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SPECTRAL MEASURE FOR UNIFORM d-REGULAR DIGRAPHS

ARKA ADHIKARI AND AMIR DEMBO

ABSTRACT. Consider the matrix Ag chosen uniformly at random from the finite set of all N-dimensional
matrices of zero main-diagonal and binary entries, having each row and column of Ag sum to d. That
is, the adjacency matrix for the uniformly random d-regular simple digraph G. Fixing d > 3, it has long
been conjectured that as N — co the corresponding empirical eigenvalue distributions converge weakly, in
probability, to an explicit non-random limit, given by the Brown measure of the free sum of d Haar unitary
operators. We reduce this conjecture to bounding the decay in IV of the probability that the minimal singular
value of the shifted matrix A(w) = Ag — wl is very small. While the latter remains a challenging task, the
required bound is comparable to the recently established control on the singularity of Ag. The reduction is
achieved here by sharp estimates on the behavior at large N, near the real line, of the Green’s function (aka
resolvent) of the Hermitization of A(w), which is of independent interest.

1. INTRODUCTION

The method of moments and the Stieltjes transform approach provide rather precise information on
asymptotics of the Empirical Spectral Distribution (in short ESD), for many Hermitian random matrix
models. In contrast, both methods fail for non-Hermitian matrix models, and the only available general
scheme for finding the limiting spectral distribution in such cases is the one proposed by Girko (in [13]). It is
extremely challenging to rigorously justify this scheme, even for the matrix model consisting of i.i.d. entries
(of zero mean and finite variance). Indeed, the circular law conjecture, for the i.i.d. case, was established
in full generality only in 2010, after rather long series of partial results (see [30] and historical references in
[8]). Beyond this simple model, only a few results have been rigorously proved in the non-Hermitian regime.
Our focus here is on the long standing conjecture about the limit, as N — oo, of the ESD of the adjacency
matrix Ag in case G is a uniformly random d-regular directed graph (aka digraph) of N vertices. Specifically,
in this context it is conjectured (see [3]), that, fixing d > 3, such ESD converge weakly, in probability, to the
oriented Kesten-McKay law. Namely, the measure pg on the complex plane, whose density with respect to
Lebesgue measure on C is

1 d*(d—1)
(11) hd('lU) = ;7(d2 — |w|2)2]1{|“"5‘/3}
(c.f. ]9, 24] for more insights on this conjecture). Related to this conjecture, [10] applies the high trace

method to study the spectral gap of such matrices, proving in particular that the limiting ESD support
must be the disk of radius v/d with no outliers apart from the trivial eigenvalue. This is also one of the
consequences of [11] work on the asymptotic of the characteristic polynomial of such Ag outside the disk of
radius v/d (for more on this direction, see [11] and the references therein). Note that as d — oo, the oriented
Kesten-McKay law g4, rescaled by v/d, converges to the circular law. This suggests that the circular law
should hold for the limiting ESD of ﬁAg whenever d A (N —d) — 0o as N — 00, as indeed shown by [9, 21]
(see also [2] for this result in the related permutation model, with at least poly-log growing degree).

From a graph-theoretic point of view, it is most natural to consider the simple digraph (SD) version of
this problem, whereby we restrict G to be a simple digraph, or alternatively choose Ag uniformly from the
ensemble of all matrices of {0, 1}-valued entries with zero main diagonal and having each of its row and
column sum to d. Taking advantage of the contiguity results of [19], one may alternatively aim at proving
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this conjecture for the configuration model (CM), where Ag is uniformly chosen from among all matrices of
non-negative integer entries with all rows and columns sum to d (that is, G is still uniform, directed and
d-regular, but now allowing also for self and multiple edges). The preceding conjecture is best appreciated
in the context of yet another version, the so called permutation model (PM), where Ag is taken as the sum
of d uniformly and independently chosen N-dimensional permutation matrices (that is, with G a d-regular
multi-graph, now of a slightly non-uniform law).

Indeed, permutation matrices form a subgroup of the group of orthogonal matrices, and it was shown
in [3] that as N — oo, the ESD for the sum of d independently chosen, Haar distributed N-dimensional,
orthogonal matrices, converge weakly, in probability, to the measure u; whose density is hg(-) of (1.1). This
result of [3] brings us back to the rationale behind the conjecture (which should hold for all three versions
of uniform d-regular digraph we have mentioned). Namely, the observation that pg is the Brown measure
of the free sum of d > 2 Haar unitary operators (see [16, Example 5.5]). To understand the plausible route
and challenges in affirming this conjecture, recall the definition of Brown measure for a bounded operator
(see [16, Page 333]), where (Log, p) := [ log |z|du(x) for any probability measure p on R (for which such
integral is well defined).

Definition 1.1. Let (A, 7) be a non-commutative W*-probability space, i.e. a von Neumann algebra A
with a normal faithful tracial state T (see [1, Defn. 5.2.26]). For h a positive element in A, let pp, denote
the unique probability measure on Rt such that 7(h™) = [¢"dun(t) for all n € Z*. The Brown measure fi,
associated with each bounded a € A, is the Riesz measure corresponding to the [—oo, 00)-valued sub-harmonic
function w — (Log, phjq—w|) on C. That is, jia is the unique Borel probability measure on C such that

1
(1.2) dpg(w) = %Aw@og,ma_w) dw,
where A, denotes the two-dimensional Laplacian operator (with respect to w € C), and the identity (1.2)
holds in distribution sense (i.e. when integrated against any test function ¢ € C°(C)).

Recall that as N — oo, independent Haar distributed N-dimensional orthogonal matrices converge in x-
moments (see [20] for a definition), to the collection {u;}%, of x-free Haar unitary operators (see [I,
Thm. 5.4.10]). The challenge, even in the context of [3], stems from the fact that the convergence of -
moments (or even the stronger convergence in distribution of traffics, see [23]), does not imply convergence
of the corresponding Brown measures® (see [29, §2.6]). Moreover, while [29, Thm. 6] shows that if the orig-
inal matrices are perturbed by adding small Gaussian (of unknown variance), then the Brown measures do
converge, removing the Gaussian, or merely identifying the variance needed, are often hard tasks (e.g. [15,
Prop. 7 & Cor. 8] provide an example of an ensemble where no Gaussian matrix of polynomially vanishing
variance can regularize the Brown measures, in this sense). In contrast, for Toeplitz matrices, many spectral
features of regularization by adding a matrix of polynomially small norm, are by now fairly well understood
(c.f. [28] for Gaussian perturbations, or [5] for non-Gaussian ones).

Thus, instead of relying on the preceding free probability intuition, we shall utilize Girko’s approach,
which we now summarize. First, one associates to any N-dimensional (non-Hermitian) matrix Ay and every
w € C the 2N-dimensional Hermitian matrix

0 AN—U)|N

(1.3) HAY (0, w) := [A}ﬂv — Wy 0

Applying Green’s formula to the characteristic polynomial of a matrix Ay (whose ESD we denote hereafter
by La, ), results with

1
/Cw(w)dLAN (w) :ﬁ/CAw(w)logMet(wlN — Ap)|dw, Vap € C2(C).

IThe Brown measure of a matrix is its ESD (see [29, Prop. 1])
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The eigenvalues of HAY (0, w) are merely 1 times the singular values of wly —Ay. Hence, denoting the ESD
of HA¥ (0, w) by v, we have that

1 1 "
i log | det(wly — An)| = IN log | det HA~ (0, w)| = (Log, V%) ,

out of which we deduce Girko’s formula,

(1.4) / Y(w)dLa, (w / Arp(w)(Log, Vi) dw Vip € C2(C).

The preceding identity suggests the following recipe for proving convergence of La, per given family of
non-Hermitian random matrices {Anx} (to which we referred already as Girko’s method).

Step 1: Show that for (Lebesgue almost) every w € C, as N — oo the measures v% converge weakly, in
probability, to some measure v*.

Step 2: Justify that (Log,vy) — (Log,v™) in probability, for almost every w € C (which is the main
technical challenge of this approach).

Step 3: A uniform integrability argument allows one to convert the w-a.e. convergence of (Log, v}y) to the
corresponding convergence for a suitable collection S C C2(C) of (smooth) test functions. It then follows
from (1.4) that for each fixed ¢ € S, we have the convergence in probability

/ (w)dLa, (w / Avp(w)(Log, v )dw

(1.5) - /(C Y(w)h(w)dw, for h(w) = - AlLog, ") |

2
provided w — (Log, ™) is smooth enough to justify the integration by parts. For & large enough, this
implies the convergence in probability of the ESD-s La, to a limit whose density is h(w).

For example, [3] follows this approach, inductively over d > 2, and for the core induction step they adapt
the arguments of [14] (who for Haar distributed orthogonal Oy, independent of the uniformly bounded,
non-negative definite, diagonal D, show that the weak convergence of Lp,, in probability, implies the same
for LoDy, whose limit is the Brown measure of a certain operator). Utilizing this, it suffices in our case to
only consider Step 2. Indeed, for any adjacency matrix Ay of a d-regular digraph we have that d=2A3 Ay is
a (Markov) probability transition matrix, hence of spectral norm one. Any such Ay must then have singular
values bounded by d and a Hilbert-Schmidt norm ||Ay||2 < dv/N. The same applies for any sum of d unitary
matrices, and in particular to the sum By of d independent Haar distributed unitary matrices. Recall, from
[3, Prop. 1.4], that Lg, converges weakly, in probability, to the measure p4 (of density hq(w) as in (1.1)),
and from [3, Lemma 3.2], that for almost every w € C, as N — oo,

1
N log | det(wly — By)| — (Log, v*).
It then follows from applying the replacement principle of [30, Thm. 2.1] for ensembles (Ay) and (By), that
Step 2 already yields the conjectured convergence for any such La, .

The following theorem, which is our main result, addresses the latter convergence, while also providing
the corresponding local limit law.

Theorem 1.2. Let Py 4 denote the uniform distribution over all d-regular, simple digraphs on N vertices,
with Any = Ag the adjacency matriz of such a digraph, and si(w) the minimal singular value of An — wly.
Suppose for a =0, any fired k > 0 and a.e w € C,

(1.6) Jim NPy g(=log si(w) > N¥) = 0.

(a). Girko’s method Step 2 holds for our v} (i.e. (Log,vy) — (Log,v"), in probability), and the ESD
{Lay} converge weakly, in probability to pq, whose density is hq(w) of (1.1).
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(b). Further, if (1.6) holds with a(k) > 0, then for some a, > 0 any w, € C and ¢ € C?(C), setting
¥ (+) == r%p(r-), we have that

(L.7) lim IPN,d(H"/’N“(' — w,), Laty — pa)| > 77) =0, Vn>0,a€(0,a,).
N —o00

There is a long history regarding bounds on the smallest singular value of random matrix ensembles
which are of the type of (1.6) (see, e.g. [30, 26, 2, 20, 22, 27]). Of particular note are the paper [17], which
shows that Py 4(s1(0) = 0) — 0 as N — oo (c.f. [25] for better decay rate), and [27], which establishes
(1.6) at k = 1 for the adjacency matrices of Erdos-Renyi(d/N) digraphs. Unfortunately, [17, 25] rely on
considering digraphs over finite fields, which does not seem applicable for an estimate such as (1.6), whereas
independence of the entries of Ay seems to be key to the success of the approach taken in [27].

As we shortly show, Theorem 1.2 is an immediate consequence of the following local law for the Green’s
function Gy (z,w) := [HAY (0,w) — zlon] ™! of our Hermitized matrices.

Theorem 1.3. Let m,(z,w) := [ (A —2)" dv*(X) (which is well defined for $(z) > 0). For any 0 < ¢ <1
and d > 3, there exist € = €(¢,d) > 0 and 6 = §(¢,d) > 0 so that Pn 4(Qy) > 1 — O(N~F) for some sets Qy
of d-regular, simple digraphs and for any compact D C C, as N — oo,

1
—trace(Gy(z,w)) — m.(z,w)| < N9,

(1.8) sup sup

GeQy weD,S(z)>N—=
Remark 1.4. The values of §(c,d) and e(c,d) in our proof are sub-optimal. While plausible to expect our
method to yield e(c,d) — 1 as d — oo and ¢ — 0, this would entail substantially more effort. We further
note that near the edge of the support of pg (namely, at |w| = v/d), the singularity of the self-consistency
equations causes weaker estimates on the Green’s function, but having small € and § allows us to get the
uniform bound in (1.8), avoiding effects due to such singularity near the edge.

Remark 1.5. We have stated Theorems 1.2 and 1.3 in terms of uniformly random, simple d-regular digraphs,
namely, taken from the sD model. However, our work yields precisely the same results when G is taken from
the configuration model.

Remark 1.6. Combining Theorem 1.3 with [4, Theorem 2.1] (at o = 0), one has, for the standard complex
Ginibre matrix Gy, that under Py 4 the ESD of Ay + IV -B-3G ~ converges weakly, in probability, to the
oriented Kesten-McKay law pg. Utilizing [5, Theorem 1.8], the same applies for Ay + N0y, without
requiring (1.6) to hold.

Many recent papers deal with establishing local laws for graph models. For example, [6, 7, 18] derive
local laws via switching estimates that generate useful self-consistent equations. The most relevant here are
[6, 18], which introduce the strategy of preserving local neighborhoods and performing switches along the
boundary of the local neighborhood. In the graphs considered in those papers the local neighborhoods of
most vertices match those of the root of an infinite d-regular tree, so one applies perturbation theory and
averaging estimates to compare the Green’s functions of the graph with the one at the root of the infinite
d-regular tree. The key for doing so are estimates on the Green’s function on the tree, which thanks to its
homogeneous structure depend only on the distance between the two vertices. This homogeneity of the tree
Green’s function helps one establish the contractive property of the linearized self-consistency equations for
the perturbation, which is essential to the success of this approach.

While we follow the same philosophy in our proof of Theorem 1.3, a major new challenge arises when
considering digraphs, whereby the limit object with respect to which we now perturb is the infinite d-regular
directed tree (see Definition 1.10). Due to having separate in-edges and out-edges in the directed tree,
homogeneity is lost, with the Green’s function estimates now depending on the precise path taken between
the two vertices on the tree. This adds complexity to the perturbation estimates we need (see Section 3),
with much extra care now required for comparing the Green’s functions of the original and the switched
graphs (specifically, for controlling the effect that applying Schur complement formula for the removal of
large neighborhoods has on the Green’s functions of the switched graphs). Lastly and most importantly, as
further detailed at the start of Section 2, in the digraph case the limiting (non-perturbative) Green’s function
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evolution along some edges is expansive (instead of contractive), and a very precise averaging is crucial to
get the stability of the self-consistency equations.

Deferring for awhile the construction and the proof of all these Green’s function estimates, we proceed with
a standard, short derivation of Theorem 1.2 out of Theorem 1.3. The remainder of this paper is devoted to
the proof of Theorem 1.3, and other results which we get along the way (e.g. about the asymptotic behavior
of the off-diagonal entries of Gy ).

1.1. Proof of Theorem 1.2. Fixing d > 3, 0 < ¢ < 1 and k < £(¢,d) we restrict ourselves hereafter wLOG
to digraphs in /y from Theorem 1.3, where the estimate (1.8) holds and denote by 2y (w) those digraphs
for which s;(w), the minimal singular value of Ag — wly exceeds dy := e V",

(a). Fixing w € C where (1.6) holds (namely, Py 4(Qxn(w)) — 1), recall that for any z € C; and N,

(1.9) %trace(GN(z,w)) = /R()\ —2) Y ().

In particular, (1.8) implies the convergence as N — oo of the Stieltjes transform of v} to that of v*, at
any z € C4, uniformly over €. This of course implies that |{f,v%) — (f,v™)| — 0 for any f € C4(C)
(which is Step 1 of Girko’s method), also uniformly over digraphs in Q. Further, with (Log, )% :=
J 1iziclap) Jog |z|dp(x) for a < b, and recalling that the spectral norm of Ag(w) is uniformly bounded (by
d + |wl|), we have for n > 0 fixed, uniformly over Oy, that as N — oo,

|<L0g7 VJQG>;;O - <L0g7 l/w>%o| —0.

By definition, on Qx(w) we have that v)(—(0n,dn)) = 0. Further, from [3, (4.18)] we have for a.e. w,

(1.10) ‘(Log, V“’>8‘ < Cnllogn|, V0<n<1/2,

Thus, it remains only to show that (Log, u%)ZN — 0 uniformly on Qp, when N — oo followed by n — 0. To

this end, note that (1.8) also implies that for some C' < oo, any N, all digraphs in Q) and y > 0,

vy ((=y,9) <ClyvVN~F)
(see [3, (4.15)] or [14, Lemma 15]). Combining this bound with integration by parts we find that

1
(111) (Log. )3, < C [ 2V N~)dy < C(N~*[logdn| +1) = CV"~* +1).
oN

which goes to zero when N — oo followed by 17 — 0, thereby establishing Step 2 of Girko’s method.
(b). Next, fixing > 0 and a < a,, since the Lipschitz norm of t,.(+) is at most 73||V1)||, we can and shall

replace (e (- —wo), Lay) in (1.7), by (hva (- —wo), Lay ), where ¢, (+) := Eyy [1hy(- — Un)] for Uy uniformly
distributed on B(0, N~=3%) independently of Ay. Hence, we let

I'y(w) :=Ey, [(Log, Z/JI\U,jLUN)] — (Log, v"),

and combine Girko’s formula (1.4) for tye(-) and ¢y (), with Fubini’s theorem, to get (1.7) out of

NliinOO PN,d(‘ /(;A'(/)N" ()TN (wo + w)dw| > 77) =0.

We will now obtain estimates on the differences of the empirical densities of v}} and v* via the Helffer-

Sjostrand formula. First, we remark that the Green’s function m%(z,w) is bounded by a constant via the
computations of Lemma A.1. Thus, the estimate (1.8) would also imply that 5k trace(Gy(z,w)) is bounded
by a constant independent of N, z and w as long as we consider z with &(z) > N~¢. Now, since the functions

S(2)S(m%(z, w)) and I(2) 75 S(trace(Gn (z,w))) are both monotone increasing in I(z). Thus, we have that,

CN—® 1 _ CN~—¢
5@ ,ﬁ\y(trace(GN(z,w))) < 5@

(112) S(mi(z,w)) <

for any z with $(z) < N~=.
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In addition, we have that,

1 N—°
(1.13) m-(z,w) — 2J\[%(trace(G]\z(z,w)))‘ < %,Vz :1>93(2) > N~°.
If we define p = v — v and let f; be a positive twice differentiable function that is 1 on the region
(=E,E),00n (—F —#, E+17) and has first derivative bounded by % and second derivative bounded by %,

we can apply the Hellfer-Sjostrand formula as in [12, Lemma 11.2] to derive that,
E+q E+7
BB v EE) = [ fadne)— [ f@a)
—E—1

-E E+7 E+i
(119 [, sk [ e s [ )
N72s
<CN clogN +N~7?

,,72

+Cn

We used the fact that — fEE—M f(x) is negative and that the density of ¥ is bounded (again via Lemma A.1)

to control f§+ﬁ fa(x)dv™ (z) for the last inequality. We can derive a lower bound for v} (—E, E)—v*(—E, E)
in a similar way.
If we set E to be any value > N ¢, we can choose 7 = N~ ¢log N to assert that

(1.15) i (=y,9) = v (=y,y)| SCIN™° + N™log N], ¥y > N™*.
Using this estimate, we find that for Y = N=*7 for some small 7 > 0 and 7 = d? + |w|, we have that
(1.16) |[(Log, )7 — (Log,v*)7| < C[N™° + N~“log N]log N.

If we also assume that we are on the event {2 (w), then we can also apply the estimates (1.11) and (1.10)
to bound

(117)  [(Log,vy)y — (Log, v*)i| < |{Log, vi)5| + [(Log, ") < C(N"7° + N~=77) + CN~*""log N.
Now, since both v¥(—y,y) = v*(—y,y) = 1 for |y| > d? + |w|, we have that
|(Log, viy),” — (Log, v*);°| = 0
Combining all these estimates, we see that on the event Qy(w), we have that,
(1.18) |(Log, ") — (Log, v¥)| < C[N"Slog N + N~**"log N + N~°log N + N ~¢(log N)?].

In what proceeds, we choose x very small, 7 very small, and 2a < min(e — max[x, 7],d). Then, we have
that on the event Qx(w) that,

(1.19) [(Log, 1) — (Log, vi¢)| < CN~2*(log N)~>.

Recall the event Qn(w + Uy), which is the event that the smallest singular value of the matrix Ay + Uy
is larger than dx = exp[—N"], we notice that the above estimates can be written as follows.

|(Log, v ) — (Log, " *U%)| < C(log N)>N~>*1[Q (w + Un)]
N

1
+ 1[Qn(w + Un)‘] N Z [log [\i —w — Un/|| + |(Log, v *V~)]

i=1

By putting this inequality back into Girko’s formula and taking expectation, we notice that
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E { / Atpya (w)Tn (w, + w)dw} < N?@ / |AY(€)|C(log N) 2N 2°E[1[Qn (wo + N ™% + Uy )]]dé
C C

N

]' —a
NZ|log|)\i—wo+N £ —Unl|
i=1

(1.20) + N> /C |Ap(€)|E [1[Qn (wo + N~ + Un)<]] |(Log, vo N 60y de.

+ N2“/C |AY(O|E | 1[Qn (wo + N~ + Up)“] de¢

The first line of (1.20) is clearly o(1). Furthermore, since pointwise we know that

E[1[Qn(wo + N7% + Un)¢]] < N~¢, the third line is also o(1) provided 2a < ¢, as otherwise all other
quantities in the integral in the third line are constant in V.

To deal with the second line, we first notice that,

N
1
E |1 (wo + N "¢+ Un)] | > log A —wo + N~ — Uy||

i=1

N
1
< EV?[1[Qn (wo + N7 + Un) % > EY? [log? |\ — wo + N~ — Un|]]

i=1

Notice that, regardless of the value of )\;, if we take the expectation over the random variable Uy, the value
of EY/2 [log® |\; — wo + N ™% — Uy/]] will be bounded by O(log N). Now, EV/2[1[Qp (wo+ N~ + Uy )] <
N~¢/2. Thus, as long as we set a < ¢/2, the integral on the second line of (1.20) is also o(1). We find that
E [fc AYye (W) y(w, + w)dw] is o(1) and must converge to 0 in probability by Markov’s inequality.

1.2. The model and Green’s function. We start with a more formal definition of our model.

Definition 1.7 (Digraph). A digraph G has vertices V' and directed edges E, where each oriented edges
e = (v,w) € E has an initial vertex v and a terminal vertex w # v (in particular, the (v,w) and (w,v) are
distinct edges). In the adjacency matrix Ag of a digraph G, the entry a; ; indicates the number of edges
that are oriented from the vertex ¢ to the vertex j (and such adjacency matrix is, in general, not Hermitian),
where a simple digraph has only {0, 1}-valued entries.

Definition 1.8 (Uniformly random d-regular digraph). A d-regular digraph is a graph such that for each
vertex v € V, exactly d edges of the graph have v as their initial vertex and exactly d edges have v as their
terminal vertex. We let Gy ¢ denote the (finite) set of all d-regular, simple, digraphs on N vertices with
P, q the corresponding uniform distribution on Gy 4 (namely, selecting each specific instance from Gy 4 with
probability m)

Hereafter we often use lighter notations, with the dimension N and the identity matrix | implicit, as are
sometimes also the arguments w and z. Choosing G according to Py 4, WLOG we also replace Ag hereafter
by the normalized matrix A := \/%Ag and for w € C and z € C,, let

1 —z A—w
(1.21) G(z,w) := H(z,w)™ ", H(z,w) = .

A* —w —2z

By definition, G(z,w) = v/d — 1Gx(v/d — 12,v/d — 1w) and towards Theorem 1.3 our goal is to control for
large N, the normalized trace of G(z,w), where of most interest is the case of J(z) | 0.
To this end, recall the following expansion of the Green’s function, at |z| large enough,

(1.22) G(z,w) = —2 I — 27 H(0,w)) ™' = =271 i 2 FH (0, w)".
k=0
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Fixing w and using H := H(0,w), we further have for any a,b < N and k > 0,
k-1
k
[HQ ]LLJ) = Z H H'UQj7'U2j+1+NH'U2j+1+N7'U2j+2’

V1,V2,...,V2k—1 7=0
where the sum is over v; < N, with vg = a and vo,, = b. Similarly,
k—1
[H2k]a+N,b+N = Z H Hv2j+N,v2j+1Hvzj+1,v2j+2+N’
V1,V2,...,V2—1 7=0
again summing over v; < N, with vg = a and vo, = b. Moreover,
k—1
[H2k+1}a,b+N = Z |: H H'UQj7'U2j+1+NH'U2j+1+N7'U2j+2:| HﬂQk,b+N

V1,2, U2k j:O

summing over v; < N, with vy = a, whereas [H?**1],, n; is the complex conjugate of [H?**1], ;.\ v.

Now, in case va; # voj41, an entry Hy,, o, ., +n represents a forward edge (agreeing with the orientation)
from vertex wvy; to vertex vgjy1 while Hy,, 4N vy, s = Huyjinwa;y,+n Tepresents a traversal through a
backward edge (opposing the orientation) from the vertex va;i1 to vej+o. For this reason, we include in a
local neighborhood of each vertex v € G also all those vertices that are reachable through edges traversed in
the reverse direction. When we have in the expansion for [H 2”“]a,b some vg; = Vgj41, it follows that vo;_1
travels to ve; via a backward edge, stays at vg; with weight factor —w (as there are no self-edges in G), and
proceeds from vy;41 to vg;12 via a backward edge (once again). Similarly, in case we have in such expansion
some vgj_1 = V24, We enter vg;_1 via a forward edge, stay with weight factor —w and leave vo; to va;41
again via a forward edge. Thus, the inclusion of such factors —w or —w breaks the otherwise regular pattern
of alternating between traveling on forward edges and on backward edges. More generally, we may travel
a few forward edges in succession or a few backward edges in succession (each consecutive pair of forward
edges then contributes the factor —w while each consecutive pair of backward edges contributes —w). This
solidifies the assertion that a local neighborhood should consider traversal via forward and backward edges
i any type of succession, measuring the neighborhood’s size by the distance in the unoriented graph.

1.3. The d-regular directed tree and its Green’s function. Our proof relies on relating entries Gj;
of the Green’s function for a d-regular digraph, to the Green’s function of the local neighborhood of the
graph. Typically, such local neighborhood should look like some subset of the infinite directed tree which
we describe next.

Definition 1.9 (Construction of the d-regular K-neighborhoods in directed tree). First, fix a vertex 7 to be
the root. From this root 7, create a 2d regular tree of K levels. The root will have 2d children while any
other vertex that is not a root or a child at the K level will have 2d — 1 children. At this point, we can start
orienting the edges. For convenience, assume that we have drawn this tree on the plane so that the root is
on the very top and any vertex at distance ¢ from the root will be below its parent at the (£ — 1)-th level.
With this planar drawing, the notion of j leftmost children of a vertex would be a meaningful notion. With
these notions, we can now describe the orientation of our edges.

Our process proceeds level by level; first, we orient the edges that are adjacent to the root in the unoriented
graph. Afterwards, we proceed to orient the edges that are adjacent to a vertex of distance 1 from the root
in the unoriented graph and so on. At the root 7, we will orient the leftmost d edges away from the root
and the rightmost d edges are oriented toward the root. Now assume that we have oriented the edges that
are adjacent to a vertex of distances 1 to £ — 1 from the root in the unoriented graph. We now proceed to
orient the edges that are adjacent to a vertex at the ¢-th level in the unoriented graph that have not been
assigned an orientation as of yet. Observe for every vertex v at the ¢-th level, there are still 2d — 1 children
edges that have not been assigned an orientation and these edges connect the vertex v to a vertex below it.

Depending on the orientation of the parent edge (i.e., the edge already assigned an orientation), there will
be two ways to assign the orientation to the remaining children edges. If the parent is oriented away from
the vertex in question, then orient the d — 1 leftmost children edges of the vertex away from the vertex and
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the remaining d edges towards the vertex. If the parent edge is oriented towards the vertex, then we orient
the d leftmost children away from the vertex and the remaining d — 1 edges towards the vertex.

Definition 1.10 (d-regular infinite directed trees). We have three natural notions of d-regular directed trees
(while only one is truly d-regular, we abuse the notation to make our descriptions more concise):

(a) The d-regular infinite directed tree of Definition 1.9 is denoted by 7. Ignoring orientation, it is a
2d-regular infinite tree, and every vertex has d outedges and d inedges.

(b) The tree T; is such that its unoriented version is a (2d — 1)-ary tree; namely, the root has 2d — 1 edges
while all other vertices have 2d edges in the unoriented version. When oriented, 7; has the property
that the root has d outedges and d — 1 inedges.

(c) The tree Tz is also such that its unoriented version is a (2d — 1)-ary tree. The difference from 77 is that
under the orientation, here the root vertex has d — 1 outedges and d inedges.

1.3.1. Self-consistent equation for the d-reqular directed tree. Our primary quantity of interest is the Green’s
function G7. However, in order to utilize the Schur complement formula to analyze this function, one
must also analyze the Green’s functions of 7; and 73. Our basic operation in the application of the Schur
complement formula is to remove the root vertex and induct on the remaining graph. Indeed, removing the
root of T yields d disjoint copies of 71 and d disjoint copies of 7. Similarly, removing the root of 77 yields
d copies of 71 and d — 1 copies of Tz, with the reverse holding for 75. Utilizing these relations allows us to
inductively compute entries of the Green’s functions G, Gy, and Gr,, but there is one complication we
must consider. In our convention each vertex v € 7 corresponds to 2 rows in the corresponding Hermitized
matrix H, which we shall call v and v + X (just as in an N vertex digraph, such vertex v corresponds to
both rows v and v + N). Thus, when applying the Schur complement formula we must remove at the same
time two vertices: v and v + N. Specifically, our starting point in deriving Green’s function identities is the
block decomposition of a matrix and its inverse,

A B|l|X Y I 0
2 o o[z wl=l
resulting with by elementary algebra with the Schur complement formulas
X=(A-BD'0O)™!, Z =-D7'CX, W=D"'+D'CXBD".

Suppressing the common arguments z, w and setting G(7) := (H|peype) ™" for the Green’s function with the
rows and columns of T' removed, these equations amount to,

(1.24) Glrxr = (H|rxr — H|rxre G Hlpexr) ™,
(1.25) Glrext = =G H|rexr Glrxr,
(1.26) Glrexre = G + G Hlper Glrwr Hlpxr-GT).

Hereafter, similarly to (1.21), we first scale the adjacency matrix of 7 by the factor \/%, so our Green’s

function is given by G7(z,w) := v/d — 1G3(v/d — 12,4/d — 1w) in terms of the original, non-scaled function
G7. Our analysis of G relies on the removal of both indices # and 7 + X associated with the root vertex
7, to relate T to d copies of T; and d copies of Tz (we use the same notation 7,7 + X for the root indices of
T1 and Tz, and it be clear from the context to which tree’s root we refer each time). Likewise, removing the
root of G5 yields d copies of 77 and d — 1 copies of T3, where the index 7 of the original 77 was connected to
the 7 + N index of its children (namely, the d copies of the subtree 77), while the # + X index of the original
T1 was connected to the 7 index of its children (namely, the d— 1 copies of the subtree 72). Moreover, having
no contribution from H |7y e G H|pexr to the entries indexed by 7,7 4+ R or # + X, 7, it thus follows from
(1.24) that

(G1)ep
1.27 1775
(1.27) (Gr)rene (G77)i4n iR

(G77)# an }_1 _ {Z w} _ {ddl(GTl)erN,fH* 0
w z

0 (Gra)ie]
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Similarly, removing the root of Gr, results with d subtrees 73 and d — 1 subtrees 7;. The index 7 of the
original 75 was connected to the root 7 + X of the d — 1 subtrees 77, while 7 + X was connected to the root
7 of the d subtrees 73, so by Schur complement formula,

(1.28) [( (G7)rs (G73)7. 743 }_1 - _ {Z “’} B {(Gﬂ)f+N,f+N 0 } .

Gr)ipns  (G7)rinitn Tz
Since, as mentioned earlier,
~1
(1 29) |: (GT)fj (GT)f,f'JrN ] — |:Z w] . [dil(GTl)erN,f’JrN 0 ]
(Gr)igni (GT)ien e Tz 0 A (Gr)er)
we see that all Green’s function entries are derived from (G7; )s4x 7+x and (G )#». Further, the investigation
of the path expansion of the Green’s function at large |z| suggests that (G7; )s4+x s4x = (G73)7.7. Proceeding
under this ansatz and denoting the latter quantity by me., we deduce from (1.27) by the inversion formula
for 2 x 2 matrices, that
z+ d%'llmoo

(1.30) Moo = .
w]? = (2 + g5mee) (2 + o)

Fixing w € C, by the implicit function theorem in terms of (M, 271) at (0,0), there exists a unique analytic
solution me (-, w) : C4 +— C4 of the cubic equation (1.30), such that z ms(z,w) — —1 when |z| — co. Using
hereafter this solution of (1.30), and suppressing the arguments z, w, we get from the central parameter mq,
also the quantities

sd 2t Moo d z+ sme

0o - Moo, mT = 3
ol -+ g

—w —w

d . d ._ d
(1.31) P p—_—— L ———
Z+ g7 Meo Z+ 757 Meo
—w —w
mlod — m mlod = md
00 d 00 T d T
Z+ g5y Moo Z+ gog Moo
where m$ := (G7;)r5, M4 := (G )siex and mi2 ;= (G )s4n7 are the remaining entries of G, (see

the LHS of (1.27)). Upon exchanging 7 with 7 + X, these are also the entries of G, (see (1.28)), whereas
m‘;— = (GT)fnj = (GT)rf‘+N’rf:+N7 muTod = (GT)f,ﬁ’erN and ml»,qd = (GT)f+Nj (see (129))

In particular, it is not hard to verify that
(1.32) md(z,w) = Vd — 1m,(Vd — 1z,V/d — 1w).

For details, one can refer to lemma A.9.

1.4. Extension of graphs and main result. A key ingredient in the asymptotic evaluation of the Green’s
function for our digraphs, is the following concept of graph extension (or more precisely, the extension of the
associated weighted adjacency matrix).

Definition 1.11 (Extensions of graphs). Suppose G is a digraph of vertex set V, where each v € V has
in-degree d;,(v) < d and out-degree d,(v) < d. Any given deficit functions 0 < def;,(v) < d — din(v),
0 < def,(v) < d—d,(v), and two functions A; and As of z, w, induce the following extension of the matrix
H which corresponds to G via (1.21) :

Extaes(G, A1, Ag) =

(1.33) 7 Z [d — do(s)_—ldefo(v) Aven + d—d;y, (Z)_—ldefm(v)

A2€v+N,v+R 9

veV
where e,, and e,y ,+x denote, respectively, the (v,v) and (v + X, v + R) coordinates of the matrix (with
isolated vertices in V' also considered in the sum). The Green’s function G(Extqcs(G, A1, Ag)) associated
with such extension is merely the inverse of the RHS of (1.33). In particular, we use the notation Ext for
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a graph extension where both def;, and def, are identically zero. Similarly, Ext; denotes the case where a
specific vertex 7 (the root) has def;,(#) = 1, while all other values of def, and def;, are zero, whereas in
Ext, one has that def,(#) = 1, while all other values of the deficit functions are zero. That is,

d—dOU d—dinv—éw
(1.34) Exti(G,A1,Ay) =H — Z [di)Alev,v + d<)1)A26v+N,'u+N:| .
veV
d—d,(v) —y.p d—din(v
(135) EXtO(ga Al7 AQ) =H - Z |:d(_)17Alev,'u + d_l()A2€U+N7U+N:| .
veV

We denote by By(v) the unoriented ball in digraph G of radius ¢ centered at vertex v, with 9B (v) denoting
the set of vertices of G having an undirected distance ¢ from v. More generally, for a subset U of vertices of
G, we denote by By(U) the union of such balls By(v) for v € U. With these quantities at hand, our main
result, stated next, is a refinement of Theorem 1.3, providing also a uniform over (i, j), control on the entries
Gi,j of G(z,w).

Theorem 1.12. Fiz a constant 0 < ¢ < 1 and d > 3. Given these terms, we can find parameters § =
§(c,d) > 0, e = e(c,d) > 0 and v = v(c,d) such that for r = ry = tlog,_; N, some set of d-regular random
digraphs G occurring with probability Py q at least 1 — O(N~°) and any compact D C C,

(1.36) sup  max|Gy; — Gij(Bt(Br({i, j}), Moo, mac))| < N7°,
weD,J(z)>N-< W

(1.37) sup
weD,F(z)>N~¢

1 N
NZG”Z - m%—’ § N_é.
i=1

Theorem 1.12 will be shortly deduced from our next two results, the first of which is a perturbation theory
on infinite d-regular digraphs.

Theorem 1.13. Let G be a graph with excess of at most 1. Assume further that diam(G)3[|Qr — meo| +
|Qo — ms|] < 1. Then, we have,

|Gij (E‘Tt(gv Qla QO)) - Gij (Ezt(ga Moo, moo))|

(1.38) ( 1

dist(i,5)
S d_1> (1 + dist(i, ))[|Qr — Moo| + Qo — Meol]

We will elaborate on the meanings of Q7 and Qo in the next section. For now, just understand these
terms as a tool that help mediate the derivation of an appropriate self-consistent equation. Our next result
states the relationship between G;; and the d-regular infinite tree extension, except with parameters )7 and
Qo. The specific definitions of the error terms (e(z,w) and 5’;), can also be found in the next section.

Theorem 1.14. Fix d > 3, 0 < ¢ < 1 and a compact domain D C C. There exist ¢ = e(c,d) > 0 and
r=ry = tlog,_; N, such that on a set of d-regular, random digraphs occurring with probability 1 — O(N~°),
allw e D and I(z) > N~° we have
e(z,w)

St

I’IZ;,E}X |G1] — Gij (E-Tt<B£({iaj}a g)7 va QO))| < E(Z, w)'

(See Part 2 of Section 2 for a formal definition of €(z,w), which are independent of G. We remark also that
S} of (3.1) is a deterministic constant depending only on z and w.)

Q170 — Moo(z,w)| <
(1.39)

Proof of Theorem 1.12 (from Theorems 1.13 and 1.14). With |Q1/0 — Moo (2, w)| < e(fg—’f”), we can apply the

perturbation estimate from Lemma 3.5 to ensure that for r = rny = tlog IV,
€

‘Gij(Emt(BT({ivj}ﬂg)vaO(Zvw)7m00(z7w))) - Gij(Ext(BT({i7j}ﬂg)7QI;QO))‘ 5 (IOgN)S

g1
g
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This combined with the second estimate in (1.39), ensures that,

(140) ‘Glj - GZ](Ext(BT({%]}v g)’moo(sz)a moo(sz)))| 5 e+ (log N)

£
S5
Now, if 7 has a radius fR tree-like neighborhood, we would know that
Gu(EiL't(Br({Zv]}a g)a moo(Z> U)), moo(z7 w))) = m%’
There are also at most O(N°¢) vertices without a radius R tree-like neighborhood. For these vertices, we can
instead use the bound that |G;;| = O(1).

This again comes from Lemma 3.5 to bound G;j(Ext(B,({i,7},G),Qr,Q0)) by O(1) and the triangle
inequality. This ensures that,

N
1 _ €
(1.41) ‘NZGii—m%l—‘ SN e+ (log N) -
i=1 g
Finally, recall (A.4) that here S, > 1N7¢ and (2.9) that e(z,w) < N~ for any &' < min(r, 152). We thus
deduce the stated uniform bound of order N~%, upon choosing £(c, t) > 0 small enough. O

Acknowledgment. This project was supported in part by NSF grants DMS-2102842 (A.A.) and DMS-
2348142 (A.D). We thank Anirban Basak, Charles Bordenave, Nicholas Cook, Konstantin Tikhomirov and
Ofer Zeitouni for their most helpful comments on an earlier version of the paper.

2. CHALLENGES AND OUTLINE FOR PROVING THEOREM 1.14

Sharp estimates on the Green’s function are key to many works in random matrix theory. A standard
technique to establish those is by first deriving a self-consistent equation for this Green’s function, which
under suitable stability properties, allows for a multi-scale argument transferring the estimates on the Green’s
function from one value of J[z] to a lower value of [z] (see [12]).

This strategy is used in [18], where the control parameter @ of [18, Eqn. (1.6)], which represents the
averaged Green’s function of the graph with one edge removed, satisfies the self-consistent equation of [18,
Eqn. (1.7)]. It roughly says that one can determine the Green’s function by treating a local neighborhood of
large size K around each vertex as part of an infinite tree. We proceed to relate our work with [18] describing
also the new challenges that appear in the context of our analysis. First, note that to deal with digraphs,
we must take into account whether an in-edge or an out-edge has been removed. To this end, we associate
two vertices v and v+ N to every vertex v in the original graph, resulting with a pair of control parameters

1 (z,z+N)
Qr = Nd Z Gy iNy+N -

(2.1) . (x—y)EE
o z,x+N
Qoi=1g 2 G,

(y—=x)eE

Further, our basic removal operation via the Schur-complement formula, is now the removal of a two-
dimensional submatrix rather than a single entry, resulting with a pair of self-consistent equations

QI = }/i,K(QIaQO)v
QO - Yo,K(QlaQO)v

representing the treatment of a neighborhood of size K of our digraph as part of the d-regular directed tree.

The general outline for deriving (2.2) is as in [18]. Namely, apply the Schur complement formula to describe
the effects of removing a large neighborhood of a vertex, then perform a switching transformation and finally
add back the removed neighborhood. However, the intermediate estimates required for implementing this
strategy differ drastically between our digraph case and the non-oriented case. In particular, the task of
proving many estimates in [18] is much simplified by having the Green’s function estimates depend only on
the graph distance between vertices. For example, utilizing the identity (4.4), namely

(2.3) G- P =G-P—(G-P)(Glr)"'G - P[(Glr) " = (P|r)'|G — P(Plr) (G — P),

(2.2)
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one aims to show that the LHS is small by relying on a-priori control on the size of the terms P;; on its
RHS. Here P; ; roughly corresponds to the Green’s function of vertices ¢ and j in the infinite tree, which are
of distance O(loglog N). Having removed a large neighborhood, one is to sum over O((log N)?) such terms
and it is crucial to have a contractive effect of the total contribution, so the total error on the RHS will not
get exponentially worse as we remove larger and larger pieces (when N grows).

In the digraph case, when bounding P; ; the contribution of each path between the two vertices depends
on the orientations of the various edges along that path. Applying the worst-case value over such orientations
yield bounds which grow exponentially in the size of the neighborhood removed and thereby to a complete
failure of the general strategy. To address this challenge and ensure that the perturbation estimates on
the Green’s function are contractive, we leverage on having certain Green’s function terms which are better
than the worst case bound and carefully enumerate over all types of factors that may appear. Specifically,
see Lemma A.1, where the contractive factor is X +Y < 1 but a less careful analysis of the perturbation
estimates would lead to an expansive factor of the form 2X > 1. For this reason, we also can not apply the
intermediate lemmas of [18] which rely on the simplification offered by the Green’s function structure of the
infinite unoriented regular tree (that we lack here).

Note also another major difficulty in our self-consistent equations preventing us from obtaining estimates
on the Green’s function reaching the optimal 3[z] < N~1*¢. Indeed, the linearization (3.33) of our self-
consistent equations is very singular as $(z| gets close to this critical value. This problem is circumvented
in [18] by a second order expansion of their equation for @ and explicitly solving for the solutions of the
resulting quadratic equation. Applying such approach for our (2.2) yields a pair of quadratic equations,
reduced to a single quartic equation, whose solutions are not analytically tractable. As already shown, our
primary goal of estimating the Green’s function well enough for deriving the global limit law of d-regular
digraphs does not require descending to the critical threshold of [z], and we thus settle for the linearized
self-consistent equations.

2.1. Part 1: Heuristics of the switching argument. We proceed to provide the heuristics behind our
derivation of the self-consistent equations for the Green’s function of the random d-regular digraph. To this
end, recall the important control quantities @ and Qo of (2.1) (and as before, we suppress the arguments
z,w whenever their specific value is irrelevant). Such quantities deal with the effect at of removing an edge

on the Green’s function of the digraph. Specifically, G;ﬁ_f\?_ﬁg y easures the effect at y of removing the
incoming edge x — vy, and Gé%wa) likewise measures the effect at y of removing the outgoing edge y — =x.

Thus, our control quantities ;7 and Qo measure the average effect on the Green’s function due to the

removal of a uniformly chosen incoming edge, or outgoing edge, respectively. As outlined next, our proof

strategy consists of the following two steps:

(a) Our first step relates the Green’s function of G around a vertex v to the Green’s function of the 4(= £y)
neighborhood Ny (v) of v for £ = O(loglog N).

(b) Performing a switching of the edges connecting Ny (v) to Nf(v) averages out the effects of specific edges,
leading to QQ; and QQp. We then show that the latter functions concentrate for large N around the
non-random M.

2.1.1. Reduction to the local K neighborhood. Ignoring for the time being the specific value of ¢, consider the
relation via the Schur complement formula between entries of the Green’s function of G within N (v) and
the matrix H restricted to this local neighborhood. Specifically, denote by N x (v) the collection of indices
in Nk (v) and Nk (v) + N, with Opr(y) denoting the collection of directed edges that start in Nk (v) and
terminate in Nj(v), while Ipr, () denotes the directed edges that start in Nj(v) and terminate in Nk (v).

Considering (1.24) when T = Nk (v), yields that for any pair of indices ¢, d € Nk (v)

1 N (v N (v -1
(24)  Gea= [(H R w) — d_l{ S G Pewinaiv+ Y. GHR eaab 1 :
cd

(b—>a)€INK(v) (a—?b)EONK(v)

We now proceed with the following approximations of the two sums on the RHS. First one would expect that
since our d-regular digraph is locally tree-like around v (when K does not grow fast with N), the value of
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GI(JAZK ) ghould only depend on the local behavior around b of the restricted graph G|N 5 (v). Moreover, by
the same reasoning, locally around b, the digraph G|N 5 (v) should be similar to the original graph G with
only the vertex a removed. We thus expect that, at least for most edges involved in the first sum of (2.4),

Nk (@©)  ~laa+N)
Gb,bK ~ Gy :
After such replacement, assuming K is large enough, we may expect to be able to do even further averaging,

thereby replacing each Gg‘;aﬂv) by the total average of terms of this form along all Nd directed edges of
our d-regular digraph. Namely, fixing a € Nk (v),

a,a+N 1
X Gy od-d)g 3G = @-di@)Qo
{b:(b%a)EINK(U)} (y—z)EE

where d;(a) denotes the number of in-edges of a within G|Nk (v). By the same reasoning, one can also expect
to have per fixed a € Nk (v),

a,a+N 1 z,x+N
Yo GV o [d-do@) g YL GYINy = (@ - do(@)Qr
{b:(a*)b)eoj\/}((v)} (z%y)EE
Taken together, this would posit an almost equality
Gea~ G(Ext(GINk (v), Q1,Q0))e,d

for any pair of indices ¢, d € N, x (v), thereby ‘reducing’ the evaluation of the Green’s function to the study
of the two order parameters @; and Qo of (2.1).

Turning to the latter task, we proceed to derive an equation for the terms Gl(fer) by applying a similar
reduction to the local K neighborhood of y, now for the graph G after the removal of (y — x). Specifically,

let /\/}(fﬁx) (y) denote the K neighborhood of the digraph, rooted at y, after removing the edge (y — x).
Applying the same heuristics as done earlier, we arrive at
(25) G &~ G(Bato(GINE ™ (1), Q1,Q0))yy

(where the removal of (y — ) yields the deficiency def,(y) = 1 at the root). Similarly, one would propose
that

(2.6) G = G(Ext(GINE ™ (1), Qr, Q0))y+ Ny N -

2.1.2. Tree-like neighborhoods and self-consistency. For any K > 1, let 7;X denote the (2d — 1)-ary directed
tree of K levels, whose root vertex has d out-edges and d — 1 in-edges. Similarly, let 7, denote the (2d —1)-
ary directed tree of K levels, whose root vertex has d — 1 out-edges and d in-edges. Define for functions
A1 (z,w), As(z,w) on C4 x C the functions
Vi k (A1, Ag) i= G(Ext;(T{), A1, A2)pin rin,
Yo (A1, Az) i= G(Eato(T5), Ar, D)y,
where r and r + N are the two indices corresponding to the root of the relevant tree.

To determine the asymptotic of Q; and Qo we average the approximations (2.5) and (2.6) over all

(2.7)

directed edges of our digraph. While doing so, we note that most neighborhoods N’ [({m =) (y) should look like
the (2d —1)-ary directed tree T{* of K levels, whose root vertex has d out-edges and d— 1 in-edges. Similarly,
most neighborhoods N, I((y =) (y) should look like the (2d — 1)-ary directed tree 75X of K levels, whose root
vertex has d — 1 out-edges and d in-edges. Thus, after averaging, we expect Q7 and Qo to approximately
satisfy the following self-consistency equations

QI = }/i,K(QIaQO)v
QO = YO,K(QDQO)'

Further, by definition the pair (Qr, Qo) should not depend on K > 1, and for any w € C, either function
should be analytic from C; to C4 and such that 2Q;(z,w) — —1 and 2Qo(z,w) — —1 when |z| = .

(2.8)
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In view of our expectation that Q; ~ Qo, we verify that the unique solution Q; = Qo of (2.2) with such
analytic properties is meo (2, w) of (1.30).

2.2. Part 2: The structure of the proof of Theorem 1.14. The proof of Theorem 1.14 is based on
careful and technical estimates of Green’s functions after performing a switching. In order to even discuss
our proof, it is first necessary to devote some time to defining appropriate notation and the correct order
parameters. The first two sub-subsections here are devoted to introducing the appropriate notation. After
defining all necessary notions, we then state our important results on Green’s function estimates for graphs
after switching. These are Theorems 2.9 and 2.11. After some computations, we will show that Theorem
1.14 follows from these substeps.

2.2.1. Notation related to Graph Structure. The goal of this section is to introduce the notation that we will
use later as well as give a broad overview of the strategy of the proof. The sections that will appear later
will go over many of the detailed estimates.

We will start with definitions related to the graph.

Definition 2.1 (Ball of Radius R). Let G = (V, E) be a digraph and let S be some set of vertices in V;
here, we will let G* denote the unoriented version of G.-We let Br(S,G) denote the set of vertices that are of
distance R from the vertices V' in the unoriented graph G*. If S consists of a single element v, then we will
use Bg(v,G) as a shorthand for Br({v},G); Br(S,G) will also be used to denote the subgraph induced by
the vertices in the set; which version is used will be clear in context. In what follows later in the paper, we
will always use distance between vertices to refer to the distance between vertices in the unoriented graph
G". As this is the only reason to refer to the unoriented version G%; we will not use this notation later and
let the reader understand that all distances refer to the unoriented distance.

We will say that the vertex v has a radius R tree-like neighborhood in G is the unoriented structure of
the subgraph Bgr(v,G) is a tree. If this neighborhood is not tree-like, then we can define the excess of the
neighborhood as the number of edges that need to be removed from the subgraph Bg(v,G) that need to be
removed in order to make the neighborhood tree-like.

Our method also requires the introduction of many scales of order parameters.

Definition 2.2 (Order Parameters). (1) We define the value % := log; ; N. This value is chosen so
that nearly all vertices will have a radius R tree-like neighborhood. We will show that with high
probability, almost all vertices have a radius R tree-like neighborhood.

(2) We introduce the value r which satisfies the inequalities f% <r< %. Alternatively, r :=tlog,_; N
with g7 < v < 55. The purpose of this parameter r is to ensure that the Green’s functions of two
graphs that agree on a neighborhood of size r will be very close to one another. This is the statement
of Lemma 3.7.

(3) Finally, we have the value ¢ € [alog,_; log N,2alog,_,log N], with a > 12. The specific value of
£ is chosen so that the stability estimates in the self-consistent equation from Lemma 3.8 hold. /
represents the size of the neighborhood on which we perform a switching argument.

We have the following order of scales on our constants: R > r > [.
Indeed with our order parameters, we can make the following definition of good d-regular digraphs.

Definition 2.3 (Good d-regular digraphs). We define the set Q (the set of good d-regular digraphs) to be the
set of d-regular digraphs on N vertices that satisfy the following two properties.

(1) All radius 2R neighborhoods have excess at most 1.

(2) All except N°€ vertices have neighborhoods of size R that are tree-like.

Fix some parameter q > 0. This constant q dictates the probability that a ‘good’ switching event occurs
with probability 1 — O(N~9). Depending on this parameter q, we can define the set Qg4 of the graphs
that have sufficiently nice structural properties after switching. A graph belongs in Qg 4 if it satisfies the
following two properties,

(1) All except 2N°* vertices have neighborhoods of size JR that are tree-like.
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(2) The 7/8 neighborhood of any vertex has excess at most 1 and the radius 93/2 neighborhood of any
vertex has excess at most Cy. Cj is a constant depending on ¢ but not on V.

2.2.2. Notation related to the Switching Procedure. With our order parameters defined, we can now define
our set of switching data. In order to avoid an overly long definition, we split the discussion of the switching
procedure into two parts. The first part will introduce useful notation, while the second part will actually
describe the procedure used in the switching.

Definition 2.4 (Switching Data for a Radius ¢ Neighborhood). Consider a d-regular digraph G with N
vertices. Consider a vertex o and its radius ¢ neighborhood T := By(o,G).

We define the boundary of T to be the vertices of T that are connected to a vertex in G. The boundary
edges of T are the set of edges that connect a vertex in the boundary of T to a vertex in T¢. We can index
these boundary edges as follows: {(ls,aq)}; lo is chosen to be the vertex that lies in T, while a,, is chosen
to be the vertex that is in T¢. We will use p to denote the number of such edges connecting T to T¢. We
remark that if T were a purely treelike neighborhood, then y = 2d(2d — 1)*~!. Furthermore, in a treelike
neighborhood then 1/2 of these edges are oriented in the direction I, — a, and /2 of these edges are
oriented in the direction a, — I, .

Since the edges can have different orientations, we have to be careful regarding the choice of the switching
when constructing the switching data. Our switching data S = (Si,...,5,) will consist of a choice of ||
random edges that lie strictly inside T¢ in G; these will be indexed as (bq, ¢4), but the specific value of b, and
¢, Will depend on the orientation. If the edge were oriented in the direction [, to a,, then the indices are
chosen so that (b,, c¢,) were oriented in the direction b, to ¢, . If instead the vertices we had the orientation
ao to l,, then the edge (bn,cq) will be oriented ¢, to b,. The purpose of this is to ensure that a, will
naturally be switched with c,.

The collection S is chosen so that for each a < |u], each edge bq, ¢, is chosen independently and uniformly
over all edges that lie in T¢. Note that this will allow for repetition, but such collisions are highly unlikely and
will not make any difference in the ultimate analysis. The set of all possible switching data corresponding
to a graph G around the vertex o will be denoted as Sg ,. The vertices o are naturally identified in G and G.

We continue our discussion of the switching procedure by actually describing the graphs that are con-
structed by switching.

Definition 2.5 (The Switching Construction). Recall the digraph G, the neighborhood T around o, as well
as the switching data S from Definition 2.4.

For each a, we define the indicator function variable y,, which will take values 1 or 0 based on the following
conditions. X, = 1 if and only if the subgraph By 4({ada,ba;ca}, G\T) is a tree even after adding the edge
connecting a, to b, and , furthermore, the vertices {aq,ba, o} is of distance at least SR/4 from all other
switching vertices {ag, bg,cg} for 5 # a.

The switching map T' can be thought of as a bijective map from pairs of d-regular digraphs and switching
data T: (G,S) — (G,T(S)) with S € Sg,, and T(S) € S 5 o~ Lhere is a natural way to associate the vertices

o in both G and Q~

To construct G, we perform the following procedure. If x, = 1, then we remove the edge (l,,a,) and
connect [, to ¢, as well as b, to a,. The orientation will be such that the orientation of [, to ¢, is the same
as the orientation of [, to an; in addition, the orientation of b, to a, will match the orientation of b, to c,.
We also set ao := c¢,. However, if x, = 0, we make no change to the graph and set a, := aq-

If xo = 1, then we change the switching data S, to the edge (aq, b ) with the proper orientation. However,
if xo = 0, we make no change. It is easy to check that T is an involution and preserves probability.

We now give the statement of the following proposition. This will show that all except an O(1) indices «
will satisfy xo = 1.

Proposition 2.6. Fiz some constant q > 0 and some graph G in either Q or Qg 4. Fiz a vertex o and its ¢
neighborhood T. Then with probability 1 — O(N~9), one has that for all except O4(1) indices o, that xo = 1.
Here, Oq(1) means that this is bounded by a constant depending on the parameter q. Furthermore, for any
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vertex x in T¢, the set of indices a such that x is of distance less than R/4 from {aq,ba,Ca} is less than
Oq(1).
Proof. This is [18, Prop. 5.10]. O
2.2.3. The inductive method. At this point, we will now introduce our preliminary induction hypothesis.
Definition 2.7 (Induction Hypothesis). Let us define € = e(z,w) as our control parameter,

(log N)YKe  (log N)EKe,/Im[m.o]

(2.9) €= (e(z,w)) := T + N7 ,

where K is a large positive constant K > 100.
We let Q°(z,w) denote the set of graphs inside 2 from Definition 2.3 such that the following estimates
hold at the point (z,w).
€

|QI +QO - 27noo| < ﬁ,
g

(2.10) |Qr — Qol £ =
|Gij — Gij(Ext(B,({i,7},G),Qr,Qo)| < e

where the latter estimate holds for all pairs ¢ and j. The singularity parameters, S;’z, are formally defined
in Definition 3.1.

Now, we make a definition designed to capture the properties of graphs produced after one switching on
the neighborhood T around a vertex o.

Definition 2.8. We define the new error parameter € (= €' (z,w)) as,
(2.11) ¢ = (log N)(@a¢,
where j(d) = log,_, {%4—%1/2;%11 <1/2.

Let G be a graph inside €25 4 from Definition 2.3, and we fix a vertex # in G with radius ¢ neighborhood,
T. We will include G inside the set Q}iq,f (z,w) if it satisfies the following estimates at the point (z,w),

€
|Qr + Qo — 2me| S ST
g
Q= Qol £ &
(2.12) g
. 1 .
|Gi+0i,j+0j - Gi+0i,j+0j (Ewt(BT({Za.YLS(g))vQIaQO)” 5 77VZ7] € g

log N
|Gg)oi,j+oj — Gito,jto; (Ext(B.({i,7}, S(G)\T,Qr,Q0))| S €, Vi, j € T¢.

Here, o; and o; are symbols that can take the value 0 or N, so that ¢ + o; can correspond to one of the two
labels corresponding to the vertex i. The constant implicit in < is uniform and does not depend on N.

We have the following relating Q°(z,w) to leﬂ)o(z, w).

Theorem 2.9. Fiz a graph Gin Q°(z,w), as well as a vertex o with radius £ neighborhood T. In addition,
fix the parameter q > 0. There is an event Sq(G) of switching events S in Sg , with probability P(S¢(G)) =
1 —O(N™9), such that for every switching event S € Sq(G), we have that G is in Qg , ,(2,w).

The issue with the above statement is that it does not take into account improved concentration es-
timates from the switching. Our issue is that we cannot ensure that after a single switching, the event
0%z, w)\T(Q°(z,w)) is of vanishingly small probability. In order to avoid this issue, we use the fact that T
is an involution and two evaluations of T on the set Q2°(z,w) will result in a graph that belongs to Q°(z, w).

To this end, we introduce a new definition that describes the graphs that we would obtain after two
switching.
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Definition 2.10. Let G be d-regular digraph with N vertices, and let # be a vertex in G with radius /¢
neighborhood T. For all vertices i in T, we define ¢; to be the distance from # to i. We set that the graph G

belongs to the set Q?g q.#(2,w) if it satisfies the following conditions at the point (2, w):

€
Q1 + Qo — 2macl S -
g

(2.13) .
Qr — Qol| S Ik

log N log N)?
Gos = Gra (Bat(B,(17,1%.6). Q1. Qo) § (12 + ) ¢

+1og N(|S511Qr + Qo — 2mec| + 15211Q1 — Qol + Q1 — meo|® + [Qo — moo|?),Vi € T

(2.14)

G (Bat(B.({f.i (log N)>¢!
(215) |GT,1 GT,Z(E t(BT({ ) }’g)anaQO))l S (d_l)g/g

+1og N(|5,11Q1 + Qo — 2msc| + [S2]1Q1 — Qol + Q1 — moo|® + [Qo — moo|?), Vi € T°

Furthermore, if the vertex 7 has a radius fR tree-like neighborhood in G, then we also have,

1 . log N¢
‘g E G&J—N,f-rN*Yivé(QI’QO)”S (dfl)i/Q,
(2.16) 1 o log N¢
(2) €
3G Y@n Qo) £ B
‘d 7,7 75( 1 O) ~ (d 1)[/2

(F—1)
As always, < represents a bound by a universal constant that does not depend on N.

The improvement of the last estimate is found in the decay factors m found in the denominator.

Our main relationship between QY _ (z,w) and Q% _ (2, w) is the following theorem.

S,q,0 S,q,0

Theorem 2.11. Fiz a graph G in Q}g’q’o(z,w). This graph comes with a specially denoted vertex o and
neighborhood T. There is a collection of switches Sc(G) € Sg, with probability P(Sc(G)) = 1 — O(N~9)
such that the image of (G,s) under T for s € Sc(G) is in Q% ,(2,w).

2.3. A Multiscale Induction Scheme. Our central Theorem 1.14 is proven via a multiscale induction
scheme.Namely, we start by proving the estimates in equation (1.39). We start by establishing these estimates
at some zo where |zp| is large and one can derive the inequalities by basic computations with expansions.
Define 2z, = z9 — kN~%. Now, if we establish the equations (1.39) at some scale zj, the goal is to prove
these inequalities at zjy1. On a high level, the key input is Theorem 2.11; this shows that, with very high
probability, a switched graph would satisfy stronger Green’s function estimates at the scale zi. Afterward,
one can use basic Lipschitz continuity estimates to take these improved Greens function estimates at zj to
obtain the inductive hypothesis at zjy1. We can more precisely quantify the improvement from switching
int he following definition.

Definition 2.12. We let Q4(z, w) C Q be the set of d-regular digraphs G that satisfy the following estimates
at the point (z,w),

(2.17) |Qr — Qol| < —

Gy — Gy (Bat(B,({,5},9). Q1. Qo))| < 5,

Our first goal is to show that for |z| large enough, we know that any graph lies in Q4 (2, w) deterministically.

Vi, j.
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Proposition 2.13. Let w lie in some compact domain D of C and choose z with |z| > 2d* + max,ep d|al.
Then, any d-regular digraph G on N wvertices belongs to Qg4(z, w).

Proof. We know that the largest eigenvalue of a Hermitized version H of the adjacency matrix A of a d-
regular digraph can be bounded by vVd + |w|; this can be obtained by taking the maximum sum of the
elements in a row or in a column. This shows us that we may expand the Green’s function of our Hermitized
matrix as,

[ee]
(2.18) (H—2)"' ==z =Y HF D,
k=1

Now, one can see that the computation of H Zfb involves counting the contribution of all length k paths
between a and b in the graph G with possible self-loops weighted by w or w. From this logic, we can assert
the following statement on graphs G; and G that each have vertices o that are identified to each other. If the
radius r neighborhood of o in G; is isomorphic to the radius r neighborhood of 0 in G, then >, _, HFbz— (k1)
agree with each other in both G; and Gs.

Thus, we would know that,

1 €

2.1 i — Gii(Bxt(B,({i,j o o)) < 2 H|||lz|7®D <4(2) <—0
( 9) |G] GJ( l't( ({Za.]}7g)7m , M ))|_ k:ZT;rlH H|Z| — (d) N(lOgN)Q

In particular, if ¢ has a radius R tree-like neighborhood, then
1 ks
(2.20) Gt —mé| <4 (d> .

Here, we only used the fact that G;(Ext(B,(i,G), Moo, Mso)) Will be equal to m-.

These perturbation estimates will also give us information on Ggf ) via an application of the following
identity,

(2.21) G = G — Gli e my (GGG + NP TGl giny i

as well as a similar one for the extension Gy;(Ext(B,(i,GY)), Moo, Muo)). This will show that,
@) ¢

2.22 D) | < —C

for those 7 with a tree-like neighborhood. Otherwise, we can assert that Ggf ) is O(1) for the N many vertices
that do not have a tree-like neighborhood.
This will show that,

€ €

(2.23) (log N)2 < (log N)?

> G e SN

J—)

1
v
(
We have a similar statement for Qo.
Finally, we can use Lemma 3.5 to replace

Gij(Ext(Br({i,j},G), Moo, Meo))
with
Gij(Emt(BT({ivj}, g)7 Qr, QO))
0

Our next Proposition discusses how the switching procedure will allow us to take an element from Q°(z, w)
from Definition 2.7 and return an element of the improved set Q,4(z, w) after two random switching.

Proposition 2.14. Fiz w in a compact domain D € C. There exists some € > 0 such that for any z with
Im[z] > N~¢ and d > 3, we have that,

(2.24) P(Q(z, w)\Qg(z, w)) = O(N~9F1).
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Proof. The proof will be divided into two steps:

(1) We will show for each vertex o that P(Q°(z,w)\Qz , ,(2,w)) = O(N79). Qf,, is the set from
Definition 2.10. A union bound will then show that

B (2, w)\ (] 2 g0z, w)) S NI
0€g
(2) After this, we show that a graph that is in Q0(z,w)(\,cg % 4.0 (2,w) is in Qy(z,w) via some self-
consistent estimates.
Proof of Step 1 .
Just to distinguish notation, we will let P denote the probability distribution over graphs, while we let P
denote the joint probability distribution over graphs and switching data. Furthermore, for a set of graphs
G, we will use G to denote the set of the form (G, S) with G € G and S can be any switching data in Sg ,.
(We assume that each graph has a specially marked vertex o).
Theorem 2.9 shows that, ) } }
P(T(Q°(z,0))\Q2§ q,0(2,w)) S N 71
Since T both preserves measure and is an involution, this will also show that

(2.25) P(Q°(z, w)\T(Qg,q.,0(z,w)) S N7
Theorem 2.11 shows that,

(2.26) P(T($25,4,0)\ (5, q,0(2,w)) S N7O.
Combining these two estimates will give us,

(2.27) P(Q°(z, w)\Q% g0(zw) SN

A simple projection shows that this will imply that P(Q%(z, w)\Q% g0z w)) SN

Proof of Step 2

We first form a self-consistent equation to understand the values of Q; and Q. If we sum up the estimates
in equation (2.16), we see that we have that,

log N¢'

’7 Z G]+N]+N QI’QO ’N )E/Q?
(2.28) X (imied .
og Ne
‘m > G Yie QLQO‘NW
(j—i)eG

This is the self-consistent equation for @J; and Qo that has been analyzed in Theorem 3.8.

Now, the estimates on G,; from (2.14) and (2.15) are good enough for the Green’s functions estimates
in Theorem 3.8. The main benefit is the presence of the (d — 1)%/? = (log N)%/2 factor in the denominator,
which is sufficient to cancel the (log N) factor in the numerator as well as the factor (log N) (¥ factor in
the definition of ¢ when d > 3.

This shows that,

6/

_ < -
. ¢
_ < -
@1 = Qol £ gy

where k can be arbitrarily large if a is chosen large enough.

Now, this bound is good enough to use in the other Green’s function estimates found in equation (2.14)
log N¢’'
(d— 1)1’/26 15 S oeN

(d —1)*/? in the denominator. Now, our improved bounds on |(Q7 — M) + (Qo — Mwo )| can be substituted
into the right hand sides of these expressions in order to deal with the remaining terms on the right hand
sides of equations (2.14) and (2.15). This completes the proof of the proposition. O

and (2.15). As we have mentioned before, the term due to the presence of the factor
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At this point, one is left with preforming a standard multi-scale analysis with continuity estimates.

Proof of Theorem 1.14. Consider the domain
{(w,2) :weD,Im[z] > N~ |2| <d* + dmaﬂ%c ly| + 1}.
ye

Now consider a dense discrete grid L inside this domain where the spacing between elements is % By basic
derivative estimates of the trace of a Green’s function, we know that if |z — 2| < <

w5 |w —w'| < % Then,
| % Tr[G(z,w)] — 5 TY[G(2',w')]| £ 4, deterministically. Thus, it suffices to prove the local law with high
probability on the elements of the discrete grid under question.

For fixed value of Re[z] and w, we can order the values of z in the grid with these values of Re[z] and this
w in order of decreasing imaginary part as Im[z1] > Im[z2] > Im[23] > ... > Im[z)/] with M = O(N®).

Now, we know that P(Q,4(z1,w)) = 1 due to Proposition 2.13. Out continuity bound shows that
Qg (2, w) C Q%zp41,w). Now, Proposition 2.14 shows that P(Q0(z41, w)\Qq (2641, w)) < N79. Thus,
we know that P(Q(zp+1,w) > P(Qq(zg,w)) — O(N'™9). This is iterated up to at most N® steps so
P(Qy(zp,w)) > 1 — O(N'79). We can now take a union bound over our dense grid. Choosing q suffi-
ciently large will show that the intersection P((, ,)er, €29(2,w)) =1 — 0(1) as desired. O

2.4. The strategy of proving Theorems 2.9 and 2.11. Now that we have introduced the notation
necessary to discuss the switching arguments and the proofs of the Green’s function estimates, we will begin
to give an overview of the series of estimates that are required in order to derive the theorems that were
previously mentioned in this section. However, before we detail the strategy, we will discuss on a high level
the differences that arise when considering the Green’s functions of the adjacency matrices of directed graphs
as compared to undirected graphs. First of all, since we now have to deal with edges with orientations, this
means that when performing a switching, we have to preserve the orientation; furthermore, since we now have
two distinct classes of edges, we get two different order parameters @7 and Qo corresponding to the different
orientations of the edges. Furthermore, it will be observed in the proof that many estimates of Green’s
function involve understanding the values of Green’s functions for the infinite d-regular tree and obtaining
appropriate [2 and {! controls for the sum of Green’s function for the infinite tree. In the undirected case,
these Green’s function values were a simple function of the distance. However, when considering the directed
graph, the specific path and the orientation of edges along the path will drastically change the value of the
Green’s function between two vertices; keeping track of these differences occurring from the path structure
is the main technical challenge that occurs in the directed case.

The proofs of these theorems will come a series of estimates. To simplify the organization, the proofs are
divided into multiple parts. We will briefly describe the structure here. In the statements that follow, if we
let 7 be a vertex, then it could represent either i or i+ X when it appears as a sub-index of a Green’s function
value.

Steps to Prove Theorem 2.9

(1) Our first step is to relate estimates of G to G™. This involves applying the Schur complement
formula; a major ingredient in intermediate estimates are the Green’s function estimates on tree-like
neighborhoods from Section 3. This is the goal of Section 4.

The main result is the following;:

Proposition 2.15. Consider a graph G in Q°(z,w). Fiz a vertexr o and let T be the radius ¢
neighborhood around T. Assume, in addition, that o has a radius R neighborhood with excess at
most 1. Then, we have the following estimates on the Green’s function of the graph G with the
neighborhood T removed. Let i and j be vertices outside of T in G and let P denote G(Ext(B,(T U
{i,7},6),Q1,Q0)). Then, we have that,

(T) (T) /
(2.30) |G = Pl < €.

(2) Our second step is to then remove the vertices Wy that take part in the switching. Again, this
involves applying the Schur complement formula. However, this time we need to introduce a notion
called Green’s function distance. This uses the fact that the average case bound on the Green’s
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(2.31)

(2.32)

(2.33)

(2.34)

(2.35)
(4)

(2.36)
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functions |G;;| is usually better than the worst case bound; Green’s function distance quantifies
information on when we can apply the average case bound rather than the worst case bound. This
is the goal of Section 5. Though the specific value of ¢ and other assorted definitions will be defined
in the section, we state the Proposition we will prove here for convenience.

Proposition 2.16. Consider a graph G that belongs to the setting of Proposition 2.15. Thus, we
consider graphs that satisfy the important conclusion (2.30). Given a switching event S involving
exchanging the edges on the boundary of T with arbitrary edges given by {bi,c1}...{bu,c,} as in
Definition 2.5, then Wy is the set of those b, with xo = 1. Then, there is an event of switching,
Sc(G) that holds with probability 1 — O(N 1) such that the following estimates hold uniformly.

Let i and j be vertices in of G\(T U Wg) and let P be a shorthand for G(Ext(B,({i,j}) U
WSv g\’]rv Qla QO))

G — Pyl < 6.

j
Otherwise, we have the worst case bound,
~(TUWs) /
|Gij ° — Pyl S€.

Our third step is to reintroduce the vertices in Wy, but with adjacency matrix given by the switching
procedure. This section will give us most of the estimates on G™ for the switched graph; namely,
we derive the third inequality of equation (2.12). This is the goal of Section 6. Our formal statement
is as follows:

Proposition 2.17. Consider the setting of the previous Proposition 2.16. Thus, we are considering
a graph G along with a switching event S € Sg(G) such that we satisfy both of the estimates (2.51)
and (2.52). Construct the switched graph G as in Definition 2.5. Let G denote the Green’s function
of the switched graph G. Let i and j be arbitrary vertices in Q\T and let P be a shorthand for
G(Ext(B-({i,j} U(TUW5s),6\T),Qr,Q0)-

Then, we have the following estimates: If i and j are not Green’s function connected and either
both i and j belong to Wg or both are outside Wg, then we have the bound,

~(T
G = Pyl S 0.

Recall our notation for {by,ca} for the set of vertices that participate in the switching. In the
specific case where we let i be of the form bg and j be of the form c, with a # 3, then we also have
the estimate,

= (TUW, 2
G — Py, S 6+ ()2
Otherwise, we have the worst case bound,

|G(T) - PZJ‘ 5 6/.

]

Our fourth step is to finally re-introduce the vertices of T to the switched graph. This is the goal of
Section 7. Formally, our main result is the following,

Proposition 2.18. Consider the setting of the previous Proposition 2.17; especially the important
estimates (2.33), (2.34), and (2.35). When we add back the neighborhood T to the switched graph
G, we will get the following Green’s function estimates. Let i and j be arbitrary vertices in the
graph G and let P be a shorthand for G(Ext(B,({i,j} U 'H‘7§';),Q],QO)). Here, Q; and Qo are the
corresponding values of Qr and Qo corresponding to the switched graph G.
If i and j both belong to the neighborhood T, then we have,
ldj—d;|

t—d;—d;
|Gij — Pij| < €(log N)? L 2 + (1 +|d; + di]) L €.
17 171~ d* 1 7 7 d* 1
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If instead one of i belongs to T and the other belongs to T€, then we have the estimates,

{—d;
- 1 i
(2.37) |Gij — Pij| < (logN)?€ (CH) .

In addition, we also have,

€ €
(2.38) \Q1+Qo—2moo|§§7 |Qr — Qo §§~
g9 g

Given this final statement, Theorem 2.9 is a collection of estimates proved already in the previous propo-
sitions.

Proof of Theorem 2.9. Consider a graph G in Q%(z,w). To this graph, we can apply the conclusion of
Proposition 2.18; from this we have a set of good switching events Sg(G). On these good switching events,
we can derive equations (2.36) and (2.37). This corresponds to the middle equation of (2.12). Additionally,
(2.38) correspond to the first equation of (2.12). Finally, equation (2.30) is the final equation of (2.12). O

Steps to Prove Theorem 2.11

Most of the same estimates used to prove Theorem 2.9 can be used to prove many of the estimates
necessary to prove Theorem 2.11. The only new ingredient are new concentration estimates, that involve
the fact that the switch used random edges. This step will be discussed in Section 8.

3. PERTURBATION THEORY FOR ALMOST TREE-LIKE NEIGHBORHOODS:
THE PROOF OF THEOREM 1.13

The basic underpinning of our strategy is the ability to deal with the Green’s function of graphs with
almost tree-like neighborhoods via perturbations of the one for the infinite tree (and when the neighborhood
is not tree-like, we use the relation between the Green’s function of a graph and the Green’s function of the
covering graph). In this section we detail the relevant estimates one needs for this purpose.

Hereafter, for digraphs of a generic size we assign one standard index per vertex, denoted by lowercase
letters, such as ¢. Pairing each such index ¢ with a second index, denoted ¢ + X, any forward edge (i — j) of
the digraph yields two non-zero entries H; j4x and Hjix; of the matrix H(z,w). As we did in case of trees,
the entry H; jy is interpreted as traversing a forward edge, and Hjiy; as traversing a backward edge.

3.1. General perturbation bounds. The goal of this section if to prove general perturbations bounds for
Green’s functions of almost tree-like neighborhoods. Theorem 1.13 is an example of a result of this type
and is used directly in the proof of our main result. However, there are times where we need to use more
sophisticated estimates and, thus, this subsection will also contain more delicate estimates for these cases.
Before we actually go on and prove Theorem 1.13, we will collect some necessary preliminary results; we
remark here that many of these useful combinatorial results also appear in the Appendix. We start with
some useful definitions and lemmas; our first definition will discuss the nature of singularities that appear
in the self-consistent equations.

Definition 3.1 (Singularities of the self-consistency equation). Singularities that may occur in computations
with our (distinguished) solution ms, of (1.30), are parametrized by

(3.1) Spi=1-X-Y<1+X-Y:=52,
for X,Y of (A.1).
Lemma 3.2. Suppose a tree-like digraph G with root 7 is such that
(1+ diam(G))*[lQ+] + Q-] < 1,
where Q4 = QH'QO% and Q_ = %. then we have in terms of S;, Sg and Ext;(G,Qr,Q0) of
Definition 1.11, that
|G pan(Erti(G,Q1,Q0)) — Q1| S

(3:2) (1+ diam(G))* (S41Q+] + S21Q—-]) + (1 + diam(G))*[|Q+* + Q).
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One can obtain a similar expression comparing G; #(Ext,(G, Qr, Qo)) and Qo.

Remark 3.3. We include the factors 1 + X — Y in order to match the singularity factors we expect in the
stability equation for Q1 — v/2ma and Q.

In order to prove this lemma, we need to introduce the following definition that aids in counting.

Definition 3.4 (Basal Tree). Consider the d-regular infinite digraph tree 7 with root #. For k a positive
integer, let vy, . .., v be vertices on this infinite tree. If we let P be the Green’s function corresponding to this
infinite tree, consider the product |Ppy, || Py vs||Posvs| - - - |Po,#|- This product can be associated with what
we call a basal tree, T}, that reflects the general structure of this product and is convenient for summation.

If £ = 1, the basal tree, T}, consists of a single edge between two vertices. The interpretation of this is
as follows. The two vertices of the edge should correspond to the vertices r and v1, while the path between
r and vy corresponds to the edge between r and v;. In general, our construction will correspond vertices of
the basal tree to some vertices in 7 and edges of the basal tree to paths in 7.

For k£ > 1, we construct the basal tree inductively. Let Ty_; denote the basal tree corresponding to the
product | Pry, || Poyvy || Posvs | -« - - | Po,,_,#|- Consider the subgraph in 7 consisting of the union of paths between
v; to viy1 for i = 1,...,n — 2 as well as the paths between 7 and v; and v,_1; call this subgraph S. Now
consider the path from r to v,. This path has some final ancestral vertex A,,, which is the last vertex in
common between the path between r and v, and S.

In the correspondence between the edges of Tj,_1 and paths in 7T, the vertex A, must like on one of these
paths; call this path p and the edge corresponding to it in Tx_1 e. To construct Ty from Ty _1, add a vertex
in the middle of the edge e; this vertex in T}, corresponds to A,,. Finally, add a new leaf vertex at this new
vertex. The other endpoint of this leaf corresponds to the vertex vy while the leaf edge corresponds to the
path between A,, and v,. This completes the inductive construction of the tree.

Proof. As in the proof of the stability equation, we consider the difference between
G .= Gﬁ+N,72+N(EXt,'(g, Q[, Qo)) and P := Gf_s_;q,,z_,_N(Exti(g,moo,moo)). The function P giVQS the Green’s
function entries of the infinite tree 7;.

By applying the resolvent identity, we have,

(3.3) G-P= ip[(zf1 -G hHp*.
k=1

Notice that the terms of P~1 — G~! are of the form Q; — Mmoo or Qo — Moo. Thus, we see that higher order
terms appearing in P[(P~! — G~1)P]* will give us errors of order O((Q. — mo.)*). To make this rigorous,
we need to determine the coefficient.

Part 1: Controlling the contribution of the higher order parameters

Observe that the coefficients of P[(P~! — G~!)P]* can be bounded in absolute value by,

(3~4) Z ‘Pf'U1||PU1U2||PU2’U3|"' ‘Pvm"|v
V1 yeeny Vg

where the points v; are on the boundary of the graph G. This is too difficult to sum in each variable vy,
independently, so we introduce a new decomposition.

Step 1: An alternative decomposition

If we are considering the product Py, Py v, - - - Po,r, Wwe can naturally associate this product to the sub-
graph of the tree consisting of all the unions of paths between v; to v; 1. Since each term P,,,,_, is a function
of the edges of the path between them, knowing the form of this subgraph is sufficient to bound the value
of the desired product. We remark that this is the main point of Lemma A.3. For example, we see that we

can bound,
k1—1

‘va1| S H K({ega 611+1})’
i=1
Notice that, depending on the specific orientation of the edges, this path will have varying factors of
X and Y. Naively applying a worst case bound by using X,Y < max(X,Y) will lead to a bound of
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> on o [ Pron[[Poyvy || Posug | - - - | Poy| that is useless. Instead, one must use the condition X +Y <1 by
grouping together terms that have similar structures, but roughly exchange the roles of X and Y. This
grouping is formally encoded by finding all terms that map to the same basal tree structure.

To make this procedure clearer, we will first consider the case where we only have to deal with two vertices
v1 and vo. The construction used here is the linchpin of our method. Trees with more edges are constructed
inductively.

Two Vertex Case: We let A; be the last common ancestor of v; and vy. Pictorially, to arrive at v
from v1, we first proceed along the path p* to A;. From the point A; we start branching out to the point

vo on the boundary; we let p? = e ¢e3,.. .,eiz be the path from A; to vy. If the path from A; to vy is
6;1 , eiﬁ_l, NN e,ﬁﬁ then we see that the value of |P,,.,| can be bounded as follows:
ki—1 ko—1
|PU1U2| <C H Ke%,ehl H Ke‘j.,eirl
i=by j=1

The path back from vy to 7 will first traverse vy to Ay and then A; to #. We can visualize this as a star
with three edges. This star is the tree associated with our subgraph. A; is the center of this star and it is
connected to vi,ve and 7. If we let K4, 7/, be a shorthand for the product of K factors between A; and
the respective vertex in question, then we have that,

(35) |PfU1| < CKAMKI‘MUU |PU1U2| < CKAl'UlKAl’UQﬂ |PTU2| < CKAl'UlKAIU2'
Thus, we would have that,
(3’6) Z |val||PU1v2 ||P71272‘ S Z 03K12417’:K1241’U1K1241U2‘
v1,V2 Aq,v1,v2

Step 2: The summation along the tree

The purpose of the tree structure is to introduce the new summation variables Ay ... Ax_1. This also
introduces a new way to sum along the edges. As we mentioned before, we use Lemma A.3 the fact that the
products |P,,, | decomposes as a product of K factors along the edges of the path connecting v; and v; .

Assume that the path from v; to v;41 in the tree T constructed earlier involves edges eq, ..., ¢, of the
tree T. Recall that any edge ¢ of T corresponds to a path p = (eq,ea,€3,...,€n) of edges on our original
graph. Given an edge ¢ of T' that corresponds to a path p = (e1,ez,e3,...,€,) in our original graph, we let
K, = HZ’;I K. We thus have that,

iy€i41 "

k
‘P'Ui:U'iJrlI S Ck H Peja

j=1
k
H ‘qu‘,vz‘+1| < C4k H K?’
=0 ecT
k
Yo I1Pwwnl <> > c* [ &2
V1,02,...,V% =0 T TeT ecT

where vy and vy are both the root 7. The constant C?* comes since we get a factor of at most C' each time
we introduce a factor of the form K, for each edge ¢ € R. Each edge ¢ will appear at most two times. In
the last line T represents all possible tree structures that could occur, while T" € T is a sum over all actual
trees that have said tree structure.

Fix a tree structure 7; this will have a leaf edge [, and we can represent 7 = 7’ Ul where 7" is the tree
structure with the leaf edge removed. Then, each tree T in T can be decomposed as the union of a tree T”
of the form 7’ and some path p that will project down to the edge I.

(3.7) D &= > [ &) Kt <(+diam@) > ] &2

TET eeT T €T’ eeT’ p—l T €T’ eeT’
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The last line sums up K, l2 over all paths p that could possibly project down to [. For this quantity, the
bound (1 + diam(G)) is an application of Lemma A.5. By iteration, since there are 2k — 1 leaves, one can
see that upon fixing the tree, one can derive a bound for the tree sum that is < (diam(G) +1)2*~1. All that
is left is to compute the sum over all possible tree structures 7.

Since, we know that the distance between any two vertices v; and v;41 is less than diam(G); we use the
very generous bound that there are no more than 1+ diam(G) ways to chose the position of A; once the
structure of the vertices from {vo,...,v;} U{A1,..., A;—1} has been decided. This shows that there are no
more than (1 +diam(G))*~! possible tree structures to consider. In total, this bounds the sum appearing in
(3.4) by < (1 + diam(G))3*.

Part 2: Deriving the correct coefficient structure of the first order term

We have more exact expressions for the coefficient of the first order terms.

(3.8) Z %Ouiwpmpv,f((o?l — Moo) + Z %ml(mpf,wxpwa,f(@o — Moo).
vES(Q) vES(Q)
Here, 0(G) consists of the vertices that lie on the boundary of our graph G.

We can imbed our original graph G into a tree Tyiam of depth diam(G). For each vertex v, we let So“!
denote the vertices of Tyjam that are children of v from an out-edge from v, while S};” denotes the vertices
of Tqjam that are children of v from an in-edge of v.

An alternative way to write the expression in (3.8) is as,

(3.9)
d - dout(v)
Z {ﬁpﬁvpv,f[c?l - moo] - Z Pf,wP'w,f[QI - moo] - Z Pf’u)—"_NPw—FN’f[QO N moo]:|
vE3(G) wesgut wesyH
d — din(’l))

+ Z [ﬁpﬁupu,f[@] — Mo) — Z Pr oy Py #[Q1 — Moo] — Z Pr P s[Qo — m‘x’ﬂ

vES(G) wesin wesy

d _ d ut (v d - din v

by lnlWp b me) + B b P (@0 - me)

v€S(Tdiam)

The main point is that the last line can be computed exactly via a standard recursion, while the terms
in the first two lines should correspond to a smaller order error term with the correct singularity we have to
consider. We now treat bounding the last two lines. Indeed, for w € S2**, we can first try to write Ppy Py
as Py Pui (G7;)ow (G )we. Here, we treat v as the root of a new tree of type 71 and used the fact that the
product P, splits as the product Py, times this (G7;)yw. The main benefit now is the fact that we have
explicit ways to compute ZweSgut (G7)ow(GT ) wo-
satisfies the property that we can write

Y X
Namely, the matrix [ ¥ Y]

d — dout (v
Ti()PmPv,f[Ql — Moo) — Z Pr P #[Qr — Moo) — Z P winPuin i [Qo — moo)
weSgut weSgut
as,
d— dout (’U) Yy X diam(G)—dist(v,7) QI — e
. . . X .
Now, we can diagonalize the matrix [ X Y} and show that we can rewrite (3.10) as,
d — dout(v) { 1 & 1 & }
3.11 ——F P | —=[1—-(X+Y +—=1-Y-X —-
(3.11) T ProPr | 5l - (X4 Y)Q0 4 [ (Y - X)Q
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In absolute value, this can be bounded by,

d— dou v .
O Pl [Pl (14 diam (@) [11 = (X + V) Q]+ 1= (v = X)[Q-|
Finally, we see that,

d— dou v .
> PP (4 diam(@) [[1 = (X + V)@ + 1= (V = X)Q-
(3.13) ” -

< O((1 + diam(6)*) [[1 — (X + V)[|Q+| + 1 = (V = X)[|Q]]

We can treat the second line of (3.9) in a similar way.
Combining these error estimates gives us the desired result (3.2). ]

(3.12)

Our next lemma gives us a perturbation analysis of G;;(Ezt(G, Qr, Qo)) with respect to
Gij (Bxt(G, Moo, M)

Lemma 3.5. Let G be a graph with excess of at most 1. Assume further that diam(G)3[|Qr — Moo| + |Qo —
Meo|] < 1. Then, we have,

(3.14) 1 dist(ig) o

S(327) O s - mad +1Qo — ]
Proof. As a shorthand, we let P;; denote the Green’s function G;;(Ext(G, Moo, Moo ), while G;; will denote
the Green’s function of G;;(Ext(G,Qr,Qo)). We can determine the value of |G;; — P;;| via the resolvent
formula. Let [, denote the indices corresponding to vertices on the boundary of the graph G. We have the
following,

k
(315) |G7,] — PZ]' = Z Z Pi,ll H [Q](lm) — mOO]Pl'rrL,l'rrL+1,
m=1

ko, 0k

where j(I) = I or O if I is of the form v + X or v, respectively. We use the convention that, upon fixing k,
the final [ index [**! is the same as 7.
As in the proof of Lemma 3.2, our biggest issue is to determine the value of the k product,

k
(3.16) Bry(i,5) ==Y [Pl [T [Powsmsr]-

...,k m=1

Now, we cannot directly apply the analysis detailed in the aforementioned lemma, as the proof there assumed
a purely tree-like structure.

What we have do instead is appeal to the fact that our graph has a tree-like covering and relate the values
of P ;; to the Green’s functions of the covering. Now, the results of Lemma A.6 show that, up to a constant
factor, |Pji ji+1| can be bounded by 2max(|P~i’l~§+1 l, |P’i,l~g+1 ). Here, I' is some chosen covering of I’ and [i*1
and lé“ are the two closest chosen coverings of I**! to ['. Thus, when we consider the lift to the covering
tree,

k
S 1Pl I [Pongmeil,
..k m=1

can be upper bounded by the sum

k
2k+1 Z |P;7[1| H “P["I,[m*'l"
m=1

dist(I™,I"*1)<3 diam(G)

11 covers 7
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Here, i is a fixed lift of 7. The restriction that dist(I", ") < 3 diam(G) comes from the fact that the closest
and the second closest cover of any point differ by distance at most |C] < 2 diam(G). To perform the above
summation, we first fix the final cover of the point j, and then compute the above sum in the same manner
as in the proof of Lemma 3.2.

Namely, we decompose the product |Pm jm+1| into its K factors, introduce the least common ancestor
variables, and construct the associated tree. The only difference with the constructed tree is that the K
factors associated with the vertices appearing on the path p;; between the lift of ¢ and j may not appear
twice. To deal with these vertices, we remove the edges in the tree that correspond to vertices that are
connected via this path. The remaining forest graph can be bounded via the same methods of the proof of
Lemma 3.2 and will give the same bound.

We only need to reintroduce the K factors that we did not consider on the path between ¢ and j. Observe
that at least dist(%,j) — 3k of the vertices have K factors associated with them, since each factorization from
(A.13) can lose no more than 3 natural K factors. Once can see that the K factors corresponding to this path

dist(7,5) .
between ¢ and j will give a factor bounded by (\/dlj) (v/d —1)3%. We see that the last (/d —1)3F
can be absorbed by |Q; — m|¥. This latter factor can allow us again to sum over the possible lifts of 7,
)dist(%j)

since the successive lifts of j increase by distance |C| from the lift 7. This allows the term ( \/le1

to

be summable over successive lifts.

Now, if we want to be careful, we can improve the first order coefficient from (14diam(G))? to 1+dist (i, 5).
The method of proof is similar, one only needs to more careful in the discussion of branching. First, consider
the path p;; between the lifts of ¢ and j. To choose l~1, one first picks a point @); on the path p;; and then
starts branching from there. There are 1+ dist(%, j) choices for the point @Q;. Now, if one takes into account
that I; is the lift of a boundary point, one can use the superior analysis of the first order coefficient from
Lemma 3.2 to get rid of the factor of (1 +diam(G))? and replace it with an order 1 coefficient. This gives us
our final answer. O

Because of the particular dependence of pointwise estimates on Green’s functions from i to j, the worst
case bound on pointwise Green’s function are generally worse than the averaged case bound. By a similar
analysis, one can derive average case bounds.

Corollary 3.6. Consider the setting of the previous Lemma 3.5. Assume also that we have the improved
bound (log N)?[|Q1 — meo| + |Qo — Meo|] < 1. Let 7 be a distinguished vertez of G, which we will call the
‘root’. We have that,

(3-17) Z Z |Gf+or,x+om (E:z:t(g, Qla QO))|2| 5 L.

z€6(G) Ox
Here, o, and o, are allowed to be either 0 or N.
Proof. Without loss of generality we may assume that o, = 0.

Let Ppy := Gip(E2t(G, Moo, Moso)) and use Gy, as a shorthand for the Green’s function
Giz(Ext(G,Qr,Qo)). We have that,

(3.18) Z Z |Gf,w+ow |2 <2 Z ZHPﬁw-i-ole + IGf,I-ﬁ-om - Pf,w+ow|2]-

z€6(G) Oz z€6(G) Oz

Now, we have the correct bound for 3, 5y 2, [Pr 240, |2 by Corollary A.8. We perform the perturba-
tion expansion for Gi z40, — Pr z40,-
Recall Exy, from equation (3.16). We have,

s 2
|CTVTA’,1+0I - Pf,x+oz|2 S (Z ELC;C(’IQ,{E + OZ)HQI - moo' + ‘QO - moo}k>
(3.19) =1

oo

< Ban(f o+ 00)22[Q1 — moo| + Qo — mao[)?F Y 272,
k=1 k=1
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Now, we see our mail goal is to understand the asymptotics of the averaged sum,

k
(3.20) S Ba(fz+o0,)” < (L+diam(G)* Y [P [] [P e [
z  op RN LN LS m=1
Now, we can write,
k—1
(3.21) ZZExk(f,z + ox)Z = Z |P; 1 || P; ] H |P17n,lm+1HPAm’[m-f—lle’“,jHPik’jv
T O 117'”)11«7%0”[1,.”’[1&- m=1

However, one can relabel z + o, as a new summation variable [¥T1 and relabel [J to [FH1+(k=0)+1 {5 yn-
derstand this as Exop1(#,7), which we can bound by < (1 + diam(G)%*+3. Under our assumption that
(1 + diam(G))%[|Qr — Mmoo| + |Qo — Mso|] < 1, this shows that the sum in (3.20) is < 1. This gives us our
desired result. O

The stability result detailed above shows, as one would expect, that the approximation of Ext;(G, Qr, Qo)
to the infinite tree would get better as G becomes closer to the tree. This is an essential input to our next
lemma, which details how the Green’s functions change as the graph neighborhood around two points change.

Lemma 3.7. Let G be a graph containing two vertices ¢ and j. Let H be a subgraph of G that contains the
radius r neighborhood of i and j. Then, we have the following estimate,

1 r
|G (Ext(G,Qr, Qo)) — Gij(Bxt(H, Qr,Qo))| < (—d - 1)
(3.22) + (14 diam(G)2[S}Qr + Qo — 2mae (2, w)| + S2Q1 — Qol]
+ (log N)?[|Qr — mo|> + Qo — mas|?],
provided we have that (log N)9|Q1/O — M| < 1.

Proof. We can write the adjacency matrices of Exzt(G,Qr, Qo) as,

A B
(3.23) Pl
Here, A is the adjacency matrix for the subgraph H. B contains information on how H connects to the
complement and C is the adjacency information of the complement.
By the Schur complement formula, we have,

(324) Gij (Ext(g, QI, Qo)) = [(A — Bc_lB*)_l]ij.
At this point, we can apply the resolvent estimates,

|Gij(Ext(G,Qr, Qo)) — Gij(Ext(H, Qr, Qo))|
(3.25) = D GulBat(G,Q1,Q0))Ban(Cy. — 8..Qu)BiaCGua(Ext(H, Q1. Qo))

a,b,c,d
Here, Q. = Qy if b is of the form v 4+ R for a vertex v in the complement of H while Qr = Qo if b is of the
form v for a vertex v in the complement of H. Let us first consider the off-diagonal terms with b # c.

In order to get non-zero terms, we see from the above that a and d must be vertices on the boundary of H,
and are thus distance greater than r from a and b. Furthermore, b and ¢ must be vertices on the boundary
of G\'H that are adjacent to vertices in H. Our combinatorial assumption on the graph G allows us to make
the following assertion: there are only finitely many pairs of vertices (b, c) with b # ¢ such that Cl;l £ 0.

Just to give a summary for the reasoning behind this point, we remark that C'~! is a diagonal matrix on
the connected components of G\H. Now, the fact that G has at most one cycle will show that all but one
connected neighborhood of G\H is purely treelike. Furthermore, the only connected neighborhood that is
not tree-like can contain no more than O(1) many vertices that like on the boundary of G\H lest there be
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too many cycles. For this O(1) many off-diagonal entries, we can apply Lemma 3.5 to show that the diagonal
entry |C;.'] itself is O(1).

We also have the Green’s function bound |Bgp| < (\/ﬁ) from Lemma 3.5. Thus, our bound on the

o
off-diagonal terms is O ( \/%) 7.

It is now left to understand the contribution of the terms that are on the diagonal. Due to Lemma 3.2,
we can argue that the size of the differences |C;)! — Qx| < (log N)2[[S3|Qr + Qo — 2meas (2, w)| + [S2]|Qr —
Qol] + (log N)3[|Qr — moo|? + |Qo — Moo |?]. Now, given b, the only entries By, and By, that are non-zero
correspond to vertices adjacent to b.

Furthermore, Corollary 3.6 can show that the contribution ), [Gia||Ga;| S 1. One can only gain a
constant factor when considering >, ;|Gia||Bab||Big||Ga;j|- This shows that the contribution of the off-
diagonal entries is .

< (og N)*[1S511Q1 + Qo — 2meo(2,w)| + [S711Q1 — Qol] + (log N)*[|Qr — mec|* + Q0 — meo’]

3.2. Stability Bounds.

Theorem 3.8. Consider the following pairs of equations,

Qr =Yik(Qr,Qo)+ E;

3.26
(3.26) Qo =Y k(Qr,Qo) + Eo,
Assume further that it is known that |Qr.o — Moo|? < logli\gL ,
Recall the singularity functions from Definition 3.1.

Fiz some parameter a > 0. There exists K in the domain [alog,_; log N,2alog,_; log N] such that, we

have the stability estimates,

and N°|Qr.0 — meo| < 1 for some § > 0.

01— Qol < | E| +2|EO| Lo <|E1 + |Eo|>
(3.27) 152 log N
' |E1| + [Eol (|E1] + [Eol)
—92 < =IOl AN L et VS
Q1 + Qo — 2mao| < 51 +0 g N

Proof. This is mainly a consequence of perturbation theory using the resolvent identity.
o0

(A—2)"t = )yl [(B— A)(B —2)"1r.

p:1

We apply this identity to the compute the difference of the resolvents,

Vi k(Qr,Q0) — Yi,k (Moo, o) = G(Ti, Q1, Q0 )ianix — G(Ts Moo, Moo )i -

The main benefit is that the second quantity in the line above can be explicitly computed; these are the
Green’s function entries for the infinite tree.

Using that N%|Qr — muol, N |Qo — Mmoo| < 1 for some § > 0 and furthermore that we have the a-priori
bound that |Q; — me|? < (log Tog w7 [[E1| + [Eol], then it would suffice to consider only the first order term in
the resolvent expansion.
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By applying the resolvent identity and the more detailed computations of Lemma 3.2, we have that,

G(Tr,Q1,Q0)rxrix — G(T, Moo, Moo )i 41
d—1

= Q1= ma) Y Gz )i oGr (2 W)
veVE
+702(Qo ~ma) Y Or (e 0O G 0y
d—1 O~ Moo T (2, W) iR 040 G771 (2, W) A 4R 048
veVE
(3.28) p -
+ ﬁ(Ql — Meo) Z GT (2, 0) 70,0 G7 (Z, W) 54w 0
veVE
d—1 _
* E(QO _moo) zv: GTl (Z’w)f+N7U+NG7’1 (Zaw)f‘-i-N,v-ﬁ—N
veVE

+0((log N)*(|Qr — mec|* + Qo0 — mao|?))

Here, V£ are the leaves of the tree T, whose only edge is an outgoing edge (so it has d — 1 out-edges missing)
while VX are those leaves whose only edge is an ingoing edge (so it has d out-edges missing). When going
to the second line, we used the fact that G(T, mao, mao) are equal to the Green’s functions of the infinite
tree 71. We also used the fact that Gup(z, w) = Gpe(Z, w).

Provided we know that the coefficient matrix corresponding to the first order terms are sufficiently well
controlled, we can derive stability estimates on @; — ms by merely inverting the coefficients. We can
derive the first order coefficients by a direct recursion as follows:consider the root 7 and the unique path
7 — v; = vy — ... = U, to some vertex v, (the path from # to v, does not care about the orientation of
the edges.)

If # — vy is a forward edge, then G7; (2, W)i4R v, 40, = GT; (2, w),:JrN,,:\/%GTI (2, W)y 4R vy, +0,, » Where oy,
can either be 0 or N. If instead # — v1 is a backward edge, then G5 (2, W) 48,0, 40, = GT; (2, W)r4R 4R \/%GTQ (2, )0y 0, +0p, -

Combining these estimates can give us a recursion for the value of the coefficients of the linear term in
the matrix. Indeed, we have the following recursion to determine the coefficients.

Y G (2 w)irnein G (2 W) o

veVE
d - /- N —
(3.29) = 7167 (2 Win i G7 (2, W) >GR3 Wi inGT (2, 0)rw 0
UEVOK_1
d — 1 — -~ /= N
+ o1 07 (2 Wi (2, w)G (2, Wi n (2, 0) > Gz w)r G (7 W)y
vEVé{_l
We will more generally define the quantity,
K,l,o —
(3.30) Aj = Z GTJ. (Z,w)f,+o(j)7v+oGTj (Z7w)f+o(j)’v+o.

veV K

l can be either I or O for in or for out vertices. K is the depth of the nodes we are considering on the tree. j
can take the values either 1 or 2 (representing either the tree 77 or 7z2). o can be either X or 0 (representing
the index of the vertex we are considering). o(j) is either X or 0, when j = 1, then o(j) = R, otherwise
o(j) =0 for j = 2. (3 —j) will denote the opposite o assignment. (Namely, it is 0 when j = 1 and X when

i=2)
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We see that one way to write the recursive equation considered above is as follows:

d
K,l,o — K—-1,l,0
A= d— 1GT (2, W)i40(5), 7 +0(3—) G, (7, W) o(j) 7o(3—5) A
(3.31) 0
Kf )
+ 57 0T (2, 0)it0(5),74+0) G, (2 W) 4o i 0(5) As—
From looking at the infinite tree, we would know that
d —
T 107 (5, W)ito(i).i+0(3-9) OT; (2, W)ito(j) 7-+0(3—5)
is a constant in j, precisely matching Y of (A.1). Similarly,
d—1
7107 (5 Wito(i).i+0() GT, (5 W) o) 7-+0()
is a constant in j, precisely matching X of (A.1).
We see we have the general recursions,
AK,l,o Y X AK—Ll,o
552 o] =[x 3] [
The matrix in the middle has eigenvalues X + Y with eigenvector [ﬂ and Y — X with eigenvector [_11 .

In fact, we observe that we have the same recursion matrix for the actual coefficients %A{(’O’O +
LA{QI’O and 7 AK OX + 3 4= 1AK IR that we actually need.
Indeed, we see We have the coefﬁment matrix,

G(TE, Q1. Qo)itri4r — G(Ti, Moo, Moo )i4x, 748
L (TQ QLQO)M —G(Tfomoo,moo)f,f
K,0,0 K,1,0 K,OR 1 4 K,IR
= %A 0, +d_ " 714 o +d IA Q1 e +0(1Qr = mao|* + Qo — mao?)
_ 'y X] d;_}AO’O’O + 745 ADT° TAO’O’N +4=1apt™ {QI - moo} L O(Q - mol?)
_X Y %Ag,o,o + %A37[70 %AQ’O’N + %AS’I’N QO — Mo 0o

Now we can apply our initial data conditions. This is the part where our coefficient dependence on
the terms I,0,0 are seen. For example, we have A?’O’o = 0 and Ag’l’o = 0. In addition, A?’I’N = X,
A?’I’O = %Y, Ag’O’N = d%dlY, and Ag,o,o = X. Substituting these values inside the initial data matrix
will give us the following equation.

(333) Lo] v X) T [Qr - ma] _[Er+0(Q —macl?)

’ 0 1 X VY Qo — Moo Eo +0(|Q — ms|?)

If we let C' denote the coefficient matrix appearing in front of the vector of QQ; —ms, in the above equation,
then we see that C has eigenvalues 1 — (X + Y)E+!l and 1 — (Y — X)K+1,

By an appropriate choice of K, one can try to ensure that the singularity of these eigenvalues is no worse
than the singularity of 1 — (X +Y)or 1 — (Y — X). O

4. EsTIMATES ON G(D: PROOF OF PROPOSITION 2.15

Recall we use T to represent the neighborhood of size ¢ around a point. Our main strategy to prove
Proposition 2.15 would be to apply the Schur complement formula to relate the values of G to G™. To
better visualize this, let us first write the adjacency matrix for the graph G as follows.

(4.1) Gl = L‘;‘* g]
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A is a 2|T| by 2|T| matrix, B is a 2|T| by 2N — 2|T| matrix, and D is a 2N — 2|T| by 2N — 2|T| matrix.

If we let {v1,...,vr} be the indices of the vertices in T. Then, we find A by considering the principal
submatrix given by the indices {vi,v1+N,..., v/, vjr+N}. Bis the adjacency graph of the edges connecting
T to T¢. D is the adjacency graph of T¢.

Remark 4.1 (Notational convention for adjacency matrix decompositions). We remark here for the reader
that though we will use the same notation A, B, and D to denote the upper-left diagonal block, the upper
right off-diagonal block, and the lower-right diagonal blocks respectively for some adjacency matrix, the
specific adjacency matrices will change based on the section. The exact matrix referred to by the notation
A, B, or D will be clear in context.

Remark 4.2 (Notational Convention for Perturbation Theory). In all of the following few sections, our goal
is to understand the Green’s function of the Hermitized adjacency matrix of the graph G. These matrices
will be denoted as G or some modifications of G such as G(T), or G based on the context; for example, G
will correspond to the Green’s function of a switched graph.

These Green’s functions will always be compared to a Green’s function that will be constructed by
understanding the local neighborhood around the vertices. For example, we will compare the Green’s function
Gyy with G(Ext(B(T U {z,y},G),Q1,Q0)). The specific comparison will highly depend on the context,
but we will always denote this secondary matrix by P for simplicity of presentation. We warn the reader
here that the specific matrix P found in the estimates will not be the same in different sections; however,

their role as a characterizing the local neighborhood will always be the same.

In this section we let P be a shorthand for G(Ezt(B,(TU{i,j},G),Qr,Qo)). Since our induction hypoth-
esis is that |G;; — G(Ext(B,({i,j},6),Qr,Qo0))| S €, we can use Lemma 3.7 to assert that we would still
have |G;; — P;j| < e. We only used the fact here that we contain the radius r neighborhood around ¢ and j.
The benefit of using P;; instead of G(Ext(B,({i,7},G),Qr, Qo) is that we have a more convenient adjacency
matrix to apply perturbation theory with in F;;. In later sections, we will freely adjust the neighborhood to
which we consider the extension to be more useful in perturbation theory without any explicitly mention;
the justification of this change will always be Lemma 3.7.

As we have mentioned before, the benefit of the matrix P is that we have the adjacency matrix decom-
position,

1 A B
) po]p ).

A is the same adjacency matrix when of the graph restricted to the neighborhood T. We technically abuse

notation when we use the matrix B, but the upper-left and lower-right blocks of P~! have the same non-zero

elements as those of G~! (these are the elements that connect the vertices of T to the complement T¢.)
Applying the Schur complement formula, we see that,
(43) ¢"=G-aGh)Ta,
PM = p— P(P|p)"'P.
If we take the difference of these expressions, we see that,
44 G"-pPM=Gg-pP—(G-P)G1)"'G
— P(Gl)™! = (Pl) "G = P(PIn) ™ (G - P).

This equation is the basis of the proof of Proposition 2.15, which we reproduce here.

Proposition 4.3. Consider a graph G in Q°(z,w). Fiz a vertex o and let T be the radius { neighborhood
around T. Assume, in addition, that o has a radius R neighborhood with excess at most 1. Then, we have
the following estimates on the Green’s function of the graph G with the neighborhood T removed. Let i and
J be vertices outside of T in G and let P denote G(Ext(B.(TU{3,j},G),Qr1,Qo0)). Then, we have that,

T T
(4.5) G — P < € (z,0).
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Before we can make assertions on the difference between G and P, we must first make assertions on the
values of (G|p)~!. This will be compared to the quantity (P|r)~!; we start with a combinatorial lemma
whose goal is to understand (P|r)~! using the fact that we are performing a computation on a treelike
neighborhood.

Lemma 4.4. We have the following estimates of (P|r)~t. For any index x corresponding to a vertex in T,
we have,

(4.6) S IPl)Z S 1

Proof. As is standard, we will apply the Schur complement formula. We have,

(4.7) (P|11‘);yl = Agy — Z (B")zan [(Do)il]amaﬁBaﬁ,y'

Ao ,ap

Here, a, and ag vary over the indices of vertices in T¢ that are adjacent to vertices [, on the boundary of
T. We see that the matrix product is trivial unless = [, and y = lg are indices corresponding to some
vertices on the boundary of T.

If we fix  not of the form [, and we sum up over y, we do not have to worry about the last term on
the RHS of equation (4.7). Furthermore, A, can only be nonzero for O(1) many terms ( the indices y must
either correspond to vertices adjacent to the one corresponding to x, or they would correspond to the same
index as y itself).

Let us now consider the case that = corresponds to some vertex [, on the boundary. Since T is centered
around a neighborhood of excess at most 1, this means that [(Do)_l]amaﬂ = 0 when a, # ag, except for at
most O(1) many pairs. Recall Dy is a block diagonal matrix with the blocks corresponding to neighborhoods
of T¢. This further gives only O(1) many options for y to get a nonzero quantity. O

For the sake of completeness, we also present the corresponding combinatorial bound for |P|,,.
Lemma 4.5. If we let i be a vertex in T¢, we have the following estimates of Pl|r.

(4.8) > [Pyl < (log Ny e,
yeT

where j(d) = log,_4 {% + 34/ 2=L| < 1/2 is a constant that decays to 0 as d increases to co.

Remark 4.6. The main difference between the case with |w| = 0 and |w| # 0 is that our combinatorial
estimates on the tree-like graph now are bounded by (log V) to a power depending on a, but the coefficient
behind this a can be made arbitrarily small by choosing d large, but still finite.

fq 3 1
Proof. For this lemma, we have to apply the estimate |P;,| < ( Tt

dist(,y)
) coming from perturbation
theory from the infinite directed d-regular graph and as in Lemma A.6.

Let p denote the shortest path between ¢ and the center o of the neighborhood T. We let aj; denote the
vertex on the path p that is of distance k from i. We also let C; denote the vertices on T that are reachable
from aj, without using an edge in p. Note that it is possible that some sets C;, = C;, for j; # jo, but this is
not possible in T is purely tree-like.

Now, let us consider the computation of > 1 [Py is tree-like. If T were not tree-like, then Lemma A.6
would show that we would get the same bound up to a constant factor. Since we are only concerned about
the correct size up to a constant factor, this is not a major loss for us.

j—1
By the factorization lemma A.3, we see that _ . [Piy| < max {\/Y, v/ d;l\/?} >yee, | Pa;yl-
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Now, the computation of Zyecj |Pa,y| is like a computation performed if a; were the root of a j level
tree. If we consider the quantities,

(4.9) Lyg = Z (GT2)r4xyto,ls Log == Z [(G73)ry+o,

dist(y,r)=k dist(y,r)=k

b

and r is the root of 77 and 73, then we have the recursion,

(1.10) - @ﬁ gﬁ .l

k
Thus, we see that Ly y, Lo S {./d%‘ll\/?—i— \/)7(} .
We thus see that
i—1

S Pyl < emax{ﬁ, ,/dglx/?} [ LV VR

y€eCy
Thus,
-1 -1
) d—1 d
(4.11) y%mym(z) {ﬁ,\/d\/?} l,/d_lx/17+\/)? :

We now let a? := X and b? :=Y.
We solve the maximization problem

/| d
(4.12) max{ ﬁab+a2:a2+b2:1}.

We remark here that the other relevant maximization problem would be,

Jd=1.5 o 12 _
(4.13) max{ab+ Tb ta®+b —1},

which is manifestly smaller.
By Lagrange muiltipliers, this amounts to maximizing,

(4.14) 7= 1ab+a27)\(a2+b2).
Taking derivatives in b gives us,
-1

Taking derivatives in a give us,

[ d
4.1 2a — 2\ —b=0.
(4.16) a a+ i-1 0

Substituting in our previous relation between a and b gives us the following relationship on A.
d
(4.17) 4N A +1— —— —1=0.
d—1
Thus, A is given by,

(4.18) A=
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We can now substitute this into the relation a? + b = 1 to derive,
1 20/ 45
b= ,a =
\1+45EN V1+4958N2

The value of /7% ab+ a? is now given by,

(4.19)

oM [1 42242
(4.20) —[ — ]
1+47/\2

Now the equation for A\ gives,

d—1 d—1
(4.21) 4TA2 +l=4——A+2.

Thus, the value of %ab + a? is now given by A. This X is our upper bound on the sum ZyEtS(T) | Piy |-
(Il

Now, with combinatorial estimates for (P|r)~! in hand, we will be able to return to compute estimates
on the difference (G|p)~! — (P|r)~!. This is encompassed in the following lemma,

Lemma 4.7. Recall the setting of the previous Lemma.
Then

(4.22) [(Gl2) ™" = (Pln) oy S e
Proof. Let E be the matrix of differences,

(Gle)™' = (Pl) ™' + E

(4.23)
G|t = Plr + W.

By our inductive assumption, the entries of W are bounded by Wy, < €(z,w) for all a,b found in T.
Multiplying these equations together give us,

(4.24) I=1+EP|r+ (P|r)"'W + EW.
Manipulating this expression gives us,
(4.25) E=—(Plp)"'W(P|r)~' — EW(P|r)" "

Considering the appearance of E on the right hand side, our hope is to use a maximum principle argument
to show that the entries of E are bounded.
Define A := maz qer|Ecq|. Then, we see that,

(4.26) IEW (Pln) ™ eal < Y 1 BeelWegll[(Plr) " gal < 2(2d = 1)'Ae Y [[(Plr) sl
ef f

Here, we used the fact that the number of possible indices e in T is 2(2d — 1), which satisfies (2d — 1)! <
(log N)2. Furthermore, one can use Lemma 4.4 to assert

(4.27) Do lPl) el S 1.
f

Thus, we can bound the second term as,

(4.28) [EW (Plr) el < o(1)A.
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Now, we can try to bound the first term, we see that,

[(Ple) ='W (Plr)~ cd|<z (Plo) ™ eel IWes [11(Plr) sl

(4.29) sdzw (Pl) ]ee ) Z| (Pl) ™ sl)

€

<e.
The last line is again based on Lemma 4.4.
Combining these estimates together, we see that,
(4.30) A <o(1)A + Ce.
This gives us our desired statement. (]

We now return to the proof of Proposition 2.15

Proof of Proposition 2.15. To compare |G§;T) - PZ-(;T)L we use equation (4.4) and deal with each term sepa-
rately. We can bound |G;; — P;;| by € by our induction hypothesis. We need to perform a little bit more
manipulation on our first term (G — P)(G|1) "' G.

We see that we have,

(4.31) (G = P)(Glr)'G = (G = P)(P|r)'G + (G = P)[(Glr)~" = (P|r)1]G.
We now bound the first term appearing above,
(4.32) (G = P)(Plr) "Gl < D 11G = Plill[(Plr) ™ aylIGysl-
x,yeT

We can bound [[G — PJ;,| by e. If we fix y and sum over z, we observe that,
(4.33) D Pl eyl S 1,
€T

uniformly over x.
Thus, the preceding equation (4.32) is bounded by,

(4.34) €Y |Gyl <€ e+ |Py;l]

yeT yeT

We have, from Lemma 4.5, that

> |Py;| < (log N)(@e,
yeT
The term (G — P)[(G|T)~! — (P|T)~!]G will give an error of the form (log N)®%€2. This is of even smaller
order than our proposed main error term.
Similar logic can be used to estimate the other terms remaining in (4.4). Ultimately, we can get our
desired bound,

(4.35) Gij — Pyl S €.

~

5. REMOVAL OF THE SWITCHED VERTICES Wg: PROOF OF PROPOSITION 2.16

As one can see from the statement of Proposition 2.16, one needs many auxiliary notions for optimal
estimates. As we will describe later, it is not good enough to simply use the worst case bound at all time.
In general, most elements will be much smaller than the worst case bound ¢’. It is this property which we
exploit in what follows.
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5.1. Introduction of Green’s function distance metric. In the past section, we used € as a control
parameter to determine the maximum value of the distance of the Green’s functions |G;; — P;;| < . However,
we find that there is a small difference between this worst case estimate and the average case estimate.

By the Ward Identity, we have that,

m[G\]
5.1 el _ ImGy ]
(5.1) Z | p
Thus, for any function f(N), we see that no more than f( 7 indices j (for a fixed ) can satisfy the property
that,
F(N)Im[G')
(5.2) G > VR Sy

VN7

By replacing Im[G;] with the deterministic value mq, with small error, we see that the pigeonhole principle
will assert the concrete estimate that,

SN )Im[me]
VN o

for no more than 2+~ f( 7 indices j ( This merely used the fact that Im[GE?)] < 2Im[mo] from our inductive

(5.3) G| >

local law estimate on Im[GE?)].)

It might look like this gives very little gain at first; however, we will soon see that improperly applied
stability estimates would ruin the stability estimates by vastly increasing the prefactor of (log N) in front
of the epsilon. Namely, instead of (log N)/(¥¢ we may get (log N)©® for very large C after our stability
iteration. Unfortunately, the concentration estimate we apply later is not good enough to cancel out the
increase of this multiplicative prefactor.

Remark 5.1. the concentration estimate which we will prove in Section 8 can kill a factor of say (log N)®.
Thus, it unfortunately cannot kill a large multiplicative factor of the form (log N)%®. However, choosing a
large enough can kill any power of the form (log N)? for some constant power p. The notions in this section
allow us to reduce the decay in the stability estimate from (log N)%X® to (log N)P.

Definition 5.2. Fix the parameter

log N Za log N o /Immes
(5.4) d(z,w) = ( 1l ( ) [ ]
N VN7
The important part of ¢ is that ¢ < (log N)™ % %¢(z, w). We also use (€')2 < ¢ many times for convenience

of the final expression.
We say two indices ¢ and j corresponding to vertices in (T)¢ are Green’s function connected if there is

any neighbor i’ of ¢ and a neighbor j' of j such that |GE??,| > ¢. We will use the notation i ~ j if this is the
case. Note that this is not an equivalence relation due to lack of transitivity.

We will use the fact that most Green’s function would have the slightly better error estimate |G§;r) —Pi(;r) | <
¢ so that we do not need to worry as much about the decay of the multiplicative factor. In order to see this,
we prove the following lemma, which shows how most vertices in T¢ cannot be Green’s function connected
to too many ( more than O(log N)) of the vertices that we want to switch.

Lemma 5.3. Fiz our random dregular digraph G as well as a vertex v whose local R-like neighborhood is
treelike. Consider the local | neighborhood T around the vertex v. Let ey = (vi,w1),...,e, = (v, w,) be
randomly selected edges that lie outside T in G and p is the number of edges connecting T to T¢. Then, with
probability 1 — O(N~9), we have the following two conditions:

(1) Anyindez v in T¢ is Green’s function connected to no more than O(log N) of the indices corresponding
to vertices {by,c1,...,by,cu}.
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(2) The set a such that {bq,ca} is Green’s function connected to some {bg,cg} for f # o is O(log N).

m

Any vertex v in T¢ is Green’s function connected to no more than O(log N) vertices in U™ {v;,w; }.

Proof. Let X be any vertex in T¢. For the vertex X, the set Xgp of the vertices that are Green’s function

connected to X is of size less than W. For each 4 in {1,...,m}, the chance that X is Green’s function
connected to one of v;,w;is an independent event. At this point, one can obtain the desired result by
straightforward counting arguments. One can see [18, Prop. 5.14] for details. ([l

At this point, we can finally define the event S (G) of good switching events.

Definition 5.4. Consider a graph G in Qg4(z,w) as well as a distinguished vertex o along with its radius ¢
neighborhood T. Recall Sg ,, the switching events that correspond to the graph G around vertex o, as well
as the characteristic variables x,. We define the event S¢(G) C Sg as follows: a switch S will belong to
Sc(9) if it satisfies the following conditions,

(1) All except for O4(1) of the vertices {ci,...,c,} have radius R tree neighborhoods in G(™.
o = 1 for all except many vertices.

(2) x 1 for all pt Oq(1) y i

(3) The Green’s function connectivity conditions of Lemma 5.3 hold.

Due to Lemmas 5.3 and Proposition 2.6, the event S¢(G) holds with probability P(S¢(G)) = 1—-O(N~9).

In what follows in Sections 5 ,6, and 7, we will always implicitly assume we are considering a switching
event S found in S¢(G).

5.2. Switching estimates involving the Green’s function distance. We can apply a very similar type
of analysis for the removal of the vertices in Wg. Given a switching event S, where we elect to switch the
vertices on the boundary of T with arbitrary edges, the vertices Wy consist of those vertices {b1,...,b,}.
Again, we introduce, as a shorthand, the matrix P := G(Ext(B,({i,7} UWs,G\T), Qr,Q0)). As before, the

point of this matrix is that we can write G(T) as,

(55) @ = |5 B,
and
(5.6) Pl:{; g}

Here, A is the adjacency matrix of the graph restricted to Wg and B will be the adjacency matrix of the
edges connecting Wg to W§. At this point, we remark that we can restrict to the event that all the edges
that are chosen for switching are far away from each other; more specifically, two vertices in b,,bs in Wy
are of distance at least 2r from each other.

Due to this restriction, the matrix Ply, is much easier to understand. It is a block diagonal matrix (with
2 x 2 blocks) where the blocks consist of the indices b, and b, + N of the vertices that border the edge used
in the switching. For this reason, it is also easy to describe the matrix (P|y¢) .

Another remark that we will have to make is that in addition to proving the stability of the worst case
bound |GEJT) — Pi(f)\ < e, we would further need to prove the stability of the average case bound for pairs of
vertices that are not Green’s function connected. With this remark in mind, we now return to the proof.

By applying the Schur complement formula, we have that,

(5.7) GTWs) — ¢ _ ¢M(GD )y )7 ta™, PWe) = P — P(P|w,) ' P.
We can explicitly write out our difference as,
G(TWWs) _ p(Ws) — [G(T) - P]— [G(T) _ pKG(T)|WS)fle(T)
(5.8)
= PGP ws) ™" = (Plws) G = P(Plw,) ' [G™ - P).

As before, one main issue would be to try to estimate the value of (G |y )"
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Lemma 5.5. We have the following estimates on
(Plws)i;' = (G Plwe)it | S €

Furthermore, if we know that i and j are not Green’s function connected, then we are able to get the
superior estimate,

(5.9) [(Plws)i;" = (GPwe) | S ¢
for some constant C. We remark here that if i and j are not Green’s function connected, then they would
belong to different blocks of Plwg. In this case, [Plwgli; and (P\WS);j1 are both zero.

Proof. Again, we write,
(GOlwy) ™ = (Plws) '+ E
Gy = Plw, + J.

Multiplying these equations, we again can derive that,

(5.10)

(5.11) E = —(Plws) "I (Plws) ™" = BJ(Plwg) ™
Let us estimate the first term. We have,
(5.12) [(Plws) ™ T(Plws) sl < D 1[(Plws) it 1 el (Pliws )y |
a,beWgs

We can bound |Jg| < €¢’. Furthermore, observe that there are at most 2 values a such that (Ply);.!

is non-zero and 2 values b such that (P|Ws)l;jl; this is due to our assumption that the switched edges in
Wy are far apart from one another. Furthermore, these values are O(1) quantities; this can be shown be a
direct application of the Schur complement formula on a pure tree-like neighborhood combined with some
perturbation computations.
Let us define
Py = G(Ext(B,({i,7} UWs,G\T), Mmoo, Mwo))-
By Lemma 3.5, one can show that
HP|WS _POO|WSHOO <1
By 0o norm here, we refer to the supremum over all entries. Furthermore, since the vertices in Wy are chosen
so that they have tree-like neighborhoods, we additionally have that (Ps|wg) ™! is explicitly given by
-4 mee w
)

__a_
a—1 Moo

w -z
on each of its diagonal blocks. Clearly, all of these terms are O(1). By the same analysis we have done
earlier, we can argue that ||(Plw,) ™' — (Pso|ws) |loo < 1; this is especially simple since we only have to
consider only 2 x 2 diagonal blocks. This shows that the entries of (Ps|w) "t are of O(1), as desired.

Thus, the sum from equation (5.12) can be bounded by C|.J,| for the unique possible values of a and b (if
they exist), that return a non-zero quantity in the computation \(P|WS);II||Jab||(P\WS);j1|. Since we have
earlier shown that |Jg,| < € for any pair a and b, we know that (5.12) < Ce.

Now, we estimate the second term from (5.11),

(5.13) | > Biada(Plws)y; | <2( sup  Eap)[Wsle'.
a,beWs a,beWg

We applied the triangle inequality and used the fact that (P|Ws)ljj1 is zero for all values of b except for
2 of them. We can bound FE;, by the supremum over all values and Ju by €¢’. Now, |[Wgle'(z,w) < 1.
Combining this inequality and the previous one, we can derive the inequality,

(5.14) sup Eqp < (sup Egp)|Wsle' + €.
ab ab

This would imply that sup, ey Eap < 2¢’ as desired.
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With the estimate on the supremum in hand, we can improve our estimate for the difference on terms
that are not Green’s function connected. Observe, that we can bound

(5.15) 1> BiaJan(Plws)y' | < (Subp E.)|Wsle < (log N)*(¢)? < ¢.
a,b @

Furthermore, we have the following improvement when considering the first term from equation (5.11).

(5.16) Y 1Plws)ia 1 abl(Plws )i,
a,beWg

Let ¢ correspond to one of by, b, + IV and and j correspond to one of bg, bg + IV, where b, and bg are vertices
in Ws. The only non-zero terms [(P|ws) !]ia has a = b, or b, + N . Similarly, the only nonzero terms
(P|Ws)gj1 has b = bg or bg + N. For these indices, we can apply the bound |J;;| < ¢ due to our assumption
that ¢ and j are not Green’s function connected. O

With this inequality in hand, we can start estimating the terms that appear in equation (5.8). This will
complete the proof of Proposition 2.16.

Proof of Proposition 2.16. The simplest term to estimate is the last one in equation (5.8).
Consider the following expression,

(5.17) [P(Plwy) G = Pllij = > [Puall(Plws) i 1[G = Plyyl.
a,beWsg

Let i correspond to one of by, b, + N and j correspond to one of bg,bg + N for by, bs € W.

As we have argued before, due to the block diagonal structure of P, P;, is nonzero for at most 2 values
of a. These values can be b, or b, + N. Given this value of a, (P|w,),, is nonzero for at most 2 values of
b. This b can still be only one of b, or by + N. Finally, we can apply the bound that |[G(T) — Ply;] < € in
general, or < ¢ if ¢ and j are not Green’s function connected.

Now, let us consider bounding the second term in equation (5.8). This is,

(5.18) Y Palll(Plws) ™ = (@GP lwg) asIGP ey
a,beWsg

We first remark that since we know that |Gg) — Pyj| < ¢, this shows that |G(T| will have the worst
case bound O(1) for at most 2 values of the index b (those that are in the same block as j in P). There
are a further O(log N) indices of b where we would need to apply the worst case bound |G(™|,; < ¢ and
Py; = 0. Finally, we can bound the Green’s function for all remaining indices that are possibilities for b as
|G(T)|bj < ¢, due to our assumption that the indices are not Green’s function connected.

Further, we also know that for each fixed index a, there are at most O(log N) indices where we would need
to apply the worst case bound |[(P|w.)~" — (G™|ws) as| < €. These are the indices that a is Green’s
function connected to b. Otherwise, we could apply the bound ¢. As before, |P,| is 0 for all except for 2
possible indices a.

Now, consider the case that i is not Green’s function connected to j. Then, if b is one of the two indices
connected to j in W, then we would have the improved bound [[(P|w.)~" — (G™|w.) " as| < & for these
indices b and all indices a such that |P;,| # 0.

Thus, we would derive the bound,

Y Palll(Plws) ™" = (G hwe) a1y
a,beWg

S ¢ +1log N(¢')? +log N|Ws|e'¢ + [Ws[?¢.

Similar techniques allow us to treat the first term in equation (5.8). O
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6. RELATING G(T"Ws) 10 G(T) OF THE SWITCHED GRAPH: PROOF OF PROPOSITION 2.17

As in the previous sections, we will prove Proposition 2.16 by applying the Schur complement formula
and other Green’s function manipulations. Since we are adding vertices back into the graph, we will have
slightly different formulas for C?Z(-;D from GE}UWS ) depending on whether ¢ or j is in Wg or not. The full
conclusion of Proposition 2.16 can be derived from the conclusions of Lemmas 6.1, 6.3, and 6.4.

We consider P given by G(Ext(B,({i,j} UWs,G\T),Qr, Qo)) where G is the graph obtained by switch-
ing the edges associated to the switching set Wg. We observed that PWs) = G(Ext(B,({i,j} U (T U
Ws),G\T), Q1,Q0)). Namely, P(Ws) is exactly the Green’s function we were relating G' to in the previous
section.

In this section we will apply the Schur complement formula in the form,

G(T)|WS — (A _ BG(TUWS)B*)_l

6.1 - -
( ) P|WS _ (A o BP(WS)B*)fl’

where B represents the adjacency matrix between the vertices of Wy to those outside of Wi.
The Schur complement formula give us

GOlwoswe = —GDO |y BGTWWs)

(6.2) e ) o

Plwsxwg = —Plws BP9/,

and an application of the resolvent identity would give us,

é(T)|WC><WC = GMWWs) G(TUWS)B*G(T)|WSBG(TUWS)

(63) P =pPWs) 4 pWs)g*ply, BPVs),

We see first that it is crucial to understand the difference of G and P on the set Wy at the first step.
This can be done by the resolvent identity,

(6.4) (T)|W — Plw, = G(T)|W B(P pWs) _ G(Tuws))g*p|ws_
We can estimate the maximum difference of the right hand side.

Lemma 6.1. For any two indices i and j corresponding to vertices in Wy, we have,

(6.5) G ws = Plwslil S ¢

Furthermore, if © and j correspond to vertices that are not Green’s function connected, then we have the
improved bound,

(6.6) G wy = Plwslisl S ¢-
Proof. Let T := max, jew, |[GD|ws — P|wsli;|- Using this definition inside (6.4), we would derive the
relation,

(6.7) IGDws — Plwslij| = (GPlwy — Plws]B(PWS) — GOV B* Py, )5
+ (Plws B(PWs) — GTYWN)B* Py )y

Let ¢ correspond to one of the indices b, or b, 4+ IV and let j correspond to one of the indices bg or bg+ IV,
where b, and bg are vertices that belong to Wg

The first quantity on the right hand size can be bounded by (log N)8*¢'T' < I'. We write the second term
on the right hand side as,

(Plws B(PYS) — GOV B Pl )5
(6.8) = 3 (Plws)icBay(PWY) — GTOY) L (B).0 (Plws )

z,Y,2,W
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For the second quantity on the right hand size, we remark that [P|yw,]i; = 1 only if x corresponds to one
of the indices b, or b, + N. This is due to the fact that b, and bg for o # [ are still far apart even after
b, is connected to I, for all @ in Wg. Thus, P|w, is still a block-diagonal matrix. Similarly, w must be
one of bg or bg + N if (P|w,) were to be non-zero. Since B and B’ are the adjacency matrices for d-regular
graphs, this would further imply that there are only finitely many values that y could take and finitely many
values that z could take. By our choice of the construction, we would know that these y vertices and these
z vertices would all have a local treelike neighborhood.

Since we have the bound |P£;/Vs) - Gguws)| < 2€/(z,w) for any generic pair ¢,d that has a tree-like
neighborhood, we would apply this bound everywhere and observe that,

(6.9) D (Plws)ia Buy (P = GOV (B*) o (Plwg Juy S O

x,Y,z,w
From this point, a standard maximum principle argument completes the the proof of the bound on P — G
for general ¢ and j.
If 7 and j are not Green’s function connected, the only observation we need is that we can improve the
bound on |PWs) — G(TYWs)l in equation (6.9) to ¢. The first term in equation (6.7) can be bounded by
€? < ¢. O

We can apply these estimates in order to understand the differences of G® and P on the rectangular
sub-matrix Wg x Wg. The following lemma encompasses this information. However, we mention that
some of these estimates can improve if we instead consider some Green’s function connected information on
the specific vertices {cq,bs} that take part in the switching. We introduce a definition to encompass this
information.

Definition 6.2. We define a new set U of switched vertices b, c,, that satisfy some specific properties. The
vertices by, ¢, are included in the set U if the following properties are satisfied:

(1) For B # «, the set of vertices {bg, cs} is not Green’s function connected to {bq,cq }-

(2) The R neighborhood around ¢, in G\T is tree-like.

Lemma 6.3. Let i and j be two vertices: i belonging to Ws and j belonging to W§. Then, we have the
following comparison bound,

~(T
(6.10) G — Pyl <€
Recall our notation {aq,ba, ca} for the types of vertices that participate in the switching. Assume that j

is of the form cqo for cq a verter in U and that i = bg for 8 # a.

(6.11) G = Poyen S 0+ ()2,

bgca

Proof. General Case:
We start with the identity,

(6.12) G(T)\stwg _ P\stwg = [Plw, — G(T)|WS]BG(TUWS) + P\WSB[P(WS) _ G(Tqu)]_
Let us first deal with the second term (P|wg B[PWs) — G(TYWs)])... We have,
(6.13) (Plws BIPMS) — GEOWIN)i5 = 3 (Plws )ia Bay [P = GE9 ;.
m’y

Now, (P|wyg )iz can only be non-zero only when x is one of the indices corresponding to the same vertex as
i. Since y is connected to x, there are finitely many choices for y and all of these y vertices have tree-like
neighborhoods. We can finally apply the bound that [P(Ws) — G(TVWs)], . is less than 2¢.

We can deal with the first term similarly, by first writing,

(6.14) [Plws — GPlws] BGTW) = [Plis — GOl ]BPMS 4 [Plw, — GOl ] BIGTS) — pOT9)],
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The second term is quadratic in the error (¢/)? and can compensate for any factor of the form (log V)*®
that might appear. The first term above can be dealt with the exact same way as the previous bound we
considered in this proof.

Specific Case of i = co and j = bg with B # a:

We can apply the same identity detailed in (6.12). We do not need to consider the contribution of terms
with two factors of G — P (as these will give an error of the form (¢/)2.) There are two terms remaining
using only a single factor of the form G — P and the analysis of both of these terms is very similar.

Let us consider the term,

(6.15) (p|WS)bﬂwgwy [PWs) _ G(TUWs)]

We abuse notation slightly as we let bg,c, refer to any of the two indices that correspond to the vertex
bg, cq rather than the vertex itself. Since Py, is diagonal, = again has to be an index corresponding to

YCa

bg. In addition, y has to correspond to a vertex adjacent to bg , since B is an adjacency matrix. Finally,
in the last term, we use the fact that y = bg and c, are no longer Green’s function connected to bound
[P(WS ) — G(TWWs )]yca by ¢. This shows that the above term is bounded by a constant multiple of ¢, as
desired. O

At this point, we can finally continue and prove bounds of the difference when the indices i and j are
both in W§. Furthermore, we can prove superior bounds on some Green’s function entries if we take into
account the Green’s function connectivity properties.

Lemma 6.4. Let i and j be vertices of W§ in é\T We have the following general estimate on Green’s
function bounds,

(T
(6.16) G — Pyl S €.

Recall the notation cq, by, aq for the vertices that participate in the switching. Let ¢, be a vertex in U and
let j be a vertex that is not Green’s function connected to {cq,bs} in G\T. Then, we have the bound,

(6.17) G — Pyl < 0.

Proof. General Case: ~
We see we can write the difference between G(T) and P on W x Wg as,

G(TWWs) _ pWs) 4 (G(TWWs) _ pWs)) B* p|y,, BP(Ws)

+ P(WS)B*(G(T)‘WS _ P|WS)BP(WS) + P(WS)B*P|WSB(G(TUW5) _ P(Ws))
+ (G(TUWS) _ p(Ws))B*(G(T)|Ws — p|Ws)Bp(Ws)

+ (GTYWs) — pWs)yB* |y,  B(GTWWs) — p(Ws))

+ (G(TUWS) _ P(Ws))B*(é(T)|WS — P|WS)B(G(TUWS) _ P(WS))

+ PWS) B (G |y, — Pl ) B(GTWWs) — p(Ws))y

(6.18)

The terms that involve two differences of G — P would have an error of at most quadratic order in €.

This is already much smaller than €, even with prefactors of the form (log N)*®. To derive the worst case
bound that is of order ¢, it suffices to understand the term [(GTWs) — pWs))B* Pl BPWs)],, (since the
other terms are similar). We will write this term as,

(6.19) Z (G(TUWS) - P(WS))iw(é*)wy(les)yZ(B)zw(P(WS))wj'

z,Y,z,w

We remark first that since P(Ws) is a block diagonal matrix w must belong to the same diagonal block as
j. Furthermore, B is an adjacency matrix connecting w to some element z in Ws. In the general case, this
must imply that z is the unique element of Wy that is adjacent to the block of W§ containing j. There are
then at most 2d choices of w (these are indices corresponding to vertices adjacent to z in Wg). As Plw, is
a block diagonal matrix matrix, with each block corresponding to the two indices mapped to a vertex, there
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are only 2 choices for y. Finally, there are at most 2d choices of z since B is an adjacency matrix. Thus, we
have a finite number of choice for z,%, z and w that give nonzero values. We can bound (G(TYWs) — p(Ws)y,
by € for every x in this finite set. In general, we see this term is bounded by C¢’. The analysis of terms
involving only a single factor of G — P is similar. Other terms involving two G — P’s will be squared and
have decay at least (¢/)2.

Specific case of i = c, and j being Green’s function separated

Now, we give the superior analysis in the case that i is the vertex ¢, for some . These superior estimates
are necessary when we reintroduce the tree T into the switched graph Q~\T

Let us first consider the case that j is not Green’s function connected to the vertex c, and that the
distance of j to a, is greater than r in QN\T We use the same expansion detailed in equation (6.18). As
before, we mention that those terms that involve two factors of G — P will incur a factor of (¢/)? < ¢. This
means that we will only have to deal with the contributions from those terms involving a single G — P factor.
It would suffice as before to deal with one such term; the analysis from the contribution of the other terms
would be very similar.

Let us consider the term,

(6.20) Z (G(TUWS) 7P(WS))cax(B*):cy(P|Ws)yZ(B)zw(P(WS))wj~
T,Y,z,w
Applying the same logic as before , we know that there is a single choice for z, the single vertex in Wg
that is adjacent to the block of W§ containing j. This vertex z = bg cannot be b,, since otherwise j would be
Green’s function connected to b,. Thus, 8 # a.y must also be an index corresponding to this vertex bg and
x is an index corresponding to a vertex adjacent to bg. Finally, we can use the fact that ¢, and bg are not
Green’s function connected to bound |G(T“Ws) — P(Ws)| by ¢. This shows that the above term considered

is necessarily less than some multiple of ¢, as desired.
O

7. REINTRODUCTION OF THE TREE AND RELATING G(T) To G:PROOF OF PROPOSITION 2.18

As we have done previously, our basic step is to apply the Schur complement formula and resolvent
estimates in order to treat the removal of the subset T. We make one important remark before proceeding.
At the first step, it is easier to compare G with extensions involving the parameters Q; and Qo for the
original graph G. Lemmas 7.1 and 7.3 do exactly this. It is only later in Lemma 7.4 where we consider the
difference between Q; and Q7. A simple perturbation bound as from Theorem 1.13 will complete the proof.

We will decompose the adjacency matrix as,

= A B
-1 _
(7.1) G = {B* D} ,
where A will be the adjacency matrix of the neighborhood T and B contains the adjacency information of
the boundary of T and the vertices they were switched with.

As we have done previously, we will relate the element G;; to the term F;;, where P is defined to be

G(Ext(B,({i,j}UT,G),Qr,Q0)). We see that P~! has the adjacency matrix,
A B
-1 _
s - [d )
The inverse of the matrix D’ (will be G(Ext(B,({i,j} UT,G™),Qr,Qo0)), which we have analyzed in the
previous section. Here, B,.(T) should be understood as the r neighborhood of T in G restricted to T¢.
For vertices i and j inside T, we can apply the Schur complement formula and derive,

G| = (A+ BGMB*)™!
P|xy = (A+BPMB*)~1.
We can now use the resolvent formula to compute the difference,
(7.4) G|ty — Plery = PlnyB(G™ = P™)B*P + (G|(r) — Plr))B(G'™ — P™)B".

(7.3)
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Our formal statement on the value of the difference is as follows.

Lemma 7.1. Let i and j be two points found in our neighborhood T. Let d; denote the distance from i to
the root and d; denote the distance between j and the root. We have the following estimates,
d;—d

il

+(1+|dj+di|)<di1)J2 ¢

1 2—d;—d,
=
Remark 7.2. The second error term on the right hand side of (7.5) has the issue that it does not have a

(7.5) Glem) = Plen| S € (log N)2(

¢
decay of the power (ﬁ) . By contrast, the first error term on the right hand side of (7.5) has the power

of (d — 1)72¢, which can suppress powers of log as long as we ensure that d; and d; are small relative to .
Proof. The computations of the previous section show that entries of (G — P(M) are all bounded by Ce’

and a few other terms have superior bounds.
We have for (7.4), that

N . 1 N
(PB(G'D — PM)B*P);; < 1 > P (G —PD), 2Py
laylp
1 .
(7.6) <571 > Pt P (GD = PM) G,
1 .
* d—1 Z PixlaPlB»j(G(T) - P(T))éméﬁ'

a#p

« enumerates the vertices on the boundary of (T). In a slight abuse of notation, I, and ¢, actually represent
the possible indices corresponding to the vertices on the boundary rather than the vertices themselves; we
hope that this usage of notation is clear in context. The sum is split into two parts that will have different
estimates based on whether « is equal to 5 or not. When a # 8 we will be able to get superior estimates
when we use the separation of Green’s function distance.

Let us now treat the second term on which « # . This can be divided even further based on whether
we are considering an index from the set U from Definition 6.2. For « corresponding to a vertex in U, we
can use the fact that |(G(™) — PM);. z,] < ¢. There are O((log N)?) that have both of their entries from

1
Vvd—1

t—d;
outside U. Furthermore, we can use the bound |P;; | < ( ) . Applying this, we see that we have

the following bound on our cross terms,

o € (log N)? 1 b=ds 1 t=d;
7.7 _— P; P, —_—
( ) di]-az#ﬂ‘ ;la|| lﬁ7]|+ d*l d_]. d_].

For the terms that are not cross terms (with a = ), we merely apply the bound that |G — P(M| < ¢’
We see that our full bound on the left hand side of equation (7.6) is the following,

¢ ¢ ¢'(log N)? 1 \"%/ 1 \"%
(7.8) d_1%:|PZ,la||Pla,J|+d_l(%;ﬁwz,zaHBa,ﬂ‘*‘ i—1 — Nz

Lemma 4.5 assures us >_, |P;..| < (log N)®*¢. Thus, we see that
( _ 1)(2€7di7dj)/2 ¢(10g N)Qj(d)a+4a

d
¢ ; | Pita 1Py 5] (d—1)2t-di=d;)/2 = (q — 1)(2t-di=d;)/2"

Now, since ¢ < €(log N)~5%/2 we see that for sufficiently large, but still finite, values of d we can show that
the factor on the numerator is still less than e.

We finally need to find a bound on ) _ |P;.||F.., ;| that depends on the distance between ¢ and j in T.
) dist (4,5)

From the proof of Lemma 3.5, we see that this decay factor is < (1 4 dist(4, j)) ( 1 . Just to give

Vvd—1



SPECTRAL MEASURE FOR UNIFORM d-REGULAR DIGRAPHS 47

a brief summary of the method here, we use the factor that |P;; | and |P,, ;| can decompose as a product
based on the edges of the path connecting ¢ to I, and [, to j respectively. Let # be the first common point
of these paths.

The product |P; ;|| P, ;| roughly decomposes as K; Kz ;| Pru, |?, where K; ; and K; ; are two quantities

dist(,7)
that depend on the path between i to © and j to 7 respectively. A naive bound on K; ; is (ﬁ) , while
dist(#,5) dist (4,5)
a naive bound on Kj ; is Tt . The product of these two terms gives the decay ( \/dlj) .

If we fix 7 and sum over all [, that would be possible descendants or 7, the computations in Lemma 3.5
show that 3, [P, |2 is O(1). Finally, there are 1 + dist(4, j) choices for the first common point 7. This is
the basic strategy that bound > |P; ;. ||P. ;| and finishes the proof of our bound. O

o |

To complete this section, we also include estimates on the differences |G;; — P;;| when at least one of i
and j are outside of T. First consider the case that i is in T and j is in T¢. Applying the resolvent identity,
we have G|yt = G|rBG™.

Lemma 7.3. Let i be a vertex in T and j be a vertex in T¢. We have the following estimate on C?ij — P;;.

l—d;
~ 1 i
(79) ‘Gij — P”‘ 5 (log N)G/ ( 7 1) .

Proof. Applying the resolvent identity and taking the difference, we have,
(7.10) Glrxte — Plrxre = (Glr — Plp)BP™ + P|rB(G™ — PM) 4+ (G|r — Plp)B(G™ — P(M),

As before, the term with two factors of the form (G — P) would give an error of the form (¢/)?, which is
far smaller than any main term error we might have to consider.
Now, let us analyze the first term; writing out the indices, it will be,

T
(7.11) > (Glr = Ple)ia, PLY).
We first remark that P(T) is a block-diagonal matrix and that j would belong to a block containing at most
O(1) elements ¢&,. Thus, Pé(f?j would be zero for all except for O(1) many elements. Now, we can apply the
estimate from equation (7.5) in order to bound the first error term (G|t — P|t).
Now, let us analyze the second error term. Again, in terms of coordinates, we have,

(7.12) Z(P|(T))ila(G(T) - PM)z, ;.
(o7
Again, we have to apply the logic of connectedness. We first remark that j cannot be Green’s function
connected to more than O(log N) vertices of the form ¢, by the construction of our switching event. For all
Co to which j is not Green’s function connected, we apply the improved bound |G(™ — P(M| < (¢)2 + ¢. For
the other O(log N) terms, we merely use the error bound € instead.
Our total error can be bounded by,

£—d;
1 T
(7.13) S IPlea (€ + )+ Cloene (A=)
[0
where d; is the distance of the vertex i from the center of the tree T. From Lemma A.2, we can bound
S l(Plery)it [(d — 1)%/2 < (log N)i(9+a/2 Even after multiplying this constant by ¢, we obtain a value
£—d;
that is less than e. Therefore, the error coming from this term is still less than C'log N (ﬁ) . (]

7.1. Changing Q;,0 to QI/O. Our stability estimates are finally enough to understand the shift of G to G
for Q7 and Qp. The proofs of these two quantities are similar, so we will only prove the results for the shift

OfQI.
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Lemma 7.4. We have that,
Imm%(z,w)] + € + <1
g9

(7.14) 1Q1/0(G) — Qrjol < + (2d —1)* N

1
~ N1l-c

Proof. Clearly, once we remove the neighborhood T and switching set W, the graphs G and G are the same.
Thus, our goal is to relate terms of the form G;? to those of the form G%”UTUWS) via resolvent estimates.
We will use iTWg as a shorthand for set {i} UT U Wg. Let x(-) be the characteristic function indicating
whether the vertex in question is of at least distance % away from any of the vertices aq, by, co that take
part in the switching and, furthermore, j has a radius % tree-like neighborhood. We note that there are
< N°¢ vertices j such that x(j) # 1.

Namely, our goal is to prove the following two inequalities,
Im[m%(z,w)] + € + <1
9

Nn

1 . i iTW,
37 2 XWDIGS = G < (2d — 1)
(7.15) o . /
Im[m&-(z, w)] + € + &7

Nnq ’

1 (Al AW,
3q 2 NIGE) = G| < (2d - 1)

j—i
as the proof is similar, we only give the details for the first inequality.
For those values j such that x(j) = 0, we use the fact that GE-ZJ-) and G;lj) are both O(1). Thus,

1 . D A o
(7.16) 77 2= XDIGT) G S N

J—1
since the sum is non-zero for < N¢ many vertices.
By the resolvent identity, we have,
(7.17) G%) _ G;-?TWS) + [G(iTWS)B*G|iTWS BG(zTWs)b_j,
Here, B is the adjacency matrix for the graph G between :TWgs and the complement.

We would also have,

(7.18) @%) _ ngTWs) + [G(i’ﬂ‘Ws)B*é(i)|ZTWSBG(1TWS)]J_J_.
Here, B is the switched adjacency matrix for the matrix G. We will consider the matrix product that appears
in the end (the GB*GBG) to be purely an error term.

We see that we have,

1 N1 AGTWs)
~ Z X(])|ij - ij |
Nd (j—i)EE

1 W, i iTW,
<Syi 2 2 2 1GRTBullGY mwlarl By Gy

(j—1)EE z,y€8(TWs) a,b€TWs

(7.19)

§(TWs) consists of the boundary vertices in G\{i} that border a vertex of T U Wgs. Now, for given = and y,
there are at most O(1) choices for a and b for which one would not have B,, # 0, and By, # 0. Now, we
argue that |[G|pyg]ap| is O(1) for all pairs of vertices a and b in T U W.

An application of the resolvent identity would give,

(7.20) Gab = G + Glax i3y (Gliaisny) T Gliiieny o

By applying our induction hypothesis from Definition 2.7 on the terms of G, we would know that G, and the
entries of Goxiirny and Gy ipnyxp are all O(1) quantities. One can also apply the induction hypothesis
and simple perturbation theory to show that the entries of (G|(; ;4 n}) ™" are themselves O(1) quantities. By
rearrangement, this means that
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1 . % 7 . % 7
r2) s X xOIEY -GS Y Y xoIe e

(j—i)€EE (j—=1)EE z,yed(TWg)
Now, we apply the Cauchy-Schwarz inequality to bound this by,
(7 22) i Z |: Z G(lTWS)l Z ( )|G ZTWS | :| 1/2
. Nd ' .
z,y€d(TWs) (j—i)EE (j—i)eE

We apply the resolvent identity again to relate GU'TWs) to G(TWs) | which we do have estimates to control.
Namely, we again see that,

(7.23) G(iTWs) _ GgWs) _ G(TWS)|j><{i,i+N}(G(TWS)|{i,i+N})71G(TWS)|{i,i+N}><m~

Jx

We know that the terms of GTWs)|; ;i\ ny are of O(1) by Proposition 2.16. Recall that since x(j) is 1,
7 must have a tree-like neighborhood of radius % in the graph G\(T U Wg); as i is a vertex adjacent to j.
Thus, we can apply estimates from perturbation theory to ensure that the terms of (G(TWs )|{i’i+ N})_1 are
O(1). From these two facts, we now can assert that,

(7.24) x(j )|G(1TWS 2 < |G(TWs)|2 I |G(']I‘WS)| ’

Now, by applying the Ward identity, we see that,

(TWs)1  Imm&(z,w)] +€ + &
(725) Z |G Z'JI‘VVS)|2 5 Im[GgJ ] S [ T( )] 51 '
(5—19) 77 n

We used the following triangle inequality to estimate G TWS

|G(TWS) m%_(z w)' <|G(TWS G‘”(E,It(Br(],g)aQO7QI))|

(7.26) _ )
+ |Gy (Ext(B,(4,9), Qo, Q1)) — Gjj(Ext(B(7,G), Moo, M)

The term G;(Ext(B,({j},G), Moo, Mso)) is the same as m%-(z,w). Now, we can estimate the first term on

the right hand side of the above inequality by € by using Proposition 2.15. The second term on the right

hand side of the above inequality is bounded by <t by our inductive hypothesis on the distance between

Qr/0 and M, from Definition 2.7 .

We can return to the expression in (7.22) to bound the quantity inside the square root by the term above.
Now, the number of  vertices on the boundary of TWy is less than (2d — 1); the same is true of y. Thus,
the outer sum in equation (7.22) will give a factor of no more than (2d — 1)2‘. This will give us the desired
inequality in equation (7.14). O

With this estimate on the difference between Q;/Qo and Q;/Qo, we can finally return to our proof of
Proposition 2.18 is simple.

Proof of Proposition 2.18. From Lemmas 7.land 7.3, we have a comparison between G and a P whose
extension is given by parameters Q)7 and Qo. The last Lemma 7.4 suggests that the difference between
Qr/0 and Q 1/0 are small enough that we can apply the perturbation estimates from Theorem 1.13. These
estimates are sufficient for the proof of Proposition 2.18. O
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8. CONCENTRATION ESTIMATES

The main issue with our stability estimate in equation (7.5) is the presence of the term whose decay is
ldj—d;|
d—1
that this error term came from estimating the following term,

( L ) © . As long as d; and d; are relatively small, this term will not decay as N and /¢ increase. Recall

1 -
m Z Pivlaplavj (G(T) - P(T))Ca70a'

While the triangle inequality will not show an improvement, the main point is that this new graph came
from random switching. Thus, we can try to apply a concentration argument to show that that the quantity
that appears above has superior bounds. Loosely speaking, the improvement will improve the constant
YoulPit P il to />, [P P, 12, Under the Iy norm on |P;;_||F, ;|, the branching factor of the tree
no longer cancels out the effect of the decrease. This is the main improvement that we want to seek. To
derive this improvement, we use the fact that the c,’s are randomly chosen, independent from each other.
Using this fact, one would expect better concentration results for most switching neighborhoods.

The main result of this section is the following Theorem,

Theorem 8.1. Let G be a graph from Q}g%o with £ neighborhood T. Consider the following weight families.
These weight families will allow us to understand Q.

(1) Let v be a vertex in T and let © be an index corresponding to v (so it is either v or v+ N ). Recall
our indexing of boundary vertices of T as l,. We define the in-weights w'™ := Py P, .. There are
S T| of these types of indices depending on the choice of the index x.

(2) If T is a truncated d-regular tree, fix a vertex k that is connected to o; assume for now that the edge
is oriented k — o. Define A to be a set of indices as follows. Consider a vertez l,, on the boundary of
T; if the path from o to v, does not pass through k, then we include the index o in A. We then define
the weight wi™ := PélzlPl(f)o P®) s q shorthand for G, (Ext(B.(T,G%),Qr,Q0)). If instead the

edge were oriented o — k, we would instead choose the weights Po(_lf_)N,la JDl((i)O+N, There are 2d such
weights of this type.
There exists an event Sc(G) C Sa(G) such that 1 —P(Sc(G)) = 1 —P(Sc(G)) — (IT| + d) exp[—(log N)?]
such that we have the following estimate,

S oGS x i oy — itV awsn (Bati(Br(ia, 6™),Q1,Q0))) — > wa(Qr — Yir(Q1.Q0))

Imm*] + € + & 1
N (10g N>6/1 /Z |woc|2 + ((2d - 1)22 N7 =+ Nc_l) + NI-c¢

Remark 8.2. We have a similar concentration statement to understand the concentration around Qo. We
do not write out the whole statement for simplicity, but mention the appropriate changes to the weights and

computed function. In the first type of weight family, we change the weights to w2t := x,la+~N]Dla+ Nz

(03
The function which we try to compute using concentration estimates will be of the form )  w.Ga, s, -

The proof of the above statement will be divided into smaller parts. Since the random variables a, are
chosen independently of each other given the graph, ég? +N.a,+n are random variables that are almost
independent of the weights w, and of each other . However, the fact that they are not truly independent
prevents us from directly applying standard concentration estimates. (The value of the Green’s function

ég) +N.a,+n does not depend on only the local geometry, but on the full graph structure of the switched
graph. Thus, changing the value of a, for a single «, while keeping all others the same, will have subtle
effects on Gg}’&ﬁ for 8 # «. The distribution of Gg)ﬁa will also depend on [, as well.) Our first step is to
derive concentration estimates for a closely related family of independent random variables.
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8.1. Concentration estimates for a related family of independent random variables. For a vertex
v € G, we use (vT) as a short way to express the union {v} UT. Also let x(-) is the indicator function of
the event that the vertex is question is of distance at least 22/4 from the vertices that bound T and that
the vertex in question has a radius 9/4 tree-like neighborhood. As a shorthand for what will follow, we will
define D, as a shorthand for the difference,

(8.1) Dgl = X(Ca)(G(b”T) - P(bWT))ca+N,ca+N7

whber{re recall that P(®=T) was defined to be the Green’s funcTtion of the extension
P = G(Ext(B.({i,5},6\(baT)), Q1. Q0)), while P’ is simply Gy;(Ext(B,({i,i}),6\T),Q1,Qo))-
Note that we specifically chose the unswitched graph here.

Lemma 8.3. Consider all of the families of weights ws as given in Theorem 8.1 Let Sc(G) C Sc(G) be the
set of switching events such that the following event holds for all of the weight families.

‘Zwal)ln Zwa - zr QI QO))

Imm%] + ¢ + &
(log N)é Wwe|? + (2d712e g +NC71).
D

Then, P(Sc(G) = P(Sa(G)) — (IT] + d) exp[—(log N)?].

(8.2)

Proof. We have shown in Proposition 2.15 that each of the differences satisfy |(G™ — P(M), ,y .. in| < €.

We can apply the resolvent identity to understand |G£b E ])v ot N P(b o ]\), ot ~|. First of all, we see that, for
edges (i — j),
iT) T —
(83) x(j )G§+NJ+N X(])(G;QN,jJrN -a® |j+N><{i,i+N}(G(T)|{i,i+N}) 1G(T)\{i,¢+N}xj+N)-
In addition, we have that,
T T _
(84)  xGPRjen = XDPEven = POliwsctiirny POlaaeny) POy sgn).

We have the estimate that |G — P(M| < ¢ from Proposition 4.3. We also know that entries of
(P(T)|{i,i+N})_1 are O(1) quantities when x(j) # 0, since, in this case, i has at least a radius R treelike-
neighborhood in G\T. This allows us to apply a simple perturbation argument to assert that,

XD G v piir vy (GO i) 'GP i nyxion
(8.5)
— PO v ity PO aieny) T PO vy xgen | S €

These facts ensure that,

. iT T
(8.6) X(])|G§‘+J)\7,j+N Pg(+1213+N| <¢,

uniformly. Furthermore, once we have fixed the graph G(T, the switched edges are chosen independently of
each other. This means that the variables D' are independent and identically distributed.
By Hoeffding’s inequality, we have the following probability bound,

(8.7) 1@( |wa (DI ~E[DF])]| > ¢y |wa\2e’) < exp|—t2/C),

for some constant C'. Here, the probability P and the expectation E is only over the randomness of the
choice of switched sets, only, not on the randomness of the random graph.
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Our goal now is to relate E[D*] to the quantities Q7. We first define the set £ () to be the set of all edges
in the complement of T in G. By definition,

(8.8) E[D™] HNGYT) -pi ).

J+N,j+N J+N,j+N

(1HJ)

We have earlier shown that all of these quantities are less than ¢ uniformly. In addition, we have that
1EM| > Nd - O((2d — 1)) > Nd — O(NC). By adjusting the normalization factor, we have that

in) _ (iT) N°¢
(8.9) E[Dg Nd Z j+N,j+N —Piiyn) + O (Nd) .

(i—3)

Now, we relate e NN tO G;fz)v j+N via the Schur complement formula. We can apply the same
argument as found in the proof of equation (7.15) to show that,

Imméd] + € + &
iT Sg
(8.10) d > x( J+N,]+N G.§+])V]+N‘ S (2d-1)% N7 :

(i—3)

Furthermore, x(j) = 1 implies that the vertex j has a radius 23/4 tree-like neighborhood ensures. Thus, we
have that,

(iT
(8.11) —Z NP N = Nd > x()Y1.0(Q1, Qo).
(4:3) (i—3)
For the remaining quantities with x(j) = 0, we know that P](QNJJFN is O(1) from Lemma 3.5. Using

Proposmon 2.15 would further imply that the entries e

terms > (11— x(]))G;ﬁN’jJrN by N¢ 1,
Combining these facts, we see that,

iinjon are also O(1). This bounds the sum of

Immé] + € + &

iny __ - . _1\2¢ -1
812 Y wnB(DT) = 3 wa(Qulaw) = ¥irlQi Qo)) + O((2d-1) N TN,
In the final line, we used the fact that ) wq < 1. O

To use our concentration estimates for the unswitched graph onto the switched graph We apply the
following lemma, which will show that the values of G(T)CQJr N,co+N are close to those of G (baT ot N cotN @S well
as similar results for the index c,.

Lemma 8.4. Assume that co has distance at least R/4 from all of the other vertices {ag,bg,cg}, f # o that
participate in the switching and that the pair cq, by is not Green’s function connected to {cg,bg} for B # .
Then, we have that,

(8.13) |G e | < (2d — 1)%¢?

Caaca C ;Ca
Proof. The desired estimate is a consequence of the following intermediate comparison estimates,
G — G| S (2d = 1)(9)?

(8.14) Coon av%
IGEIWs) — G, | < (2d — 1)1 (¢%)

The proof of both of these estimates are similar, so it will suffice to just prove the first one.
By the resolvent identity, we have,

(8.15) GO el Dl<| X D w)n Gl
z,y€Ws\bo
Now, the proof of Proposition 2.16 would also show that the elements Ggi‘f;r ) G?(,Ifcf ) are both < ¢.

Furthermore, Lemma 5.5 would show that |[(G (=T |Ws\ba )y | is bounded by € if x and y are not indices that
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correspond to the same vertex, while we can bound this by O(1) if they do correspond to the same index.
Using these facts, we see that the bound on the right hand side of (8.15) is (2d — 1)?¢? + (2d — 1)?*€¢’¢? which
is dominated by the first term.

For the term involving the switched graph, the Schur complement formula gives us,

(8.16) GO, 6T <| X (@B, () (BCE), . |

z,y€86(Ws)
where §(Wg) correspond to the vertices that neighbor those of Wg in G\Wg. We have shown earlier in
Proposition 2.16 that we can bound the entries of (G™s)B). ., and (B'G(™S$)), . by ¢. Furthermore,

we would also know that éﬁ) is O(1) if z and y correspond to the same vertex or is bounded by €’ otherwise
by Lemma 6.3. The same counting gives us the desired bound. (]

With these two lemmas in hand, we can return to a proof of Theorem 8.1.

Proof of Theorem 8.1. From Lemma 8.3, we know that Y w, D" is close to the desired estimate > wq (Qr—
Y »(Qr,Q0)) on the event ScG. It suffices to understand the differences,

(8.17) Z [wall D = (G4 oo n = Gt Nt N (Bt(Br (0, 6M), Q1, Q).

We know that for all terms in Which the pair cq, b, is not Green’s function connected to cg, bg for 5 #

that we know |C~7’((£)+N’GQ+N G(b M Naninl S (2d-1) £$? via Lemma 8.4. Furthermore, we would also know
that since a, would have a radius J1/4 tree-like neighborhood that,

(8.18) Gaot Nt N(Exti(Br(ia, G\T), Q1. Qo)) = Ga,+N.a.+N(Eati(Br(ia,6\T), Q1, Qo).

This deals with all except for O(1) many indices «. For the remaining indices, we may use the trivial
bound €.
Thus, we see that,

Zwa NS&N aoin — Gan+Nan+n(Exti(B (G0, G ), Q1,Q2)) Zwa 1 —Yir(Qr,Q0))
_ZwaDm—i—O Z|wa| (2d — 1)%¢? +max|wa|e)

Manifestly, maxq |wal€ is still less than (log N)e'\/>, |wa|?. Furthermore, we can use the fact that
Yo lwa| S 1 and the value of ¢ from Definition 5.2 to assert that we can bound ", |wa|(2d —1)%¢? < N1=¢

Since max, |we| decays as (d — 1)~%2, we have sufficient control of this completes the proof of Theorem
8.1. ]

8.2. Improved Bounds on G. Given the graph G in Q}S,q,o7 we choose a switching event S € Sg, that
belongs in S¢(G) as in Theorem 8.1. With these concentration estimates in hand, we are now in position to
prove improved bounds on our Green’s functions in order to prove Theorem 2.11.

Proof of Theorem 2.11. We consider the event S¢(G). The proof of Theorem 2.11 involves proving the three
estimates (2.13), (2.14), and (2.15).
We start with the equation (2.15). This is a rather simple consequence of the estimates of Section 7. From

Lemma 7.3, equation (7.9), we know that, |Go; — Poi| < %.

Poi = Goz(E-rt(BT(lTa g)7 Qla QO))7

In the above expression, we have to replace Q; and Qo with Q; and Qo as well as change the domain to
B,.({, 0} instead of B,.(iT).

First of all, we have bounds on the difference Q; — Q; as well as Qo — Qo from Lemma 7.4. Combining
this bound with a slight modification of the perturbation bound from Lemma 3.5.

Here,
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Namely, we have that,
|Goi(Ext(B,(iT, ), Qr, Qo)) — Goi(Ext(B,(iT,G), Qr, Qo))|

ist(2,5) B B
(8.19) < (25)"" U 0g NP1~ @il + 1Q0 — ol

/S (ﬁ)dis‘c(z}j)(log N)3 [

Im{m&(z,w)] + € + SL;

+(2d—1)* N }

1
N1l-c¢
Finally, we can use Lemma 3.7 to change the domain used in the Ext operator from B, (iT,G) to B, ({i,0}).
This introduces the terms involving |Q; + Qo — 2|, etc. on the right hand side of equation (2.15). Finally,
we can combine all of these estimates using a triangle inequality to finish the proof of (2.15).

We remark here that, for the purposes of an induction argument, it is important to ensure that the
% would be less than the original error term ¢ . This guarantees that a switching would give a
provable improvement to the error bounds. It is very important that we had the constant bound j(d) < %;
this constant bound is what allows us to compensate the (log N) factors that appear in ¢ with (d —1)%? in
the denominator.

The derivation equation (2.14) from equation (7.5) is quite similar to the strategy we used to prove
equation (2.15). On a high level, we know that G; should be close to Goi(Ext(B,(iT,G),Qr, Qo)) due to

the estimates from Section 7, specifically equation (7.5). We still need to replace the appearances of Q; and

term

Qo in this bound with the appropriate Q; and QQo. These rely on the same perturbation estimates we have
used earlier.

However, we now need to find an improvement in the second term of the right hand side of equation (7.5);
the first term is sufficiently small. Tracing through the proof of equation (7.5), This term comes from an
attempt to bound the term on the second line of equation (7.6). Namely, the sum of the on-diagonal terms.

1 ~
(8.20) —1 Z Py P, j(GD - pMy,

We can replace Pé(lr)ﬁa is defined with respect to the domain B, (¢, T, Q(T)). This can be replaced with the

,C

extension with respect to the domain B, (cq,G(™) with an error term of the same order of magnitude as the

right hand side of (2.14). Now, since }__ |P; 1. ||P.. il S1, it causes not issue to apply a triangle inequality.
After the appropriate replacement of the the domain of the extension, the term in (8.20) is controlled by

the estimates of Theorem 8.1. This completes the desired bound of equation (2.14). The proof of (2.13)

requires very similar manipulations as the previous two, but uses the second family of weights w, from

Theorem 8.1 rather than the first. U

APPENDIX A. COLLECTED ESTIMATES ON GREEN’S FUNCTION OF INFINITE GRAPHS

Al. Bounds on G;; for tree-like and almost tree-like graphs. Recall our inductive procedure to
compute for a directed tree, all Green’s function values (via the Schur complement formula), starting from
the solution me, of (1.30). The success of this procedure requires that the sum of |G;;|* over all vertices j

. . . . . . —dist(7,5) .
of graph-distance k from i, be bounded uniformly in k. While the naive bound G;; < ( d— 1) ist(3.4) is
not strong enough to compensate the branching factor of the tree, our next bound on m,, helps control the
latter branching factor.

Lemma A.1l. For some Cy = Cy(d), d > 3 finite, any z € C;, w € C and any solution mq, : C; — C of
(1.80), setting

d 2

Al X = |mso|?, Y i= ——|m¥d)? =
d—1""°°

d__ |w]ms|

4= 1o+ ghymao”
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we have that for some finite Cy = Co(d),
1
(A.2) Sp=1-X-Y> 538G A >0, |m34| < Gy |md-| < C.
Proof. Taking (1/-) of both sides of (1.30), results with

(A.3) — = .
Moo 2+ 7Moo

The imaginary part of this identity is precisely

S w]?(3(2) + 743(m
_Stme) __WPE ¥ a5700me)) o) gy,
Set I' := %?752) > 0 and multiply the preceding by ,\le??;loolj), to arrive after some algebra at
d
1 _ — — = —_—
(A.4) Sl=1-X-Y F(X+d_1Y).

With T' > 0, necessarily X +Y < 1 and in particular S(me) < v X < 1. The RHS of (A.4) is thus at least
(2)(1 = S;) and the LHS of (A.2) follows.
Next, the real part of the identity (A.3) amounts to

R(meo)  |w]*(R(2) + 75 R(me))

Imeol? |z—|—ﬁmo@\2

—R(z) — R(meo)-

With X,Y € [0,1], it follows after some algebra that

R(mos) %Y - X 1

= > .
R(2) 1-Y+X = 2

Since $(Mmeo) > 0 and I(z) > 0, this implies in turn that also (Mmoo /2) > —1/2. With |m| < 1, we thus
deduce from (1.31) that for any d > 3,

114 Mmoo /2] 14 S|

sd
Moo S — = {77 } = C() d
el S T ] = e i 4 sy T O
is finite, as claimed.
Now, for m%i—, we see that we have,
1 |wl|? z+dm 1 ms
mg—iz—ﬁ—ﬁdlmoo d—1 7 Moo d—1
(A.5) -
_ (A1) —m3
(d—=1D)mee
Thus,
d—1)|meo| d—1
A6 a_ =

O

Using Lemma A.1, we next show that ZyeaBk(f) |G#,4|? is bounded, uniformly in k, for any one of the
directed trees of interest to us. This computation from the root is relevant for the coeflicient of various first
order terms that will appear in our perturbation series.
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Lemma A.2. For the trees Ty and T2 from Definition 1.10 and any k > 1,

Al,k = Z |(G7'1)f+N,v+ov‘2 5 1,
vEIBE (),04 BN
(A7) €0By(7),0,€{0,R} i
A2,k = Z |(G7’2)f,v+ov‘ 5 1,

vEDBY (7),0,€{0,R}

where the implicit constants do not depend on k. The corresponding quantities for the Green’s function G
of the ‘pure’ d-reqular directed tree, are also bounded uniformly in k.

Proof. Suppose | € T; and # = vg,v1,...,vx = [ is the (undirected) path in 77 from r to . Note that upon
removal of the edge from r to vy, the vertex [ is in a copy Tlm or 7~2(f)7 respectively, of 71 or T rooted at
vy. Thus, similarly to the derivation of (1.27)-(1.28), but now utilizing (1.25), we get in case of an out-edge
from 7 leading to vy, that

-1
(Gr)ipniro = 2= (GT)rm s (G o ivor
(A.8) )
(ER)iire, = 7= (CT)r i (Gro Junitor
whereas if an in-edge of 7 is connected to v1, we get instead that
1
(GT)ii40, = — (G700 40 (G) Jon o »
(A.9) 1
(Gn)rivo = 7= (G )r i (G Jur o -

We take |-|2 of both sides, sum over o; and all vertices [ € By (#) and substitute our expressions (1.30)—(1.31)
for (G)itxnss (G )i ian, (G7)eiex and (G, )s.z, to arrive at the following recursion relations

Al,k = YAl,k—l + XAQ,k_17
Aoy = XAy g1 + YAz j—1,
in terms of (X,Y") of (A.1). Solving the recursion (A.10) leads to

k
Al,k . Y X AI,O
(A1 {Alk] - {X Y] {Azo '
The central matrix has eigenvalues Y + X. From (A.2) we know that |Y &+ X| < 1, which upon transforming
into the basis of eigenvectors, suffices for the uniform in k boundedness of A, and A k.

In case of the tree T, we derive the corresponding recursion via the Schur complement formula after the
removal of the root. Indeed, we have that,

(A.10)

> NG otral = T (@)oY (Cr)sinsral
(A]_Q) l€OB(T),0, ; 1€OBk_1(7),01
+ HKGT)Mo,:,f’JrNP S UGl
1€0B_1(7),01
We conclude by observing that both terms are bounded, uniformly in k&, per (A.7). |

Proceeding to generalize the computation in Lemma A.2 to other higher order terms in perturbation
expansions, we first prove a general factorization property of the Green’s functions on directed trees.

Lemma A.3. Denote by p the path in T, Ti, or Tz, between two indices x and y (each being either u or
u+ R for some vertex ). For T1 and Tz, specify the root as 7 and denote by x Ay the common ancestor of
x and y of the largest depth. Let E, denote the types of the pair of edges in p adjacent to each vertex v € p

(i.e., whether they are in-edges or out-edges). For some explicit function K(E) < \/% depending only on
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z,w,d and the edge types and some universal constant C, we have the following bound on the corresponding
Green’s function

(A.13) Gyl <C I KB,
vEDP
VET,Y,TNY
uniformly over w € D, a fixred compact region in C (where v # x Ay means that v is not the ancestor of the
points x and y on the path to the root in Ty and Tz.)

Remark A.4. While this shows that G, , has ‘nice’ factorization properties, one has to be careful here.
Indeed, (A.13) is more complicated due to the dependence of G, on the specific orientations along the path
connecting = and y.

Proof. In principle, this factorization is a consequence of the Schur complement formula. However, as
mentioned, one has to be aware of the orientations along p while performing a case by case analysis. First,
if either the index x or y corresponds to the root vertex, then (A.13) is fairly straightforward. Indeed, as
we saw in the recursions (A.8)-(A.9) leading to Lemma A.2, in this case each of the K(E,) is the absolute
value of one of (G7;)v4r,v, (GT3)vir,v4x, (GT3)v,0 OF (G3)vwgn times \/%. Further, for any intermediate
vertex v € p, v # x,y, the specific Green’s function entry to choose among these four options depends only
on the orientation of the edges along p immediately before it and immediately after it. Each of the factors
corresponding to our pair of fixed indices x and y is covered by a universal finite constant Cj as long as |w|
is uniformly bounded.

Since T is regular, in that case we shall assume with no loss of generality that z is the root. The more
delicate case is when neither of x or y are at the root in either 77 or 75. Due to duality, it suffices to proceed
with the detailed analysis only for 77, and we assume first that A y # 7 and denote by ¢ > 1 the length of
the path pyn, from 7 to z A y. Denoting by c the child of # which is on this path, upon removing the edge
from 7 to ¢, we get from (1.26) that
(A.14) Gay=G) + ﬁcggﬁ(aﬂ)%o,ﬁo(;ga,y
o and 6 are either X or 0 depending on the orientation of the edge connecting ¢ to . The quantity (G7;)c+o,c+o
is either m, or m2¢ and in either case bounded in absolute value by the universal, finite Cy. Note that the

tree Tlm after the removal of r is either a 77 rooted at ¢ or a Tz rooted at c¢. Thus, following (A.8)-(A.9)

yields the product bound of (A.13) for both Ggfl 45 and GS—?(),y' Combining the latter two bounds gives the
terms K (E,) for all vertices v € p except possibly x, y and x Ay, as well as the product of K(E,)? < ﬁ

over all u € pgpay, u # 7. Consequently,

Gyl <IGEI+CoE-1™ ] K(&).
veEP
VET,Y,TNY
By the preceding reasoning, when starting with G;T; instead of G 5, we get the same bound on the second
term on the RHS of (A.14), except for reducing £ by one. Thus, setting C; = C3 Y, 5.(d —1)7F, i >0, and
iterating till all that remains from p,., is the common ancestor = A y, we conclude that

(A.15) Gyl <HG7 el +Co [ K(E),
vep
VET,Y,TAY
where 7, is either a 7y tree or a T3 tree, now rooted at x A y. Turning to deal with |(G'7,))z.y|, we appeal
once more to (1.26), where since now # = x A y, the first term on the RHS is zero at z,y. Assuming WLOG
that 7(,) is a 71 tree and with ¢, # ¢, denoting the children of z A y along the path p, and p, leading in
that tree to = and y respectively, we find that

1
(A.16) (GT(*))x,y = HG:&&I+51 (Gﬂ)r+ol,r+02GEZ)+62,y’
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where G*) denotes the Green function of Too\(x Ay), and 0;, 0; are 0 or R, depending on the types of
edges connecting ¢, and ¢y to z Ay. We use as before the factorization properties of the disjoint sub-trees
of Tt \(z Ay) containing = and y, to see that

G al<c I K@), 160, <0 ] EE).
VEPL VEPy
vET,xA\Y vEY,TAY

Plugging the latter bounds and our usual bound |(G7;)sit01.r+0.] < Co into (A.16) then combining with
(A.15), we finally arrive at (A.13) (with C' = C; a universal constant). O

Building on the preceding factorization property and bounding the expressions {K(F,)}, we now gener-
alize Lemma A.2, starting at any = € 77 (and not only at its root).

Lemma A.5. Let ICyy denote the RHS of (A.13). Then, for the tree T with root r, uniformly in k > 1,
w €D compact and x € Ty,

(A.17) > Knl Sk
yE By (x)

Proof. Let p, denote the path from x to the root 7. Let v; denote the vertex on p, that is of distance [ from
xz. We let C(v;) denote the children of v; that are of distance less than k — [ from v; aside from those that
can only reached using an edge of p,. The product expression (A.13) gives us,

k 1 -1

yEBg () =0 z2€C(vr)

Now, our main observation is that |K,,.|? can be roughly understood as | P,,.|? in a tree that uses v; as a
root. More formally, let chi,..., chb,; , denote the direct children of v; in C(v;) and let C(ch!,) denote the
children of ch!, in C(v;), while we let T, denote the tree with root chl,. We see we have,

2d—1
(A].g) Z |]Cvlz|2 = Z Z |Gchﬁn,z|2'
z€C(vy) m=1 zeC(chl))

Each of the internal sums on the right hand side can be explicitly computed and shown to be < k — 1 by
Lemma A.2. The outer sum will just give a constant factor outside. Finally, we can evaluate the full sum
in equation (A.18). The summability of the exponential series will show that this will be bounded by some
universal constant times k, as desired. O

The following lemma allows us to generalize our bounds on the decay of Green’s function values with
distance to the case of almost tree-like graphs with at most one cycle. The most important part is the
relation of the Green’s function of the graph to the Green’s function of the simply connected cover, which is
the infinite tree.

Lemma A.6. Consider a digraph G with excess at most 1; leti and j be vertices in G. Let py be the shortest
path connecting i and j in G and let ps be the second shortest non-backtracking path connecting i and j in
G. Furthermore, let sp1 be a sequence of symbols fw or rv indicating whether each edge in the path p1 were
traversed in the forward or reverse direction, and let sps be the same object for the path ps. Given these
sequences sp1 and sps, consider the ‘pure’ infinite tree T and vertices v1 and vo in T that are reachable from
the root 7 using a sequences of edges that match sp; and sps, respectively. For example, if sp1 involved only
forward edges, then vy should be a vertex that is reachable from 7 using only forward edges.
We can derive the following estimate on the Green’s function extension,
|G(Ezt(G, Moo, Moo) )itor,j+0; | S [(GT)i+oi,01+0;| + [(GT)it0;,05+0,
(4.20) _ [max{lmee], [meety 17
~ d—1
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Here, 0; and o; can be 0 or X to distinguish the two indices that correspond to the same vertex.

Remark A.7. In the top line of the preceding bound, we distinguish the specific edges that are used in the
path connecting 7 and j in order to be able to derive sharp bounds when large neighborhoods are considered.

Proof. The extension of Ext(G, ms, Ms) involves adding an appropriate infinite tree to every boundary
vertex of the digraph G that does not yet have full degree. Since we have assumed that the digraph G has
excess at most 1, this would imply that there is at most one cycle in the extension graph.

Now, we can always relate the Green’s function of a graph to its infinite cover as follows. First, we remark
that the Green’s function is the unique solution to the following system of equations,

Oir, + 2Gi, = WGy k + —F—— \/ﬁ Z Gryijk

(i—j)eE

1
2Gintk = WGR iRtk + \/f Y Grijnen

(i—j)eE

Z Gjk

(]—)z)GE

(A.21)

2Gyyife = WG +

T

Oik + 2Grtintk = WG ngk + Z Grtj, Ntk
\/7
(j—i)EE
We argue that if we have a new graph H , with Green’s function G’, that is a lift of the graph H, with

covering map w. Then, we would have the following relationship between the Green’s function G of the
original graph and the Green’s function of the covering graph.

Gij= >, Gu

y:r(y)=j
Grrig= ) Griay
(A.22) yi(y)=j
Gijx = Z Guxty
y:(y)=J
Gz‘+N,j+N: Z GerN,erN-
y:(y)=J

Here, z is a vertex in H that maps to ¢ under the map m; the value on the right hand side does not depend
on the choice of x due to translation invariance. It is implicitly implied that the above results hold as long
as the quantities that appear on the right hand side are convergent. In order to check the above relation,
we substitute the proposed equalities in equation (A.22) into the defining equations of equation (A.21) and
check that equality holds. This mainly involves realizing that if we choose 7 so that ﬂ(i) = 4, then we can
parameterize the vertices j such that i — j is an edge by some lifted vertex j such that ﬂ(j) —jand 71—
is a edge in H. This confirms the first two equations in equation (A.21). We can do the same thing for edges
j — i as well, and this verifies the last two equations of (A.21).

We can use the above formula to compute the Green’s function of Ext(G,mu, M) by setting H =
Ext(G, Mmoo, Mso) - This graph has only one cycle due to our assumption on the excess; thus, the covering
graph H is an infinite tree. The preimage of any vertex ¢ € H will correspond to the set of non-backtracking
paths in H. Eym(y): ; now merely correspond to a ‘sum’ over non-backtracking paths.

For points ¢ and j that are of distance k in H, the non-backtracking paths all have lengths at least k
and the different non-backtracking paths have length that differ by |C| where |C] is the length of the unique
simple cycle in H. Recall that p; was the shortest path between ¢ and j while p, was the second-shortest
non-backtracking path between ¢ and j. We have the following structural properties on the paths p;. We can
divide p2 as Q;UCUQ, where C'is the cycle and further shortest backtracking paths p; are Q;UCU...UCUQ,
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where there are 7 — 1 copies of C. The path p; must be either included completely in @), or equal to the
union Q; U Q,.

We also have the following property, let v be a fixed lift of ¢ in H and w; be the lift of jin H that is
closest to v. Then, if p; is the path between v and wy, and sp; is the set of labels ( either f or b) of the
edges of p1, then sp is the same sequence as sp;. In addition, let ws is the lift of j in H that is the second
closest to v. If ps is the path between v and ws, and sp, is the set of labels of this path, then sp, is the
same as sps.

Thus, we see that

1
_ Imeo|VImued]

|G (Bxt(G, Moo, Moo)| Z (G7)owwn| < GT) ool + (Gl
n=1 d—1

Here, wy, is the nth closest lift of j to v. To derive the final inequality, we used the decomposition of G found
in Lemma A.5. The paths p; have (j — 1)|C| more K factors than p,. We can thus apply a geometric sum
for these terms. |

As a simple corollary of this estimate, we can readily show that we have the same type of estimate for
the first order term in perturbation series as in Lemma A.2. Later, we will show more general estimates.

Corollary A.8. Let G be a graph with excess at most 1. Fiz a vertex i in G and let Ry denote all of the
vertices in G of distance exactly k from i in G. Then, we have the following estimate,

(A.23) Z |Gij (Bt(G, Moo, moo)* S 1.
JER

Proof. A graph with excess 0 would correspond to an infinite tree after the expansion, so this estimate is
already known.

We can understand graphs of excess 1 by, again, referring to the infinite cover of the tree. Recall that we
have,

(A24) G” (Ext(gymoo7moo Z GT ’U’wz)
=1

where v is a fixed lift of ¢+ and w; is a set of lifts of w in order from closest to most distant. Furthermore if j
is of distance k from 4 then w; is of distance k from v and ws is of distance > k + |C| from wv.
The Cauchy-Schwartz inequality will show that,

(A.25) | Z(GT)vwz|2 < Z (GT)vw, ‘26[0 Ze—lé) S |(GT)vw1|2 + |(GT)vw2|2~
=1 =1 =1

‘mcClv‘m“{]dl

Setting 6§ = —1 log e, makes sure that the infinite sum o2, e Yis finite. Furthermore, [(G7)puw, %€’

G vw
will still have exponential decay since the factor e? is chosen to be smaller than the ratio ((g;%
’U’U.)L

By applying this inequality to all vertices j that are in Ry, we see that we can bound,

(A.26) DG (Bet(Gmee,ma))P S Y [(Gr)ewl* S 1.
JER 1UES;€US;€+‘C‘
Here, Sj denotes the elements that are of distance k from v in T. O

A.2. Comparison of Stieltjes transforms.

Lemma A.9. We show the following equality between the Stieltjes transform proposed in equations (1.51)
and those coming from free probability computations as in [3]:

m&(z,w) = Vd — Im,(Vd — 12,Vd — 1w).

0
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Proof. First, notice that if we remove the scaling of edges in the adjacency matrix by \/% , then the

corresponding equations for m., and m%l- would be,

— Z 4+ dmso
0 |wl? - (z+dms)(z 4 (d — 1)mo)’
(A.27) ] 2+ dima
mr =

w2 — (2 + dmoo)?

Consider Ty, our infinite d-regular digraph tree; from this, pick a subgraph S;_; in 7y that is isomorphic
to the infinite d — 1 regular tree Ty_1. For every vertex v that is part of S;_1, there will be one edge, i,, into
it and one edge, o0,, out of it that will be part of the original graph 74, but will not be part of the subgraph
Sq—1. If we remove the edge o,, the connected component remaining that is totally disjoint from Sy_; will
be isomorphic to 7; (the 2d — l-ary tree). If we remove i,, the connected component remaining that is
totally disjoint from Sy_1 will be isomorphic to 72. For |z| > (d—1)+|w|?, we compute the Green’s function
of the Hermitized (unscaled) adjacency matrices of T4 by counting paths and carefully tracking where such
paths uses edges of Sy—1. (We will naturally consider w and w* to correspond to a weighted self-loops at
the appropriate vertex.)

Consider trying to compute (G,)# at the root . For its first step, it could either take an edge that is
part of Sy_1 or else it could take the outedge o;. If the path takes the outedge o7, the path will perform a

walk in 77 before returning to the root by traversing o; in the reverse direction. The weighted contribution
Moo (2)

of paths that take this option would be , corresponding to the weighted contribution of walks that
return to the root in 7. Before the walk takes an edge that is part of Sy_1, it could repeat this process
indefinitely. Thus, the total weighted contribution of paths that could occur before the walk’s first step in

Sd71 iSa

i (moo )’f 1

) T 1 _m=-
P 1=
If the path takes an edge that is part of S;_1 to get to the vertex p, we can repeat a similar argument.

Either the next step after this is also a part of Sy_1 or it could take the inedge i,. (Note that this is still
true if we took the weighted edge corresponding to the self loop.) We can count the contribution of all paths
that use the inedge i, as 1—& If we repeat this argument as we traverse edges of S;_; we see that mg—
can be expressed as follows. Let Sy denote the total weight of all paths in S;_1 that use k edges.

IS 1 o
d _ = Ok -
k=0 z
Thus,
(A.29) m$ =mét (2 — mao(2)).

(A.30) i*ﬂf( +dmes) = [wl? —(z4+(d—1Dms) — meo(z) = —m ()+i
' m%-iz—l—dmoo § T 2+ dmao(2) * o coNT T ool% Moo

Solving the quadratic gives,

-1 1+ 4m?
(A.31) M = =V L AMG

Returning to equation (A.29), we see that,

(A.32) mi(z) =m& |2 —
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This is the same recursion as in equation (4.6) of [3]. Notice that though we only confirmed the identity
for |z| > (d — 1) + |w|?, the identity would hold for all values of z by analytic continuation. To fully confirm
the equality of Green’s functions, it suffices to show the equality of Green’s functions when d = 1.

When d = 1, we have to solve the quadratic,

1 2
(A.33) mio—l—moo[z—i-z—'u;l]—i-lzo.

|w]?

Setting the quantity A = z + % , we see that we have,

—A- AT ]

z

(A.34) Moo =

2
and, using (A.30), we see that,
1 1 1
T 2
)
_ z
V41— w2)? 42
L z
(A.35) VEEF 22 41— [w]?) (22 =22+ 1 — [w]?)
z
VI(E+1)? = [wP)((z - 1)? = [w]?)
L z
V0+1-Ju)(z+1+[wl)(z - 1= [w])(z -1+ w])
z
VE = (1= )7 = 1+ [w])?)
This Green’s function can be checked to correspond to the density of equation (4.1) in [3]. ]
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