 3.

PROOF OF THEOREM 3. By [12, Theorem 1.2.7], equation (5.5) would be equivalent to
showing,

nby, 4
1 ’ > _ % —4y
nh_)H;O b logIP (TL /\(logn) > 7T4/4(4,2) A

Now, since by Proposition 1 we have that

nby, nb
li —1[P’TL>)\ = i —IIPTL’>/\ n
fn e (702 ) = g (702 )

we complete the proof of the proposition. ]

The remainder of this section is devoted to deriving upper and lower bounds to the quantity
in equation (5.5).

5.2. Large Deviation Upper Bounds. In this section, we establish the upper bound found
in Proposition 2.

PROPOSITION 3. Let b, be a sequence satisfying b, = O(loglogn) and lim,,_, o, b, =
o0. Then, for any 6 > 0, we satisfy,

492
lim sup b_ log Z —Hm

n—oo n

<\/_logn

/ 1/2 3
NG ) E[(TL,)™Y? < &(4,2) ——

The proposition above is an immediate consequence of the following lemma and claim.
CLAIM 1. There exists some constant C' > 0 such that for all n,m > 0, we have that,

(5.6) E[(TL.,)™ < C™m! <m> .

The proof of the above claim will be postponed to later. We now present the second nec-
essary lemma.

LEMMA 6. Forany 0 >0,

nlogn /il 02
li —1 —em E TL)™Y? < i(4,2
imsup nogz (V) sl < fa, 2 T
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PROOF. Let (B)s>0 and (B2)4>0 be independent Brownian motions for d = 4. The need
for the bound in (5.6) and [7, (2.3)] are to ensure that one can apply dominated convergence

2 m
to the terms £ [(%TUH) } when needed, and replace them with the term:

() e[(f o -ma)'|

The reason why this can be done is due to the fact that
1 2 4 1 r1
(ogn)” oy B, 77_/ / G(B! — B?)dtds
n 4 0 0

following the proof of [4, Proposition 6.1].
We can follow the proof of [12, Theorem 7.2.1] to derive the appropriate upper bound.
Finally, by Remark A.3, we see we obtain our desired constant.
O

It is manifest that Proposition 3 is a consequence of Claim 1 and Lemma 6. We devote the
rest of this subsection to deriving Claim 1.

5.2.1. A proof of Claim 1. Our first remark is that the quantity 7'L], is less than,
n
TLpe= Y P(RenS'fi—n%i+n" NS =0)Gp(S! —S7)
(5.7) ij=1
x P(Rlg: N S?[j —n®,j +n*]NS*=10).

We will analyze the moments of 1'L,, , via a subadditivity argument along with a careful
moment analysis. Our first subadditivity argument allows us to reduce our moment analysis
of T'Ly, o to a slightly weaker analysis.

LEMMA 7. If one knows that there exists some constant C' such that for all n and m that

. E[(TLy )™ < C™(m!)? [ ——
58) ()"} < M ()
then there is some other constant C' such that,

. E[(TLy,.)™ < (CY"(m!) [ —— ) .
5:9) ()"} < (€ nt) (ot )

PROOF. We start by using a subadditivity argument. Recall that G = G p * G p. To match
the notation of [12, Chapter 6.1], we also define

Swm) = D Gp(Si — a)P(Rs, NS[i — (n—n')* i+ (n—n')*] N S(n',n] =0).

i=n'
The main thing to observe about this function is that,
TLna= ) FépumFen:
a€Z*

Furthermore, it is trivially true that for times ¢ < s that

Fais) < Fspg T FSs
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and ¢ has the translation symmetry,
F&Z=F8.

For these reasons, we can apply all the results of [12, Section 6.1]. In particular, we can
apply the argument of [12, Theorem 6.2.1].
O

It remains to prove equation (5.8).

LEMMA 8. Egquation (5.8) holds. Namely, there is a constant such that for all n and m
we have that,

E[(TLp.q)™ < C™(m!)2 (@) .

Before we start proving the above lemma, we will finish the proof of Claim 1.

PROOF OF CLAIM 1. Since T'L!, < TLy,q, we have by Lemmas 8 and 7 that
n m
E[(TL )" <E[(TL,)™ <C"™m!| —= | .
()" BT L) < O™t (ot )

This is exactly what was desired. U
We now return to the proof of Lemma 8.
5.2.2. The proof of Lemma 8. To show Lemma 8, we first need the following claim:

CLAIM 2. Define

m
= m . .
TL, .= E E HP(R:@ NS iy —n®,ip +n* NSt =0)
ik
i1,emriom Grregm k=1
lia—1ip|>n3*Va,b |jo—js| >n>*Va,b

x Gp(S;, = S} )P(Rs: NS*[jx —n® ji +n]NS*=0).

Then, there exists some constant B such that,

nm

We will show it after the proof of Lemma 8.
PROOF OF LEMMA 8. In what follows, the constant C' may not remain the same from line

to line. Since T'Ly o < Y 7', Gp(S; — S7), it is clear that there is some constant C' such
that

Za‘:l
E(TLno)" <E || Y Gp(S! =87 < C™m!n™.
i,j=1

Gp(Si—

This latter estimate immediately follows from the large deviation statistics of > " =1 B

S?) from [13, Lemma 4.1]. Now, observe that when m > (log)?. One has that

m!>m™e™ ™ > (log n)2me_m.
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Thus, for m > (logn)?, we have that,

m
n
C"mlin™ < (eC)™(m!)? :
i < 0" ()
It suffices to prove an upper bound for moments when m < (logn)?.
Bounding the moments when m < (logn)?
We will show that there exists a constant C' such that,

nm

El(T L)) < (] 0" g

by induction on m.

Since the points 7;, are all spaced far apart, we are able to use in some form that the
probability terms P(R:S} N St[ip — n%, iy +nNS! =) should be rather independent of
each other. We will return to the proof of the claim later. Assuming the claim we have the
following result; the moments of T'L,, ., can be bounded from above by
(5.10)

E((TLn,a)" <ETL,.,]

m
+ 2m2E[ > HIP’(RZ% NS i, —n®, i +n%) NSt =0)
i17"‘7im j17"'7jm k:l
[i1—ia|<n3

x Gp(S;, = S )P(Rs: NS?[jr —n®,jk +nINS*=0)|.

Namely, if there is a term in the mth moment of T'L,, ., that is not already contained in the
term ﬁ:’:a, there must be some pair of points (i4,5) or (ja,jp) that are of a distance closer
than n3®. By symmetry, we may assume that the two points are i1 and io. There are at most
2m? such choices of pairs (i, 1) or (ja,75). We will now bound the moment of the second
term above.

If could only sum over the terms o, . .., %, and jo, ..., jn, then this would be the m — 1th
moment of (T'L,, ,). We could then apply induction to this quantity. The main idea is that if
we fix i there are at most 2n>® choices of i;. Thus, intuitively, this term should be no more
than n®® times E[(T'Ly, o)™ !]. The problem is to deal with the sum over ji .



28
Observe the following,

E[ >y ﬁIP’(nggkﬂSl[ik—no‘,ik+n°‘]081:®)

il?"'vim jlv"'vjm k=1
|Z’1—7:2‘S7’L3a

X G, —S2)B(Rey NS[jx —n®ji +n%| N &” = @)]

ng[ DS HP Ry 18— it +n°] NS = 0)
k=2 U1yesbm JiseeesJm
(5.11) i1 —i2|<n®* |51 Jk\<"3°‘

x Gp(S; — S5 )P (R52 NS%[j, — n% jx +n ]032=(A)]

m
/ 11 o o 1_
HE[ Z Z HP(ngkﬂs [ik —n% ik +nINS" =0)
217 N ] _7 k=1
i1 — Z2\<"30‘ |71 ]k\>n3"‘v1c

x Gp(S; — S5 )P (RSZ NSy, —n®, jr +n ]0322@)].

If we bound the product
P(Rs: NS'liy—n®, i1 +n°]NS' =0)Gp (S}, — 87 )P(Rs. NS*[j1—n®, j1+nINS* =)

by 1, we see that the first term on the right hand side above in equation (5.11) can indeed be
bounded by < mnS*E[(TLy,.o)™ 1.

To deal with the second term, we do the following. First, fix the terms io,...,%,, and
J2, .-, Jm. Without loss of generality, we can assume that we order 7o < 73 < ... < jp—1 <
Jm, and that jo < 71 < j3. (We can apply similar logic regardless of the relative position of
71 in the ordering jo < ... < j,,.) Notice that upon conditioning on the values of S] Lne
and Sji_na, the walk S?[j2 + n®, j3 — n®] becomes independent of the rest of the walk. We
exploit this fact by using that

(5.12) Es> > Gp(S! —82)[S} pe = 2,8} _pa=y| Slogn
Jotno<j1<jz—n"

for any pairs of values = and y by Lemma 15. The expectation above is only taken over the

random walk S2. (Note, here we are bounding the probability term P(RY ﬂ S?[j1 —n®, j1 +

n*] N S?% = () by 1 to simplify further computations.)
As a consequence, we see that we have,

E[ Z Z H]P’R51 NS iy —n®,ip +n* NSt =0)

Jm
\21 zz\<n3"‘ |71 jk\>n3"‘Vk

x Gp(S}, — 83 )P (R52 NS?[jx — n% jr + 0N S* =)

nm—l

~ (IOg n)2m—2 :

< mn3*(log n)E[Tngl] <mC™ 1 n3*(logn)(m — 1)1
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The factor of n3* comes from the possible choices of 1 (given its distance from z5) and
the factor of m comes from the fact that j; can be located in between any of the m regions
[4is ji+1] in the ordering ja < js ... < j,,. At the final step, we applied the induction hypoth-
esis.

Returning to equation (5.11), we see that,

L.H.S. of (5.11)

m—1 m—1
<mnbCm L (m — 1)!2(10;1m + m(logn)(m — 1)!20m_1(lognm.
Substituting this back into equation (5.10), we have,
m 2 pm_ " 3, 6o m—1 n™!
E[(TLyqo)™ < (m!)°B W+Km n>*C (m—l)!W.

Notice that the right hand side is less than C™ (m!)? % provided,

B\"™ B\™
1> <6> + KC™ b 1(logn)? > <E> + KC 'mnb~1(logn)?.
Provided C' is chosen large relative to B and the universal constant K, there is a value of C'
such that the above inequality will be satisfied for all n and m < (logn)?2. This completes the
induction provided that Claim 2 holds.

O

Now we start complete the proof of Claim 2.

PROOF OF CLAIM 2. Without loss of generality, we may order the times as i1 < 15 <
13 ... < i,,. Our first step is to condition on the values of the random walk at specific points
as St =, S} o =2, 8L =2l and §F =yp, S7 0 = yp» 7 e =y With the
endpoints of the neighborhoods S [i, — n®, iy + n®] specified, the neighborhoods involved
in the probability terms above become independent of each other. This is the key observation
used to simplify the computations that proceed. In what follows, we let p;(x) denote the
probability that a SRW transitions to the point x at time ¢.

To simplify what proceeds, we introduce the following notation,
(5.13)

NI(S,i,a¢ 2", a") :=E[P(Rs,NS[i —n,i+n*INS = 0)|S; = 2, Siyne = 2", Sj_pe = 2'].

This finds the expected value of the probability that an independent random walk R:Si
starting at S; does not intersect the portion of the random walk S[i — n®, i + n®] conditioned
on the random walk being at points z¢ at time 4, 2" at time i + n® and 2! at time i — n®.
If it is not necessary to condition 2" and z!, we will slightly abuse notation and denote this
by dropping the appropriate argument on the left hand side. Let I1,,, be the collection of all
permutations on m points. Note that ¢ as a superscript is used as a shorthand for ‘center’
while 7 and [ are ‘right’ and ‘left’ respectively. We can write the expectation of E[TLZQ] as,
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(5.14)

(mt) > > > >

o€ll,, 1<i; <ip—nso<... 1<jo1)<Jo(2)—n"... xr w2,
Si”l _(m_l)n3a Sn—(m_l)HSQ SJ"'(”” _(m_l)HSQ Sn—(m_l)HSQ y£7y;c 7926247Vk

Dis (€9)Dno (€] — 25)Piy—iy 200 (¢ — 2§) NI(S' iy, 25, 27)

X Pjg(l)(yfr(n)Pnﬂ (92(1) ~ Y (1)) P oy 20 (92(2) - 93(1))]\”(327%(1)7yfr(nay;u))
m—1

H N[(Sl7 Uk, Ty T ‘Tic)pno‘ (xi — Z};)Pne (‘Tic - xlce)pik+l_ik_2na (‘T§6+1 — )

k=2

X NI(S?, (k) Yo i) Yotk Yor () JPrm (Yo ) = Yin(ry)Pre Wiy = Vi)
Pyo k1) =yo () —2n° (yla(k—i-l) B yg(k))

NI(SI) ima x?m xlm)pno‘ (xgn, - ;Uin)NI(Szvjo(m) ) yg(m) ) y;(m) )pn"‘ (yg(m) - ylo'(m))
« 1 Goag — v6).
k=1

The main observation to notice now is that if we were able to freely sum over the values
xy, {Ei, then we would have that, by (4.8),

S NT(SY i, 5, 25, 2 )pme (25 — 2 )pme (2 — )

xh,

< 1 ,
~ log(min{n — i+ 2,7+ 1})

=E[P(RSs, N S[i — n® i +n®] = 0)]

because this just computes the averaged probability that an infinite random walk does not
intersect a the union of two independent random walks of length n® starting from the origin.

The only term that prevents us from freely summing over z and :n§C for all k is the term
Digi1—in—2n° (:E§€ +1 — 7},). However, if we could bound this term from above by a constant
times p;, ., (7§, — ), then we would be able to freely sum over the variables 7}, and 3:5g
as desired. This is what we will argue now.

Itis clear that ||}, — 2¢|| < n® and ||z}, — 2¢ | < n®. Provided that ||z}, — a7} || < (ij41 —
ik)l/ 2+¢ for some small €, we can apply the local central limit as in [18, Theorem 2.3.12,
equation (2.46)] along with the fact that i1 — 7, > n3® to show that,

Pirir—in—2ne (@1 — ) < (L4 0(1))piy i (€1 — 2F)-
Otherwise, the probability that ||z}, — 2} || > (ix+1 — ix)"/?*€ is exponentially unlikely
with probability at most exp[—n%?¢]. Thus, we always have the bound,
Piii1—ir—2ne (‘Tgﬁ-l-l —zy)
<L+ 0(W))piyys—i (Thi1 — %)

+ Lllakr — 2hll = (i — i) /2]

l
Piy iy —ip—2n (‘Tk—l—l - ‘T};)
Similar statements also hold for j and y.
Furthermore, this term can be substituted into equation (5.14) by replacing each appear-
ance of p;, ., —2n= (a:§f 41 — 2},) with the right hand side above. We can expand each of these
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products to get a sum over 2* terms (in each of these terms, p;, ., i, —2n0 (gcﬁg 41— T}) isre-
placed with either p;, ., i, (x5, | — ) or L[||a}_; — 2| > (iny1— k)Y > pi s —ip—2ne (@hp g —
xz)) There is only one of these terms in which each p;, ., i, —2pe (2!, 41 — },) is replaced
with Piy 1 —is (xi+1 - ZL'E)

We remark that if even one of the p;, ., —, —2ne (:nf,CJrl — x},) were replaced with 1 [||3:lerl -
x|l > (igg1 — ik)1/2+5]pik+1—i_k72”‘” (;pf%l — ), then such a term would be exponentially
suppressed. Indeed, we could trivially bound all the terms of the form G p(x —y) and ]P’(Rgt N
S[t—n%t+n*NS =) by a constant. Performing a trivial summation shows that this term

can be no more than n?™ exp[—n%*‘] < (m!)? (10”77”2,% provided m < (log n)?. Furthermore,

gn)
there are no more than 2% such terms. Thus, these terms are clearly negligible.
Now we consider the term in which all p;, ,, —, —2pe (74 41 — T},) are replaced with (1 +
o(1)piy,, —i. (2511 — o%). In such a term, we can finally sum over ot byl yt for all k.
Such a term will be bounded by,

C 2m . )
<10gn> m! Z Z Z Z Z pi, (wl)pja(l)(ya'(l))

UEHm ZlSS'Mn jlgg‘?wn vavxz y%?vyg

m—1 m
< T Picon—inc @rr1 = 20)Pioisny o Woterr) — Vo) | [ Golaf — vf)-
k=1 f=1

However, the last term computes the m-th moment of > 7" | Z?:l Gp(S} — SJQ) This is
bounded by C"m/!n" for some C' > 0. Thus, we can bound the line above by

m! ((10(;72)2(1 +0(1))>m.

This completes the proof of the claim.
O

5.3. Lower Bound for the Large Deviation of TL],. Our goal in this section is to show
the following statement.
In this section, our goal is to understand the lower bound of,

1 1, (by(logn)? m/2 /vy 1/2
bnlogmzzo Ly ( L (EL(TL,)™)"2.

THEOREM 5. If b, = O(loglogn) and satisfies lim,,_, o, b, = 00, one has that for any
0>0,

1. X1 by (logn)2\ ™? 192

limin ;- 1ogm2::0m9m <M> (B(TL,)™)"* > /%(4,2)4%.

n—00 n

PROOF. Recall that we let S¥# = S* [(z — 1), zbﬂ] . Without loss of generality, we as-
sume that b,, is odd. First, notice that

b, b,
TL;:ZZ Z G’D(xl—a)IP’(R;lﬂSl’i:@)Z Z Gp(a?—a)P(R,.NS%7 = ().

a€Z* i=1 gleSti j=12z2€827
If we let

Gn(a):=E

b,
>N C?D(azl—a)IP’(RgclﬁSl’i:(Z))],

i=1 xleSti
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we see that,

E(TL,)" = > H Gn(as))

A1yeneyQm 1=1

If we now let f be any smooth function with finite support satisfying fR4 f(a)*da=1and

2
C’]’} =D aez f <1 / %a) , by the Cauchy-Schwartz inequality, we see that we obtain that,

1/2

1/2 2
sy = ep (X Teer) (3 TTr(y)

A1y 1=1 A1y =1

>(CpmP Y Hgn a;) (\/ja>

A1 yeeey Qo 1=1

Defining

Fi= (O Z ZGDQC —a) (ﬁa)P(RglﬂSl’i:Q)),

(57) ]

Voa(logn) = _;
o S|

Furthermore, ]-",ZL is a function of only the portion & L% of the random walk. Hence, notice that

for any € > 0, we have,
exp[ \/_lognZF” i(1+e)logIE 1+6 \/—IOgnZ}”‘”

NG bn
Notice that for any fixed €, an upper bound on the large deviation statistics of F;} (which
can be inherited from an upper bound large statistics on 7'L’.. as in equation (5.15)) shows

we see that

E[(TL,)™"? >k

Thus, we see that,

m/
(5.15) Z <1°7g")> 2(E[<TL;>’”])”22E e

— logE

€
b, P

1
— b—elogE [exp <—

n

that as n — oo the term on the right goes to 0. Finally, we can take € to 0 to note that the
term,
b
Vbplogn s
0——— ) F;
exp [ 7 ; i

\/_logn
1—|—e ZP”

To find the lower bound on the term on the left hand side, it suffices to find a bound for
the right hand side. We are now in a very similar situation to that of [12, Theorem 7.1.2].

liminf bi logE

n—oo

> lim lim inf b—(l +e)logE

exp
e—0 n—oo by
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The functions F? are not exactly in the same format. However, one can see that F* takes the

same role as that of the term ) . f (\ /22x). Indeed, we can define the operator,
Vb (logn o — = bn
%ng(;p) = exp & § (Cf) 1/2 § : GD(y o (I)f a
vn _ V
y—zE€S[1,nby '] a€Z4
<P (R, NS =0) b+ 8,00,

We define &, as the following discretization of g. Namely, &,(x) =
where ' =4711.

1 T
a9 e
where Cy:=3"_ /. g%ﬁ),

This operator is a symmetric operator and following the proof of [12, Lemma 7.1.3].
We see that we can derive the following bound. Let ¢ be a bounded function on R? that
is infinitely differentiable and supported on a finite box with fR4 g*(z)dx = 1. By the
Cauchy-Schwarz inequality, there exists a constant 4 depending only on g (but not on n)
that (recall that b,, — 1 is even)

\/Elogn on i b,—1 b,—1

where (£,,,5,,§,) is given by
(5.16)

(6 Buta) = (1+0(1) [ dag(a)

XE<6XP[9% Z (C?)_l/zzép(y—kw—a)f( %a)

yeS[1,nby "] aeZ*

P(R, NS[1,nb,"] = (Z))} g <3: + \/%‘Snlhf) )

— 5 dzg(x)E <exp {/01 %2((} x f)(z+ B(t/4))dt} gz + B(1/4))>

E

as n — 0o, where B is the 4 — d Brownian motion. Note that by Lemmas 9 and 10, G  f
is a bounded continuous function and Gp * f uniformly converges to 2G * f. Then, the
invariance principle shows the convergence above. By [12, (4.1.25)], if we take log to the
most right hand side in (5.16), it is equal to

2 ~
sup {W— G f(TY22)h(x)?dz — E ]Vh(x)\zdw},
her | 4 Jra 2 Jra

where F := {h: [ h(z)?*dx =1, [ |Vh(z)|*dz < oo}. Taking the supremum over f with
[f (x)%dx = 1, it is larger than or equal to,

fsllelg):{ </ - G(x —y)h(z)*h(y )dxdy)l/z—éé4yvh(x)‘2dx}.

Therefore, by the same proof as [1, Proposition 4.1], we obtain the desired result.
Let us explain some steps in the derivation in (5.16). First, we remark that the term inside
the exponential has finite expectation. Secondly, we also have the second moment comparison
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estimate
5.17)
—1 a€Z*
yeS[1,nby '] €
2
_w\/— UzZZGDSer—a)f(\/bia)} —0
8 \/_ i=1 ac€Z*

as n — 0o. As before, this follows from computations similar to those found in the proof of
Claim 2 to allow us to replace the term of P(R;, N S[1,nb, '] = 0) with (14 0(1)) g with
the aid of [4, Theorem 5.1]. Combining these observations, we see that as n — oo

/11@4 da:g(:n)E(exp [9% S epY Goly+a-a)f (@a)

yE€S[1,nby "] a€Z*
B(R, N Sl =0) ( + @%) )
_/H{4d3:g(:n)E<exp[ \/—ch 1/2ZGDS+:E—a)f<\/§a>}

acZ*
[ bn
Xg(l’—l— _Snb1>>‘—>0
/”L n

Then we obtain the result.

8logn

APPENDIX A: GREEN’S FUNCTION ESTIMATES

In this section, we will establish various technical estimates necessary to show weak con-
vergence of discrete quantities to continuum quantities.

A.1. The property of G * f. In this subsection, we show that G * f is a bounded con-
tinuous function and establish the uniform convergence of Gp * f — 2G * f. We assume that
f is smooth bounded function with finite support.

LEMMA 9. There is some constant such that the following estimates hold uniformly in a,

(G )] 1, [(Gxflatr)— (G fa)] Sk
PROOF. First see that,

(G * f)(a) :/” ||<1f(a—e)é(e)de+/ fla—e)G(e)de

flell>1

z€ER4

1/2 1/2
su z G(e)de 2(a — e)de G?(e)de .
<swplrel [ 6o v [ a-ou] [/|e|>1 (0 ]
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By applying a similar inequality, we also have that,

[ I9fa@=alGees [ Vi@-alidenes [ Vi)l
R llell<1 llell =1

12 1/2
<sup ||V f(z H/ de—l—[/ ||V f(a—e) de} [/ G (e)de] <1
z€R* llel|<1 llell>1

Thus, we see that,

(G * f)la+r) = (G * f)(a)] < / [fla+r—e)— fla—e)|G(e)de

<.

_/ IV F(a+t—e)|Gle)de <
0 R4

and we obtain the desired result.

(Vsari=o. i) G

To introduce the next lemma, we define,

G+ fWan) = () S Gp(ala—2)f(2), ae

and

> )

1
zeﬁZ‘l

LEMMA 10. Uniformly in a, we have that as n — oo,
(A.1)

G(LaJn—e)f(E)de—(Cf)_mﬁ Y n*?Gp(Va(la)n —e)f(e)| = o(1).

R4

We start with aNfew intermediate lemmas. The first lemma allows us to reduce the domain
of integration of G * f(a) from all of R%, to an integration over a region of finite support.

LEMMA 11. Fix some 6o > 61 > 0. Let x be a smooth posmve function supported on
[—n%,n%]* bounded by 1 and such that x is 1 on [—n°*,n°]%. Then, uniformly in a € R*
such that the following estimate holds,

G’(a—e)f(e)de—/ x(a —e)G(a —e)f(e)de| Sn 0.

R4

(A.2)

R4

REMARK A.1. By similar methods to Lemma 11, we would also have a corresponding
equation for Gp. Namely, we would have,

S° n¥2Gp(via — Vi) f(e)

eEﬁZ‘l
— o S X G (Via — Vi) f(e) S

1
eeﬁZ‘l
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PROOF. By the Cauchy-Schwartz inequality, we see that we have,

G(a—e)f(e)de — / x(a—e)G(a—e)f(e)de

R4

R4

< | Gla—e)(1—x(a—e))f(e)de

R4

4

, 1/2 - 1/2 1
< [/W f (e)de] [/|e|>n61 G (e)de] < o

It yields the desired result. U

_ After the reduction to a region of finite support, our next lemma allows us to replace
G * f with an appropriate discrete form closer to one found in the expression of the discrete
computation.

LEMMA 12.  We have the following estimates uniform in a. Fix some §1 > 69 > 0 suffi-
ciently small, then there is some constant such that,

(A3) @ Na)- S Flaa—2)CE)| S0
zeﬁ%
Iz>n -5

l[la]n—z[I<n’2

Here, |a|,, denotes the element in the lattice %Z‘l that is formed by considering

ﬁ( |vnail,...,[v/nays]), where we apply the least integer function to each coordinate.
Similarly, one can show that, uniformly in a € %Z‘l,
(A.4)
1 ~ 1 ~ _
— D nPep(Wnla—))f(z)—— D, fla—2)n*?CGp(Vna) Sn~
z€—=1" 2€=1*

[[2]>n—1
la—z[<n’2

PROOF. We will only consider proving equation (A.3); the proof for (A.4) would be sim-
pler. First, observe that

~ 1
(A.5) / fla—2)G(2)dz < / —mdz S n=on,
2] <51 lzll<n-or 1]l
Secondly, we have that, for all sufficiently large n,
(A.6) /H2”>n51 fla—2)G(2)dz=0.
la—z[|>n’2

Combining estimates (A.5) and (A.6), we can deduce that,

(G = f)(a) = AZPM fla—2)G(2)dz| <n~%,

llz—all<no2
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Now, we compute the difference between the quantity on the right hand side above, and the
appropriate discretization. If we let |z, denote the point in the lattice —L_7* that is closest

vn
to z, then we can observe the following,
G(2) = G(|l2]n)] Sn"TV2G(2), V2] Zn

This comes from the fact that the gradient of ||z| =3 is 3||z||7%[21,...,24] which equals
3G(2)||z]|72[#1, - - -, z4] and that ||z]| 7! < ndL.
In addition, if we assume that the domain of the support of f is I,

[fla=z) = fla—|z]n)| SnP1la—z €]

since f is a smooth function with a bounded derivative. Hence, applying the triangle inequal-
ity, we ultimately see that,

‘/II ||>n*‘51 (a—2)G(2)dz — Z f(laln — 2)G(z)

Jla=z]|<n® S
EE
Ja—z]|<n
/ll oo [ (a=2)G(2) = f(la)n = [2]n)G(|2]n)ld2
Ja—z]|<n®>

Smax[nél_l/Z,n_lﬂ]/ G(z)dz <n® 12,

a—z€l

This completes the proof of the lemma. U
As a corollary of the lemma, we have the following estimates.

COROLLARY 6. First, fix some € not changing with n. Additionally, fix parameters 1 >
8y sufficiently small. For ||a|| < 2n%, we have the following estimate,

3 3 12081425
26+ fla) = ¥2(Cy) 2 (1Va)) | T

n
PROOF. By using (A.3) and (A.4), it suffices to estimate,

5 Y fa=2) [WRCn) P (Vi) —2G() ‘
||sz;n*“1
lla—=|<n?2

From equation (A.8), which we can apply since if ||a|| < n%, then ||z|| < 2n° in the sum
above, we can bound the quantity above as,

Sl Z fla—2)——|< | —
n T nl|z|| n* S nl|z||
||Z||>" o1 ||Z||é/zf‘s1
la—s]| <n2 la—sl|<2n"
1 20(51-‘1‘262
5712051/ 2d2§ n .
3% >||z|[>n-4 72l 2]] n

In our application of equation (A.8), we made the choice of parameter € = 89;. O
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We finally have all results necessary to prove Lemma 10.

PROOF OF LEMMA 10. Fix parameters 61,02, 3 > 0 sufficiently small satisfying Klo >
01 > 2069 > 2063 > 0. Recalling the function y from Lemma 11, we set x to a be a smooth
function supported on the interval [—n%,7%]% and 1 on [—n?%, n%]4,

_% Z x(la] e)ng/zéD(\/ﬁLaJn_ ne)f(e)| =o(1).
eeﬁ%

Thus, we see that it suffices to show that,
[ a2 ) = w2 ap(villal, - )] f(e)de = ol
R4

By Corollary 6, we can bound the difference of G' and Gp in the region on which x is not
equal to 0. Thus, we have,

/R4 x(a —e) ‘2@(& —e)—=n*2Gp(vn(lal, — e))‘ F(e)de

< / x(a— e)n~ f(e)de S n .
R4

We used the fact that x is supported on [—n52 , n52]. This completes the proof of the lemma.
O

A.2. Additional Green’s function computations. In this subsection, we will give vari-
ous useful estimates concerning Green’s function.

LEMMA 13. The Green’s function of the discrete random walk Gp(x) has a positive
convolutional square root with the following form,

Gp(z) = Z %pn(z).

= 227 (nl)

Recall that p,(z) is the transition probability that a simple random walk starting from 0

reaches the point z at time n. There is an L' function G p(l) whose Fourier transform is the
function Gp(x).

PROOF. Part 1: Derivation of the form of Gp
Consider the Taylor expansion of (1 — z)~ /2 as,

1 o
= Cra®.
VvV1i—x kZ:o F
We will show that G p has to take the functional form,

Gp(2) = Crpr(2).
k=0
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We can check this by directly computing Gp * Gp. Thus, we have that, for any z € Z4,

Gp*Gp(2)=Y_ Y Ci,Cr,pr, (@)pr, (2 — )

Y/ kl ,kz =0

(9]
= Z Ckl Ckzpk1+k2 (Z)
k)hkzzo

00 k 0
= Zpk(z) Z Ck, Ck—t, = Zpk(Z)-
k=0 k1=0 k=0

To get the last line, we used the fact that

1 < 1 >2 (oo 2 o) k
-(1=) = (Eor) - E e
1-z l—z k=0 k=0  ki=0

This gives the identity that Zilzo Ck,Ck—k, = 1 by comparing coefficients of the Taylor
Series. By using similar manipulations, one can show that G(x) = I \/%Pt(aj)dt, where

Py(x) is the probability density that a Brownian motion starting from zero would reach posi-
tion z at time .

Part 2: Derivation of the Fourier Transform

Now, we discuss the Fourier transform of G (x). Consider the following function,

1
\/1 —1 Z?:l cos(2ml;)

F(ly,...,ly) =
We will show that,

4
GD(al,...,a4)=/ F(ly,.... 1) | [ expl-2nilia;]dl;.
(_1/271/2}4 i=1

First of all, observe that F'(I1,...,l4) only has a singularity around the origin and, further-
more, around the origin, F' behaves like 1 . Thus, F'is integrable around 0. If we let

NGTEE

B(x) be the ball of radius € around z , we have,

4
/ F(ly,... 1) [ [ expl-2nilia;]dl;
(_1/271/2]4 i=1
(A7) . A
= lim exp[—2wil;a;]dl;.
0J(=1/2,1/21\B. (0) \/1 — 137 cos(2nly) £[1

1
\/l—i i cos(2ml;)

00 4 k
kZ:O Ck (% ; cos(27rli)>

Now, away from the singularity at 0, we can expand

as,
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and observe that,

kg
cos(2ml;) di;
[y (1o ) 1T

=1

1/2
2%k 4 /

< cos(2nl;) di; =V p2k(0),
[ ( > ) Il "o

where the last equality comes from direct integration. By using the asymptotic that C} <
Vi and par(0) < k2. We see that,

00 4 00
ZC’k/ Zcos (27l;) Hdli < Zk‘_l/z_l <0
k=0 i=1 k=1

This control on the absolute value of the integral allows us to freely exchange the summation
of the power series, the limit as ¢ — 0, and the integration in (A.7). Thus, we have that,

4 ko4
. 1 .
ll_% E Cy, (Z E_l cos(27rl,-)> Hexp[—2mliai]dl,~

(=1/2,1/21*\B(0) .=

(—1/2,1/2)

i=1
e ) k 4
C} lim cos(27l;) exp|—2mil;a;]dl;
;:: =0 J(=1/2,1/2]"\B.(0) < Z ) 1;[ [ |
cos(2ml;) exp|—2mil;a;]dl; = Crpr(ai,. .. aq).
S (1) T >

To get the last line, observe that + Zf‘zl cos(27l;) can be written as,

1 1 (¢
1 Zcos(Zﬂl,-) =3 (Z[exp[%rli] + exp[—27rl,-]]> .

i=1

The Fourier integral in the last line thus determines the coefficient of the term [];_, exp[2ril;a;]
in the expansion of the polynomial. This is exactly the number of ways that a simple random
walk will reach the point (ay,...,a4) at time k.

O

Though, this will be more useful in the sequel, we also present the following result com-
paring Gp to GG.

LEMMA 14.  We have the following asymptotics relating Gp(z) with G(z). Fix some
€ > 0 and let ||z|| > n=¢/*. Then, we have the following comparison,

nbe/2
nllz|?

REMARK A.2. The bound found in the inequality (A.8) is most effective when || z|| < n¢,
which will be the regime in which we will actually apply the bound in question.

(A.8) |(vVn)3Gp(vnz) — 2G(2)| < + n?exp[—n/?.
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PROOF. Part 1: Discretization of the integral form of G
We will begin our computation by first finding an appropriate discretization of the integral
form of G. Recall that we can write G as,

- o
G(z) = —PF,(2)dt
( ) 0 \/H t( )
Let Q.(t) be a shorthand for the function Q. (t) = \/%Pt(z). We can estimate the difference
as follows:
/ Q:(t)dt — > Q.(k) Z/kl) / (0)ldl
kelz+ kelz+
(A.9) = > [ . < - —) QL(Dldl < — / QL (D)l
kelz+
One can explicitly compute |Q”,(1)| as Q" (1 ) o exp[— ||z H /(20)] [=5077/% + ||2||2179/%]. By
scaling, we observe that [ |Q(1)|dl = Hle Jo~ 1QL, (1)]dl, where ey is the unit vector in

the first dimension and the latter integral is finite. Thus, the error between fo Q. (t)dt and
its discretization with lattice —Z+ is of order O (n” B ), where the implicit constant does

not depend on either ||z|| or n.

Furthermore, we claim that we can ignore the portion of the integral of Q. (¢) from ¢
between 0 and ¢ in our regime of interest. By observing the form of the derivative of
Q- (t), we notice that @, (1) is an increasing function as long as ||z||> > 51. For, I < n~¢ and
[|2]] > n~¢/*, we see that Q. (1) is increasing between [ = 0 and [ = n . Thus,

(A.10) / Q.(NAl <n™°Q.(n~) <n3/?exp[—n/?].
0
Combining (A.9) and (A.10), we see that,

1 3¢/2 2
P(2)| S I + n3/2 exp[—n/?].

- 1
(A.11) G(z) — - >

kelZ+ k>n—¢

1~
~

Part 2: Estimates on Gp
First, we will bound the contribution of n Zk _o Crpr(y/nz). Since ||2|| > n=¢/*, we have

that \/n||z|| > n'/2¢/%. By exponential tail estimates on discrete random walks, we know
that py (v/nz) < exp[—nl|z]|?/k] < exp[—n/?]. Thus, the contribution of n? EZ:()E Crepr(n'/?2) <
n? exp[—n</?]. Ultimately, we see that,

(A12)  |[n32Gp(n'/?2) — % Z (vVnCoi) (?ppi(v/ni2))| < n?exp[—n/?].

k€L1Z+ k>n—c

By Stirling’s approximation, we have,

~ (2nk)! 2 (2nk) (228 ) exp 12(2n k)] 1 o)
= 221k ((nk)1)? - 22"k< 2m(nk) (2£)" ) exp 1275€+1] - Vank [1 G } |

220K (k)1 ™ Honk (\/T(nk) ) expl2 ]_ Vnk

e
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Thus, we see that,
1 < 1 '
Vrk| ™ nk3/2
By the local central limit theorem [18, Thm 2.1.1], we also have that,

\/ﬁan -

1
2 2
[k (Vnz) = n* Py a(vVnz)| S TR

Furthermore, by scaling, n?P,, /4(v/nz) is equal to 16 P (2z). If we combine these estimates,
we see that,

L 1 16
=N (VAP (Vaz) - = Y —==Pu(22)
" kelz+ k>n- n heLlZt fon—r vk
1
S= Y (VACw)In®par(Viz) — 16P(22)]
keLzt k>n=c
+% Z VnChy — \/L_k‘ 16 P, (2z)
kG%ZJﬂan*E s
< 1 Z 1 1 - noe/2
o VEnR[2]2 ~ nflz]?

k€L1Z+ k>n-

In the last line, we used the estimates /nC), < ﬁ and Py (z) < W This, in itself, comes

from the estimate that exp[—||z||?/k] < k/||z||>. Combining this with equation (A.12) shows
that,

Papa -t Y Lienes g 2
n p(vnz)) — = ——16P(22)| <
" keiz+ k>n—¢ Tk

Finally, combining this estimate with equation (A.11) will give us the desired inequality in
equation (A.8).

2 . €/2
e + n”exp[—n?].

O

The following lemma gives a rough estimate on sum of the Green’s function over a random
walk whose beginning and end are pinned to certain points.

LEMMA 15. Foranyy and z € 7,

E Xn:GD(SZ — Z)
=0

Sn=y| Slogn.

PROOF. Welet B, /;(2) be the ball of radius /7 around the bound z. Let 71 be the (random
variable) that is the first time that the random bridge touches a point in B, /(). Let 72 be the
last time that the random bridge touches a point in B \/ﬁ(z)
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We see that,

E[zn:GD(SZ— Sn:y]
=0

:E|: Z Z ]]-[lekl’T2:k27STl:a175T2:a2]

0<k1<k:<nai,a€B 7 (z)

xE [ZGD i —2) | =k, 2=k, Sy = a1, Sp, = a2, S :y] Sn :y:|
:E|: Z Z ]]-[7—1:]{7177—2:]{727871:a1787'2:a2]
0<k1<ks<n a,a€B (2)
xE [Z Gp(Si —2)|m =k1, 72 = k2, Sr, = a1, 57, = a2, Sy —y] Sn :y]
1= k‘l
+E|: Z Z 1[71:k1772:k27571:a17872:a275n:y]
0<ki<ks<na,aE€B s (2)
ZGD = k1,72 =k, 57, =a1,8, =az,Sp =y Sn:y:|
+E|: Z Z ]I[lekl,TQ:kQ,S—,-l:al,STQZCLQ]
0<ki<ks<na,a€B m(2)
ZGD i —2)|T=k1, 70 =ko,Sr, = 01,85, = a2, S, =y Sn:y].
1= k2

For the last two summands, we can make the following observation. Since we have that
Gp(Si—2) < % for i <7 and i > 19. Thus,

ZGD i — 2) <n%:1,

and

> Gp(Si—

i=To

Hence,

E|: Z Z ]]‘[7—1:]{7177—2:]{72787_1:a1,87_2:a2]

0<k:1<ks<nai,a2€B 7 (z)

x E

Sn:y}

ZGD _Z ’Tl_klaTZ—k2,S7—l a17872:a278n:y]

§E|: Z Z l[T1:k1772:k27S7'1:a1787'2:a2]

0<k:1<ko<na;,a2€B 7(z)
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Now, all that is left to check is that,

2| enis

Zkl

ZGD i — 2

Zkl

)| Sk, = a1, Sk, = a2

< logn.

k177—2 k2787'1 :a17572:a278n:y]

It suffices to find a bound on the following for general 7" and a random walk S:

|3 oots

)So=2,8r=y

<logT.

Recall [17, Thm. 1.2.1] yields that for some C finite and any ||z <i'/2,

P(SZ = l’) pe P2
Then, with (4.10), if ||z — y| < T2,

P(Sy=z,Sr=vy) 2> T2 exp(—

and

ZGD )1{So =z,Sr =y}
/2

i=0 2€Z* i=T/2 €74

T/2

<ZZGD PE(S; = 2)

=0 z€Z4 1=T/2 z€Z*

T/2 T

=Y _EGpSNT - i)+ Y EGp(Sr-i)liy”

=0 i=T/2

T
< & 1 NP 1,2 o logT
NE:Z+(T_Z)++§:(T )++NT2-
i=0 i=T/2

Therefore, we have the result.

= —ylI?

T

)2 T

i =x)PY(Sr—; = 2)

T
=D Gp()PU(Si=2)P (Sr—i =)+ Y > Gp(2)P*(S;

2+ Z > Gp(2)PY(Sp—; = 2)i}

O

LEMMA 16. Recall the matrix G%5..i from equation (4.2). This matrix G%B.i is positive

definite and has minimum eigenvalue greater than %

PROOF. We will show this proposition for any general matrix of the form,

[G]i,; = Gpla; — aj),

where {a;} is a collection of n distinct points. Note that we have the Fourier transformation,

Gp(z)= /[0 " ! exp[27i(k, z)]dk,

-3 ZZ 1 cos(2mk;)
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where (k, x) is the inner product between the vector k and x. Let (vq,...,v,) be any vector
with /2 norm 1. Thus, we have,

_ 30 viexp[2mi(k, a;)]|?
> 0ilGli 75 :/ e dk
i 019+ 1-— 1 Zi:l COS(2ﬂki)
2

1 = , 1
25/[071}4 ;viexppm(k,aiﬂ dk:§|]v|] .

This shows that any matrix of the form G. O

A.3. Generalized Gagliardo-Nirenberg constant. In our previous manuscript [1], we
showed that the large deviation constant associated to the quantity fol fol G(B} — B?)dsdt
can be associated to the optimal constant of the generalized Gagliardo-Nirenberg inequality.
Namely,

REMARK A.3. We have
1 1
lim 7' logP </ / G(B} — B?)dtds > T> = i (4,2).

We remark that this large deviation constant was also obtained by Bass-Chen-Rosen in
[7, (1.10)]. Their result is not presented in the same manner, since they do not identify the
generalized Gagliardo-Nirenberg inequality. Some manipulations, based on Section 4 of [1]
and Section 7 of [7], can demonstrate the link between these constants. We remark that in
order to adapt the results of [7] to the case of the Brownian motion, one has to adjust the
Fourier transform appearing in [7, equation (1.1)] by a factor of 1/2.
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