
Theory and Explicit Design of a
Path Planner for an SE(3) Robot⋆

Zhaoqi Zhang1, Yi-Jen Chiang2, and Chee Yap1

1 Department of Computer Science, Courant Institute, New York University, New
York, NY, USA. zz1918@nyu.edu; yap@cs.nyu.edu

2 Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA. chiang@nyu.edu

Abstract. We consider path planning for a rigid spatial robot with
6 degrees of freedom (6 DOFs), moving amidst polyhedral obstacles.
A correct, complete and practical path planner for such a robot has
never been achieved, although this is widely recognized as a key challenge
in robotics. This paper provides a complete “explicit” design, down to
explicit geometric primitives that are easily implementable.
Our design is within an algorithmic framework for path planners, called
Soft Subdivision Search (SSS). The framework is based on the twin
foundations of ε-exactness and soft predicates, two concepts that are
critical for rigorous numerical implementations. These concepts allow us
to escape from “Zero Problems” that prevent the correct or practical
implementations of most exact algorithms of Computational Geometry.
The practicality of SSS has been previously demonstrated for various
robots including 5-DOF spatial robots.
In this paper, we solve several significant technical challenges for SE(3)
robots: (1) We first ensure the correct theory by proving a general form
of the Fundamental Theorem of the SSS theory. We prove this within
an axiomatic framework, thus making it easy for future applications of
this theory. (2) One component of SE(3) = R3 × SO(3) is the non-
Euclidean space SO(3). We design a novel topologically correct data
structure for SO(3). Using the concept of subdivision charts and at-
lases for SO(3), we can now carry out subdivision of SO(3). (3) The
geometric problem of collision detection takes place in R3, via the foot-
print map. Unlike sampling-based approaches, we must reason with the
notion of footprints of configuration boxes, which is much harder to
characterize. Exploiting the theory of soft predicates, we design suit-
able approximate footprints which, when combined with the highly effec-
tive feature-set technique, lead to soft predicates. (4) Finally, we make
the underlying geometric computation “explicit”, i.e., avoiding a general
solver of polynomial systems, in order to allow a direct implementation.
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1 Introduction

Motion planning [10,27] is a fundamental topic in robotics because a robot, al-
most by definition, is capable of movement. There is growing interest in motion
planners because of the wide availability of inexpensive commercial robots, from
domestic robots for vacuuming the floor, to drones that deliver packages. We
focus on path planning which, in its elemental form, asks for a collision-free
path from a start to a goal robot position, assuming a known map of the en-
vironment. Path planning is based on robot kinematics and collision-detection
only, and the variety of such problems are surveyed in [21]. Although we ignore
the issues of dynamics (timing, velocity, acceleration), a path is often used as
the basis for solving restricted dynamics problems.

Exact path planning have been studied from the 1980s [38], and is reducible
to the existential theory of connectivity of semi-algebraic sets (e.g., [14]). The
output of an exact path planner is either a robot path, or a NO-PATH indicator
if no path exists. Unfortunately, the exact path planning is largely impractical.
Even in simpler cases, correct implementation are rare for two reasons: it requires
exact algebraic number computation and has numerous degenerate conditions
(even in the plane) that are hard to enumerate or detect (e.g., [16, p.32]). Correct
implementations are possible using libraries such as LEDA or CGAL or our own
Core Library that support exact algebraic number types (see [43,20]).

The last 30 years saw a flowering of practical path planning algorithms based
on either the Sampling Approach (e.g., PRM, EST, RRT, SRT [10]) or the
Subdivision Approach [26]. The dominance of Sampling Approach is de-
scribed in a standard textbook in this area: “PRM, EST, RRT, SRT, and their
variants have changed the way path planning is performed for high-dimensional
robots. They have also paved the way for the development of planners for prob-
lems beyond basic path planning. ” [10, p.201]. Remarkably, the single bit of
information, as encoded by NO-PATH output, is missing in the correctness cri-
teria of these approaches as noted in [46]. The standard notions of resolution
completeness (for Subdivision Approach) or probabilistic completeness (for
Sampling Approach) ([10, Chapter 7.4]) do not talk about detecting no paths.
Instead, they speak of eventually finding a path when “the resolution is small
enough” (Subdivision Approach) or “when the sampling is large enough” (Sam-
pling Approach). Both are recipes for non-terminating algorithms3 but these
are couched as “narrow passage issues” (e.g., [34,13]). See Appendix A for the
literature on this issue.

The Subdivision Approach goes back to the beginning of algorithmic robotics
– see [6,58]. The present paper falls under this approach, but clearly a new
theoretical foundation is needed. This foundation is ultimately based on interval
methods [33] which is needed to provide guarantees in the presence of numerical
approximation. The interval idea is encoded in the concept of soft predicates

3 These are overcome by user-supplied “hyperparameters” that are not part of the
original problem specification. Typically, it is some quitting criteria based on time-
out or maximum sampling size.
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[46]. The other foundation is the concept4 of ε-exactness [46,47]. The idea here
is rooted in an issue that afflicts all exact geometric algorithms: such algorithms
must ultimately decide the sign of various computed numerical quantities, say
x. For path planning, x might represent the clearance of the path, and we need
x to be positive. Deciding the sign of x is easily reduced [43] to deciding if x = 0
(“the Zero Problem”) . The Zero Problem might well be undecidable [9,43]. The
concept of ε-exactness allows us to escape the Zero Problem. Clearly, both of
the above concepts have wide spread ramification for computational geometry
since all exact algorithms have implicit Zero Problems.

Based on this dual foundation, a general framework for path planning called
Soft Subdivision Search (SSS) was formulated [46,47]. A series of papers
[47,46,32,49,56,22], has shown that SSS planners are implementable and prac-
tical. They included planar fat robots [49] and complex robots [56], as well as
spatial 5-DOF robots (rod and ring [22]). The latter represents the first rigorous
and complete planner for a 5-DOF spatial robot. In each case, it was experimen-
tally shown that SSS planners match or surpass the performance of state-of-art
sampling algorithms. This is surprising, considering the much stronger theoret-
ical guarantees of SSS, including its ability to decide NO-PATH.

(a) (b) (c)

Fig. 1: Delta Robot amidst obstacles Ω:

(a) Delta Robot defined by points A = (1, 0, 0),O = (0, 0, 0),B = (0, 1, 0).

(b) Sampled path (AOB) from start (AOB) to goal (AOB) configurations.

(c) Approximate Footprint F̃ p(B) of box B.

In this paper, we address a well-known challenge of path planning: to design
a complete, rigorous and practical planner for a “spatial 6-DOF robot”. It is not
the 6 degrees of freedom per se (this is routinely achieved for robot arms), but
the configuration space SE(3) = R3 × SO(3) that is challenging. Like similar
challenges in the past (rod for SE(2) and in R3×S2), we choose a simple SE(3)
robot to demonstrate the principles. The robot is a planar triangle AOB in
R3, a.k.a. Delta robot.5 This is illustrated in Figure 1(a). Its “approximate

4 For the reader’s convenience, we reproduce the basic definitions such as soft predi-
cates and ε-exactness in Appendix B (see also [53, Appendix B]).

5 Not to be confused with a class of parallel manipulator robots called delta robots
E.g., https://en.wikipedia.org/wiki/Delta_robot
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footprint” at some configuration box B ⊆ SE(3) is shown in Figure 1(c). The
path planning problem is specified as follows:

Given a polyhedral set Ω ⊆ R3 of obstacles, we want to find an Ω-avoiding
path from a start α to a goal β configuration:

Path Planning for AOB-robot:
Input: (α, β,Ω,B0, ε)

where α, β ∈ SE(3), B0 is a box in SE(3),
Ω ∈ R3 is a polyhedral obstacle set, and ε > 0 is the resolution.

Output: an Ω-avoiding path of AOB restricted to B0,
from α to β or NO-PATH.

The ε parameter is used as follows:

Definition 1. A path planner is said to be resolution-exact if it always ter-
minates with an output satisfying these conditions: there is a constant K > 1
independent of the input (but depending on the planner) such that:
(Path) If the optimal clearance of a solution path is > Kε, then the planner
outputs a path.
(NoPath) If there is no path of essential clearance < ε/K, then the planner
outputs NO-PATH.

The definition of clearance and other concepts are found in Appendix B and
Section 2.1. The output is indeterminate because when the optimal clearance lies
in [ε/K,Kε], it can output (Path) or (NoPath). It can be argued that ε-exactness
is an appropriate notion of “exactness” for real world applications because the
physical world is inherently6 inexact and uncertain. We believe this is the first
completely rigorous alternative to exact path planning; see the Literature Review
below for other attempts to resolve this issue.

1.1 What is an Explicit Algorithm in Computational Geometry?

As suggested by the title of this paper, our 6-DOF path planner is “explicit”.
This is an informal idea, attempting to characterize algorithms that are recog-
nizably in computational geometry (CG). Classic CG algorithms (see [12,19]) are
explicit in the sense that they construct well-defined combinatorial objects using
explicit predicates. Moreover, these objects are embedded in the continuum such
as Rn via approximate numerical constructions, called semi-algebraic models in
[27, Sect.3.1.2, p.87]. E.g., Voronoi vertices are not just abstract vertices of a
graph defined by their closest sites, but we typically need their approximate co-
ordinates in Rn. But when we address geometric problems which are non-linear
or in non-Euclidean spaces many algorithms start to introduce highly non-trivial
primitives such as the following:
6 All common constants of physics and chemistry have less than 8 digits of accuracy.

Among the few exceptions is the speed of light, which is exact by definition.
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(P1) (Numerical Iteration) In their path planner for a spatial rod, Lee and
Choset [28] used a retraction approach. To construct edges of the general-
ized Voronoi diagram in R3 × S2, they invoke a numerical gradient ascent
method [28, p.355, column 2] to connect Voronoi vertices. Such construc-
tions are not certified or guaranteed.

(P2) (Optimization) We will need to compute the distance between a line and
a cone in R3 (see Appendix C). There is no known closed form expression,
but one can reduce this to an optimization problem (using the Lagrangian
formulation) or invoke an iterative procedure (e.g., [55]).

(P3) (Purely combinatorial description) Nowakiewicz [34] described a sampling-
and-subdivision algorithm for a 6-DOF robot. The combinatorial steps and
data structures are explicit, but the geometric/numerical primitives are
unspecified (presumably out sourced to various numerical routines).

(P4) (Algebraic operations and solving systems) Is the intersection of two sur-
faces in R3 a geometric construction? Depending on the surface representa-
tion, this may be seen as a purely algebraic construction. As noted above,
CG needs to extract numerical data from algebraic representations, and
this amounts to solving of systems of algebraic equations (e.g., to compute
Voronoi diagram of ellipses [17, Theorem 4.2]).

We regard algorithms such as (P1)-(P3) as “non-explicit”. But (P4) is a harder
call because nonlinear CG is inextricably connected to algebra. Some algebraic
operations and analysis are inevitable. Moreover, solving polynomials systems
can be seen as necessary geometric constructions for extracting numerical data
from algebra. But invoking a generic polynomial solver inevitably gives rise to
many irrelevant solutions (complex ones or geometrically wrong ones [17]) that
must be culled. To the extent possible, we seek explicit expressions for such con-
structions. Non-explicit CG algorithms are useful and sometimes unavoidable,
but their overall correctness and complexity is hard to characterize. We could
largely identify “explicit” algorithms with those in semi-algebraic geometry [4].

To illustrate the “explicitness” achieved in this paper, we prove that our SSS
planner for the Delta robot is ε-exact with resolution constant K = 4

√
6+6
√
2 <

18.3. This constant is a small, manageable constant. It would be hard to derive
such a constant if our primitives were not explicit.

1.2 Challenges in SE(3) Path Planning

Despite the successful SSS planners from previous papers [47,46,32,49,56,22],
there remain significant challenges in the theory and details. We expand on the
four issues noted in the abstract:

(C1) By a “fundamental theorem” of SSS, we mean one that says that the SSS
planner is resolution exact. Such a theorem was proved in the original pa-
per [46], albeit for a disc robot. Subsequent papers implicitly assumed that
the fundamental theorem extends to other robots. This became less clear
in subsequent development as the underlying techniques were generalized
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and configuration spaces became more complex. Partly to remedy this, [48]
gave an axiomatic account of the Fundamental Theorem. The power of the
axiomatic approach is that, to verify the correctness of any future instan-
tiations of SSS, one only has to check the axioms. Part of axiomatization
involves identifying the underlying mathematical spaces (called X,Y, Z,W
below). There were 5 axioms, (A0)-(A4) in [48]. These axioms introduced
constants C0, D0, L0, σ and reveal their role in the implicit constant K > 1
of the definition of ε-exactness. The last axiom (A4) was problematic, and
is remedied in this paper. In [48], the general Fundamental Theorem was
stated but its proof was deferred.7 We now complete this program.

(C2) The configuration space8 SE(3) = R3×SO(3) is the most general space for
a rigid spatial robot, often simply called “6-DOF robot”. A rigorous path
planner for a SE(3) robot would be a recognized milestone in robotics. The
space SO(3) is a non-Euclidean 3-dimensional space that lives naturally
in 4-dimensions [24]. We will develop the algorithms and data structures
to exploit a Cubic Model ŜO(3) for SO(3). This model is illustrated
in Figure 2, and was known to Canny [8, p. 36]. The design of good
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Fig. 2: The Cubic Model ŜO(3) of SO(3) from [48]

data structures in higher dimensions is generally challenging. For our ap-
plication, our subdivisions must support the operation of splitting and
adjacency query. The latter is a nontrivial issue and raises the question
of maintaining smooth subdivisions [5]. In contrast, the sampling use of
subdivision as in [34] has no need for adjacency queries.

(C3) The main primitive of sampling approaches is the classic collision de-
tection problem (see [31]): is a given configuration γ free? There are
off-the-shelf solutions from well-known libraries [31]. Our interval-based
approach represents a nontrivial generalization: is a box B of configura-
tions free or stuck or neither? Exact algorithms for this generalization is

7 In retrospect, this deferment was appropriate in view of the problematic axiom (A4).
8 Some authors write “SE(3) = SO(3) ⋉ R3” where ⋉ is the semi-direct product [40]

on the groups SO(3) and R3. We forgo this algebraic detail as we are not interested
in the group properties of SE(3). We are only interested in SE(3) as a metric space.
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in general not possible (i.e., the footprint of B may not be semi-algebraic).
But we can use the theory of soft predicates to design practical solutions.

(C4) The last challenge is to make the numerical/geometric computations “ex-
plicit” as explained above. This amounts to designing predicates and ex-
plicit algebraic expressions which allow a direct implementation. In short,
we must avoid iterative procedures or general polynomial system solvers.
Instead, we refine the general technique of Σ2-decomposition from [22].

1.3 Literature Review

Lavalle [27] is a comprehensive overview of path planning; Halperin et al [21] gave
a general survey of path planning. An early survey is [50] where two universal
approaches to exact path planning were described: cell-decomposition [37] and
retraction [36,35,7]. Since exact path planning is a semi-algebraic problem [38], it
is reducible to general (double-exponential) cylindrical algebraic decomposition
techniques [4]. But exploiting path planning as a connectivity problem yields
singly-exponential time (e.g, [15]). The case of a planar rod (called “ladder”) was
first studied in [37] using cell-decomposition. More efficient (quadratic time)
methods based on the retraction method were introduced in [41,42].

Spatial rods were first treated in [39]. The combinatorial complexity of its
free space is Ω(n4) in the worst case and this can be closely matched by an
O(n4+ϵ) time algorithm [25]. Lee and Choset [28] gives a planner for a 3D rod
using a retraction approach. Outside of the SSS planners, perhaps the closest
to this paper is Nowakiewicz [34, p. 5383], who uses subdivision of the Cubic
Model. But like many subdivision methods, this approach ultimately takes sam-
ple configurations (at the corners or centers) in subdivision boxes, and is actually
a sampling method. The results were very favorable compared to pure sampling
methods (PRM). For sampling-based planners, the main predicate is checking if
a configuration is free; this is well-known collision-detection problem [31].

The theory of soft subdivision search is the first complete theory of path
planning that overcomes the halting issue in non-exact planners. The following
series of papers demonstrate that this theory leads to implementable algorithms
whose efficiency beats the state-of-the-art sampling methods, up to 5 DOFs:
[47,46,32,49,56,22].

There is a persistent misunderstanding of the fundamental “Zero Problem” of
path planning. Since the problem has various names (“disconnection proof” [3],
“non-existence of path” [52], “infeasibility proof” [30], etc), we will simply call it
the NOPATH problem, and separately review this literature in Appendix A.

1.4 Overview of Paper

Notation: We use bold font for vectors. E.g., p ∈ Z where p = (px, py, pz). Ele-
ments in SO(3) are viewed either as 3 × 3 rotation matrices or as unit quater-
nions. In the latter case, we write q = (q0, . . . , q3) = q0+iq1+jq2+kq3 ∈ SO(3).

In Sect. 2, we present the axiomatic framework for SSS theory, and prove
the Fundamental Theorem of SSS. In Sect. 3, we introduce the main geometric
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primitive in the design of a soft predicate for the Delta Robot. Various techniques
for its explicit evaluation are presented. Sect. 4 describes the data structures for
representing Cubic Model ŜE(3) of SE(3).

Because of space limitation, additional details are deferred to five Appendices
in the supplementary material of this paper (see also [53]): App. A reviews the
NOPATH literature. App. B reviews basic concepts of SSS. App. C gives explicit
“parameterized collision detection predicates” for special Σ2-sets. App. D gives
details about the adjacency structures for ŜE(3). App. E proves the Fundamen-
tal Theorem.

2 The Fundamental Theorem of SSS

The Fundamental Theorem is about the SSS framework, which we review in
Appendix B. This framework uses two standard data structures: a priority queue
Q and a union-find structure U . The queue Q holds boxes in Rd, and U maintains
connectivity of boxes through their adjacency relations (B,B′ are adjacent if
dim(B ∩B′) = d− 1). SSS has 3 subroutines.

– Subroutine B ← Q.GetNext() that removes a box B of highest priority from
Q. The search strategy of SSS amounts to defining this priority.

– Subroutine Expand(B) that splits a box B into its set of children (subcells).
– A classifier C̃ that assigns to each box B one of three values C̃(B) ∈
{FREE, STUCK, MIXED}.

The search strategy has no effect on correctness, but our axioms will impose
requirements on the other two subroutines.

2.1 The spaces of SSS Theory: W,X, Y and Z

Before stating the axioms, we review some spaces that are central to SSS theory.
Call W :=Rd the computational space because the SSS algorithm operates

on boxes in W . Here, d ≥ 1 is at least the degree of freedom (DOF) of our robot.
For SE(3), we choose d = 7 (not d = 6) because we embed SO(3) in R4 to
achieve the correct topology of SO(3). Let W = Rd denote9 the set of tiles
where a tile is defined to be a d-dimensional, compact and convex polytope of
Rd. Subdivision can be carried out using tiles (see [48]). By a subdivision of
a tile B, we mean a finite set of tiles {B1, . . . , Bm} such that B =

⋃m
i=1 Bi and

dim(Bi∩Bj) < d for all i ̸= j. Suppose Expand is a non-deterministic (i.e., multi-
valued) function on B ∈ W such that Expand(B) is a subdivision of B. Using
Expand, we can grow a subdivision tree T (B) rooted in B ∈ W , by repeated
application of Expand to leaves of T (B). The set of leaves of T (B) forms a
subdivision of B. General tiles are beyond the present scope; so we restrict them
to axes-parallel boxes in this paper.
9 In [48], tiles were called test cells. The present tiling terminology comes from the

literature on tiling or tessellation.
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Next, X :=Cspace(R0) is the configuration space of our robot R0. The
robot lives in some physical space Z :=Rk (typically k = 2, 3), formalized
via the robot’s footprint map Fp = FpR0 : X → 2Z (power set of Z).
In path planning, the input includes an obstacle set Ω ⊆ Z. This induces
the clearance function Cℓ : X → R≥0 where Cℓ(γ) :=Sep(Fp(γ), Ω)) and
Sep(A,B) := infa∈A,b∈B ∥a−b∥ denotes the separation between sets A,B ⊆ Z.
We say γ is free iff Cℓ(γ) > 0. Finally, Y :=Cfree(R0, Ω) is the free space,
comprised of all the free configurations.

What kind10 of mathematical spaces are W,X, Y, Z? Minimally, we view
them as metric spaces, each with its own metric: dW , dX , dY , dZ . Since Z,W are
normed linear spaces, we can take dZ(a, b) := ∥a− b∥ (a, b ∈ Z), and similarly
for dW . Here, ∥ ·∥ is the Euclidean norm, i.e., 2-norm. Since Y ⊆ X, we can take
dY to be dX . But what is dX? The space X can be11 very diverse in robotics.
For this paper, we assume X = Xt ×Xr is the product of two metric spaces, a
translational (Xt, dT ) and rotational (Xr, dR) one. There are standard choices
for dT and dR in practice. We can derive the metric dX from dT and dR in several
ways. If a = (at, ar), b = (bt, br) ∈ X, we have three possibilities:

dX(a, b) :=
√

(dT (at, bt))2 + λ · (dR(ar, br))2 (1)

dX(a, b) := max
{
dT (a

t, bt), λ · dR(ar, br)
}

(2)

dX(a, b) := dT (a
t, bt) + λ · dR(ar, br) (3)

where λ > 0 is a fixed constant. For definiteness, this paper uses the definition of
(3) with λ = 1. To understand the use of λ, recall that Xr is a compact (angle)
space and so dR is bounded by a constant. We can take λ to be radius of the
ball containing12 R0 and centered at the relative center of R0. In this way, the
pseudo-metric dH(a, b) (see next) bounds the maximum physical displacement.

We also need a pseudo-metric on X induced by the footprint map: given sets
A,B ⊆ Z, let dH(A,B) denote the standard Hausdorff distance between them
[26, p.86]. Given γ, γ′ ∈ X, we define

dH(γ, γ′) := dH(Fp(γ), Fp(γ′)),

called the Hausdorff pseudo-metric on X. Although the original Hausdorff
distance dH is a metric on closed sets, the induced dH is only a pseudo-metric
in general: dH(γ, γ′) = 0 may not imply γ = γ′. E.g., if R0 is a rod, two config-
urations can have the same footprint.

The case of X = SE(3): Here Xt = R3 and Xr = SO(3). As Xt = Z,
we can choose dT = dZ as above. Mathematically there is a natural choice for
dR as well: if M,N ∈ SO(3) are viewed as 3 × 3 rotation matrices, we choose
10 These spaces have many properties: this question asks for the minimal set of prop-

erties needed for SSS theory.
11 For instance, if X is the configuration space of m ≥ 2 independent, non-intersection

discs in R2, then X is a subset of R2m whose characterization is highly combinatorial.
12 For a rigid robot R0, we identify it with its footprint at 0 = (0t,0r) ∈ Xt×Xr. The

relative center of R0 is the point c ∈ Z which is invariant under any pure rotation
γ = (0t, q). Typically, we choose c to belong to R0 ⊆ Z.
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dR(M,N) = ∥ log(MNT)∥ where log(MNT) is an angular measure; see Huynh
[24] who investigated 6 metrics Φi (i = 1, . . . , 6) for SO(3). Our dR is the natural
metric denoted Φ6 in [24].

Normed linear spaces. It is not enough for Z and W to be metric spaces.
For example, we need to decompose sets in Z using Minkowski sum A⊕B. For
W , we need to scale a tile B by some σ > 0 about a center mB ∈ B, denoted
σB. This is used in defining σ-effectivity. These construction exploit the fact
that Z,W are normed linear spaces.

2.2 Subdivision Charts and Atlases

We must now connect W and X. Subdivision in Euclidean space is standard,
but the configuration space X is rarely Euclidean so that we cannot subdivide X
directly. To solve this, we use the language of charts and atlases from differential
geometry. By a (subdivision) chart of X, we mean a function h : B → X
where B ∈ W and h is a homeomorphism between B and its image h(B) ⊆ X.
An (subdivision) atlas of X is a set µ = {µt : t ∈ I} for some finite index
set I such that each µt (t ∈ I) is a chart, and if Xt ⊆ X is the image of µt,
then dim(µ−1

t (Xt ∩ Xs)) < d (t ̸= s). From µ, we can construct a tile model
of X, denoted Xµ, that is homeomorphic to X via a map µ : X → Xµ (see
Appendix B.2). Note that µ is basically the inverse of the µt’s: if x ∈ Bt, then
µ(µt(x)) = x.

A chart µ : Bt → X is good if there exists a chart constant C0 > 0 such
that for all q, q′ ∈ Bt, 1/C0 ≤ dX(µ(q),µ(q′))

∥q−q′∥ ≤ C0. The subdivision atlas is good
if there is an atlas constant C0 that is common to its charts.

The case of X = SE(3): First consider Xr = SO(3), viewed as unit quater-
nions: the 4-cube [−1, 1]4 has eight 3-dimensional cubes as faces. After identify-
ing the opposite faces, we have four faces denoted Cw, Cx, Cy, Cz (as illustrated
in Figure 2). Let I := {w, x, y, z} = {0, 1, 2, 3} and t ∈ I. We view Ct as a
subset of R4 where q = (q0, . . . , q3) ∈ Ct implies qt = −1. Define the chart:
µt : Ct → SO(3) by µt(q) = q/∥q∥ (t ∈ I, q ∈ Ct). The cubic atlas for SO(3)
is µ = {µt : t ∈ I}. The construction in Appendix B.2 of the quotient space Xr

µ

is called the cubic model of SO(3), also denoted ŜO(3). Moreover, our special
construction ensures that Xr

µ is embedded in R4. Therefore ŜE(3) :=R3×ŜO(3)
can be embedded in R7. We define W :=R7.

2.3 The Axioms

We now state the 5 axioms in terms of the spaces X,Y, Z,W . Please refer to
Appendix B for definition of terms used here.

(A0) (Softness) C̃ is a soft classifier for Y ⊆ X.
(A1) (Bounded dyadic expansion) The expansion Expand(B) is dyadic and there

is a constant D0 > 2 such that |Expand(B)| ≤ D0, and each B′ ∈ Expand(B)
has at most D0 vertices and has aspect ratio at most D0.
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(A2) (Pseudo-metric dH is Lipschitz) There is a constant L0 > 0 such that for
all γ, γ′ ∈ Y , dH(γ, γ′) < L0 · dX(γ, γ′).

(A3) (Good Atlas) The subdivision atlas µ has an atlas constant C0 ≥ 1:

1
C0

dW (µ(γ), µ(γ′)) < dX(γ, γ′) < C0 · dW (µ(γ), µ(γ′))

(A4) (Translational Cells) Each box B ⊆ W has the form B = Bt ×Br where
Bt ∈ Z and Fp(B) = Bt ⊕ Fp(Br). Such boxes13 are called transla-
tional.

Theorem 1 (Fundamental Theorem of SSS). Assuming Axioms (A0)-
(A4). If the soft classifier is σ-effective, then SSS Planner is resolution exact
with resolution constant

K = L0C0D0σ

Application to our SE(3) path planner: For our SE(3) robot design,
Expand(B) has at most 2d congruent subboxes. Thus, we can choose D0 = 2d of
Axiom (A1). We can easily show that the the cubic atlases for SO(3) is good.
However, to prove the exact bound for the distortion constant C0 for SO(n), we
need the tools of differential geometry as in [54]. The remaining issue is Axiom
(A0), that classifier C̃ must be σ-effective for some σ > 1. We will develop C̃ in
the next section and prove that it is (2 +

√
3)-effective. Hence the Fundamental

Theorem implies our SE(3) planner is resolution exact.
Next we briefly comment on these axioms. Axiom (A1) refers to “dyadic

expansion”: a tile is dyadic if its vertices are represented exactly by dyadic
numbers (binary floats). Dyadic subdivision means that each tile is the expansion
remains dyadic – this implies that we can carry out subdivision without any
numerical error. Axiom (A2) shows that the Hausdorff pseudo metric dH is
Lipschitz in the metric dX . This is actually a strengthening of the original axiom.
It is strictly not necessary for the Fundamental Theorem.

We said that the advantage of the axiomatic approach is that it tells us
precisely which axioms are needed for any property of our SSS planner. In par-
ticular, [48, Theorem 2] shows that Axioms (A0) and (A1) ensure the SSS
planner halts. Very often, roboticists argue the correctness of their algorithms
under the assumption of exact predicates and operations. What can we prove
if the soft predicate of Axiom (A0) were exact? Then it can be shown [48, The-
orem 3] that when the clearance is > 2C0D0L0ε, the planner produces a path
under Axioms (A0)-(A3). But what if we want an ε-exact algorithm? That
means that an output of NO-PATH comes with a guarantee the clearance is ≤ Kε
for some K. For such a result, [48, Theorem 5] invokes the problematic Axiom
(A4). We fix this issue in Appendix E.

13 The original definition of translational cells in [48] reads as follows: there is a constant
K0 > 0 such that if B ∈ X is free, then its inner center c0 = c0(B) has clearance
Cℓ(c0) ≥ K0 · r0(B).
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3 Approximate Footprint for Delta Robot: Computational
Techniques

In this section, we describe the design of the approximate footprint of a box,
and the techniques to compute the necessary predicates explicitly.

Axiom (A0) requires an effective soft predicate for boxes B ∈ W . To com-
pute the exact classifier function, C(B) ∈ {FREE, STUCK, MIXED}, the method of
features [46] says that it can be reduced to asking “is Fp(B) ∩ f empty?” for
features f ∈ Φ(Ω). Since the geometry of Fp(B) is too involved, the paper [22]
introduced the idea of approximate footprint F̃ p(B) as substitute for Fp(B).
To achieve soft predicates with effectivity σ > 1, we need:

Fp(B) ⊆ F̃ p(B) ⊆ Fp(σB). (4)

We say F̃ p is σ-effective if it satisfies (4) for all B.

3.1 Design of F̃ p(B) for Delta Robot

Fig. 3: Approximate rotation footprint F̃ p(Br). Cf. Fig. 1(c).

Given B = Bt×Br, we have Fp(B) = Bt⊕Fp(Br) (by translational axiom
(A4)). Its approximate footprint of B is

F̃ p(B) :=Ball(Bt)⊕ F̃ p(Br) (5)

where F̃ p(Br) :=
⋃6

i=1 Pi = SA ∪ SB ∪ Cyl ∪ ConeA ∪ ConeB ∪ Pyr.

The sets P1, . . . , P6 are comprised of two balls (SA, SB), a cylinder Cyl, two
finite cones (ConeA, ConeB) and a convex polytope Pyr (a pyramid with a
rectangular base). The approximate footprint of Br is illustrated in Figure 3.
See Appendix C. In Appendix E, we prove the following:

Theorem 2. The approximate footprint of the Delta Robot is σ-effective where
σ = (2 +

√
3) < 3.8.
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Theorem 3 (Correctness of Delta Robot Planner). Our SSS planner for
the Delta Robot is resolution exact with constant K = 4

√
6 + 6

√
2 < 18.3.

Note that such constant is not excessive as it just means that we need at most
five additional subdivision steps (25 > 18.3) to reach any desired resolution.

3.2 Parametric Separation Query and Boundary Reduction

Detecting collision [31] between two Euclidean sets A,C ⊆ Z amounts to query-
ing if their separation is positive: Sep(A,C) > 0. We generalize it to the query
“Is Sep(A,C) > s?” which we call a parametric separation query (with pa-
rameter s). Note that we need not compute the Sep(A,C) to answer this Yes/No
query. The parametric query is useful because we are often interested in fat ob-
jects, i.e., sets of the form A⊕Ball(s). Detecting their collision with C reduces
to a parametric query on A as in this simple lemma:

Lemma 1. Let A,C ⊆ Rn be closed sets. Then (A ⊕ Ball(s)) ∩ C is empty iff
Sep(A,C) > s.

In this and the next two subsections, we discuss techniques that are used
to reduce the parametric separation query into ultimately explicit and imple-
mentable subroutines. Initially, the sets A,C in Lemma 1 are the approximate
footprint A = F̃ p(B) (see (5)), and C = Ω. Since F̃ p(B) is a fat version of
F̃ p(Br), we can replace F̃ p(B) by F̃ p(Br). Using our method of features (Ap-
pendix B), we can replace C by a feature f of ∂Ω. Remark: this technique
could be used to simplify similar computations in the rod robot in [22].

Next, we address the problem of computing the separation Sep(A,B) =
inf {∥a− b∥ : a ∈ A, b ∈ B} between two closed semi-algebraic sets A,B ⊆ R3.
Note that A is semi-algebraic means that it is the set of points that satisfy a
set of equations and/or inequalities. If only equations are used, then A is alge-
braic. We say A is simple if there is a unique algebraic set A such that A ⊆ A
and dim(A) = dim(A). Call A the algebraic span of A. For instance, every
feature f ∈ Φ(Ω) is simple since, when A is a point/line-segment/triangle, then
A is a point/line/plane (Ω is rational). But if dim(A) = 3 then A = R3.

For any two closed sets A,B, let cp(A,B) be the closest pair set of (a, b) ∈
A◦×B◦ such that (a, b) is a locally closest pair. Here A◦ is the relative interior
of A in A (e.g., if A is a closed line segment, A◦ is a relatively open line segment).
Using the algebraic spans A and B, the set cp(A,B) is (generically) contained
in a finite zero-dimensional algebraic set S. Then cp(A,B) = S ∩ (A◦ ×B◦).

Let us illustrate this idea. Assume the algebraic span A is the curve defined
by the polynomial system f1 = f2 = 0; similarly B is the curve g1 = g2 = 0.
Then the closest pair (p, q) ∈ A◦ ×B◦ is among the solutions to the system

0 = f1(p) = f2(p)
0 = g1(q) = g2(q)
0 = ⟨(p− q),∇f1(p)×∇f2(p)⟩
0 = ⟨(p− q),∇g1(q)×∇g2(q)⟩

(6)
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where ∇fi is the gradient of fi, u× v and ⟨u,v⟩ are the cross-product and dot
product of u,v ∈ R3. Note that (6) is a square system in 6 unknown variables
(p, q) and generically has finitely many solutions. We say (A,B) is degenerate
if the system has infinitely many solutions. The degenerate case is easily disposed
of. Other examples of such computation are given in Appendix C. Using cp(A,B),
we now have a simple “reduction formula” for Sep(A,B):

Lemma 2 (Boundary Reduction Method). Let A ⊆ R3 be a simple closed
semi-algebraic set, and f be a feature. Assume A ∩ clos(f) = ∅ where clos(f) is
the closure of f . Then Sep(A, clos(f)) > s iff

(Q0 > s) ∧ (Qf > s) ∧ (QA > s)

where Q0 := min {∥a− b∥ : (a, b) ∈ cp(A,B)},

Qf := Sep(∂A, f),

QA := Sep(A, ∂f).
By definition, Q0 =∞ if cp(A,B) is empty, and QA =∞ if f is a corner.

This lemma reduces the parametric query to checking Qi > s for all i =
0, A, f . Note that Q0 > s can be reduced to solving a system like (6). By
the method of features, checking if Sep(A,Ω) > s can be reduced to check-
ing if Sep(A, f) > s for all features f ∈ Φ(Ω). Inevitably, we check all the
(i−1)-dimensional features before checking the i-dimensional features (i = 1, 2).
Therefore, in application of this lemma, we would already know that QA > s is
true. Ultimately, the query reduces to an easy computation of Sep(a, f) > s or
Sep(A,a) > s where a is a point. This technique had been exploited in our work,
but becomes more important as the primitives becomes more complex. See its
application in the next subsection and in Appendix C.

3.3 On the Σ2 Decomposition Technique

The reduction technique of Lemma 2 does not work when A is a complex 3-
dimensional object like our approximate footprint. More precisely, the reduc-
tion requires us to characterize the various semi-algebraic patches that form the
boundary of A. Instead, we use a different approach based on expressing A as a
Σ2-set as first introduced in [22].

First, we say that a set B ⊆ R3 is elementary if B =
{
x ∈ R3 : f(x) ≤ 0

}
for some polynomial f(X,Y, Z) of total degree at most 2, and the coefficients
of f are algebraic numbers. Thus elementary sets include half-spaces, infinite
cylinders, doubly-infinite cones, ellipsoids, etc. In our Delta robot, we will show
that the algebraic coefficients of f are degree ≤ 2; by allowing a small increase in
the effectivity constant, we can even assume degree 1 (i.e., f(X,Y, Z) has integer
coefficients). Next, a Π1-set is defined as a finite intersection of elementary sets,
and a Σ2-set is a finite union of Π1-sets. So A is a Σ2-set if it can be written as

A =

m⋃
i=1

n⋂
j=1

Aij
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where each Aij is an elementary set, and each Ai =
⋂n

j=1 Aij is a Π1-set. We
allow Aij = ∅ to simplify notations. The simple double loop below can answer
the question: “Is f ∩A empty?” Appendix C shows that our F̃ p(B) is a Σ2-set.

Σ2-Collision Detection(f,A):
Input: f and A =

⋃m
i=1

⋂n
j=1 Aij .

Output: success if A ∩ f = ∅, failure else.
For i = 1 to m

R← f
For j = 1 to n

R← R ∩Aij (*)
If R = ∅ break ◁ exit current loop

If R ̸= ∅, return failure
Return success

The step (*) maintains R as the intersection of f with successive primitives.
If f is a point or a line segment, this is trivial. When f is a triangle, this could
still be solved in our previous paper for rod and ring robots [22]. But the present
AOB robot requires us to maintain a planar set bounded by degree 2 curves;
this requires a non-trivial algebraic algorithm. We do not consider this “explicit”.
Our solution is to explicitly write A =

⋃m
i=1 Ai where each Ai =

⋂n
j=1 Aij has a

very special form, namely, a convex and bounded Π1-set of the following types:

right cylinder, right cone, right frustum, convex polyhedron. (7)

By right cylinder, we mean that it is obtained by intersecting an infinite cylinder
with two half-spaces whose bounding planes are perpendicular to the cylinder
axis. The notion of right frustum is similar, but using a doubly-infinite cone
instead of a cylinder. Thus the two “ends” of a right cylinder and a right frustum
are bounded by two discs, rather than general ellipses. A right cone is a special
case of a right frustum when one disc is just a single point.

We call the sets in (7) special Π1-sets. A finite union of special Π1-sets is
called a special Σ2-set. While the above Σ2-collision detection does not extend
to parametric queries, this becomes possible with special Σ2-sets:

Theorem 4 (Parametric Special Π1-set queries).
There are explicit methods for parametric separation queries of the form “Is
Sep(P, f) > s?” where P is a special Π1-set and f is a feature.

REMARK: In Appendix C, we introduce a further simplification to show
that F̃ p(B) is the union of “very special” Σ2-sets which are defined by polyno-
mials of degree 2 whose coefficients have algebraic degree 2.

4 Subdivision in ŜE(3): Adjacency and Splitting

We now address subdivision in the space ŜE(3) = R3 × ŜO(3). Let a box B

in ŜE(3) be decomposed as Bt × Br where Bt ∈ R3 and Br ∈ ŜO(3). Bt
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is standard, but Br is slightly involved as shown next. Given an initial box
B0 = Bt

0×ŜO(3), the SSS algorithm will construct a subdivision tree T = T (B0)
that is rooted at B0. The leaves of T represent the (current) subdivision of
B0. We need an efficient method to access the adjacent boxes in the (current)
subdivision. The number of adjacent boxes is unbounded; instead, we maintain
only a bounded number of “principal” neighbors from which we can access all the
other neighbors. For Rn, this has been solved in [1] using 2n principal neighbors.
We will show that for ŜO(3) boxes, 8 principal neighbors suffice. So 14=6+8
principal neighbors suffice for boxes in T (B0).

It remains to discuss principal neighbors in ŜO(3). Following Section 2.2
and Figure 2, ŜO(3) can be regarded as the union of four cubes, ŜO(3) =
∪3i=0Ci where Ci :=

{
(a0, . . . , a3) ∈ [−1, 1]4 : ai = −1

}
. The indices in (0, 1, 2, 3)

will also be identified with (w, x, y, z): thus C0 = Cw, C1 = Cx, etc. Let d ∈
{±e0, . . . ,±e3} identify one of the 8 semi-axis directions (here ei denotes the i-th
standard basis vector). If two boxes B and B′ are neighbors, there is a unique d

such that B′ is adjacent to B in direction d, denoted by B
d−→ B′. In general,

B′ is not unique for a given B and d. See Appendix D.1 for details.
We now describe the subdivision tree rooted at ŜO(3): the first subdivision is

special, and splits ŜO(3) into 4 boxes Ci for i = 0, 1, 2, 3. Subsequently, each box
is split into 8 children in an “octree-type” split. Each non-root box B maintains
8 principal neighbor pointers, denoted B.d (d ∈ {±e0, . . . ,±e3}). However,
only 6 of these pointers are non-null: if B ⊆ Ci then B.d is null iff d = ±ei. The
non-null pointer B.d points to the principal d-neighbor of B, which is defined
as the box B′ that is a d-neighbor of B whose depth is maximal subject to the
restriction that depth(B′) ≤ depth(B). Note that B′ is unique and has size at
least that of B. The non-null pointers for B are set up according to two cases.
Case B = Ci: Each B.d = Cj if d = ±ej and j ̸= i (see Fig. 2). Case B ̸= Ci:
Three of the non-null pointers of B point to siblings and the other three point
to non-siblings, and are determined as in Appendix D.

5 Conclusion

Limitations. We are currently in the midst of implementing this work. We are
not aware of any theoretical limitations, or implementability issues. One concern
is how practically efficient is the current design (cf. [22, Sect. 1, Desiderata]). It
is possible that additional techniques (mostly about searching and/or splitting
strategies) may be needed to achieve real-time performance.
Extensions and Open Problems. Our SSS path planner for the Delta Robot
is easily generalized to any “fat Delta robot” defined as the Minkowski sum
AOB ⊕ B(r) of AOB with a ball B(r). Here are two useful extensions that
appear to be reachable: (1) Extensions would be to “complex SE(3) robots”,
where the robot geometry is non-trivial. In principle, the SSS framework allows
such extensions [48]. (2) Spatial 7-DOF Robot Arm. In real world applications,
robot arms normally need more than 6 degrees of freedom. In this case, the
configuration space is a product of 2 or more rotational spaces.
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A Appendix: Review of the NOPATH Literature

We feel that the repeated misunderstanding about the fundamental “Zero Prob-
lem” [44] of path planning calls for a closer overview of the literature. As the prob-
lem goes by different names (“disconnection proof” [3], “non-existence of path”
[52], “infeasibility proof” [30], etc), we will simply call it the NOPATH problem.
In its starkest form, NOPATH is just a decision problem, with a YES/NO an-
swer. Classical path planning extends this problem by asking for a path (if YES),
and a simple "NO" otherwise. Call this the FINDPATH problem. In recent years
(e.g., [45,30]), we see FINDPATH extended by requiring an “infeasibility proof”
in case of a "NO" answer.14 Since the NOPATH problem is embedded in FIND-
PATH or its extension, we can evaluate all path planners with respect to their
completeness for NOPATH.

Before reviewing the literature, there are two preliminary remarks. First of
all, the NOPATH problem is clearly solved by exact path planning, so we may
only focus on algorithms based on numerical approximations and sampling. Sec-
ond, we note that some algorithms only solve “promise problems” (e.g., [18]). In
such problems, the inputs in addition to being well-formed, must satisfy some
semantic conditions (“promise”). A promise algorithm is one whose correct-
ness depends on such promises. Below, we will see such promise algorithms. If
the promise implies the existence of paths, then clearly they do not solve the
NOPATH problem.

The earliest paper that appears to offer a solution to NOPATH is Zhu and
Latombe [57,58], whose “hierarchical framework” shares many features of our SSS
framework. They made a nice observation that if there is no path in the adjacency
graph of cells that are either EMPTY or MIXED15, then it constitutes a proof
of NOPATH. But they do not offer a complete method to detect NOPATH; see
also Barbehenn and Hutchinson [2]. Unfortunately, the non-termination issue
persists.

Non-Halting Example: Consider a planar disc robot of radius 1 and the ob-
stacle set Ω = {(x, 0) : |x| ≥ 1} where the robot must move from α = (0,−1) to
β = (0, 1). Then every box that contains (0, 0) will be MIXED. This causes the
halting problem for any subdivision approaches (and, a fortiori, for any sampling
approaches).

An early reference for infeasibility proofs is Basch et al. [3] who aimed to
find proofs when a robot cannot move through a “gate” in a 3D wall (they
do not claim completeness). The exact solution for a 2D gate was first solved
in [51]. Next, Zhang et al. [52] gave infeasibility proofs by giving a sufficient
14 Note that the concept of providing a proof is always relative to some “proof checker”

and this could vary dramatically depending on how powerful a proof checker one has
in mind. E.g., for a proof of NOPATH, one often thinks of a cut that separates the
start and goal configurations in the adjacency graph (so we need a “cut checker”).
But one could also output the entire adjacency graph, and the checker can verify
that there is no path.

15 Our classification of boxes as FREE/STUCK/MIXED in SSS corresponds to their label-
ing of cells as EMPTY/FULL/MIXED.
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criterion for classifying a cell as FULL (i.e., STUCK). Their heuristic is clearly
incomplete. More recently, Li and Dantam [30,29] aimed to find infeasibility
proofs by learning and other techniques. But they only have a promise algorithm,
conditioned on the input having the ε-blocked property [30, p.2, Section III.A].
Here ε > 0 is a hyperparameter [30, p.7, Section VII.B] that the user must
provide. Note that the concept of ε-blocked property is very close to our idea
of ε-exactness. The difference is that they make this property a “promise” while
our SSS algorithms take ε as an input.

Li and Dantam [30] proposed the idea to dovetail a PRM planner with an
“infeasibility prover” (see [30, Figure 1]). This allows sampling based methods to
sometimes produce NOPATH outputs. More generally, the concept of providing
“infeasibility proofs” is only needed for incomplete algorithms (such as sampling
methods). A complete algorithm does not need to provide proofs. In particular,
exact algorithms or our SSS algorithms do not need to provide such proofs.

Another attempt at infeasibility proofs is Sung and Stone [45], but in the
limited setting of a prior roadmap.

Path planners that accept ε > 0, δ > 0 as part of the input are clearly
trying to do approximation. Do they escape the NOPATH issue? E.g., Dayan
et al. [11] defined a graph G = G(X , r, xs, xg) where X ⊆ Cspace, r > 0 and
xs, xg ∈ Cspace. An edge (u, v) of G represents a feasible path from u to v. Given
ε, δ, they construct X and r > 0 such that (X , r) is (ε, δ)-complete in this sense:
the inequality dG(x

s, xg) ≤ (1 + ε)OPTδ holds. Here dG(u, v) is the length of
the shortest path in G, and OPTδ is the length of the shortest path among the
δ-clear paths. Unfortunately, if there is no path from xs to xg in Cfree then
dG(x

s, xg) = OPTδ =∞. But if we assume that OPTδ <∞, then this becomes
a promise algorithm that assumes the existence of a path.

B Appendix: Soft Subdivision Search

We review the elements of SSS Framework [46,48]. Recall that in Section 2.1,
we introduced the four spaces for path planning: the configuration space X, free
space Y , physical space Z, and computation space W given by

W = Rd, X = Cspace(R0), Y = Cfree(R0, Ω), Z = Rk.

B.1 Soft Predicates

Given A,B ⊆ Z, their separation is defined as Sep(A,B) := infa∈A,b∈B ∥a−b∥.
A robot R0 is defined by a continuous footprint map Fp : X → 2Z . This
map may be regarded as a generalization16 of the more well-known forward
kinematic map. Continuity of Fp comes from the fact that X and 2Z are

16 Typically, a fixed point A on the robot is chosen and the footprint map FpA(γ) is
the location of A in physical space. We generalize this to any set S of points on the
robot: if S is the entire robot, we just write Fp(γ) instead of FpS(γ).
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topological spaces where 2Z has the topology induced from the Hausdorff pseudo-
metric on subsets of Z. Relative to an obstacle set Ω ⊆ Z, its clearance
function is Cℓ : X → R≥0 where Cℓ(x) :=Sep(Fp(x), Ω). We say x ∈ X is free
iff Cℓ(x) > 0. We define Y as the set of free configurations in X. A motion is
a continuous function µ : [0, 1] → X. We call µ a path if the range of µ lies in
Y (so µ(t) is free for all t ∈ [0, 1]). We also call µ(0) and µ(1) the start and goal
configurations of the path, and µ is a path from its start to its goal configuration.
The clearance of a path µ is min {Cℓ(µ(t)) : t ∈ [0, 1]}. The optimal clearance
between x, y ∈ Y is the largest clearance of any path from x to y.

We now consider a somewhat non-intuitive concept of “essential clearance”
first introduced in [46]: let µ be a path. We say µ has essential clearance C > 0
if there exists t0, t1 (0 ≤ t0 < t1 ≤ 1) such that for all t ∈ [0, 1]:

Cℓ(µ(t))

{
≥ C if t ∈ [t0, t1]
< C else.

Note that having essential clearance C means that, with the exception of an
initial segment [0, t0) and a final segment (t1, 1], the path has clearance at least
C. If t0 = 0 or t1 = 1, this initial or final segment is null. The motivation for
this definition is to make our resolution exact algorithms simpler, by not having
to check such initial and final segments. E.g, our SSS planner finds a path by
discovering a channel, i.e., a sequence of adjacent free boxes that connect the
start and goal configurations α, β. All the free boxes in the channel have widths
≥ ε. Then it is clear that we can find an path µ from α to β inside this channel
whose essential clearance is ≥ ε/K where K > 0 depends on the algorithm. We
cannot discount the possibility that the initial or final segment of µ may have
clearance arbitrarily close to 0.

The concept of a “soft predicate” is relative to some exact predicate. Based
on the clearance function, the exact predicate is C : X → {0,+1,−1} where
C(x) = 0/ + 1 (resp.) if configuration x is semi-free/free; else C(x) = −1. The
semi-free configurations are those on the boundary of Y . Call +1 and −1 the
definite values, and 0 the indefinite value.

C(x) =

+1 if x ∈ Y ◦,
0 else if x ∈ ∂Y
−1 else.

We can extend the definition to any set B ⊆ X: for a definite value v, define
C(B) = v iff C(x) = v for all x. Otherwise, C(B) = 0.

Let W denote the set of d-dimensional boxes in W = Rd. In general, a box
B ∈ Rk is called a hypercube if B =

∏k
i=1 Ii is the product of intervals Ii of

the same width. Let w(B) = minki=1 w(Ii) where w([a, b]) = b−a. The diameter
of any set S ∈ Rn is the diam(S) := maxa,b∈S ∥a− b∥2. The aspect ratio of B
is defined as ρ(B) := diam(B)/w(B).

In our application of SE(3), W = R7 and each box B ∈ W has the decom-
position B = Bt ×Br where Bt ∈ R3, and Br ∈ R4. We assume that Bt is a
hypercube, and define the “width” of B to be w(B) :=w(Bt).
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For any box B ∈ W , let C(B) as a short-hand for C(µ(B)) where µ :
Xµ → X is the homeomorphism from the “square model” Xµ to X. A predicate
C̃ : W → {0,+1,−1} is a soft version of C if it is conservative and convergent.
Conservative means that if C̃(B) is a definite value, then C̃(B) = C(B).
Convergent means that if for any sequence (B1, B2, . . .) of boxes, if Bi → p ∈W

as i → ∞, then C̃(Bi) = C(p) (= C(µ(p))) for i large enough. To achieve
resolution-exact algorithms, we must ensure C̃ converges quickly in this sense:
say C̃ is effective if there is a constant σ > 1 such if C(σB) = ±1 (i.e., definite)
then C̃(B) = C(B).

B.2 The Cubic Model Xµ

For any set S ⊆ Rm, a subdivision of S is a finite set {S1, . . . , Sk} such that
S = ∪ki=1Si and dim(Si ∩ Sj) < dim(Si) for all i ̸= j. We assume that Si’s
are nice sets for which the notion of dimension, dim(Si) and dim(Si ∩ Sj), are
well-defined. In our applications, Si’s are boxes.

Let X be a topological space and I a finite index set. Recall the definitions
of charts and atlases in Section 2.2. Let µ = {µt : t ∈ I} be a subdivision atlas
of X. For each t ∈ I, let µt : Bt → X where Bt ∈ Rm for some fixed m.
We construct the space Xµ as the following quotient space: Let X+

µ := ⊎t∈I Bt

the disjoint union of the Bt’s. Then Xµ is the quotient space X+
µ / ∼ where

a ∼ b for a, b ∈ X+
µ iff a ∈ Bs and b ∈ Bt implies µs(a) = µt(b). Let [b] denote

the equivalence class of b. Finally, we can define the map µ : X → Xµ where
µ(x) = [b] iff b ∈ Bt and µt(b) = x.

For SO(3), we have the atlas µ = {µw, µx, µy, µz} in which µt : Bt → SO(3)
(t ∈ {w, x, y, z}). The boxes Bw, Bx, By, Bz are specially chosen so that Xµ is
embedded in R4. Obviously, Xµ has a non-Euclidean topology.

B.3 The SSS Framework

An SSS algorithm maintains a subdivision tree T = T (B0) rooted at a box B0 ⊆
W . Each tree node is a subbox of B0. In Axiom (A1), we view Expand(B)

as a set of boxes that represent a subdivision of B. If B ∈ Rm has dimension
p ≤ m, the canonical expansion Expand0(B) of B is the set of 2p congruent
subboxes of B that form a subdivision of B; for simplicity, we may assume this
canonical expansion; but see [48] for other expansions. In the SSS framework,
we also have a procedure (still called) Expand(B), which acts as follows: given
a leaf B of T (B0), it converts B into an internal node whose children form the
set Expand(B). The expand procedure will immediately classify each B′ in the
set Expand(B) using a soft predicate C̃, and perform some additional actions as
outlined below. Thus, we see that the tree T is initially just the root B0 and it
grows by repeated expansion of its leaves. The set of leaves of T at any moment
constitute a subdivision of B0. For our SE(3) subdivision tree, the root B0 is
initially Bt

0 × ŜO(3). Our expansion of any box B = Bt × Br takes a specific
form: it is either Expand(Bt) × Br or Bt × Expand(Br). This is the T/R Split
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idea in [32, Section 3]. However, when Br = ŜO(3), this expansion is special: we
always have Expand(Br) = {Cw, Cx, Cy, Cz} as illustrated in Figure 2.

The SSS Algorithm maintains the subdivision tree T using three WHILE-
loops – see box below. The goal is to find a path from the start α to the goal β
where α, β ∈ X; or report NO-PATH, satisfying the requirements of ε-exactness
(see Definition 1, Section 1). Let BoxT (α) denote the leaf box of T that contains
α. The first WHILE-loop keeps expanding BoxT (α) until it becomes FREE, or
returns NO-PATH when BoxT (α) has width less than ε. The second WHILE-loop
does the same for BoxT (β).

The last WHILE-loop (Main Loop) depends on three data structures, Q,G,U :

(a) A priority queue Q contains17 only MIXED boxes.
(b) An adjacency graph G whose nodes are the FREE boxes in T , and whose
edges connect pairs of adjacent boxes, i.e., pairs that share a (d− 1)-face.
(c) A Union-Find data structure U to represent the connected components of G.

The above Expand(B) procedure takes these additional actions: for each B′

in the set Expand(B), if w(B′) < ε or C̃(B′) = STUCK, we discard B′. If C̃(B′) =
FREE, we insert B′ into the adjacency graph G; we also insert B′ into U and
perform U.Union(B′, B′′) with boxes B′′ in G which are adjacent. If C̃(B′) =
MIXED, it is pushed into Q.

The main WHILE loop will keep expanding Q.GetNext() until a path is
detected or Q is empty. If Q is empty, it returns NO-PATH. Paths are detected
when the Union-Find data structure tells us that BoxT (α) and BoxT (β) are
in the same connected component. It is then easy to construct a path in G to
connect BoxT (α) and BoxT (β). Thus we get:

17 From the procedure Expand(B), each box B′ in the tree T has a classification C̃(B′) ∈
{MIXED, FREE, STUCK}.)
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SSS Framework:

Input: start and goal configurations α, β ∈ X,
obstacle set Ω ⊆ Z, resolution ε > 0, initial box B0 ∈ W .

Output: Path from α to β in Y ∩ µ(B0) or NO-PATH.
Initialize a subdivision tree T with root B0.
Initialize data structures Q,G and U .
While (BoxT (α) ̸= FREE)

If width of BoxT (α) is < ε, Return(NO-PATH)
Else Expand(BoxT (α))

While (BoxT (β) ̸= FREE)
If width of BoxT (β) is < ε, Return(NO-PATH)
Else Expand(BoxT (β))

▷ MAIN LOOP:
While (U.F ind(BoxT (α)) ̸= U.F ind(BoxT (β)))

If QT is empty, Return(NO-PATH)
B ← QT .GetNext()
Expand(B)

Using G, construct a channel P = (B1, B2, . . . , Bk) comprising adjacent
free boxes. Construct a canonical path P = (α, b1, c1, b2, . . . , ck−1, bk, β)
where bi = m(Bi) and ci = m(Bi ∩Bi+1).

The correctness of SSS does not depend on search strategy (i.e., priority)
of Q. However, choosing a good search strategy can have a great impact on
performance. Two strategies with the best results are Greedy Best First and
some kind of Voronoi strategy.

B.4 Method of Features

In SSS framework, the obstacle set Ω ⊆ Z = R3 is a closed polyhedral set. We
may assume its boundary ∂Ω is bounded. Then ∂Ω is partitioned into a set of
boundary features: corners (points), edges (relatively open line segments), or
walls (relatively open triangles). Let Φ(Ω) denote the set of features of Ω. The
(minimal) set of corners and edges are uniquely defined by Ω, but walls depend
on a triangulation of ∂Ω.

Our approach to soft predicates is based on the “method of features” [47,46].
The exact feature set of B is

ϕ(B) := {f ∈ Φ(Ω) : f ∩ Fp(B) ̸= ∅} . (8)

This is too hard to compute, and we want an approximation ϕ̃(B) with the
property ϕ(B) ⊆ ϕ̃(B). This property holds if we define the approximate
feature set of box B as

ϕ̃(B) :=
{
f ∈ Φ(Ω) : f ∩ F̃ p(B) ̸= ∅

}
(9)



Explicit 6DOF Planner 7

where F̃ p(B) is the approximate footprint defined in Section 3.1. Moreover the
property (4) on approximate footprint F̃ p(B), i.e.,

Fp(B) ⊆ F̃ p(B) ⊆ Fp(σB)

ensures the resolution exactness of our algorithm. Hence,

ϕ(B) ⊆ ϕ̃(B) ⊆ ϕ(σB). (10)

The idea is to maintain ϕ̃(B) for each box B in the subdivision. We softly
classify B as C̃(B) = MIXED as long as ϕ̃(B) is non-empty; otherwise, we can
decide whether C̃(B) = C(B) is FREE or STUCK. For computational efficiency,
we want the approximate feature sets to have inheritance property, i.e.,

ϕ̃(B) ⊆ ϕ̃(parent(B)). (11)

This can be ensured by a trick in [22].

C Appendix: Explicit Parameterized Collision Detection
Computation

Our previous paper [22] already provided explicit algorithms for the collision
detection between obstacle features and some simple Π1-sets, as summarized in
the lemma below.

Lemma 3. ([22]) Let A be a point, an edge or a ball, and let f be a fea-
ture. There are explicit procedures to answer the parametric separation query
“Is Sep(A, f) > s?”.

In this paper, we provide new algorithms so that A can be a special Σ2-set.
(cf. Sec. 3.2 on parameterized collision detection.)

We remark that when A is a cone and f is a line, there appears to be no
known explicit solution. We only found iterative procedures [55] or Lagrangian
minimization formulations, which are not explicit.

C.1 General Geometric Notations

We give some basic definitions and notations used in Euclidean geometry Rm.
Recall from Sec.3.2 that a set A ⊆ Rm is simple if there is a unique algebraic set
A such that A ⊆ A and dim(A) = dim(A). In this case, we call A an algebraic
span of A.

Let ∂A denote the boundary of a set A. Given two points u, v, let seg(u, v) de-
note the segment connecting them, and |seg(u, v)| denote its length. Let Ball(v, r)
denote the ball centered at v with radius r. If v is the origin 0, we just write
Ball(r). Let cone(v, o, r) denote the right cone with apex v whose base is a disc
centered at o of radius r > 0. So the boundary of cone(v, o, r) can be decom-
posed into a circular disc disc(o, r) and a conic surface which we call a traffic
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cone, denoted by tc(v, o, r). Note that the algebraic span tc(v, o, r) is an alge-
braic double cone surface whose equation is x2 + y2 = r2z2 up to a coordinate
transformation.

We also introduce an important shape for our analysis, the ice-cream cone
icc(v, o, r) which is defined as the union of cone(v, o, r) and a ball B such that
B is tangential to the traffic cone tc(v, o, r). Note that the disc(o, r) is a section
of B (see Figure 4). The relation between ice-cream cone and its corresponding
traffic cone is given by this lemma:

Lemma 4. The ice-cream cone icc(v, o, r) is the union of cone(v, o, r) with the
ball Ball(c,R) whose center c on the axis of the cone satisfies |seg(v, c)| = h2+r2

h

where h = |seg(v, o)|. The radius R is given by h2+r2

r .

Fig. 4: An ice-cream cone icc(v, c, r) for some r > 0.

Given any box B ∈ W , we can express it as B = Bt ×Br, where Bt ∈ R3

and Br ⊆ ŜO(3). We now define m(B), w(B) and r(B) as follows: The center of
B, denoted mB = m(B), is the center of Bt. Note that m(B) is just the center of
Bt, and independent of Br. The width of B, denoted by wB = w(B), is similarly
just the width of Bt. The radius of B, denoted by rB = r(B), is given by
r(B) =

√
3wB/2. Thus, the circumball of Bt is simply Ball(Bt) = Ball(mB , rB).

C.2 Rearranging Approximate Footprint into Special Σ2 Sets

In equation (5), we informally define our approximate footprint F̃ p(B) as Ball(Bt)⊕
F̃ p(Br) where

F̃ p(Br) = ∪6i=1Pi.

Note that this means our F̃ p(B) is a fat version of F̃ p(Br). In general, A⊕Ball(r)
is a fat version of A.

Previously the sets Pi were not fully specified there. We will see that each Pi

is, in fact, a special Π1-set. Therefore, F̃ p(Br) a special Σ2-set.
As preliminary, consider the 8 corners c1, . . . , c8 of the box Br. Each ci rep-

resents a rotation of the robot ∆AOB. Let Ai ∈ R3 denote the position of A
under this rotation. Similarly for Bi. Then oA is defined as the center of gravity
of these points, oA = 1

8

∑8
i=1Ai. Similarly for oB. Let d(B) be the maximum

distance from oA to any Ai and from oB to any Bi (i = 1, . . . , 8). See Figure 5.
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Fig. 5: Getting SA from
the A1 . . .A8.

Fig. 6: The Cyl makes
the convex hull of SA
and SB

Fig. 7: The ConeA
makes the convex hull
of O and SA

– P1 = SA is the Ball(oA, d(B)).
– P2 = SB is the Ball(oB, d(B)).
– P3 = Cyl is the right-cylinder with oA and oB as the centers of its two base

discs and d(B) as its radius. Thus, Cyl ∪ SA ∪ SB is just the convex hull of
SA and SB. See Figure 6

– P4 = ConeA is right-cone with origin O as its apex and a circular base that
is tangent to SA. Then ConeA ∪ SA is the convex hull of O and SB. See
Figure 7.

– P5 = ConeB is analogous to ConeA.
– P6 = Pry is a pyramid with apex at O and a rectangular base that is

tangential to Cyl. Thus the union ∪6i=1Pi is the convex hull of O, SA and
SB. See Figure 3. Note that each Pi is a special Π1-set.

Now we apply F̃ p(B) = Ball(Bt) ⊕ F̃ p(Br) to get the Σ2 representation of
F̃ p(B). The F̃ p(B) can be decomposed into the union of 7 special Π1 sets. They
are the following:

Fig. 8: The frustums
make the convex hull of
SA and SO as well as
the convex hull of SB
and SO.

Fig. 9: The Cyl makes
the convex hull of S+

A
and S+

B .

Fig. 10: The Pyr+

makes the convex hull
of SA, SB and SO
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– SO = Ball(Bt) (small cyan ball center at O);
– S+

A = SA ⊕ Ball(Bt) = Ball(oA +mB , r(B) + d(B)) (large cyan ball center
at A);

– S+
B = SB ⊕ Ball(Bt) = Ball(oB +mB , r(B) + d(B)) (large cyan ball center

at B);
– FrustA is the right-frustum whose union with SO and S+

A will result in the
convex hull of SO and S+

A (orange frustum);
– FrustB is the right-frustum whose union with SO and S+

B will result in the
convex hull of SO and S+

B (orange frustum), see Figure 8;
– Cyl+ is the right-cylinder whose union with S+

A and S+
B will result in the

convex hull of S+
A and S+

B (pink cylinder), see Figure 9;
– Pyr+ is the polyhedron whose union with S+

A, S+
B , SO, FrustA, FrustB and

Cyl+ will result in the convex hull of S+
A, S+

B and SO (green polyhedron),
see Figure 10.

C.3 Exploiting a very special Σ2-decomposition of F̃ p(B)

To implement collision detection of the approximate footprint F̃ p(B) with a fea-
ture using the above special Σ2-decomposition of F̃ p(B), our boundary reduction
technique requires us to compute the separation of a disc and a feature. This
requires computing roots of a degree 4 polynomial (see Appendix C.4. and [23,
Appendix D.1]. The following lemma shows that we can reduce this computation
to parametric separation query that amounts to checking a polynomial inequality
of degree 2 and whose coefficients are algebraic of degree 2 (i.e., square-roots).

Lemma 5. If B ∈ W has corners whose coordinates are rational numbers,
then F̃ p(B) is a Σ2-set whose defining polynomials have coefficients of degree at
most 2.

Proof. If q = (1, x, y, z) ∈ ŜO(3) has rational coordinates, q/∥q∥ ∈ SO(3), then
the corresponding 3× 3 orthogonal matrix Mq has rational entries. As a result,
the ball SA has rational center and radius is a square root of a rational number.
So the equation defining SA is a polynomial of degree 2 with rational coefficients.
Moreover, r(B) =

√
3
2 w(B) is a square root of rational number. It implies that

S+
A = SA ⊕ Ball(Bt) is a polynomial whose coefficients have algebraic degree 2.

The other cases are similar. Q.E.D.

To exploit the above lemma, we need a new “very special” Σ2-decomposition
of our approximate footprint, namely as the union of special Σ2-sets (such as
ice-cream cones and fat line segments). Note that ice-cream cones and fat line
segments avoid computations involving discs.

Lemma 6. Given box B ∈ W and feature f , F̃ p(B) ∩ f = ∅ if and only if

(Sep(iccA, f) > r(B)) ∧ (Sep(iccB, f) > r(B))

∧ (Sep(seg(oA, oB), f) > d(B) + r(B))

∧ (Sep(Pyr+, f) > 0),
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where iccA = icc(mB ,mB + oA, d(B)) and iccB = icc(mB ,mB + oB, d(B)) are
the ice-cream cones given by ConeA ∪ SA and ConeB ∪ SB with a translation of
mB.

Proof. We rearrange our approximate footprint in this way:

F̃ p(B) =
(
S+
A ∪ FrustA ∪ SO

)
∪
(
S+
B ∪ FrustB ∪ SO

)
∪
(
S+
A ∪ Cyl+ ∪ S+

B
)
∪Pyr+.

We notice the following relations:

S+
A ∪ FrustA ∪ SO = (ConeA ∪ SA)⊕ Ball(Bt) = iccA ⊕ Ball(r(B))

S+
B ∪ FrustB ∪ SO = (ConeB ∪ SB)⊕ Ball(Bt) = iccB ⊕ Ball(r(B))

S+
A ∪ Cyl+ ∪ S+

B = seg(oA, oB)⊕ Ball (d(B) + r(B))

Then by Lemma 1, Sep(F̃ p(B), f) > 0 if and only if the four terms in the
conjunction form described in the lemma are all true. Q.E.D.

C.4 Boundary Reduction Method for Disc-Edge

We can apply the boundary reduction method to produce a parametric separa-
tion query for discs. Note that discs are Π1-sets.

In this section, we give an example of boundary reduction method. We con-
sider a disc Π1 set defined by D = {(x, y, z) ∈ R3|x2 + y2 ≤ 1, z = 0}, and an
edge feature defined by f = {(a0, b0, c0) + t(a, b, c)|t ∈ [0, 1]}. We compute the
parametric collision detection “if Sep(D, f) > s” for s > 0.

The collision detection is based on the following process:

Input: a disc D and a segment f , real number s > 0
Output: boolean (Sep(D, f) > s)

If (Sep(D, ∂f) ≤ s), return false
For each (p, q) ∈ cp(∂D, f),

if (d(p, q) ≤ s and q ∈ f),
return false

For each w ∈ D ∩ f (this is unique)
if (w ∈ D and w ∈ f)

return false
return true

Among the process above, we recursively call the query “Sep(D, ∂f) > s?”,
where ∂f is a set of two points. This subquery is standard and thoroughly
studied by many people. We focus on the computation of cp(∂D, f), which is a
good example of solving the polynomial equations listed in (6).

To begin with, suppose (p, q) ∈ cp(∂D, f), where ∂D = {x2+y2 = 1}∩{z =
0} and f = {(a0, b0, c0) + t(a, b, c)|t ∈ R}. We denote the normal direction of
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∂D to be d = (0, 0, 1) and the direction of f to be f = (a, b, c). Given any
q = (xq, yq, zq) ∈ f , let’s compute (p, q) ∈ cp(∂D, q). Suppose that the solution
is p = (x, y, z). Corresponding to symbols in (6), f1(x, y, z) = x2 + y2 − 1 and
f2(x, y, z) = z. Let v = ∇f1(p) ×∇f2(p). Noticing that p ⊥ v (since p is on a
circle, which is equivalent to f1(p) = 0), and (q − p) ⊥ v, p is the intersection
between the plane constructed by q and d with ∂D. This gives us

p = (x, y, z) =

 xq√
x2
q + y2q

,
yq√

x2
q + y2q

, 0

 .

By applying ⟨q − p,f⟩ = 0, we have the equation:

axq

(
1−

√
x2
q + y2q

)
+ byq

(
1−

√
x2
q + y2q

)
+ czq

√
x2
q + y2q = 0.

This is equivalent to

axq + byq = (axq + byq − czq)
√
x2
q + y2q ,

or
(axq + byq)

2
= (axq + byq − czq)

2 (
x2
q + y2q

)
.

Here, xq, yq, zq are linear to the variable t. Then the equation above is a poly-
nomial of t with degree 4. Hence, solving the equation is the same with solving
a quartic equation. The root of the polynomial of t gives possible q ∈ f . Then if
there is q ∈ f such that d(p, q) ≤ s, the query returns false.

C.5 Parametric Query for Special Σ2-sets

Theorem 5 (Theorem 4 in main paper).
There are explicit methods for parametric separation queries of the form “Is
Sep(P, f) > s?” where P is a special Π1-set and f is a feature.

Proof. Parametric separation queries for convex polyhedra is standard. Hence,
it remains to consider parametric separation queries for other special Π1-sets,
viz., right cylinder, right cone and right frustum.

The main idea is based on the boundary reduction technique. The technique
reduces the query to the following 3 subqueries Q0 > s, QA > s and Qf > s.
We note that Q0 > s is trivial: Given a special Π1 set Π, its algebraic span is
R3. Hence the closest pair cp(Π, f) for any feature f takes place at the whole
feature. Then cp(Π, f) ̸= ∅ if and only if Π◦ ∩ f ̸= ∅. Since f is a closed set, the
relation between Π and f can only be classified into three cases: ∂Π ∩ f ̸= ∅,
f ⊂ Π◦ or f ∩Π = ∅. Checking the first case is solving the algebraic equations
which is standard. To check the second case, we can pick any q ∈ f and check
if q ∈ Π or not by checking each of algebraic inequalities that form the Π1 set.
So we suppose that we are in the third case, i.e. f ∩Π = ∅ where cp(Π, f) = ∅.
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It remains to consider the subqueries QA > s and Qf > s. Checking if
QA > s, i.e., Sep(Π, ∂f) > s is solved recursively. Hence we only focus on
deciding Qf > s, i.e., Sep(∂Π, f) > s. We observe that for our special Π1-sets,
∂Π can be decomposed into two or three surfaces of the form: (i) the intersection
of a quadric surface and a slab (which is bounded by two parallel planes). (ii)
a disc. The case of a disc has been addressed in Appendix C.4. The quadric
surface has two possibilities: one is the non-planar surface of a right frustum,
which is treated in Appendix C.7. This includes the traffic cone as a special case.
The other possibility is the non-planar surface of a right cylinder, denoted by
Cyl. Noticing that if (p, q) ∈ cp(Cyl, f), then q is a projection of the axis of
Cyl onto f . Finding the projection will give us a potential q and we can find a
corresponding p. This finishes our proof. Q.E.D.

C.6 Ice-cream Cone: Reducing the maximum degree from 4 to 2

We solve the parametric separation query for the ice-cream cone, namely Sep(icc(v, o, r), f) >
0 where f is a feature.

Input: an ice-cream cone icc(v, o, r), a feature f and a real number s > 0.
Output: boolean (Sep(icc(v, o, r), f) > s).
Method:

If Sep(v, f) ≤ s, return false
If Sep(Ball(o, r), f) ≤ s, return false
Let h := |seg(v, o)|, k :=

√
h2 − r2, a point c := o+ r2

h2 (v − o)
If Sep(tc(v, c, rk

h ), f) ≤ s, return false
return true

The check for Sep(v, f) ≤ s and Sep(Ball(o, r), f) ≤ s are in Lemma 3. For
the problem Sep(tc(v, c, rk

h ), f) ≤ s, we solve it by a reduction from each feature
to its boundary features, according to the Lemma 2. The case f is a corner is
easy, so we focus on the other two cases.

Case f is an edge (line segment):
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Input: a traffic cone tc(v, c, r) and a line segment g, a real number s > 0.
Output: boolean (Sep(tc(v, c, r), g) > s).
Method:

If Sep(tc(v, c, r), ∂g) ≤ s, return false
If cp(tc(v, c, r), ℓ) = ∅ (closest pair in Sec. 3.2), return true
For each pair of (u,w) ∈ cp(tc(v, c, r), ℓ),

if d(u,w) ≤ s
if u ∈ tc(v, c, r) and w ∈ g,

return false
return true

Case f is a triangle:

Input: a traffic cone tc(v, c, r) and a triangle T , a real number s > 0.
Output: boolean (Sep(tc(v, c, r), T ) > s).
Method:

If Sep(tc(v, c, r), ∂T ) ≤ s, return true
return (seg(v, c) ∩ T ̸= ∅)

The return seg(v, c) ∩ T ̸= ∅ in the last case may not be so obvious, but we
can see it from the Figure 11.

(a) (b)

Fig. 11: Separation between triangle and ice-cream cone compared to the separation
between their boundaries:
(a) When the triangle does not intersect across the ice-cream cone, the boundary will
always reach the minimum separation since the traffic cone is a developable surface.
(b) If the triangle intersects across the ice-cream cone, it will intersect with the axis of
the cone.
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C.7 Closest Pairs between Cone and Line

In this section, let TC = tc((0, 0, 0), (0, 0,−1), r), i.e., the algebraic representa-
tion for TC is x2 + y2 − r2z2 = 0. We illustrate how to find cp(TC, ℓ) for traffic
cone TC and line segment ℓ. We assume that ℓ is represented parametrically by
q(t) = v0 + vt, for t ∈ R, where v = (a, b, c). Given a point p ∈ TC, the normal
vector at that point is np.

Before applying (6) to find local minima, we first check if TC ∩ ℓ is non-
empty. This is solving the two equations. If there are solutions, we regard them
as additional closest pairs in cp(TC, ℓ) in addition to the solutions of (6).

Now we apply (6) to our problem. For our problem, we only have f1(x, y, z) =
x2+y2−r2z2. Our formulation of the system (6) does not involve the polynomials
g1 or g2, instead we have ∇g1(q) × ∇g2(q) given by the vector v. We do not
have ∇f1(p) × ∇f2(p), but we have the np which is equal to p − q up to a
constant multiple. The perpendicular conditions can be reduced to ⟨np,v⟩ = 0.
This yields two equations to be solved for cp(TC, ℓ), where (x, y, z) = p:

x2 + y2 = r2z2 (12)

ax+ by = r2cz (13)

Let κ := rc. Multiplying (12) by κ2 and subtracting square of (13), we get a
quadratic equation for x and y:

(κ2 − a2)x2 + (κ2 − b2)y2 − 2abxy = 0,

which is equivalently:(
x y

)(κ2 − a2 −ab
−ab κ2 − b2

)(
x
y

)
= 0.

Let
A =

(
κ2 − a2 −ab
−ab κ2 − b2

)
.

Then
det(A) = (κ2 − a2)(κ2 − b2)− a2b2 = κ2(κ2 − a2 − b2).

When det(A) > 0, the equation has no real non-trivial (x = y = 0 is trivial)
solution. Hence cp(TC, ℓ) = ∅. In this case, TC∩ ℓ ̸= ∅, which we have excluded
in previous discussions.

When det(A) ≤ 0, the equation has real non-trivial solutions (κ2 − a2)x +
(ab ±

√
−det(A))y = 0, which are one or two planes. We denote the planes by

P1 and P2.
To find the exact p and q, one only need to notice that q1 = P1 ∩ ℓ and

q2 = P2∩ℓ (Pi∩ℓ ̸= ∅ since p ⊥ ℓ and Pi contains the direction of p). Moreover,
let wei = Pi ∩ TC which is a cross of two lines by the apex of TC, there are
pi1,pi2 ∈ wei such that (pij − qi) ⊥ wei for i = 1, 2 and j = 1, 2. This gives
four pairs of (pij , qi). Noticing that some of the pairs gives a local maximum
for d(pij , qi), we should get rid of those pairs, which may result in at most two
pairs. The remaining possible pairs give cp(TC, ℓ).
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D Appendix: Subdivision for ŜE(3)

D.1 Box Adjacency Calculus

We first introduce a notation for discussing the j-th component of a box B =∏n
i=1 Ii where each Ii is an interval. For j = 1, . . . , n, let Projj(B) :=

∏n
i=1,i̸=j Ii

denote the n−1 dimensional box obtained by omitting the j-th component. Then
define the operator ⊗j using this identity: if B =

∏n
i=1 Ii, then

B = Proj
j

(B)⊗j Ij

For j ̸= k, we extend the notation to ⊗j,k using the identity

B = Proj
j,k

(B)⊗j,k (Ij × Ik)

If I = [a, b] and I ′ = [a′, b′] are intervals, we write I
+1−→ I ′ if b = a′, and I

−1−→ I ′

if a = b′. Let ej be the elementary j-th vector in Rn (so ej is a n-vector of all
0’s except for a 1 in the j-th position). We call d ∈ {±e1, . . . ,±en} to be a
semi-direction. For n ≥ 2, we say that B is adjacent to B′ in the direction
±ej , denoted B

±ej−→ B′, if B = Projj(B) ⊗j Ij and B′ = Projj(B′) ⊗j I
′
j and

Ij
±1−→ I ′j and (Projj(B) ⊆ Projj(B′) or Projj(B) ⊇ Projj(B′)).
The case of ŜO(3): We extend the notion of adjacencies to the 3-dimensional

boxes embedded in R4. The boundary of [−1, 1]4 ⊆ R4 is subdivided into eight
3-dimensions boxes denoted ±Ci for i = 0, . . . , 3, where18

Ci = [−1, 1]3 ⊗i 1

where 1 is an alternative symbol for −1. Thus −1 = 1. For instance, C2 =
[−1, 1]× [−1, 1]× 1× [−1, 1], and −C2 = [−1, 1]× [−1, 1]× 1× [−1, 1], However,
ŜO(3) is viewed as ∪3i=0Ci because of the equivalence of points p, q ∈ ∂[−1, 1]4
where p ≡ q iff p = −q. Therefore, Ci ≡ −Ci.

Suppose B ⊆ Ci and B′ ⊆ Cj are boxes in ŜO(3). We want to define the
relation

B
±ek−→ B′.

This relation is not defined if k = i. Otherwise:

(Case 1) i = j: Then B = Proji(B) ⊗i 1 and B′ = Proji(B′) ⊗i 1. We define
B

±ek−→ B′ if and only if “Proji(B)
±ek−→ Proji(B′).” The precise definition

requires us to shift the index k after projection in case k > i: let

k′ =

{
k if k < i,
k − 1 if k > i.

So, B ±ek−→ B′ if and only if Proji(B)
±ek′−→ Proji(B′).

18 We now index our components from 0, . . . , 3 instead of 1, . . . , 4. Moreover, (0, 1, 2, 3)
is also written (w, x, y, z), as in C0 = Cw, etc.
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(Case 2) i ̸= j: Then B = Proji,j(B)⊗i,j(1×Ij) and B′ = Proji,j(B′)⊗i,j(I
′
i×1).

We say the relation B
±ek−→ B′ is undefined if k ̸= j. Otherwise, we have

2 possibilities:
(i) B

−ej−→ B′ if Ij = [aj , bj ] = [1, bj ] and Proji,j(B)
−ej−→ Proji,j(B′).

(ii) B
+ej−→ B′ if Ij = [aj , bj ] = [aj , 1] and Proji,j(B)

+ej−→ −(Proji,j(B′)).

D.2 Maintaining Principal Neighbor Pointers

Recall that in Section 4 we introduced the principal neighbor pointers for boxes
in R3 and in ŜO(3). If B ∈ R3, it has 6 principal neighbor pointers as in [1].
But if B ⊆ Ci ⊆ ŜO(3), then it has 8 principal neighbor pointers, denoted B.d
where d ∈ {±e0, . . . ,±e3}. If B = Ci, all 8 pointers are non-null; otherwise two
of them are null, namely B.ei = B.(−ei) = null.

We assume the T/R Splitting scheme in which we split a box B = Bt×Br

by either splitting Bt or splitting Br. We need to update the principal neighbor
pointers after such a split. Since the split of Bt is standard, we focus on Br.
Initially, Br = ŜO(3) and all its pointers are null. After the first split, we have
four boxes, C0, . . . , C3. Their pointers are initialized as follows: Ci.(±ej) = Cj

for j ̸= i, and Ci.(±ei) = null. When B ⊆ Ci is split, each of its eight children
Bi (i = 1, . . . , 8) has its principal neighbor pointers set up as follows: Two of
them are null, inherited from its parent. Three of them point to siblings (as in
the standard octree split). Three of them point to non-siblings as follows: if Bi.d
is pointing to a non-sibling, then Bi.d ← B.d in case B.d is a leaf. Otherwise,
Bi.d will point to the child B′ of B.d such that Bi

d−→ B′.

Now that we have set up the principal neighbor pointers of the children of
B, we need to update the principal neighbor pointers of the other boxes: any
box B′ that used to point to B may need to be updated to point to a child of
B (call this the “reverse pointer update”). First, we have to show how to get to
such B′s. Suppose B.d = B′ and depth(B′) < depth(B) then there is nothing
to do in this direction. Otherwise, if depth(B′) = depth(B) and B′ has children,
we must go to all descendants of B′ that pointed to B, and redirect their −d
pointers to point to the appropriate child of B. Note that there are always 6
non-null pointers, which can cross from Ci to some other Cj (j ̸= i). In contrast,
for the translational boxes, there are boundary boxes that can have fewer than
6 non-null pointers.

We remark that Nowakiewicz [34] also discusses subdividing the translational
and rotational boxes separately, and cubic model. However, the method does not
classify boxes, and does not compute or use the adjacency information of boxes.
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E Proof of Fundamental Theorem

E.1 Two Lemmas on Separation

Separation does not satisfy the triangular inequality because Sep(A,C) ≤ Sep(A,B)+
Sep(B,C) may be false. We have a kind of “triangular inequality” if one of the
summands is replaced by the Hausdorff distance:

Lemma 7 (Pseudo Triangle Inequality). Let (X, d) be a metric space. Then
for any A,B,C ⊆ X,

Sep(A,C) ≤ dH(A,B) + Sep(B,C).

Proof. Let a ∈ A, b ∈ B, c ∈ C:

Sep(A,C) = infa,c dX(a, c)
≤ infb

(
infa,c dX(a, b) + dX(b, c)

)
(triangular inequality)

≤ infb
(
Sep(A, b) + Sep(b, C)

)
≤ Sep(A, b∗) + Sep(b∗, C) (choose b∗ so that Sep(b∗, C) = Sep(B,C)
= Sep(A, b∗) + Sep(B,C)
≤ dH(A,B) + Sep(B,C)

Q.E.D.

In particular, for γ, γ′ ∈ X, the pseudo triangular inequality implies

|Cℓ(γ)− Cℓ(γ′)| ≤ dH(γ, γ′). (14)

We have another lemma on separation that relates to the Minkowski-sum.

Lemma 8 (Separation of Minkowski-Sum). Suppose that closed sets A,B,C ⊆
Rm. If (A⊕B) ∩ C = ∅, then for any a ∈ A, Sep(a⊕B,C) ≥ dRm(a, ∂A).

Proof. We denote the complement of a set S in Rm by ∁S. Then since (A⊕
B) ∩ C = ∅, C ⊆ ∁(A⊕B). Since a⊕B ⊆ A⊕B, we have

Sep(a⊕B,C) ≥ Sep(a⊕B, ∁(A⊕B))

= Sep(a⊕B, ∂∁(A⊕B))

= Sep(a⊕B, ∂(A⊕B)).
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Then since

Sep(a⊕B, ∂(A⊕B)) = inf
(a′+b′)∈∂(A⊕B),b∈B

dRm(a+ b, a′ + b′)

≥ inf
a′∈∂A,b∈B,b′∈∂B

dRm(a+ b, a′ + b′)

≥ inf
a′∈∂A,b∈B

dRm(a+ b, a′ + b)

= inf
a′∈∂A

dRm(a, a′)

= dRm(a, ∂A),

we have
Sep(a⊕B,C) ≥ dRm(a, ∂A).

Q.E.D.

E.2 Proof of SSS framework

A subdivision is called a uniform ε-subdivision, if the widths of all the boxes
in the subdivision are the same and it is less than ε.

Lemma 9. Assume the Axioms (A0), (A1), (A2) and (A3). If there exists a
path π in W with clearance Kε where K = L0C0D0σ, then the SSS framework
can find a path P .

Proof. Suppose there exists a path π with clearance Kε = L0C0D0σε. We
obtain a contradiction by assuming that the SSS framework could not find a
path. In this case, the SSS framework will subdivide W into minimum sizes.
Hence, in this subdivision, all MIXED tiles have width less than ε. Without loss of
generality, let us assume the subdivision is a uniform ε-subdivision. We consider
all tiles in this subdivision that intersect with π. The union of these tiles forms
a set Cover(π). It is easy to see that this is a path-connected and compact set.
Hence, by Poincaré’s duality, there is a sequence P of adjacent boxes in the
Cover(π). We prove that these boxes are FREE, i.e., P is a channel. Each tile
B ∈ P is FREE under the soft predicate, that is, ∀q ∈ B, Cℓ(q) > 0.

For each tile B ∈ P , we consider the tile σB. Since there is t ∈ [0, 1] such
that π(t) ∈ B ⊆ σB, for each q ∈ σB, by axioms (A2) and (A3), we have

∥Cℓ(q)− Cℓ(π(t))∥ ≤ dH(µ(q), µ(π(t))) (Pseudo Triangle Inequality)
< L0dX(µ(q), µ(π(t))) (A2)

< L0C0dW (q, π(t)). (A3)

By axiom (A1) and since the diameter of tile σB is no greater than l(σB),
we have

dW (q, π(t)) ≤ l(σB) (definition)
≤ D0w(σB) (A1)

< D0σε. (width is ε)
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Hence ∥Cℓ(q)− Cℓ(π(t))∥ < L0C0D0σε and then

Cℓ(q) ≥ Cℓ(π(t))− L0C0D0σε > 0.

This gives ∀q ∈ σB, Cℓ(q) > 0. So tile B ∈ P is FREE under the soft predicate.
Q.E.D.

Remark: It can be seen from the proof that the coefficient L0C0D0σ is not
related to the number of children each tile is split into. So the D0 in this term
can be taken as the aspect ratio of the tiles.

Lemma 10. Assume the Axioms (A0) and (A4). If the SSS framework returns
a path P , then there exists a path P

′
of essential clearance 1

2ε.

Proof. If P is returned, then it implies that there is a channel P ′ in the uniform
ε-subdivision. Let P

′
be the concatenation of three polygonal paths,

P
′
= (Sα;P

′′
;Sβ)

where P
′′

connects the midpoints of the adjacent boxes of P ′, and Sα is the
segment connecting α to the midpoint of the initial box, and Sβ is the segment
connecting the midpoint of the last box to β. For the essential clearance of the
path P

′
, we only need to ensure that the clearance of P

′′
is at least 1

2ε.
Let B1 = Bt

1×Br
1 and B2 = Bt

2×Br
2 be the two adjacent tiles, their centers

are m1 = mt
1×mr

1 and m2 = mt
2×mr

2 respectively. The line segment connecting
m1 and m2 is m1m2. Since dim(B1 ∩ B2) = k − 1, we have either Bt

1 = Bt
2 or

Br
1 = Br

2 . We discuss these two cases respectively.
When Bt

1 = Bt
2 = Bt, and mt

1 = mt
2 = mt, for any q ∈ m1m2, we have

q = mt × br. Since, B1 and B2 are FREE,

B1 and B2 are FREE⇒ Fp(B1) ∩Ω = ∅ and Fp(B2) ∩Ω = ∅ (by (A0))
⇒ (Fp(B1) ∪ Fp(B2)) ∩Ω = ∅
⇒

((
Bt ⊕ Fp(Br

1)
)
∪
(
Bt ⊕ Fp(Br

2)
))
∩Ω = ∅ (by (A4))

⇒
(
Bt ⊕ (Fp(Br

1) ∪ Fp(Br
2))

)
∩Ω = ∅

Then since mt ∈ Bt, Fp(mr
1m

r
2) ⊆ (Fp(Br

1) ∪ Fp(Br
2)), and so by separation of

Minkowski-sum,

Cℓ(m1m2) = Sep(mt ⊕ Fp(mr
1m

r
2), Ω)

≥ Sep(mt ⊕ (Fp(Br
1) ∪ Fp(Br

2)) , Ω)

≥ dRm(mt, ∂Bt)

≥ 1

2
ε.
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When Br
1 = Br

2 = Br, and mr
1 = mr

2 = mr, for any q ∈ m1m2, we have
q = qt ×mr. Since, B1 and B2 are FREE,

B1 and B2 are FREE⇒ Fp(B1) ∩Ω = ∅ and Fp(B2) ∩Ω = ∅ (A0)

⇒ (Fp(B1) ∪ Fp(B2)) ∩Ω = ∅
⇒

((
Bt

1 ⊕ Fp(Br)
)
∪
(
Bt

2 ⊕ Fp(Br)
))
∩Ω = ∅ (A4)

⇒
((
Bt

1 ∪Bt
2

)
⊕ Fp(Br)

)
∩Ω = ∅.

Then since for any q ∈ m1m2, we have q ∈ Bt
1 ∪ Bt

2, and so by Lemma on
Separation of Minkowski-sum,

Cℓ(m1m2) = inf
q∈m1m2

Sep(qt ⊕ Fp(Br), Ω)

≥ inf
q∈m1m2

dRm(qt, ∂(Bt
1 ∪Bt

2))

= Sep(mt
1m

t
2, ∂(B

t
1 ∪Bt

2))

≥ 1

2
ε.

Hence, for any consecutive centers m1 and m2, the clearance of direct connection
is always no less than 1

2ε. Therefore, the path P
′′

has clearance 1
2ε. Q.E.D.

REMARK: our construction of P
′
uses a rectilinear path P

′′
, while our SSS

algorithm uses a non-rectilinear path. This non-rectilinear path only has a clear-
ance of 1

2
√
n
ε. Note that Axiom (A4) is extremely strong and ensures a clearance

independent of constants such as L0, D0, σ.
The definition of resolution exactness has two requirements, (Path) and

(NoPath). Lemma 9 satisfies the requirement of (Path), and Lemma 10 sat-
isfies the requirement of (NoPath). This implies the resolution-exactness of our
SSS planner:

Theorem 6. Assuming the Axioms (A0), (A1), (A2), (A3) and (A4), the
SSS algorithm is resolution exact with constant K = max{L0C0D0σ, 2}.

E.3 Analysis of the SSS Algorithm for the Delta robot

We now analyze the basic properties of our SSS path planner for the Delta robot.

Theorem 7. The Lipschitz constant in Axiom (A2) is L0 = 1.
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Proof. Given any two configurations, we could compare their Hausdorff distance
by moving the relative center of a triangle to another without changing its di-
rection in r ∈ SO(3), i.e. for each point T ∈ △AOB, let t = |TO|, and since our
λ = 1 = sup t, we have the inequalities:

dH((x, r), (x′, r′)) ≤ dH((x, r), (x, r′)) + dH((x, r′), (x′, r′))

< tθ + dR3(x,x′)

= tdSO(3)(r, r
′) + dR3(x,x′)

≤ λdSO(3)(r, r
′) + dR3(x,x′)

= dX((x, r), (x′, r′)).

Hence, the minimum Lipschitz constant L0 ≤ 1. In fact, we could take L0 = 1,
since we have taken the physical length of the edge AO as 1 unit in R3. Q.E.D.

Theorem 8 (Theorem 2 in main paper). The approximate footprint of the
Delta robot is σ-effective with σ = (2 +

√
3) < 3.8.

Proof. Notice that the radius of F̃ pA(B
r), which is the approximate footprint

of A for a rotation box is less than θ (the rotation angle), which is restricted
by
√
4w(B)/2 = w(B) (box dimension is 4, atlas constant is 2), so F̃ p(Br) ⊆

Ball(0, w(B))⊕ Fp(Br). Hence, we have

F̃ p(Bt ×Br) = Ball(Bt)⊕ F̃ p(Br)

⊆ Ball(m(Bt),
√
3w(Bt)/2)⊕Ball(0, w(B))⊕ Fp(Br)

= Ball(m(Bt), (2 +
√
3)w(Bt)/2)⊕ Fp(Br)

⊆ Fp((2 +
√
3)Bt)⊕ Fp(Br)

⊆ Fp((2 +
√
3)B).

So this soft predicate is (2 +
√
3)-effective. Q.E.D.

Theorem 9 (Theorem 3 in main paper). Our SSS planner for the Delta
Robot is resolution exact with constant K = 4

√
6 + 6

√
2 < 18.3.

Proof. The SSS framework for the Delta robot is resolution exact with constant
K = 4

√
6 + 6

√
2 since L0 = 1, C0 = 2, D0 =

√
6, σ = 2 +

√
3. Q.E.D.


