
Fast Online Digital Twinning on FPGA for Mission
Critical Applications

Bin Xu
School of ECEE

Arizona State University

Tempe, USA
binxu4@asu.edu

Ayan Banerjee
School of Computing and AI

Arizona State University

Tempe, USA
Ayan.Banerjee@asu.edu

Sandeep K. S. Gupta
School of Computing and AI

Arizona State University

Tempe, USA
Sandeep.Gupta@asu.edu

Abstract—Digital twinning enables real-time simulation and
predictive modeling by maintaining a continuously updated
virtual representation of a physical system. In mission-critical
applications—such as mid-air collision avoidance—these models
must operate online with extremely low latency to ensure
safety. However, executing complex Model Recovery (MR)
pipelines on edge devices is limited by computational and
memory bandwidth constraints. This paper introduces a fast,
FPGA-accelerated digital twinning framework that offloads key
neural components—including gated recurrent units (GRU) and
dense layers—to reconfigurable hardware for efficient parallel
execution. Our system achieves real-time responsiveness, oper-
ating five times faster than typical human reaction time, and
demonstrates the practical viability of deploying digital twins on
edge platforms for time-sensitive, safety-critical environments.

Index Terms—Model recovery, FPGAs, Mobile GPUs, hard-
ware acceleration.

I. INTRODUCTION

Digital twins are virtual models that mirror physical sys-
tems in real time using live data streams and simulations,
enabling analysis, prediction, and control. According to Tao
et al. [24], digital twins are increasingly deployed across
domains such as manufacturing, aerospace, healthcare, and
smart infrastructure, offering transformative capabilities in
predictive maintenance, optimization, and decision support.

At the core of digital twinning is data-driven predictive
inference, which enables virtual models to simulate, monitor,
and forecast system dynamics in real time. A key approach
within this framework is physics-guided model recovery
(MR) [2], where the underlying governing equations of
system behavior are learned from real-world data—despite
challenges such as sparse sampling, latent or unmonitored
dynamics, and human-induced noise. Broadly, data-driven in-
ference engines can be categorized into: a) Generalized model
learning (ML), where a high-dimensional neural network is
trained directly to predict outputs from input data, and b)
Model recovery (MR), which aims to extract interpretable
physical laws—e.g., through frameworks such as Physics-
informed Neural Ordinary Differential Equations (PiNODE)
[22], sparse-regression PINNs (PINN+SR) [7], or Extracting
sparse Model from ImpLicit dYnamics (EMILY) [1], [2]
(Fig. 1).

The strength of MR lies in its ability to detect subtle
deviations from expected system behavior—such as actuator
faults, sensor spoofing, or external disturbances—without
relying on pre-defined fault categories. This makes MR

particularly valuable in mission-critical autonomous systems
(MCAS) environments, where rapid response and reliability
are paramount. However, the deployment of MR algorithms
in real-time settings remains computationally intensive, as
many frameworks rely on solving ODEs, often through neural
ODE-based architectures that are not optimized for low-
latency inference.

To investigate this challenge in a practical safety-critical
setting, we focus on the F8 Crusader aircraft model [12]—a
nonlinear dynamical system widely used in aerospace con-
trol and verification studies. Our objective is to apply MR
techniques to detect collision-course anomalies and enable
timely avoidance maneuvers. Prior studies have shown that
human pilots typically require five seconds to respond to
mid-air collision threats [9]. Autonomous systems must react
significantly faster, often in sub-second windows, to ensure
safety in constrained airspace.

Achieving such rapid inference requires compute-efficient
deployment of the digital twin’s predictive components. In
MCAS scenarios, systems face tight constraints on power,
compute, and memory—particularly for onboard or edge
devices. As a result, there is growing interest in accelerating
inference models using reconfigurable hardware such as
Field-Programmable Gate Arrays (FPGAs). These devices
provide high-throughput, low-latency, and energy-efficient
execution, making them ideal for edge-based AI systems [13],
[29]. Prior work has made significant progress in accelerating
conventional ML models on FPGAs [11], [17]. Existing
FPGA-based MR frameworks [27], [28], however, primar-
ily target low-dimensional inputs in medical devices, with
relatively little attention given to model scalability. This
motivates our work on FPGA-based acceleration strategies
specifically designed for MR-based digital twins operating
on high-dimensional inputs.

To contextualize the challenge of accelerating model re-
covery (MR) architectures, it is helpful to contrast them
with conventional time-series machine learning models. The
widespread adoption of FPGA accelerators for time-series
ML predictors can be attributed to their highly regular and
well-understood architecture. These models typically consist
of an input embedding layer followed by a stack of recurrent
neural network (RNN) layers that compute discretized tempo-
ral dynamics. Their forward pass reduces to structured matrix
multiplication operations, while nonlinear functions such as
sine or cosine can be efficiently computed using specialized

Φ ݔ
0ݔ 0ݖ

න0
் ℎ(ݖ) ݐ݀
ℎ(ݖ)

்ݖ
Ψ ݔ

்ݔ

0ݖ
Gܴܷ(ݖ)݈݈݁ܥ

஽்ݖ்ݖ ݎ݁ݕܽܮ݁ݏ݊݁ܦ
ߥ ߠ

ߠߥ஽்ݖ
Fig. 1. FPGA acceleration strategy using neural flow based equivalent
architecture to neural ODEs.

FPGA components like CORDIC [5]. The backward pass
follows standard gradient-based pipelines, further simplifying
their suitability for hardware acceleration.

In contrast, neural ODE-based architectures such as
ODENet [26] and NODE [4] present greater challenges for
acceleration. These works have primarily focused on fixed-
depth, static architectures, which limit their flexibility and
applicability to general MR frameworks. While they offer
valuable insights into hardware-aware ODE acceleration, they
fall short of supporting dynamic architectures like PiNODE,
PINN+SR, or EMILY, where the number of NODE layers
may vary depending on the application or system complexity.

As shown in Fig. 1, a significant portion of EMILY (a
baseline comparator in our study) is composed of NODE
cells [6]. The forward pass of a NODE cell involves solving
a high-dimensional ODE using numerical solvers with tight
precision requirements. One of the fundamental challenges in
accelerating MR frameworks lies in the inherently iterative
and adaptive nature of this computation. Recent studies have
attempted to accelerate ODE solvers for standalone, fixed-
coefficient equations on FPGA [10], [23], but these designs
are not suitable for PiNODE-like settings, which require
solving a large set of ODEs with varying, input-dependent
model coefficients.

In this paper, we utilize the theory of neural flows [3]
to obtain an alternative neural structure called MERINDA,
model recovery in dynamic architectures, that is equivalent
to the NODE layers used in EMILY, PiNODE or PINN+SR
and more amenable for acceleration in an FPGA. MERINDA
replaces the NODE layer with a layer of invertible functions
designed using a combination of gated recurrent units (GRU)
and a dense layer of neurons with nonlinear activation func-
tions. GRU [21] are a type of recurrent neural network (RNN)
architecture that introduces gating mechanisms to control the
flow of information over time. Compared to traditional RNNs
or LSTMs, GRUs are computationally efficient and require
fewer parameters [8], making them favorable for deployment
on resource-constrained platforms such as FPGAs.

The primary contributions of this paper are as follows:
1. An empirical evaluation of MERINDA against state-of-the-
art model recovery (MR) approaches—specifically EMILY
and PINN+SR—across four benchmark nonlinear dynamical
systems, including two real-world and two simulated datasets,
demonstrating its MR accuracy.
2. A detailed analysis of FPGA resource utilization and
throughput across varying dimensional configurations of the
F8 Crusader system, along with performance metrics after
hardware-specific optimization.
3. A comparative study between MERINDA and GPU-based
implementations (e.g., CUDA) to quantify the acceleration
benefits.

II. THEORETICAL BACKGROUND

This section presents the basics of MR and establishes
approximate equivalence of neural flow architecture with
NODE.

A. Basics of Model Recovery

The main goal of MR is akin to an auto-encoder (Fig.
1), where given a multivariate time series signal X(t), the
aim is to find a latent space representation that can be

used to reconstruct an estimation X̃(t) with low error. It
has the traditional encoder ϕ(t) and decoder (Ψ(t)) of an
autoencoder architecture. MR represents the measurements
X of dimension n and N samples, as a set of nonlinear
ordinary differential equation model in (1).

Ẋ = h(X,U, θ), (1)

where h is a parameterized nonlinear function, U is the
m dimensional external input, and θ is the p dimensional
coefficient set of the nonlinear ODE model.
Sparsity: An n-dimensional model with M th order nonlin-
earity can utilize

(

M+n
n

)

nonlinear terms. A sparse model

only includes a few nonlinear terms p <<
(

M+n
n

)

. Sparsity
structure of a model is the set of nonlinear terms used by it.
Identifiable model: A model in (1) is identifiable [25], if ∃
time tI > 0, such that ∀θ, θ̃ ∈ Rp:

∀t ∈ [0, tI], f(X(t), U(t), θ) = f(X(t), U(t), θ̃) =⇒ θ = θ̃. (2)

Eqn. 2 effectively means that a model is identifiable if two
different model coefficients do not result in identical measure-
ment X . In simpler terms this means ∀θi ∈ θ, dX

dθi
̸= 0. In this

paper, we assume that the underlying model is identifiable.
Problem 1 (Sparse Model Recovery): Given N samples of

measurements X and inputs U , obtained from a sparse model

in Eqn. 1 such that θ is identifiable, recover θ̃ such that for

X̃ generated from f(X,U, θ̃), we have ||X− X̃|| ≤ ϵ, where
ϵ is the maximum tolerable error.
Role of NODE: Both EMILY [1] and PINN+SR [7] utilize
a layer of NODE cells in order to integrate the underlying
nonlinear ODE dynamics. NODE cell’s forward pass is by
design the integration of the function h over time horizon T
with N samples (Fig. 1). This effectively requires an ODE
solver in each cell of the NODE layer:

z(t) =

T∫

0

h(z, u, θ)dt, (3)

where z ∈ Z and u ∈ U are each cells output and input.
The results are then used further in the EMILY or

PINN+SR pipeline to extract the accurate underlying non-
linear ODE model.

B. Neural flows and equivalent architectures to NODE

According to the theory of neural flows [3], the node layer
can be replaced by an approximate solution to F (t) ≈ Z(t) in
discretized form using recurrent nerual network architectures
such as GRU provided that following conditions are satisfied:

F (0, u) = Z(0, u), (initial condition), and F (t, u) is invertible. (4)

Bilovs et al. [3] show that F (t, u) can be achieved by
replacing the original NODE layer by a GRU layer. However,
the GRU layer does not statisfy by the invertible condition.
The authors in [3] suggest the usage of a dense layer since it
acts as a universal approximator of nonlinear functions and
hence can also act as the inversion of the function F (t, u).

MERINDA further enhances the equivalent architecture
proposed in [3] by further pruning the dense layer as shown
in Fig. 2. The main idea is to further reduce the dense layer
structure by utilizing the inherent sparsity in the data. Given
the definitions of identifiability and sparsity, we now discuss
our full architecture that is equivalent to PiNODE

III. MERINDA ARCHITECTURE

A. GRU NN-based MR architecture

In our approach (Fig. 2), we extend gated recurrent unit
neural network (GRU-NN) to obtain advanced neural struc-
ture MERINDA that can solve the model recovery problem.
The forward pass of GRU-NN structure expresses the coeffi-
cients of the model as a nonlinear function of the outputs
Y and inputs U of the model. The measurements of Y ,
can be used to convert the set of implicit dynamics to an
overdetermined system of equations that are nonlinear in
terms of the model coefficients. As such an over-determined
system of equation may have no solution unless either some
equations are rejected or are expressed as linear superposition
of other equations. To search for a set of consistent equations
to estimate model coefficient, a dense layer is utilized. The
search process of the dense layer is guided by a loss function
(ODE loss) that computes the mean square error between the
estimated Yest using an ODE solver SOLVE(Y (0),Θ, U)
and the ground truth measurements Y .

The advanced neural architectures for model recovery in
Fig. 2 is implemented by extending the base code available
in [14]. We extract the training data consisting of temporal
traces of Y , and U . Y is sampled at least at the Nyquist
rate for the application, and U has the same sampling rate as
Y . The resulting training data is then divided into batches of
size SB . This forms a 3D tensor of size SB × |Y |+m× k.

Each batch is passed through the GRU-NN network with
V nodes, resulting in V hidden states. A dense layer is then
employed to transform these V hidden states into p = |Θ|
model coefficient estimates and q input shift values. The
dense layer is a multi-layer perceptron with ReLU activation
function for the model coefficient estimate nodes, whose
outputs are the estimated model coefficients. The dense layer

converts the V dimensional hidden layer outputs to
(

M+|X|
|X|

)

which is the number of nonlinear terms that can be used
for an M th order polynomial. A dropout rate of |Θ| is
used so that the final number of output layers with non-
zero activation is |Θ|. The model coefficient estimates and
the initial value Y (0) is passed through an ODE solver to
solve the nonlinear dynamical equations with the coefficients
Θest, initial conditions Y (0) and inputs U . The Runge
Kutta integration method is used in the ODE solver, which
gives Yest. In the backpropagation phase the network loss
is appended with ODE loss, which is the mean square error
between the original trace Y and the estimated trace Yest.

B. FPGA Architecture and Optimization

An FPGA (Field-Programmable Gate Array) is a reconfig-
urable semiconductor device that enables developers to imple-
ment custom digital circuits directly in hardware [18]. Unlike
fixed-function processors, FPGAs consist of an array of
Configurable Logic Blocks (CLBs), Look-Up Tables (LUTs)
for implementing combinational logic, flip-flops and registers
for sequential logic, and programmable interconnects [16].
FPGAs also incorporate on-chip memory resources, such
as Block RAM (BRAM) and UltraRAM (URAM), as well
as Digital Signal Processing (DSP) slices optimized for
arithmetic-intensive operations.

One of the primary challenges in FPGA design lies in effi-
ciently mapping high-level algorithms onto limited hardware
resources while maximizing performance. Loop-carried de-
pendencies—such as Read-After-Write (RAW), Write-After-
Read (WAR)—can inhibit effective pipelining, and reduce
throughput. In addition to control hazards, memory access
patterns pose a significant design challenge. FPGAs feature a
hierarchical memory system including block RAM (BRAM),
Look-Up Tables (LUTs), and Flip-Flops (FF), all of which
must be judiciously partitioned and scheduled to avoid access
bottlenecks and ensure data locality.

In our design, illustrated in Fig. 3, we address these chal-
lenges through two key techniques: array partitioning and
loop pipelining, both guided by high-level synthesis (HLS)
directives. The FPGA kernel interfaces with the processor
using an AXI4-Lite protocol, after which input data is trans-
ferred to on-chip memory. We apply full array partitioning
using the directive #pragma HLS ARRAY_PARTITION

complete, which instructs the HLS compiler to map each
element of the input array to an independent storage re-
source—such as a dedicated register or BRAM segment.
This partitioning strategy eliminates inter-element memory
conflicts and enables parallel access to the data elements.

As shown in Fig.3, individual elements like
array[0][0] through array[0][3] are independently
accessible and routed to distinct computational units,
allowing multiple operations to proceed concurrently. This
fine-grained parallelism directly mitigates the memory
bottlenecks described earlier, as each operation now operates
on separate physical storage units. Additionally, it maximizes
utilization of on-chip memory resources by spreading the
access load across registers, BRAM, and LUTs.

We then construct a fully parallelized model recov-
ery pipeline on the FPGA. All major computational
stages—including the forward pass, backpropagation, and

𝐼 = ܻܷ + ௘ܷ௫ܵ஻ × |ܺܥ| + ݉ × ݇ ௘ܻ௦௧|ܺܥ| × ݇
𝐼 − 𝐼ோ 2–

V×(Θ + (ݍ Θ௘௦௧

ܻ(0) ܷ

Θ௘௦௧

Fig. 2. MERINDA: Gated recurrent unit (GRU) NN-based MR architecture.

Fig. 3. After the input data is partitioned, then pipeline can be applied to
compute.

loss computation—are pipelined using #pragma HLS

PIPELINE II=1. Once the inputs are partitioned and loop-
carried dependencies are removed, this setup achieves an
initiation interval (II) of 1, allowing a new iteration to begin
every clock cycle. This significantly boosts throughput and
latency performance. There can be the violation of loop
dependency in the simulation. In order to eliminate RAW and
WAR hazards, we need to test #pragma HLS PIPELINE

II=2 or #pragma HLS PIPELINE II=3, which means
a new iteration begins in every 2 cycles and 3 cycles. If there
is no time violation in the simulation, it means there are no
RAW and WAR hazards. However, more cycles mean more
latency in the pipeline of computation.

In the presence of data dependencies, such as in the
sequentially linked operations of the GRU forward pass (Op-
erations 1 to 3) and backpropagation, pipelining allows for
overlapping execution. Specifically, operations 1–3—outlined
in the forward pass code—exhibit loop-carried dependencies,
such as between z[i] and rz_concat[i]. With proper
pipelining and no write-read hazards, the next operation can
begin in the following cycle, thereby enabling deep pipelining
across dependent computations.

Operation 1: Compute Reset and Update Gates

for i in 0 to H-1:
z_sum = bias_z[i]
for j in 0 to H + V - 1:

z_sum += Wz[i][j] * concat[j]
z[i] = sigmoid(z_sum)

Operation 2: Apply reset gate to previous hidden state

for i in 0 to H-1:
rz_concat[i] = r[i] * a_prev[i]

Operation 3: Compute Candidate Activation

for i in 0 to H-1:
cc_sum = bias_c[i]
for j in 0 to H + V - 1:

cc_sum += Wa[i][j] * rz_concat[j]
c_t[i] = tanh(cc_sum)

IV. EVALUATION AND RESULTS

A. Implementation Details

To evaluate the performance of the FPGA, we perform
experiments on the mobile GPU and FPGA with the same
hidden layer size, epoch size and model dimension size. The
performance of the mobile GPU is set as a baseline.

a) Mobile GPU Platform: Our experiments are con-
ducted on the NVIDIA Jetson Orin Nano Developer Kit,
which features a 6-core Arm Cortex-A78AE CPU and 8 GB
of LPDDR5 memory. The integrated GPU is based on the
NVIDIA Ampere architecture, equipped with 1024 CUDA
cores and 32 Tensor Cores.

We implemented our GPU simulation using CUDA
C++, which offers near-zero runtime overhead compared to
Python’s interpreted execution model. Unlike Python, CUDA
C++ enables fine-grained control over thread management,
shared memory reuse, and global memory access patterns,
allowing for highly optimized low-level execution [19]. In our
evaluations, the CUDA C++ implementation achieved over
10× speedup relative to its Python version.

b) FPGA Platform: For the FPGA platform, the exper-
iments were performed on Zynq UltraScale+ MPSoC with
Quad ARM Cortex-A53, which includes 252K LUTs and
504K Flip-Flops. The GRU cell was built from scratch in C++
using High-Level Synthesis (HLS) on AMD’s Vitis tool. The
whole model recovery is simulated on Vitis. The execution
time is based on latency (cycles) multiplied by the clock
period (ns).

TABLE I
COMPARISON BETWEEN MERINDA AND SOTA MR TECHNIQUES

EMILY AND PINN+SR USING RECONSTRUCTION MSE. ERRORS ARE

ABSOLUTE VALUES; NUMBERS IN PARENTHESES INDICATE STANDARD

DEVIATION.

System EMILY PINN+SR MERINDA

Lotka Volterra 0.03 (0.02) 0.05 (0.03) 0.03 (0.018)

Chaotic Lorenz 1.7 (0.6) 2.11 (1.4) 1.68 (0.4)

F8 Crusader 4.2 (2.1) 6.9 (4.4) 5.1 (2.2)

Pathogenic Attack 14.3 (12.1) 21.4 (5.4) 15.1 (10.2)

B. Results

a) Accuracy Comparison of MERINDA with EMILY and
PINN+SR: We evaluate the accuracy of MERINDA using the
mean squared error (MSE) metric across standard benchmark
examples from [15]. Table I reports the reconstruction errors
for MERINDA, along with published results for EMILY [1]
and PINN+SR [20]. The comparison shows that MERINDA
achieves comparable or improved accuracy relative to these
state-of-the-art model recovery techniques while offering
additional benefits in efficiency and hardware acceleration.

b) Performance of MERINDA on F8 Crusader: The
Fig. 4 compares the model recovery time on FPGA for
varying model dimensions, with and without hardware-level
optimization. The x-axis denotes the dimensionality of the F8
Crusader model (Eqs. 7, 8 and 9 from [12]), and the y-axis
shows the total execution time in seconds (log-scaled).

The blue curve represents the baseline implementation
with no optimization, which exhibits a steep and nonlinear
increase in runtime as the model dimension grows. This is
primarily due to increased loop latency and limited paral-
lelism in the unoptimized pipeline. In contrast, the red curve
shows the performance of the optimized implementation,
which employs both loop pipelining and unrolling. These
optimizations reduce latency by allowing concurrent compu-
tation and minimizing memory access bottlenecks. Notably,
at model dimension 150, the optimized design achieves more
than a 10× speedup compared to the unoptimized version
(1.04s vs. 11.84s), highlighting the effectiveness of hardware
optimization in scaling up real-time model recovery.

Fig. 4. Impact of Optimization on Model Recovery Execution Time.

Table II presents the resource utilization and execution time
of the model recovery process on FPGA and GPU as the
F8 Crusader model dimension increases. As expected, both
execution time and hardware resource consumption (LUTs,
DSPs, BRAM) grow with model complexity. Compared to

TABLE II
COMPARISON OF RESOURCE USAGE AND EXECUTION TIME BETWEEN

FPGA AND GPU FOR INCREASING F8 CRUSADER MODEL DIMENSION.
BRAM(KB), FPGA(S), GPU(S)

Size Cycles LUT DSP BRAM FPGA GPU

20 17,019 314,433 2,419 95 0.0408 0.323

30 28,336 463,953 3,745 135 0.0680 0.387

40 42,255 616,316 5,003 247 0.1014 0.400

50 58,754 745,437 6,119 297 0.1410 0.428

60 77,875 891,062 7,466 347 0.1869 0.494

70 114,082 806,340 7,276 397 0.2738 0.535

80 123,915 1,194,348 9,826 447 0.2974 0.619

90 174,862 1,038,178 9,271 497 0.4197 0.990

100 210,052 1,128,589 10,139 547 0.5041 1.051

120 247,195 1,779,201 14,831 647 0.5933 1.244

150 434,003 1,690,814 15,270 797 1.0416 1.541

GPU implementation, the FPGA implementation shows lower
latency because more weights are loaded onto registers such
as LUT for computation. With the pipeline optimization, the
computation on FPGA can reuse data on shared memory.

Table III compares three FPGA configurations using di-
mension 30 as a reference point: a baseline design with
no optimization, a partially optimized version with only
unrolling in the loop, and a fully optimized version combining
both loop pipelining and unrolling. The fully optimized
design achieves the lowest latency (0.0680 seconds), a 1.4×
speedup over the unoptimized version. It also exhibits more
efficient resource utilization across DSPs and BRAM, val-
idating the effectiveness of ‘#pragma HLS PIPELINE‘
and ‘ARRAY_PARTITION‘ in achieving high throughput on
FPGAs. From the resource usage shown in the TableIII, fully
optimization store more data and compute in the LUT and
FF.

TABLE III
FPGA RESOURCE UTILIZATION AND EXECUTION TIME FOR DIFFERENT

OPTIMIZATION STRATEGIES (DIMENSION = 30).

Configuration Cycles LUT DSP BRAM(KB) Time(s)

No Optimization 40,390 219,238 372 136 0.0966

Unroll 34,991 366,741 1,847 154 0.0840

Pipeline + Unroll 28,336 463,953 3,745 135 0.0680

V. DISCUSSION

In Table II, we compare the timing of our FPGA imple-
mentation with a 13W mobile GPU, selected for its relevance
in edge AI. For low-dimensional F8 Crusader models, the
FPGA achieves superior speed due to its efficient parallelism
and low-power design. However, beyond dimension 150,
performance degrades as limited on-chip memory forces
frequent off-chip access, introducing latency. In contrast,
the mobile GPU handles high-dimensional models more
effectively, thanks to greater on-chip memory and higher
memory bandwidth. This reveals a key trade-off: FPGAs are
optimal for compact, parallel workloads, while GPUs excel
in memory-intensive scenarios.

During synthesis, we observed that Vitis HLS can report
hardware resource utilization exceeding the physical limits of
the target FPGA board. For example, at higher model dimen-
sions (e.g., dimension 150), the estimated usage of LUTs and
BRAMs surpassed the available resources on the device. It
appears that Vitis sometimes overestimates utilization due to

conservative analysis during high-level synthesis, particularly
when aggressive unrolling or partitioning is used. In practice,
actual post-implementation resource usage is often lower after
placement, routing, and optimization steps are completed.

Since we could not fully identify the root cause of this
discrepancy within the scope of this study, we include this
disclaimer: Resource utilization values reported by Vitis HLS
for high-dimensional configurations may exceed the target
device limits, so resource estimates should be interpreted
cautiously, and actual deployability should be confirmed
through on-board testing. This highlights a broader need for
more reliable resource estimation in HLS workflows and calls
for careful validation when designing edge-deployable FPGA
systems for mission-critical applications.

VI. CONCLUSIONS

This work addresses the urgent need for fast, reliable,
and interpretable model recovery (MR) in mission-critical
autonomous systems (MCAS), where real-time anomaly de-
tection and response are essential for safety. We proposed
MERINDA, an FPGA-accelerated model recovery framework
capable of recovering governing dynamics from data using
architectures equivalent to PiNODE and EMILY.

By targeting the F8 Crusader benchmark and simulating
the model on FPGA, we demonstrated MERINDA’s capacity
to support sub-second reaction times—far outperforming the
5-second human pilot baseline cited in prior literature [9].
Unlike traditional CPU or GPU implementations, MERINDA
leverages HLS-based pipeline and parallelism strategies to
significantly reduce execution latency, while maintaining ac-
curacy and interpretability.

ACKNOWLEDGEMENT

This work was partially supported by DARPA (AMP,
N6600120C4020; FIRE, P000050426), the NSF (FDT-
Biotech, 2436801), and the Helmsley Charitable Trust (2-
SRA-2017-503-M-B).

REFERENCES

[1] A. Banerjee and S. Gupta. EMILY: Extracting sparse Model from
ImpLicit dYnamics. In C. Coelho, B. Zimmering, M. F. P. Costa,
L. L. Ferrás, and O. Niggemann, editors, Proceedings of the 1st
ECAI Workshop on ”Machine Learning Meets Differential Equations:
From Theory to Applications”, volume 255 of Proceedings of Machine
Learning Research, pages 1–11. PMLR, 20 Oct 2024.

[2] A. Banerjee and S. K. Gupta. Recovering implicit physics model
under real-world constraints. In Proceedings of the 26th European
Conference on Artificial Intelligence (ECAI 2024), volume 392 of
Frontiers in Artificial Intelligence and Applications, pages 737–744,
Hague, Netherlands, 2024. IOS Press.

[3] M. Biloš, J. Sommer, S. S. Rangapuram, T. Januschowski, and
S. Günnemann. Neural flows: Efficient alternative to neural ODEs.
Advances in neural information processing systems, 34:21325–21337,
2021.

[4] L. Cai, J. Wang, L. Yu, B. Yan, Y. Tao, and Y. Yang. Accelerating
neural-ode inference on fpgas with two-stage structured pruning and
history-based stepsize search. In Proceedings of the 2023 ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, page
177–183, 2023.

[5] Y. Cao, W. Xiao, J. Jia, D. Wu, and W. Zhou. Cordic-based softmax
acceleration method of convolution neural network on FPGA. In
2020 IEEE International Conference on Artificial Intelligence and
Information Systems (ICAIIS), pages 66–70, 2020.

[6] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud.
Neural ordinary differential equations. Advances in neural information
processing systems, 31, 2018.

[7] Z. Chen, Y. Liu, and H. Sun. Physics-informed learning of governing
equations from scarce data. Nature communications, 12(1):6136, 2021.

[8] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

[9] V. Cutler and S. Revell. Development of a model of ‘see and avoid’in
parachuting. In 19th International Symposium on Aviation Psychology,
page 101, 2017.

[10] A. Ebrahimi and M. Zandsalimy. Evaluation of FPGA hardware as a
new approach for accelerating the numerical solution of CFD problems.
IEEE Access, 5:9717–9727, 2017.

[11] A. El Bouazzaoui, A. Hadjoudja, O. Mouhib, and N. Cherkaoui.
FPGA-based ml adaptive accelerator: A partial reconfiguration ap-
proach for optimized ml accelerator utilization. Array, 21:100337,
2024.

[12] C. Fan, X. Qin, Y. Xia, A. Zutshi, and J. Deshmukh. Statistical verifi-
cation of autonomous systems using surrogate models and conformal
inference. arXiv preprint arXiv:2004.00279, 2020.

[13] T. Gunter, Z. Wang, C. Wang, R. Pang, A. Narayanan, A. Zhang,
B. Zhang, C. Chen, C.-C. Chiu, D. Qiu, et al. Apple intelligence
foundation language models. arXiv preprint arXiv:2407.21075, 2024.

[14] R. Hasani. Liquid Time Constant Networks.
https://github.com/raminmh/liquid time constant networks, 2024.

[15] E. Kaiser, J. N. Kutz, and S. L. Brunton. Sparse identification of
nonlinear dynamics for model predictive control in the low-data limit.
Proceedings of the Royal Society A, 474(2219):20180335, 2018.

[16] I. Kuon. Measuring and navigating the gap between FPGAs and
ASICs. PhD thesis, 2007.

[17] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo. Optimizing the convolution
operation to accelerate deep neural networks on FPGA. IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, 26(7):1354–
1367, 2018.

[18] C. Maxfield. The design warrior’s guide to FPGAs: devices, tools and
flows. Elsevier, 2004.

[19] L. Oden. Lessons learned from comparing C-CUDA and Python-
Numba for GPU-Computing. In 2020 28th Euromicro international
conference on parallel, distributed and network-based processing
(PDP), pages 216–223. IEEE, 2020.

[20] H. Robinson, S. Pawar, A. Rasheed, and O. San. Physics guided neural
networks for modelling of nonlinear dynamics. Neural Networks,
154:333–345, 2022.

[21] F. M. Shiri, T. Perumal, N. Mustapha, and R. Mohamed. A compre-
hensive overview and comparative analysis on deep learning models:
CNN, RNN, LSTM, GRU. arXiv preprint arXiv:2305.17473, 2023.

[22] A. Sholokhov, Y. Liu, H. Mansour, and S. Nabi. Physics-informed neu-
ral ODE (PINODE): embedding physics into models using collocation
points. Scientific Reports, 13(1):10166, 2023.

[23] I. Stamoulias, M. Möller, R. Miedema, C. Strydis, C. Kachris, and
D. Soudris. High-performance hardware accelerators for solving
ordinary differential equations. In Proceedings of the 8th Interna-
tional Symposium on Highly Efficient Accelerators and Reconfigurable
Technologies, pages 1–6, 2017.

[24] F. Tao, H. Zhang, A. Liu, and A. Y. Nee. Digital twin in industry: State-
Of-The-Art. IEEE Transactions on industrial informatics, 15(4):2405–
2415, 2018.

[25] N. Verdière and S. Orange. A systematic approach for doing an a priori
identifiability study of dynamical nonlinear models. Mathematical
biosciences, 308:105–113, 2019.

[26] H. Watanabe and H. Matsutani. Accelerating ODE-Based Neural
Networks on Low-Cost FPGAs. In 2021 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages
88–95, 2021.

[27] B. Xu, A. Banerjee, M. Urooj, and S. K. S. Gupta. Accelerated digital
twin learning for edge ai: A comparison of FPGA and mobile GPU.
In Proceedings of the 68th IEEE International Midwest Symposium on
Circuits and Systems (MWSCAS), Lansing, MI, USA, 2025. IEEE.

[28] B. Xu, A. Banerjee, M. Urooj, and S. K. S. Gupta. Model Recovery at
the Edge under Resource Constraints for Physical AI. In Proceedings of
the 28th European Conference on Artificial Intelligence (ECAI 2025),
Bologna, Italy, 2025. IOS Press.

[29] J. Zhu, C. Hu, E. Khezri, and M. M. M. Ghazali. Edge intelligence-
assisted animation design with large models: a survey. Journal of Cloud
Computing, 13(1):48, 2024.

