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Abstract—Digital twins (DTs) can enable precision healthcare
by continually learning a mathematical representation of patient-
specific dynamics. However, mission critical healthcare applica-
tions require fast, resource-efficient DT learning, which is often
infeasible with existing model recovery (MR) techniques due to
their reliance on iterative solvers and high compute/memory de-
mands. In this paper, we present a general DT learning framework
that is amenable to acceleration on reconfigurable hardware such
as FPGAs, enabling substantial speedup and energy efficiency. We
compare our FPGA-based implementation with a multi-processing
implementation in mobile GPU, which is a popular choice for AI in
edge devices. Further, we compare both edge AI implementations
with cloud GPU baseline. Specifically, our FPGA implementation
achieves an 8.8× improvement in performance-per-watt for the
MR task, a 28.5× reduction in DRAM footprint, and a 1.67×
runtime speedup compared to cloud GPU baselines. On the other
hand, mobile GPU achieves 2x better performance per watts but
has 2x increase in runtime and 10x more DRAM footprint than
FPGA. We show the usage of this technique in DT guided synthetic
data generation for Type 1 Diabetes and proactive coronary artery
disease detection.

Index Terms—digital twin, hardware acceleration, precision
healthcare, synthetic data generation

I. INTRODUCTION

A key technological innovation towards physical AI [1] is the
concept of digital twin (DT). DTs are mathematical models
of physical processes with two essential properties: a) the
model structure is guided by first-principle satisfied by the
physical process, and b) the model parameters are continuously
calibrated with real world data in real-time. A major application
of DT is in precision medicine, which brings a fundamental
shift in disease management from decision making based on
statistical inferences of individual variance of treatment efficacy
to patient specific evaluations leading to just-in-time diagnosis,
personalized treatment, and individualized recovery as shown
in Figure 1.

A continuously calibrated DT can be used for simulating
various potential treatment plans for their safety and efficacy
on the specific patient [2]–[6], derive a personalized verified
safe and effective plan [7], [8] or identify novel operational sce-
narios [9]. Given the mission critical nature of the application
of precision medicine, the calibration, simulation and safety /
efficacy feedback has to be performed within time constraints.
These constraints are application specific and guided by hazard
evolution dynamics [10] as shown in Table I.

A. Computational Challenges of DT Learning

Automated continuous learning of DT in real-time is a major
scientific challenge in the age of physical AI.
Real-Time Challenge: The primary computational component
of DT learning is physics-guided model recovery [11], where
the model coefficients of a first-principle based differential
dynamics is learned from real data under constraints of sam-
pling, implicit or unmonitored dynamics, and human errors.
The computational needs of physics-guided model recovery
(MR) may prevent real-time operation even with parallelization
with state-of-the-art (SOTA) multi-processing pipeline. Table
I shows that the time to learn an application specific DT

exceeds the response time required to avoid medical hazards.
One of the fundamental reason is that analytical operations with
physics-guided models require solution of differential dynamics
which are iterative in nature. Such iterative operations are
not amenable for parallelization. As such the SOTA multi-
processing pipeline is less effective in real-time DT learning.

TABLE I: Use of digital twins to provide personalized
feedback in precision healthcare applications. The table
summarizes application-specific response time requirements
and digital twin (DT) learning times on a SOTA GPU
(NVIDIA RTX 6000).

Domain Hazard Feedback Response
Time

DT model GPU
Time

Data trans-
fer time

Diabetes
[11]

Hypo-
glycemia

Change
insulin rate

900s Bergman minimal
metabolic model

1412s 27s

Cardiac
disease [12],
[13]

Ischemia Alert first re-
sponders

100s ECG generative
model

452s 81s

Brain
sensing [11],
[14]

Attention
deficit

Audio-visual
cues

33ms Resistance capac-
itance model

321s 125s

Edge AI [15] Challenge: Data driven inferencing in real-
time suffers from data transfer bottleneck (Table I shows data
transfer times in medical DT applications forms a significant
percentage or even exceeds response time). Recent advance-
ments in edge AI aim to bring DT learning computation closer
to data source, potentially bypassing the data transfer time.
However, edge AI devices such as mobile GPU are resource
constrained and hence may not be capable of DT learning
within real-time constraints.
Real World Challenge: Data obtained from real world de-
ployments of healthcare systems are restricted in sampling
rate, and often compromised signal quality with potentially
poor signal-to-noise ratio (SNR) especially when collected
from human participants in free living conditions [16], [17].
Moreover, privacy constraints may lead to unavailability of
measurements of key dynamical parameters of the DTs. Hence,
any DT learning mechanism in the real world require to learn
implicit or unmeasured dynamics. Recently physics-guided
sparse model recovery techniques such as Physics Informed
Neural Networks (PINNs) [18] or Physics informed Neural
ODE (PiNODE) [19] or Extracting sparse Model from ImpLicit
dYnamics (EMILY) [16] have been proposed to tackle implicit
dynamics under low sampling frequencies. These techniques
calibrate DT with real world data by following the Koopman
theory [20]. The techniques attempt to learn a Koopman opera-
tor [20] that models the first-principle based DT dynamics using
an expanded sparse state space where the dynamics become
linear. The techniques utilize the universal function modeling
capability of neural networks to learn the implicit dynamics
while maintaining robustness to sensor noise. However, apart
from the significant computational requirements of solving an
Ordinary Differential Equation (ODE) in each learning step,
these techniques also suffer from high memory requirements
to store the expanded state space during computation. Hence,



Fig. 1: Real-time digital twin learning for precision healthcare applications such as Diabetes Care.

although these techniques are capable to calibrate DTs with
real world data, they may not meet the real-time requirements
and resource constraints of edge devices to support edge AI
applications.

B. Contribution of manuscript

The hardware acceleration of physics-guided model recovery
techniques remains a relatively underexplored research area,
particularly in terms of evaluating their feasibility for meeting
the timing and resource constraints of edge AI applications.
In this paper, we demonstrate a pathway towards hardware
acceleration of physics-guided model recovery such as PINNs,
PiNODE, and EMILY to enable real-time DT calibration for
precision healthcare. We show the application of hardware
acceleration of DT learning for two exemplary medical applica-
tions on insulin management for Type 1 diabetes and coronary
artery disease detection using electrocardiogram (ECG) sensors
and show a feasibility analysis of hardware acceleration in
meeting timing and resouce constraints of edge AI applications.

II. PHYSICS-GUIDED MODEL RECOVERY

The primary objective of MR is similar to an auto-encoder
(Figure 2), where given a multivariate time series signal X(t),
the aim is to find a latent space representation that can be used

to reconstruct an estimation X̃(t) with low error. It has the
traditional encoder ϕ(t) and decoder Ψ(t) of an auto-encoder
architecture. MR represents the measurements X of dimension
n and N samples as a set of nonlinear ordinary differential
equation model in Eqn: 1.

Ẋ = h(X,U, θ), (1)

where h is a parameterized nonlinear function, U is the m di-
mensional external input, and θ is the p dimensional coefficient
set of the nonlinear ODE model.
Sparsity: An n-dimensional model with M th order nonlin-
earity can utilize

(

M+n
n

)

nonlinear terms. A sparse model only

includes a few nonlinear terms p <<
(

M+n
n

)

. Sparsity structure
of a model is the set of nonlinear terms used by it.
Identifiable model: A model in Eqn. 1 is identifiable [22], if

∃ time tI > 0, such that ∀θ, θ̃ ∈ Rp:

∀t ∈ [0, tI ], f(X(t), U(t), θ) = f(X(t), U(t), θ̃) =⇒ θ = θ̃. (2)
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Fig. 2: FPGA acceleration strategy [21] using neural
flow-based equivalent architecture to neural ODEs.

Eqn. 2 effectively means that a model is identifiable if two
different model coefficients do not result in identical measure-
ments X . In simpler terms, this means ∀θi ∈ θ, dX

dθi
̸= 0. In

this paper, we assume that the underlying model is identifiable.

Problem 1 (Sparse Model Recovery). Given N samples of
measurements X and inputs U , obtained from a sparse model

in Eqn. 1 such that θ is identifiable, recover θ̃ such that for X̃
generated from f(X,U, θ̃), we have ||X − X̃|| ≤ ϵ, where ϵ is
the maximum tolerable error.

Role of NODE: Both EMILY [16] and PINN [18] utilize
a layer of NODE cells in order to integrate the underlying
nonlinear ODE dynamics. NODE cell’s forward pass is by
design the integration of the function h over time horizon T



with N samples (Fig. 2). This effectively requires an ODE
solver in each cell of the NODE layer:

z(t) =

T
∫

0

h(z, u, θ)dt, (3)

where z ∈ Z and u ∈ U are each cells output and input. The
results are then used further in the EMILY or PINN pipeline
to extract the accurate underlying nonlinear ODE model.

III. HARDWARE ACCELERATION OF PHYSICS-GUIDED MR

A primary challenge in accelerating MR techniques lies
in the iterative nature of ODE solvers, which are required
for solving NODE cell operations during the forward pass.
Recent works have explored the acceleration of standalone
ODE solvers [23], [24], but these solutions assume fixed ODE
model coefficients. Such fixed-coefficient approaches are not
suitable for PiNODE, which requires solving a large number
of ODEs with dynamically varying model coefficients, making
traditional acceleration methods ineffective for generalizable
MR architectures. We leverage the theory of neural flows [25]
to develop an alternative neural structure that is mathematically
equivalent to the NODE layers used in EMILY, PiNODE, and
PINN while being more amenable to FPGA acceleration (Fig-
ure 2). Instead of using a conventional NODE layer, we apply
a layer of invertible functions designed through a combination
of Gated Recurrent Units (GRUs) and a dense layer of neurons
with nonlinear activation functions. GRU [26] are a type of
recurrent neural network (RNN) architecture that introduces
gating mechanisms to control the flow of information over
time. Compared to traditional RNNs or LSTMs, GRUs are
computationally efficient and require fewer parameters [27],
making them favorable for deployment on resource-constrained
platforms such as FPGAs.

FPGA (Field-Programmable Gate Array) is a reconfigurable
semiconductor device that enables developers to implement
custom digital circuits directly in hardware [28]. Unlike fixed-
function processors, FPGAs consist of an array of Configurable
Logic Blocks (CLBs), Look-Up Tables (LUTs) for implement-
ing combinational logic, Flip-Flops(FF) for sequential logic,
and programmable interconnects [29]. FPGAs also incorporate
on-chip memory resources, such as Block RAM (BRAM)
and UltraRAM (URAM), as well as Digital Signal Processing
(DSP) slices optimized for arithmetic-intensive operations.

One of the primary challenges in FPGA design lies in
efficiently mapping high-level algorithms onto limited hard-
ware resources while maximizing performance. Loop-carried
dependencies—such as Read-After-Write (RAW), Write-After-
Read (WAR)—can inhibit effective pipelining, and reduce
throughput. In addition to control hazards, memory access
patterns pose a significant design challenge. FPGAs feature a
hierarchical memory system including block RAM (BRAM),
Look-Up Tables (LUTs), and registers(FF), all of which must
be judiciously partitioned and scheduled to avoid access bot-
tlenecks and ensure data locality.

In our design, we address these challenges through two key
techniques: array partitioning and loop pipelining, both guided
by high-level synthesis (HLS) directives. The FPGA kernel
interfaces with the processor using an AXI4-Lite protocol,
after which input data is transferred to on-chip memory. We
apply full array partitioning using the directive #pragma
HLS ARRAY_PARTITION complete, which instructs the
HLS compiler to map each element of the input array to an
independent storage resource—such as a dedicated register or
BRAM segment. This partitioning strategy eliminates inter-
element memory conflicts and enables parallel access to the
data elements.

We then construct a fully parallelized model recovery
pipeline on the FPGA. All major computational

stages—including the forward pass, backpropagation, and
loss computation—are pipelined using #pragma HLS
PIPELINE II=1. Once the inputs are partitioned and
loop-carried dependencies are removed, this setup achieves
an initiation interval (II) of 1, allowing a new iteration to
begin every clock cycle. This significantly boosts throughput
and latency performance. There can be the violation of loop
dependency in the simulation. In order to eliminate RAW and
WAR hazards, we need to test #pragma HLS PIPELINE
II=2 or #pragma HLS PIPELINE II=3, which means
a new iteration begins in every 2 cycles and 3 cycles. If there
is no time violation in the simulation, it means there are no
RAW and WAR hazards. However, more cycles mean more
latency in the pipeline of computation.

IV. EDGE AI FEASIBILITY EVALUATION

We explore the feasibility of real-time DT calibration using
real-world data in the edge for two exemplary applications
of insulin management and electrocardiogram monitoring for
coronary artery disease detection.

A. Applications

Automated insulin delivery (AID): For the insulin manage-
ment system the digital twin took the form of Eqn: 4 - 6

δ̇i(t) = −nδi(t) + p4u1(t) (4)

δ̇is(t) = −p1δis(t) + p2(δi(t) − ib) (5)

δ̇G(t) = −δis(t)Gb − p3(δG(t)) + u2(t)/V oI, (6)

The input vector U(t) consists of the overnight basal insulin
level ib and the glucose appearance rate in the body u2. The
output vector Y (t) comprises the blood insulin level i, the
interstitial insulin level is, and the blood glucose level G. In
AP, only the blood glucose level G is an measurable output. is
and i are hidden states that are not measurable but contribute
to the final glucose output. p1, p2, p3, p4, n, and 1/VoI are all
patient specific coefficients.

The DT was calibrated using the real-world OhioT1D dataset
available in [30]. It is 14 time series data of glucose insulin
dynamics. Each time series data had a duration of 16 hrs 40
mins which amounts to 200 samples of Continuous Glucose
Monitor (CGM) and insulin data.
Cardiac Digital Twin: The cardiac digital twin is based on the
ECGSYN model [31], the state variables (x, y, z) evolve as -

ẋ =
(

1 −
√

x2 + y2
)

x − ω(t) y, (7)

ẏ =
(

1 −
√

x2 + y2
)

y + ω(t) x, (8)

ż = −
∑

i∈{P,Q,R,S,T} ai ∆θi exp
(

−
∆θ2

i

2 b2
i

)

−
(

z − z0(t)
)

, (9)

where ∆θi =
[

θ(t) − θi
]

mod 2π, θ(t) =
atan2(y, x), ω(t) = 2π

r(t) , z0(t) = Ab sin(2πfrespt).
Variables are defined as: [x, y] coordinates on the unit

circle governing phase dynamics, [θ(t)] instantaneous phase
2(y, x), [ω(t)] angular velocity set by the instantaneous RR
interval r(t), [z(t)] output signal, whose peaks form the ECG
waveform, [θi] angles of the P, Q, R, S, T peaks on the circle,
[ai] amplitude of the ith peak, [bi] width (standard deviation)
of the ith peak, [r(t)] time-varying RR interval with prescribed
power spectrum, [Ab, fresp] baseline-wander amplitude and
respiratory frequency.

B. Platforms Used

To evaluate the performance of our FPGA-based accelerator,
we conducted a series of experiments across three hardware
platforms: a cloud GPU, an edge-based mobile GPU, and
a resource-constrained FPGA. The cloud GPU serves as the
baseline for comparison, with a focus on evaluating power



efficiency, execution time, and inference accuracy across all
platforms.
GPU Platform: Experiments were first conducted on a work-
station equipped with an Intel Xeon w9-3475X CPU and an
NVIDIA RTX 6000 GPU with 48 GB of memory. Models
were implemented using TensorFlow 2.10 and Keras 2.10.
Power consumption was monitored using nvidia-smi, while
execution time and DRAM footprint were recorded using the
time and psutil libraries.
Mobile GPU Platform: To assess edge-level performance, we
deployed models on the NVIDIA Jetson Orin Nano Developer
Kit. This platform features a 6-core Arm Cortex-A78AE CPU
and 8 GB of LPDDR5 memory. Its integrated GPU, based on
the NVIDIA Ampere architecture, includes 1024 CUDA cores
and 32 Tensor Cores. Power consumption was measured using
tegrastats.
FPGA Platform: For FPGA implementation, experiments were
performed on the PYNQ-Z2 board, which includes a dual-
core ARM Cortex-A9 processor and a 1.3M-configurable-gate
FPGA. The GRU model was developed from scratch, with
both forward pass and backpropagation logic implemented
in C++ using High-Level Synthesis (HLS) in AMD’s Vitis
toolchain. The forward-pass accelerator was integrated using
Direct Memory Access (DMA) to interface with the processing
system. Power consumption was evaluated through Vivado’s
power analysis, while runtime and DRAM usage were recorded
using the time and psutil libraries. All #pragma directives
and hardware-specific constructs used are compliant with Vitis
High-Level Synthesis (Vitis HLS) [32], and the design was
compiled using the Vitis HLS compiler.

C. Results

As shown in Table II and Table III, the FPGA imple-
mentation achieves substantial efficiency gains compared to
the GPU baseline. Specifically, it offers an 8.8× improvement
in performance-per-watt for the MR task and achieves over
28.5× reduction in DRAM footprint. Additionally, the FPGA
provides a 1.67× speedup in runtime for MR, despite operating
at significantly lower frequencies. These results align with
the comprehensive work by Cong et al. [33], which compare
the performance of FPGAs and GPUs across a variety of
application domains.

Figure 3 illustrates the roofline model [34] comparison
among FPGA, mobile GPU, and cloud GPU platforms for the
MR task. The FPGA demonstrates efficiency at low operational
intensities (around 0.5 FLOPs/Byte), operating near its memory
bandwidth limit. This aligns well with the demands of real-
time, low-batch-size workloads typical in model recovery ap-
plications. Although the FPGA has a lower compute ceiling
(1 GFLOPS) compared to the cloud GPU (10 GFLOPS), it
delivers over 8× better performance-per-watt and achieves 1.6×
faster runtime under the same task. Cloud GPUs, while pow-
erful, are optimized for high operational intensities and suffer
inefficiencies when handling memory-bound edge workloads.
Mobile GPUs strike a balance between the two but still require
significantly higher DRAM footprint than FPGAs to reach
similar runtime performance.

From the Figure 3, we find that applications that benefit most
from FPGA implementation under these constraints are those
that are memory-bound, latency-sensitive, and have modest
compute requirements. Examples include real-time physiologi-
cal signal processing, streaming sensor fusion, and lightweight
edge inference where throughput per watt and deterministic
latency are more critical than peak FLOPs.

We derived the Pareto front from experimental results cor-
responding to the optimal hyperparameter settings of the hard-
ware acceleration strategy. Figure 4 illustrates the Pareto front
spanning Machine Learning (ML), Physics-Guided Machine

Learning (PG) [35], which integrates physical laws or domain
knowledge into data-driven models, and Model Recovery (MR)
tasks across FPGA, Mobile GPU (MGPU), and GPU platforms.
The trend shows a clear separation between edge AI and
cloud AI and shows the feasibility of an FPGA-based solution
to achieve high speed and lower energy consumption with a
modest DRAM footprint, making them ideal for DT learning
in the edge. In contrast, GPU-based solutions require higher
power but offer greater memory bandwidth, making them more
suitable for compute-intensive workloads. The performance of
MGPU falls between that of the FPGA and cloud GPU.

TABLE II: Performance comparison among FPGA, Mobile
GPU, and GPU for AID.

Metric FPGA Mobile GPU GPU

Average Error 4.60 3.07 2.90
Runtime (s) 253.84 562.75 423.28
Avg Power (W) 4.905 5.532 72.00
DRAM Footprint (MB) 214.23 2355.13 6118.36
Freq (MHz) 173 306 1410
Perf/Watt (s/W) 51.76 101.74 5.88

TABLE III: Performance comparison among FPGA, Mobile
GPU, and GPU for Cardiac.

Metric FPGA Mobile GPU GPU

Average Error 7.20 8.07 6.10
Runtime (s) 25.6 115.2 103.4
DRAM Footprint (MB) 121.3 1061.3 3101.6
Perf/Watt (s/W) 5.22 20.83 1.44

Fig. 3: Roofline model across FPGA, mobile GPU, and cloud
GPU platforms, plotted on log-log scale.

V. DISCUSSION AND FUTURE DIRECTIONS

At its core, our work embodies the philosophy that algorithm
and hardware must co-evolve: by reformulating physics-guided
ODE solvers into neural-flow–inspired GRU+Dense blocks, we
unlock a class of learning models whose data dependencies map
naturally onto deep pipelines and fine-grained parallelism. This
co-design approach transforms inherently iterative recovery
methods into streamable computations, closing the gap between
mathematical expressivity and real-time edge deployment. Be-
yond raw performance metrics, it reframes digital twins as
living, on-device entities—no longer tethered to cloud resources
but capable of continuous, patient-specific adaptation in situ.

Looking forward, this hardware-acceleration paradigm will
extend in two key directions. First, heterogeneous integra-
tion of mixed-signal and analog compute elements promises
even greater energy efficiency for sparse dynamics, enabling



Fig. 4: Each blue dot represents a Pareto-optimal solution
spanning Machine Learning (ML), Physics-Guided Machine
Learning (PG), and Model Recovery (MR) tasks across
FPGA, Mobile GPU (MGPU), and GPU platforms.
State-of-the-art physical AI typically relies on cloud GPUs,
represented in the red region. This work enables physical AI
on edge platforms—illustrated in the grey region—achieving
substantial reductions in both DRAM footprint and energy
consumption.

miniaturized accelerators in wearables and implantables. Sec-
ond, automated hardware synthesis from high-level model de-
scriptions—leveraging domain-specific languages and compiler
frameworks—will democratize custom accelerator design, so
that new physiological models can be instantly mapped to
optimized circuits. Together, these advances will drive a new
generation of truly autonomous, safety-critical digital twins that
learn, infer, and adapt at the edge.
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