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Abstract

E(3)-equivariant neural networks have demon-
strated success across a wide range of 3D mod-
elling tasks. A fundamental operation in these
networks is the tensor product, which interacts
two geometric features in an equivariant manner
to create new features. Due to the high compu-
tational complexity of the tensor product, signifi-
cant effort has been invested to optimize the run-
time of this operation. For example, Luo et al.
(2024) recently proposed the Gaunt tensor prod-
uct (GTP) which promises a significant speedup.
In this work, we provide a careful, systematic
analysis of a number of tensor product opera-
tions. In particular, we emphasize that different
tensor products are not performing the same op-
eration. The reported speedups typically come at
the cost of expressivity. We introduce measures
of expressivity and interactability to characterize
these differences. In addition, we realized the
original implementation of GTP can be greatly
simplified by directly using a spherical grid at
no cost in asymptotic runtime. This spherical
grid approach is faster on our benchmarks and
in actual training of the MACE interatomic po-
tential by 30%. Finally, we provide the first sys-
tematic microbenchmarks of the various tensor
product operations. We find that the theoretical
runtime guarantees can differ wildly from em-
pirical performance, demonstrating the need for
careful application-specific benchmarking. Our
code is available at https://github.com/
atomicarchitects/PriceofFreedom.
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1. Introduction
Many complex physical systems possess inherent spatial
symmetries, and incorporating these symmetries into mod-
els has been shown to significantly improve both learning ef-
ficiency and robustness (Batzner et al., 2022; Rackers et al.,
2023; Frey et al., 2023; Owen et al., 2024). To address
the specific symmetries present in 3D systems, consider-
able effort has been dedicated to the development of E(3)-
equivariant neural networks (E(3)NNs) (Thomas et al., 2018;
Weiler et al., 2018; Kondor, 2018; Kondor et al., 2018).
E(3)NNs have delivered strong performance across a wide
range of scientific applications, including molecular force
fields (Batzner et al., 2022; Musaelian et al., 2023; Batatia
et al., 2022), catalyst discovery (Liao & Smidt, 2023), gen-
erative models (Hoogeboom et al., 2022), charge density
prediction (Fu et al., 2024), and protein structure prediction
(Lee et al., 2022; Jumper et al., 2021).

The group E(3) consists of all rotations, translations and
reflections in 3 dimensions. A function f : X → Y is
E(3)-equivariant if it satisfies:

f(g · x) = g · f(x) ∀ g ∈ E(3), x ∈ X (1)

where the group action · may differ on the input space X
and output space Y .

E(3)-equivariant neural networks work with features that
transform as irreducible representations of O(3), termed
‘irreps’, as described in Appendix B. How these irreps
transform under 3D rotations (elements of SO(3)) is defined
by a positive integer L, which can intuitively be thought of
as an angular frequency. As described in Section 2, tensor
products are used to construct equivariant bilinearities, a
key component of E(3) networks.

The only true tensor product is the Clebsch-Gordan ten-
sor product (CGTP) which uses the well-studied Clebsch-
Gordan (Varshalovich et al., 1988) coefficients. However, it
has a time complexity1 ofO(L5) as we show in Appendix E,
which can quickly become expensive for larger L. This scal-
ing limits the direct application of E(3)-equivariant neural

1Note that Passaro & Zitnick (2023) claims a runtime of O(L6)
for this tensor product. In Appendix E, we show that this runtime
can be reduced to O(L5).
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The Price of Freedom

networks to larger systems. Indeed, a number of works
suggest that incorporating higher L features can be crucial
to improving model performance (Cen et al.; Frank et al.,
2022; Aykent & Xia). Hence, there is significant interest in
optimizing the tensor product.

One optimization was identified by Passaro & Zitnick (2023)
in the special case where one input is a projection of a single
vector onto spherical harmonics, an operation commonly
used in 3D graph convolutions. Under suitable rotation,
these irreps become sparse, allowing for a runtime ofO(L3).
However, the extreme sparsity is not generally true for arbi-
trary irrep values.

For arbitrary irrep values, Luo et al. (2024) proposed the
Gaunt Tensor Product (GTP) which they show has a com-
plexityO(L3). Further, Unke & Maennel (2024) introduced
another O(L3) operation which we call matrix tensor prod-
uct (MTP). While this represents exciting progress, it raises
an important question: What is fundamentally different be-
tween these new tensor products and the general CGTP with
O(L5) complexity?

In this paper, we provide a framework for systematically
analyzing these new operations. Importantly, we clarify
that most new proposed ‘tensor products’ are not tensor
products in the mathematical sense, and propose to call
them tensor product operations (TPOs) instead. We orga-
nize this paper by first motivating TPOs in Section 2. We
then define a measure of expressivity and interactability for
TPOs. In Section 3, we introduce a number of TPOs, and
we summarize the asymptotic runtimes and expressivities of
various TPO implementations in Section 4. Finally, in Sec-
tion 5 we benchmark the various tensor products showing
that asymptotics do not always correspond with practical
performance.

We summarize our core contributions as follows:

• A measure for expressivity and interactability of TPOs.

• A simpler implementation of GTP using projection onto
the sphere S2, which has the same asymptotics but is
faster in practice.

• A comprehensive analysis of asymptotic runtimes and
expressivity of different classes of TPOs.

• Rigorous benchmarks of various TPO implementations.

We assume familiarity with group representations of SO(3).
For a brief introduction to representations (reps) and ir-
reducible representations (irreps) of SO(3), we refer the
reader to Appendix B.

2. Analyzing Tensor Product Operations
2.1. Motivating Irreps

We begin by motivating why many equivariant architectures
(Geiger & Smidt, 2022; Unke & Maennel, 2024) use irreps
to represent features. In particular, it is much easier to
enforce equivariance when our features are in terms of irreps
because they facilitate parameterization of the most general
equivariant linear maps.

First, while there are an infinite number of ways to choose
finite dimensional representations, we can always decom-
pose them into a direct sum of irreps. Irreps are hence the
fundamental building blocks of arbitrary representations and
they are well studied for many groups. Further, assuming
we are working over an algebraically closed field, linear
layers between a pair of irreps must either be 0 if they are
inequivalent or multiples of the identity if they are equiva-
lent. This is known as Schur’s lemma (Dresselhaus et al.,
2007). Hence once we rewrite representations explicitly
as a direct sum of irreps, parameterizing equivariant linear
layers becomes trivial. This is why identifying features in
terms of irreps is so prevalent in equivariant architectures.

However, Schur’s lemma explicitly prevents linear mixing
of inequivalent irreps. Hence we need appropriate nonlinear
interactions. The simplest possibility is to use multiplication,
motivating the tensor product.

2.2. Tensor Products and Bilinearities

Here we provide a unified framing for understanding why
tensor products are expensive and how other works attempt
to remedy this problem. In particular we want to empha-
size the connection to constructing bilinearities and that
other ‘tensor products’ are fundamentally different opera-
tions from the formal mathematical tensor product.

Given two vector spaces X,Y , one can construct a tensor
product space X ⊗ Y with an associated bilinear mapping
T : X × Y → X ⊗ Y . This bilinear mapping is often
referred to as the tensor product. In practice, if we have a
basis x1, . . . , xm and y1, . . . , yn of X,Y respectively, then
we usually use a basis T (xi, yj) (often written as xi ⊗ yj)
for the tensor product space X ⊗ Y .

Now suppose we have a space Z. Then in practice, we
typically parameterize a linear layer Lin : X ⊗ Y → Z.
The composition Lin ◦ T : X × Y → Z is a bilinearity
X × Y → Z. Note that this construction is universal, as
all possible bilinearities can be written as Lin ◦ T for some
choice of linearity Lin.

While tensor products allow interactions between differ-
ent irreps and simple construction of all possible bilineari-
ties, they are expensive. First, the dimension of X × Y is
O(|X||Y |) where |X| and |Y | are the dimensions of X and
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Y respectively. This is in fact a lower bound on asymptotic
runtime. Further, even if X,Y are explicitly written in a ba-
sis which is a direct sum of irreps, the most natural basis of
X⊗Y is generally not. Hence we must perform a change of
basis of X⊗Y into one which explicitly is a direct of irreps.
The change of basis matrix is known as the Clebsch-Gordan
coefficients. Naively, it requires O(|X|2|Y |2) time to per-
form this change of basis. The tensor product whose output
is explicitly written in an irrep basis is the Clebsch-Gordan
tensor product.

To optimize the tensor product, one can leverage the struc-
ture of the Clebsch-Gordan coefficients (such as sparsity)
to reduce the O(|X|2|Y |2) cost. Still, such approaches
can never beat the lower bound of O(|X||Y |). In typical
analysis,2 |X|, |Y | are O(L2) making the lower bound as
O(L4). However, other ‘tensor products’ claim asymp-
totic times lower than O(L4) while still demonstrating
good performance (Luo et al., 2024; Unke & Maennel,
2024). Fundamentally, what these operations do is re-
place T : X × Y → X ⊗ Y with some other bilinearity
T : X ′ × Y ′ → Z ′. While these bilinearities are often
called ‘tensor products’, they are not truly tensor products
in the mathematical sense. In this paper, we will refer to
these bilinearities as tensor product operations (TPOs).
Definition 2.1 (Tensor product operations). Let X ′, Y ′, Z ′

be vector spaces equipped with actions of G. We refer to
any equivariant bilinear map T : X ′ × Y ′ → Z ′ as a tensor
product operation.

2.3. Expressivity and Construction of Bilinearities

It turns out that the runtime savings of alternative TPOs can
be understood as coming from a reduction in expressivity.
Motivated by the use of tensor product operations to con-
struct bilinearities, we use the dimension of constructible
bilinearities as a proxy for expressivity.

To do so, we must first understand how to use TPOs to
construct a bilinearity. Similar to tensor products, we use
equivariant linear layers; however, now we can also add
linear layers for the inputs3. Hence, we define:

LinθX : X → X ′ LinθY : Y → Y ′ LinθZ : Z ′ → Z

parameterized by θ = (θX , θY , θZ) ∈ Θ. Composing these
operations, we obtain a bilinearity BT,X,Y,Z,θ : X×Y → Z
defined as:

BT,X,Y,Z,θ(x,y) = LinθZT (LinθXx, LinθY y). (2)

2Usually, X transforms as the direct sum of all irreps up to
some L. As each irrep has dimension 2L+ 1, the dimension of X
is |X| =

∑L
l=0 2l + 1 = (L+ 1)2 = O(L2).

3In the case of the CGTP, adding equivariant linear layers
for the inputs is redundant, as the weights can be absorbed into
LinθZ . Hence, we only use an equivariant linear layer LinθZ for
the outputs in Section 2.2.

We can now naturally define the expressivity of a given
tensor product by how many equivariant bilinearities it can
parametrize.

Definition 2.2 (Expressivity of TPOs). Given a TPO T :
X ′ × Y ′ → Z ′, the space BT,X,Y,Z = {BT,X,Y,Z,θ : ∀θ ∈
Θ} is the set of all bilinear maps we can construct by insert-
ing equivariant linear layers in the inputs (LinθX , LinθY ) and
outputs (LinθZ ) in Equation 2. We define the expressivity
of T with respect to X,Y, Z as the dimension of BT,X,Y,Z .

In Section 4, we apply this expressivity measure to various
tensor product operations.

2.4. Interactability and Selection Rules

A natural question to ask about the constructed bilinearities
is which inputs can affect which outputs. Since equivariant
linear layers can mix irreps of the same type together, an-
swering this question for bilinearities between single irreps
suffices. Using our definition of expressivity, we provide a
natural definition for interactability.

Definition 2.3 (Interactability). Let T : X ′×Y ′ → Z ′ be a
TPO. Let (ℓ1, ℓ2, ℓ3) be a triple of irrep types. Define vector
spaces V ℓ1 , V ℓ2 and V ℓ3 which transform under irrep types
ℓ1, ℓ2 and ℓ3 respectively. We say [ℓ1, ℓ2, ℓ3] is interactable
if the expressivity of T with respect to V ℓ1 , V ℓ2 , V ℓ3 is
nonzero.

We can analyze interactability by directly analyzing the
TPO T . Suppose the irreps within X ′, Y ′, Z ′ are labeled
by the tuples (ℓX , cX), (ℓY , cY ) and (ℓZ , cZ), where ℓ in-
dicates the irrep type and c is an index over its multiplic-
ity. A selection rule for T is a condition on the labels
(ℓX , cX), (ℓY , cY ), (ℓZ , cZ) which must be satisfied for

T |(ℓX ,cX),(ℓY ,cY ),(ℓZ ,cZ) : X
′(ℓX ,cX) × Y ′(ℓY ,cY ) → Z ′(ℓZ ,cZ)

to be nonzero. Importantly, note that satisfying a selec-
tion rule is a necessary but not sufficient condition for the
restricted bilinearity to be nonzero.

The reason selection rules are useful is that if there is no
choice of (cX , cY , cZ) such that (ℓX , cX), (ℓY , cY ) and
(ℓZ , cZ) satisfy the selection rules for a given T , then
(ℓ1, ℓ2, ℓ3) is not interactable under T . Hence, analyzing se-
lection rules helps formally characterize which interactions
are excluded by a specific TPO.

2.5. Generalizations to ν-fold tensor products and
non-irrep basis

We would like to also mention that there have been some re-
cent works dealing with a Cartesian tensor basis (Shao et al.,
2024; Zaverkin et al.). Specifying a fully expressive equiv-
ariant linear layer is more difficult for such representations,
however, the corresponding tensor product is usually simpler
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Figure 1. Overall schematic of an equivariant bilinearity, where the two inputs x and y are passed through linear layers and combined
using the tensor product operation T to form z. The output irreps z are passed through a final linear layer. In the case of the CGTP, this
would consist of elementwise multiplication of x and y followed by contraction with the Clebsch-Gordan coefficients to form output
irreps z . Each irrep of a particular type is denoted by its own color. Linear layers LinθX , LinθY , LinθZ can only map between irreps of
the same type (indicated by arrows of the corresponding color). However, T can create irreps of a different type (shown in yellow).

to compute. In particular, computing multiple ν-fold tensor
products in succession seems to be asymptotically more
efficient in this basis (Zaverkin et al.). However, most archi-
tectures only use 2-fold tensor products for which Cartesian
based approaches have poor asymptotic scaling (Zaverkin
et al.). Hence, our analysis focuses on the 2-fold case with
an irrep basis.

In principle, our definitions of expressivity and interactabil-
ity can generalize for ν-fold tensor products as well. We
simply replace the TPO which is a fixed bilinearity with
a fixed ν-linearity in Definitions 2.2 and 2.3 and similarly
consider attaching equivariant linear layers to the inputs and
outputs of the ν-linearity.

For alternative choices of basis, we may incur additional
costs in the construction of equivariant linear layers. In the
case of irrep basis, this construction is cheap aaand so we
focus on the asymptotic runtime of the TPO. However for
other basis choices, this may not be true and one must take
care in analyzing the cost of constructing equivariant linear
layers for a fair comparison.

3. Tensor Product Operations
3.1. Clebsch-Gordan Tensor Product

The Clebsch-Gordan Tensor Product (CGTP) is the only
TPO considered which is actually a tensor product. The
change of basis of tensor product reps into irreps is well

studied. The corresponding selection rules are well known
(Varshalovich et al., 1988). For simplicity, we describe them
assuming a single copy of each irrep in the inputs.

Proposition 3.1 (Selection rule for CGTP). Suppose we
have irrep labels (ℓ1, 1),(ℓ2, 1), and (ℓ3, cZ). We must have
ℓa ≤ ℓb + ℓc for all choices of distinct a, b, c ∈ {1, 2, 3}
and cZ = (ℓ1, ℓ2).

Importantly, interactions which can form a ℓ3 irrep are
placed in separate channels, which means that there can be
multiple ℓ3 irreps created as a result of the CGTP. We refer to
any triple [ℓ1, ℓ2, ℓ3] for which (ℓ1, 1), (ℓ2, 1), (ℓ3, (ℓ1, ℓ2))
satisfies the selection rule for CGTP as a valid path.

3.2. Gaunt Tensor Product

The Gaunt tensor product operation (GTP) as introduced by
Luo et al. (2024) is a bilinearity

(0⊕ . . .⊕ L)× (0⊕ . . .⊕ L)→ (0⊕ . . .⊕ 2L).

It uses the intimate connection between spherical harmon-
ics, SO(3) irreps, and spherical signals, as defined more
precisely in Appendix C. The idea is that any rep of form
(0, . . . , L) can be interpreted as coefficients for the spherical
harmonics, and hence, corresponds to a function on S2.

In particular, given two (0, 1, . . . , L) reps x and y, let fx =
ToSphere(x) and fy = ToSphere(y) be the associated
signals on S2. Taking the pointwise product of fx and fy

4



The Price of Freedom

Figure 2. Schematic of GTP. We interpret input irreps as scalar SH
coefficients to create spherical signals. We then take pointwise
products of the two signals to create a new signal which we de-
compose back into scalar SH coefficients.

on S2 gives us a new function fx · fy, also on S2. Then,
converting back to irreps gives us the Gaunt tensor product:

x⊗GTP y = FromSphere(fx · fy) (3)

Selection rules for GTP can be derived from the Gaunt
coefficients (Gaunt, 1929). Note that there is necessarily
only a single copy of each irrep type, even in the output.
Proposition 3.2 (Selection rules for GTP). For irrep la-
bels (ℓ1, 1), (ℓ2, 1), (ℓ3, 1), the corresponding interaction is
nonzero only if the following are satisfied:

• ℓa ≤ ℓb + ℓc for any distinct a, b, c ∈ {1, 2, 3}.

• ℓ1 + ℓ2 + ℓ3 is even.

Note in particular a cross product corresponds to the [1, 1, 1]
path which fails rule 2. This formalizes the intuition that
GTP is a symmetric operation and is unable to perform anti-
symmetric interactions. In Section 6.2, we show that GTP is
incapable of solving a simple task of classifying chiral 3D
structures. However, the impact of the loss of antisymmetric
interactions on real datasets remains unexplored.

3.3. Matrix Tensor Product

Figure 3. Schematic of the process in taking a matrix tensor prod-
uct. We embed input irreps into a tensor product rep. We then
interact using matrix multiplication before decomposing the result-
ing tensor product rep back into a direct sum of irreps.

We also analyze another interaction introduced in the new
e3x framework in the FusedTensor class (Unke &
Maennel, 2024; Maennel et al., 2024). The key idea is
that a tensor product rep is a matrix, and we can interact two
tensor product reps through matrix multiplication.

Matrix tensor products (MTP) first takes each input and
embeds the irreps in a single large enough tensor product

rep using Clebsch-Gordan coefficients. After doing so, we
can matrix multiply the tensor product reps. Finally, we can
decompose the resulting tensor product rep back into irreps.
Details are provided in Section E.3.

Similar to GTP, MTP only outputs one copy of each possi-
ble output irrep. Hence, the outputs of the same irrep type
get weighted and summed together. However, in contrast
to GTP, MTP is not a symmetric operation (because matrix
multiplication is not commutative), so we can have anti-
symmetric tensor product terms. The selection rules are
inherited from CGTP.

Proposition 3.3 (Selection rule for MTP). Suppose we
have irrep labels (ℓ1, 1),(ℓ2, 1),(ℓ3, 1). We must have ℓa ≤
ℓb + ℓc for all distinct choices of a, b, c ∈ {1, 2, 3}.

4. Summary of Asymptotic Runtimes
In Appendix E, we analyze the asymptotic runtimes, and in
Appendix F, we analyze the expressivity of implementations
of the various tensor product operations. The results are
summarized in Table 1. For expressivity, we assume we are
using the various tensor products to construct bilinearities
from spaces X,Y transforming as (0⊕ . . .⊕L) to space Z
transforming as (0⊕ . . .⊕ 2L).

We would like to highlight the following findings on specific
implementations. Details are found in Appendix E.

• The often cited O(L6) runtime for CGTP does not
leverage all the sparsity in the coefficients (Passaro &
Zitnick, 2023). Using all sparsity, we can obtainO(L5)
runtime as noted by (Cobb et al.).

• We provide and analyze a novel implementation of
GTP which represents spherical signals using a grid on
the sphere as opposed to the original 2D Fourier basis
(Luo et al., 2024). Our implementation has the same
asymptotics and is 30% faster in practice. Futher,
our spherical grid implementation unlocks the use of
S2 fast Fourier transforms (S2FFT) (Healy et al., 2003)
algorithms which leads to an asymptotically faster ver-
sion of GTP.

From this table, we can see that asymptotic speedups in the
faster TPOs comes from a loss of expressivity. In particular,
when normalizing for our expressivity measure, the only
true asymptotic speedup comes from implementations lever-
aging the fast algorithm for spherical harmonic transforms.

5. Microbenchmarking Tensor Product
Implementations

For the machine-learning practitioner, the fundamental ques-
tion of which tensor product to choose for their network is

5
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Table 1. Asymptotic runtimes and expressivity of various TPO
implementations. Note that when normalized for expressivity,
most TPOs have the same asymptotics as sparse CGTP. The only
true speed up comes from a fast spherical transform algorithm by
Healy et al. (2003).

TPO Expressivity Runtime Runtime / Expressivity

CGTP (Naive) O(L3) O(L6) O(L3)
CGTP (Sparse) O(L3) O(L5) O(L2)
GTP (Fourier) O(L) O(L3) O(L2)

GTP (Grid) O(L) O(L3) O(L2)

GTP (S2FFT) O(L) O(L2 log2 L) O(L log2 L)
MTP (Naive) O(L) O(L4) O(L3)
MTP (Sparse) O(L) O(L3) O(L2)

often heavily dependent on the resulting wall-clock time
of their training runs. In this section, we show that the
practical runtimes of different tensor products is more nu-
anced than the theoretical guarantees of Table 1. We focus
on the tensor products since these operations are usually
the bottleneck in equivariant neural networks. We perform
careful microbenchmarking on CPU (some details about the
hardware here) and on GPU (specifically, the NVIDIA RTX
A5500 and A100), and report hardware-agnostic FLOPs,
hardware-dependent GPU utilization, and overall wall-clock
time for each tensor product.

To the best of our knowledge, this is the most rigorous
benchmarking of such tensor product operations performed
till date.

5.1. Summary of Findings

We find that the Clebsch-Gordan Tensor Products incur low
GPU utilization and higher wall-clock time when compared
to the Gaunt Tensor Product and Matrix Tensor Product.
However, if we normalize for expressivity (Appendix F), the
wall-clock times for the Clebsch-Gordan Tensor Products
are much lower.

Overall, our benchmarks highlight the need for carefully
balancing expressivity, asymptotics, FLOPs and GPU uti-
lization while designing and implementing tensor products.

5.2. Methodology

While wall-clock times of tensor products correlate well
with downstream inference/training times, they depend on
specific code implementations (eg. compiled vs uncompiled
code, the use of custom kernels) or GPU compute capability
(number of tensor cores, memory bandwidth). This makes
it hard to extend benchmarking claims beyond the specific
execution environment. While using FLOPS can help get
around these limitations (Brehmer et al., 2024), they may
not necessarily correspond to the actual compute needed for
using equivariant operations given their poor GPU utiliza-
tion. The difference in GPU utilization makes it particularly

challenging to do a fair comparison between different tensor
products.

To test the analysis in Table 1, we implemented all of the
tensor products in e3nn-jax built on top of the JAX (Brad-
bury et al., 2018) framework. The just-in-time compilation
of JAX (via jax.jit) automatically fuses multiple opera-
tions to reduce memory transfer and kernel launch overhead.
We also include an unweighted implementation of the matrix
tensor product from e3x and a more GPU-friendly imple-
mentation of Clebsch-Gordan (Sparse) Algorithm 1 in our
benchmarking suite. Through this we ensure that all tensor
product implementations benefit equally from the various
pattern-based fusion strategies implemented within JAX’s
XLA compiler (Sabne, 2020; Snider & Liang, 2023).

However, these fusion strategies and heuristics are still
largely centered around dense linear algebra workloads over
multi-dimensional arrays. This makes it harder to see out-
of-the-box performance gains for operations that don’t fit
this paradigm (Barham & Isard, 2019). Thus, to analyze
how efficiently a given tensor product is being executed on
the GPU, we also report average GPU utilization.

Benchmark Settings: We define our benchmarking metrics
by counting instructions executed within each kernel run,
DRAM read and write memory accesses and throughput.
All metrics were collected through NVIDIA’s Nsight Com-
pute toolkit. This approach has been successfully used in
FourCastNet (Kurth et al., 2023) and takes inspiration from
the Empirical Roofline Toolkit (Yang, 2020).

All of the experiments were performed on an NVIDIA
A5500 with 24 GB of off-chip GPU memory. Our inputs are
randomly generated and batch size refers to number of sam-
ples used at once. Benchmarks on other hardware (A100,
CPU) can be found in Appendix M. Additional details about
hardware counters can be found in Appendix L.

5.3. Results

Asymptotics ̸= FLOPs. The first trend we report is the
discrepancy between asymptotics in Table 1 and compute
FLOPs. While the GTPs have lower asymptotic complexity,
they end up having comparable (or even higher) FLOPs than
the CGTPs. This is due to different constant scaling factors
causing TPOs with similar asymptotics to scale differently
with Lmax.

FLOPs ̸= Wall-clock time. Next, we report discrepancy be-
tween FLOPs and wall-clock times. While GTP has higher
FLOPs than the CGTPs, their wall-clock time is lower due
to their high GPU utilization. For Gaunt (Fourier), our
code does not leverage sparsity when transforming to a 2D
Fourier basis, potentially causing the slowdown. We tried
implementing a version that leveraged the sparsity through
jax.experimental.sparse but it was slower than
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Figure 4. Top: Analysis of tensor products compute scaling on a RTX A5500 GPU: Total GFLOPs (Left), Total walltime (Middle), and
Average throughput in GFLOPs/s (Right). Bottom: Analysis of tensor products compute scaling per path on RTX A5500 GPU: (Left)
Total Walltime / Expressivity, (Right) Total GFLOPs / Expressivity. Batch refers to the number of tensor products performed in parallel.

the version we report suggesting that its not yet well op-
timized. We also report low GPU utilization for Clebsch-
Gordan Tensor Product despite having a more GPU-friendly
implementation Algorithm 1.

GPU utilization ̸= Wall-clock time. Incase of MTP, we
show that high GPU utilization does not always necessarily
lead to the lowest wall-clock time due to the high compute
FLOPs.

Wall-clock time ̸= Expressivity. After normalizing against
expressivity defined in Section 4, we find that the Clebsch-
Gordan tensor products were the fastest both in terms of
wall-clock time and FLOPs.

5.4. Limitations and Open Questions

Here, we have effectively only benchmarked the ‘forward
pass’ of the tensor product operation in an equivariant neural
network. In practice, depending on the dataset and the task,
it may turn out the ‘optimal’ tensor product here may not
result in significant performance gains. For example, the
lack of expressivity in some of these tensor products may be
captured in other operations of the neural network, or may
not be important to the task at hand.

Since Nsight Compute does multiple replays on a single
kernel in order to gather performance metrics, it can take

days to profile all the kernels being executed in a single
model inference call. This is the biggest bottleneck when
profiling model runs.

By reporting the GPU utilization and FLOPs of these tensor
products, we hope to highlight the performance gains rela-
tive to the device peak that are still left on the table. Recent
works (NVIDIA, 2024; Bharadwaj et al., 2025; Firoz et al.,
2025; Tan et al., 2025) show this is a promising direction.

6. Experiments
6.1. Force and Energy Prediction on Organic Molecules

Luo et al. (2024) demonstrates the speedups obtained by
GTP in a real-world application by replacing the sym-
metrized tensor product in the MACE (Batatia et al., 2022)
model (a popular machine learning interatomic potential)
with GTP. We redo their experiments on the 3BPA (Kovács
et al., 2021) and revised MD17 (Christensen & von Lilien-
feld, 2020) datasets with our S2Grid implementation of GTP.
Our implementation is a drop-in replacement for the original
GTP implementation using Fourier transforms. While sig-
nificantly simpler due to the use of pre-existing primitives
in e3nn, we find that our GTP implementation using S2Grid
is also ≈ 30% faster in practice, as shown in Figure 5.

7
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Figure 5. Training the MACE interatomic force field with the orig-
inal GTP (Luo et al., 2024) and our faster implementation GTP
(Grid) for the same number of GPU hours on the 3BPA and revised
MD17 datasets.

6.2. Classifying 3D Tetris Pieces

We consider a simple task of classifying 8 different 3D
Tetris-like pieces, shown in 6a. Note that the first two pieces
are non-superimposable mirror reflections of each other;
they are chiral. Given a randomly oriented 3D structure,
the network needs to predict which of the 8 tetris pieces it
corresponds to.

We use a simple message-passing neural network, described
in Appendix I, using either the Gaunt and Clebsch-Gordan
tensor products. Our network architecture is almost identical
to that of NequIP (Batzner et al., 2022).

As shown in Figure 6, the network is very easily able to solve
this task with CGTP, but the same network parametrized
with GTP is unable to distinguish between the two chiral
pieces. Adding more channels or incorporating the pseudo-
spherical harmonics (which have the opposite parity of the
spherical harmonics under reflection) did not help. The
fundamental failure is the inability to create the 1e term
via 1o ⊗ 1o → 1e because this is the cross product, an
antisymmetric operation. Indeed, there is no way to create a
pseudoscalar using the GTP in this setting.

7. Conclusion
This work was inspired by the observation that specific anti-
symmetric paths were missing in GTP and that paths which
result in the same output irrep type are merged together.

(a)
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Figure 6. (a) The 8 different 3D Tetris pieces, with the first two
pieces being mirror images of each other. (b) Training curves of
networks trained with different tensor products on the 3D Tetris
task. The maximum L is varied from 1 to 4. All of the CGTP
networks attain 100% accuracy while none of the GTP networks
do.

While there is much focus on improving how runtimes scale
with L, there has been little work analyzing how expressivity
is affected. Hence we provided the first systematic analysis
of the distinctions between different O(3) equivariant TPOs
that exist in the literature.

On the theoretical side, we clarify that many new TPOs are
not formally tensor products. We then introduced a measure
of expressivity and interactability based on how TPOs are
used in practice. We applied this to CGTP, GTP, and MTP
analyzing their asymptotic runtimes, expressivities, and in-
teractability. Interactability lets us formalize the intuition
that GTP is unable to represent antisymmetric interactions.
In addition, we see asymptotic speedups in runtime typically
come from losses in expressivity.

For implementations, we highlight our novel and simpler
implementation of GTP which directly uses a spherical grid.
This implementation has the same asymptotic cost as the
original GTP and perfroms 20% faster in practice. Further,
we identify that leveraging fast spherical harmonic trans-
forms can allow faster asymptotic runtimes. Finally, we
clarify that the commonly cited O(L6) runtime for CGTP
does not use all sparsity in the Clebsch-Gordan coefficients
and we can in fact achieve O(L5) runtime (Cobb et al.).

We then provide the first microbenchmarks of implemen-
tations of CGTP, GTP, and MTP. We observe asymptotic

8
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gains do not always correspond to performance gains in
practice. In fact, CGTP leveraging sparsity has the slowest
walltime despite having the fewest FLOPs. As expected,
we observe better walltime performance for GTP compared
with CGTP. In addition, our grid implementation of GTP
performs better than the original 2D Fourier implementation.
However, normalizing for our expressivity measure, we see
that standard CGTP has the best performance, highlighting
these new TPOs do not truly speed up tensor products but
rather remove degrees of freedom.

Finally, we replicated the experiments originally performed
in Luo et al. (2024). We directly replaced their GTP imple-
mentation with our grid implementation and observe a 30%
speed increase. Additionally, we demonstrate the lack of
antisymmetric operations means classifying 3D tetris pieces
using solely GTP is impossible.

We conclude that while it is important to improve runtimes,
it is equally important to properly analyze where the savings
come from and the impact of these new operations both in
theory and in practice. We believe there are many opportu-
nities for creative design of new TPOs. We hope this work
can provide a foundation for analyzing these operations.
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A. Notation
Here, we present the notation we use throughout this paper and the typical variable names.

Table 2. Notation used throughout this paper

SO(n) Group of rotations in n-dimensional space
O(n) Group of rotations and inversion in n-dimensional space

S2 The 2-sphere, surface defined by x2 + y2 + z2 = 1
Y m
ℓ Spherical harmonic function of degree ℓ and order m
Yℓ The collection of spherical harmonic functions of degree ℓ for all orders m
⊕ Denotes a direct sum
⊗ Denotes a tensor product
× Denotes a Cartesian product of spaces and also denotes cross products
O Big O notation

ToSphere Function which takes in spherical harmonic coefficients consisting of single copies of irrep up to
some cutoff L and converts it into a spherical signal f : S2 → R

FromSphere Function takes in a spherical signal f : S2 → R and converts it to spherical harmonic coefficients
consisting of single copies of irrep up to some cutoff L

Table 3. Commonly used meanings of symbols

G Denotes a group
ρ(g) Representation of a group

A First input space of a constructed bilinearity
B Second input space of a constructed bilinearity
C Output space of a constructed bilinearity
V First input space of a tensor product operation (fixed equivariant bilinearity)
W Second input space of a tensor product operation (fixed equivariant bilinearity)
V Output space of a tensor product operation (fixed equivariant bilinearity)
T Tensor product operation (fixed equivariant bilinearity V ×W → Z)
ℓ Typically used to denote irrep type for SO(3). For spherical signals, used instead to denote spherical

harmonic degree which naturally indexes multiplicities of irrep types for VSTP/ISTPs
c Indexes multiplicities of an irrep type in given space (channel)
j Used instead of ℓ to denote irrep type for VSTP and general ISTPs
s Denotes irrep type of spherical signal (ie. our signal is a map f : S2 → R2s+1)

B. Irreducible Representations of E(3)

A representation ρ of a group G maps each group element g to a bijective linear transformation ρ(g) ∈ GL(V ), where V is
some vector space. Representations must preserve the group multiplication property:

ρ(g · h) = ρ(g) ◦ ρ(h) ∀g, h ∈ G (4)

Thus, the representation ρ defines a group action on a vector space V . The dimension of the representation ρ is simply
defined as the dimension of the vector space V .

There may be subspaces W ⊂ V which are left invariant under actions of ρ(g) for all g ∈ G. If this is the case, then
restricting to W also gives a representation ρ|W (g) ∈ GL(W ). If there is no nontrivial W , then we say the representation ρ
is an irreducible representation (irrep).

To build E(3)-equivariant neural networks, the irreducible representations of E(3) play a key role. Because E(3) is not a
compact group, the usual approach has been to consider irreducible representations of the group SO(3) of 3D rotations, and
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compose them with the representation in which translations act as the identity:

ρ(R, T ) = ρ′(R) (5)

This is why translations are often handled in E(3)-equivariant neural networks by centering the system or only using relative
vectors.

The ‘scalar’ representation ρscalar representation of SO(3) is defined as:

ρscalar(R) = id ∀R ∈ SO(3) (6)

and is of dimension 1 over V = R. Elements of R are unchanged by any rotation R. We call such elements ‘scalars’ to
indicate that they transform under the ‘scalar’ representation of SO(3). An example of a ‘scalar’ element could be mass of
an object, which does not change under rotation of coordinate frames.

Let T (R) ∈ R3×3 be the rotation matrix corresponding to a rotation R ∈ SO(3). Then, the ‘vector’ representation of
SO(3) is defined as:

ρvector(R) = T (R) ∀R ∈ SO(3) (7)

and is of dimension 3 over V = R3. The name arises from the way vectors in R3 transform under a rotation of the coordinate
frame. We call such elements ‘vectors’ to indicate that they transform under the ‘vector’ representation of SO(3). For
example, the velocity and position of an object in a certain coordinate frame are ‘vectors’.

Weyl’s theorem for the Lie group SO(3) states that all finite-dimensional representations of SO(3) are equivalent to direct
sums of irreducible representations. The irreducible representations of SO(3) are indexed by an integer ℓ ≥ 0, with
dimension 2ℓ+ 1. ℓ = 0 corresponds to the ‘scalar’ representation, while ℓ = 1 corresponds to the ‘vector’ representation
above. We will often use m, where −ℓ ≤ m ≤ ℓ, to index of each of the 2ℓ+ 1 components.

We say that a quantity x ∈ R2ℓ+1 is a ℓ irrep, if it transforms as the irreducible representation (‘irrep’) of SO(3) indexed by
ℓ. If x1 is a ℓ1 irrep and x2 is an ℓ2 irrep, we say that (x1,x2) is a direct sum of ℓ1 and ℓ2 irreps, which we call a (ℓ1, ℓ2)
‘rep’. Weyl’s theorem states that all reps are a direct sum of ℓi irreps, possibly with repeats over ℓi: x = ⊕ℓix

(ℓi). The
multiplicity of an irrep in a rep is exactly the number of repeats.

An important lemma for constructing equivariant linear layer is Schur’s lemma (Dresselhaus et al., 2007).

Lemma B.1 (Schur’s Lemma). Suppose V1, V2 are irreps of a Lie group over any algebraically closed field (such as SO(3)).
Let ϕ : V1 → V2 be an equivariant linear map. Then ϕ is either 0 or an isomorphism. Further, if V1 = V2 then ϕ is a multiple
of identity. Finally, for any two ϕ1, ϕ2 : V1 → V2 we must have ϕ1 = λϕ2.

This tells us that to construct equivariant linear layers between reps written as a direct sum of irreps, we can only have
weights between input and output irreps of the same type and that those weights must be tied together so they give multiples
of the identity transformation.

C. Spherical Harmonics
The spherical harmonics are intimately connected to the representations of SO(3) and play a key role in the Gaunt tensor
product.

We define the spherical coordinates (r, θ, φ) as: xy
z

 =

r sin θ cosφr sin θ sinφ
r cos θ

 (8)

for θ ∈ [0, π), φ ∈ [0, 2π).

The spherical harmonics Yℓ,m are a set of functions S2 → R indexed by (ℓ,m), where again ℓ ≥ 0,−ℓ ≤ m ≤ ℓ. Here,
S2 = {(r, θ, ϕ) | r = 1} denotes the unit sphere.
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Indeed, as suggested by the notation, the spherical harmonics are closely related to the irreducible representations of SO(3).
Let Yℓ be the concatenation of all Yℓ,m over all m for a given ℓ:

Yℓ(θ, ϕ) =


Yℓ,−ℓ(θ, ϕ)

Yℓ,−ℓ+1(θ, ϕ)
. . .

Yℓ,ℓ(θ, ϕ)

 (9)

When we transform the inputs to Yℓ(θ, ϕ), the output transforms as a ℓ irrep.

The spherical harmonics satisfy orthogonality conditions:∫
S2

Yℓ1,m1
· Yℓ2,m2

dS2 = δℓ1ℓ2δm1m2
(10)

where: ∫
S2

f · g dS2 =

∫ π

θ=0

∫ 2π

φ=0

f(θ, φ)g(θ, φ) sin θdθdφ (11)

The orthogonality property allows us to treat the spherical harmonics as a basis for functions on S2. We can linearly
combine the spherical harmonics using irreps to approximate arbitrary functions on the sphere. Given a (0, 1, . . . , L) rep
x = (x(0),x(1), . . . ,x(L)), we can associate the function fx : S2 → R as:

fx(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Yℓ,m(θ, φ) (12)

The function fx is uniquely determined by x. In particular, by the orthogonality of the spherical harmonics (Equation 10),
we can recover the x

(ℓ)
m component:

x(ℓ)
m =

∫
S2

fx · Yℓ,m dS2 (13)

Thus, we can define the operations ToSphere and FromSphere:

x
ToSphere−−−−−−→ fx

FromSphere−−−−−−−→ x (14)

D. Clebsch-Gordan Tensor Product Details
The most natural map is V ×W → V ⊗W constructed by taking an outer product of the inputs. If the inputs are explicitly
written as a direct sum of irreps, we can write the tensor product as

x⊗ y =
⊕

x(ℓ1)∈x
y(ℓ2)∈y

(x(ℓ1) ⊗ y(ℓ2)) (15)

a new basis which is the sum of tensor product reps.

The key idea of a Clebsch-Gordan tensor product is we can explicitly reduce the tensor product reps back into a direct sum
of irreps with a change of basis. This change of basis is the definition of the Clebsch-Gordan coefficients, giving us

x(ℓ1) ⊗ y(ℓ2) =
⊕
ℓ3

(x(ℓ1) ⊗CG y(ℓ2))(ℓ3) (16)

where

(x(ℓ1) ⊗CG y(ℓ2))(ℓ3)m3

=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

Cℓ3,m3

ℓ1,m1,ℓ2,m2
x(ℓ1)
m1

y(ℓ2)
m2

. (17)

14
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Therefore the original tensor product can also be rewritten as a direct sum of irreps. This defines the Clebsch-Gordan tensor
product (CGTP)

x⊗CG y =
⊕

x(ℓ1)∈x
y(ℓ2)∈y

(x(ℓ1) ⊗CG y(ℓ2)). (18)

Note that full CGTP is really just a change of basis from a sum of tensor product reps to a sum of irreps. Hence, we do not
lose any information.

E. Runtime Analysis
Here, we provide a detailed asymptotic analysis of runtimes for different tensor products. We consider 3 different settings.

• Single Input, Single Output (SISO):
Here we are computing only one path [ℓ1, ℓ2, ℓ3] where ℓi ∈ O(L).

ℓ1 × ℓ2 → ℓ3

• Single Input, Multiple Output (SIMO):
Here we fix ℓ1, ℓ3 but allow all possible irreps generated by the respective tensor products.

ℓ1 × ℓ2 → Z

• Multiple Input, Multiple Output (MIMO):
Here we only bound the L that the tensor products use but allow full capacity for the input and output irreps. In the
case of CGTP, we can have an arbitrary number of copies of each irrep but we assume we only use single copies of
each irrep in the input.

Z ×W → Z

In the SISO and SIMO settings, the asymptotic runtimes of different tensor products are directly comparable. However, in
the MIMO setting, we lose expressivity in some tensor products. This is discussed more in Appendix F. Note the MIMO
setting is what one would typically want to use in practice. Hence the runtimes reported in Table 1 are for the MIMO setting.

E.1. Clebsch-Gordan Tensor Product

The tensor product operation is defined as:

(x(ℓ1) ⊗CG x(ℓ2))(ℓ3)m3
=

l1∑
m1=−l1

l2∑
m2=−l2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

x(ℓ1)
m1

x(ℓ2)
m2

(19)

where C denotes the Clebsch-Gordan (CG) coefficients which can be precomputed.

E.1.1. NAIVE RUNTIME

Let L = max(ℓ1, ℓ2, ℓ3). From Equation 19, for each m3, we would need to sum over m1,m2 which range from −ℓ1 to ℓ1
and −ℓ2 to ℓ2 respectively. Hence, we expect O(L2) operations. To compute the values for all m which range from −ℓ3 to
ℓ3, we see that computing a single ℓ1 ⊗ ℓ2 → ℓ3 tensor product requires O(L3) operations.

E.1.2. OPTIMIZED RUNTIME WITH SPARSITY

However, the CG coefficients are sparse. In the complex basis for the irreps, C(ℓ3,m)
ℓ1,m1,ℓ2,m2

is nonzero only if m1+m2 = m3.
Transforming to the real basis for the irreps, this condition becomes ±m1 ±m2 = m3. In either case for a fixed m1 and
m3, we only ever need to sum over a constant number of m2’s rather than O(L) of them as naively expected. Therefore an
implementation taking this sparsity into account gives us a runtime of O(L2). This optimization was noted in Cobb et al..
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E.2. Gaunt Tensor Product

The Gaunt Tensor Product (GTP) is based on the decomposition of a product of spherical harmonic functions back into
spherical harmonics (Luo et al., 2024). In particular, suppose one of our inputs x(ℓ1) transforms as a direct sum of irreps up
to some cutoff L (ie. ℓ1 ranges from 0, . . . , L). We can view these irreps as coefficients of spherical harmonics which gives
a spherical signal F1(θ, φ) =

∑
ℓ1,m1

x
(ℓ1)
m1 Yℓ1,m1(θ, φ). We similarly construct F2(θ, φ) =

∑
ℓ2,m2

x
(ℓ2)
m2 Yℓ2,m2(θ, φ).

Taking the product of these spherical signals gives a new signal F3(θ, φ) = F1(θ, φ)F2(θ, φ). This new signal can be
decomposed into spherical harmonics which we use to define the GTP. This results in

F3(θ, φ) =
∑
ℓ3,m3

(x(ℓ1) ⊗GTP x(ℓ2))(ℓ3)m3
Yℓ3,m3

(θ, φ). (20)

E.2.1. 2D FOURIER BASIS

Luo et al. (2024) describe an implementation which decomposes spherical harmonics into a 2D Fourier basis in their original
paper introducing GTP. This also turns out to be the same implementation in Xin et al. (2021). We describe their procedure
here.

Note that for any ℓ ≤ L we can always write the spherical harmonics in the 2D Fourier basis:

Yℓ,m(θ, φ) =
∑

−L≤u,v≤L

yℓ,mu,v e
i(uθ+vφ) (21)

for some coefficients yℓ,mu,v .

Hence, any signal x(ℓ)
m can be encoded as

F1(θ, φ) =

L∑
ℓ=0

ℓ∑
m=−ℓ

∑
−L≤u,v≤L

x(ℓ)
m yℓ,mu,v e

i(uθ+vφ) =
∑

−L≤u,v≤L

(
L∑

ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m yℓ,mu,v

)
ei(uθ+vφ). (22)

We identify the encoding

xu,v =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m yℓ,mu,v . (23)

One can observe that the yℓ,mu,v are sparse and only nonzero when m = ±v. Therefore, finding xu,v if we have a set of irreps
is O(L) and it is O(1) if we only want one irrep. Because there are O(L2) possible values for u, v, encoding into the 2D
Fourier is O(L3) if we encode all irreps up to L or O(L2) if encoding a single irrep.

For 2 functions of θ, φ encoded using a 2D Fourier basis x1
u,v,x

2
u,v, we can compute their product using a standard 2D

FFT in O(L2 logL) time. This gives some output encoded as yu,v where now u, v range from −2L, . . . , 2L to capture all
information.

Finally, we decode the resulting function in the 2D Fourier basis back into a spherical harmonic basis to extract the output
irreps. Suppose −L ≤ u, v ≤ L. We can always write

ei(uθ+vφ) = F⊥
u,v(θ, φ) +

L∑
ℓ=0

ℓ∑
m=−ℓ

zℓ,mu,v Yℓ,m(θ, φ) (24)

where F⊥
u,v(θ, φ) is some function in the space orthogonal to that spanned by the spherical harmonics. By construction, our

output signal is always in the space spanned by the spherical harmonics so the orthogonal parts cancel. Hence we can write

∑
−2L≤u,v≤2L

yu,ve
i(uθ+vφ) =

∑
−2L≤u,v≤2L

yu,v

L∑
ℓ=0

ℓ∑
m=−ℓ

zℓ,mu,v Yℓ,m(θ, φ) (25)

=
L∑

ℓ=0

ℓ∑
m=−ℓ

 ∑
−2L≤u,v≤2L

yu,vz
ℓ,m
u,v

Yℓ,m(θ, φ) (26)
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Hence we identify:

yℓ
m =

∑
−2L≤u,v≤2L

yu,vz
ℓ,m
u,v . (27)

Once again, we can note that zℓ,mu,v must be sparse and is only nonzero when v = ±m. Hence, evaluating the above takes
O(L) time since we sum over O(L) values of u paired with constant number of v’s. If we only extract one irrep, then we
range over O(L) values of m giving O(L2) runtime. If we extract all irreps up to 2L this becomes O(L3).

E.2.2. GRID TENSOR PRODUCT

Rather than use a 2D Fourier basis, we can instead represent the signal by directly giving its value for a set of points on the
sphere. Quadrature on the sphere is a well-studied topic (Beentjes, 2015; Lebedev, 1976); in general, O(L2) points are
needed to exactly integrate spherical harmonics upto degree L (McLaren, 1963). For this section, consider a product grid on
the sphere formed by the Cartesian product of two 1D grids for θ and φ with O(L) points each, for a total of O(L2) points.

We can write:

F1(θj , φk) =
L∑

ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Yℓ,m(θj , φk) =

L∑
ℓ=0

ℓ∑
m=−ℓ

x(ℓ)
m Nℓ,mPm

ℓ (cos(θj))csm(φk) (28)

where Nℓ,m is some normalization factor, Pm
ℓ are the associated Legendre polynomials, and

csm(φ) =


sin(|m|φ) m < 0

1 m = 0

cos(mφ) m > 0

. (29)

We note that we can first evaluate

gm(θj) =
L∑

ℓ=0

x(ℓ)
m Nℓ,mPm

ℓ (cos(θj)) (30)

where we set Pm
ℓ = 0 if m > ℓ. If we have a set of irreps up to L then we do the summation and this takes O(L) time.

If we only have one irrep to encode then this takes O(1) time. But we also have O(L) values of θj on the grid and O(L)
values of m to evaluate. This gives O(L3) runtime to encode onto the grid for irreps up to L and O(L2) for a single irrep.
Finally evaluating

F1(θj , φk) =
ℓ∑

m=−ℓ

gm(θj)csm(φk) (31)

for a set of φk can be done through a FFT in O(L logL) time for each θj giving O(L2 logL) total. Hence we see encoding
onto the sphere takes O(L3) time for irreps up to L and O(L2 logL) time for a single irrep.

For the multiplication of signals, we just have elementwise multiplication F3(θk, φk) = F1(θk, φk) · F2(θk, φk). Since
there are O(L2) grid points this takes O(L2) time.

Finally, we decode the signal back into irreps. To do so we use the fact that

f (ℓ)m =
∑
j,k

ajF (θj , φk)Yℓ,m(θj , φk) (32)

for some coefficients aj . This is essentially performing numerical integration of our signal against a spherical harmonic.
Once again using the factorization of the spherical harmonics we get

f (ℓ)m =
∑
j

(∑
k

F (θj , φk)csm(φk)

)
ajNℓ,mPm

ℓ (cos(θj)). (33)
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The inner sum in parentheses can be computed in O(L) time and we need to compute it for O(L2) values of θj ,m pairs
giving a runtime of O(L3). Of course, we note that cs really is just sines and cosines so alternatively we can use FFT which
takes O(L2 logL) total. Computing the outer sum takes O(L) since we sum over O(L) values of j. For a single irrep there
areO(L) values of j givingO(L2) for the outer sum. For irreps up to ℓ there areO(L2) pairs of ℓ,m givingO(L3) runtime
for the outer sum. In total, we see going from the grid to the coefficients takes O(L2 logL) for a single irrep and O(L3) for
all irreps.

However, it turns out that the associated Legendre polynomials have recurrence properties which can be exploited to make
transforming a set of irreps up to L to the grid and a set of irreps up to L back from the grid asymptotically more efficient
(Healy et al., 2003). The runtime for this algorithm which we will call S2FFT is O(L2 log2 L).

E.3. Matrix Tensor Product

Here we describe and analyze the time complexity of matrix tensor product. Let L1, L2 be the max ℓ’s of the inputs and
L3 be the max ℓ of the outputs. We pick some ℓ̃ = ⌈max(L1, L2, L3)/2⌉ so that ℓ̃⊗ ℓ̃ when decomposed into irreps can
contain all irreps of the inputs and outputs. Note in principle we could always choose larger ℓ̃.

In the following runtime analysis, we assume L1 = L2 = L, l̃ = L, and L3 = 2L.

E.3.1. NAIVE RUNTIME

The first step of MTP is to convert our input irreps into a tensor product rep using Clebsch-Gordan coefficients as

X(ℓ)
m1,m2

=
ℓ∑

m3=−ℓ

Cℓ3,m3

ℓ̃,m1,ℓ̃,m2
x(ℓ)
m3

(34)

Y(ℓ)
m1,m2

=
ℓ∑

m3=−ℓ

Cℓ3,m3

ℓ̃,m1,ℓ̃,m2
y(ℓ)
m3

. (35)

Naively we sum over O(L) values of m3 and need to do the computation for O(L2) possible pairs of m1,m2. This gives
O(L3) naive runtime for converting a single irrep into a tensor product rep. To do so for all irreps up to L the takes O(L4)
time.

We can then sum over tensor product reps to create

X =
∑
ℓ

X(ℓ) Y =
∑
ℓ

Y(ℓ). (36)

There are O(L) matrices to sum over if we have irreps up to L. Summing matrices takes O(L2) time since our matrices are
size O(L)×O(L). Hence, this takes O(L3) time if we have irreps up to L. If we have a single irrep then we do not need to
do anything.

We then multiply the matrices giving Z = XY. Using the naive matrix multiplication algorithm requires O(L3) runtime.

Finally we can use Clebsch-Gordan to extract individual irreps giving

(x⊗FTP y)(ℓ3)m3
=

ℓ1∑
m1=−ℓ1

ℓ2∑
m2=−ℓ2

C
(ℓ3,m3)
ℓ1,m1,ℓ2,m2

Zm1,m2
. (37)

Again, naively we sum over O(L2) pairs of m1,m2 and need to evaluate O(L) values of m3 for O(L3) conversion for
single irrep. If we want all irreps up to 2L then we need O(L4).

E.3.2. OPTIMIZED RUNTIME WITH SPARSITY

Similar to the CGTP, we can take sparsity of the Clebsch-Gordan coefficients into account. We have nonzero values only if
±m1 ±m2 = m3. Hence in the encoding step, for fixed m1,m2 we only need to sum over constant number of m3 instead
of O(L). This gives a reduction of L in encoding to tensor product rep. Similarly in the decoding step, we see for fixed m3

we only need to sum over O(L) pairs of m1,m2. This gives a reduction of L as well in decoding back into irreps.
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E.4. Asymptotic runtimes in different settings

Table 4. Asymptotic runtimes of various tensor products for different output settings. The best performing tensor products for each output
settings are highlighted in green. In the MIMO setting, the Clebsch-Gordan tensor products are highlighted in red to indicate that they can
output irreps with multiplicity > 1 , unlike the Gaunt tensor products.

Tensor Product SISO SIMO MIMO

Clebsch-Gordan (Naive) O(L3) O(L4) O(L6)
Clebsch-Gordan (Sparse) O(L2) O(L3) O(L5)

Gaunt (Original) O(L2 logL) O(L3) O(L3)
Gaunt (Naive Grid) O(L2 logL) O(L3) O(L3)

Gaunt (S2FFT Grid) O(L2 logL) O(L2 log2 L) O(L2 log2 L)
Matrix (Naive) O(L3) O(L4) O(L4)
Matrix (Sparse) O(L3) O(L3) O(L3)

F. Expressivity
Here, we analyze the expressivity, as defined in Definition 2.2, of the various tensor products. In this case, we assume we
use a tensor product to construct bilinear maps

B : (0⊕ . . .⊕ L)× (0⊕ . . .⊕ L)→ (0⊕ . . .⊕ 2L)

by inserting equivariant linear layers before and after the tensor product. This choice of input and output irreps for our
bilinearity is inspired by what is commonly found in practice. It is often the case that we have the same number of copies of
each irrep type for our features. Since multiplicity of a rep only affects expressivity by a scaling factor, we focus on the case
where there is a single copy of each irrep type up to some cutoff L.

By Schur’s lemma, we can only linear maps between irreps of the same type and these maps must be identity. Hence,
the total number of inputs and output irreps to our tensor product gives the degrees of freedom for paramterizing the
linear layers from 0 ⊕ . . . ⊕ L and to 0 ⊕ . . . ⊕ 2L. There is an additional 2-fold redundancy in overall scaling so
#Input irreps+ #Ouput irreps− 2 gives an upper bound on expressivity.

F.1. Clebsch-Gordan tensor product

In the case of CGTP, we assume input which is a single copy of each irrep up to order L for O(L) irreps in the input. In
general, tensor products of single pairs of irreps givesO(L) output irreps. There areO(L2) pairs for a total ofO(L3) output
irreps.

F.2. Gaunt tensor product

In the case of GTP, we note that coefficients of spherical harmonics corresponds to single copies of each irrep. Hence, we
have O(L) input irreps. Similarly, in the output there is only one copy of each irrep we obtain from the spherical harmonic
coefficients. By selection rules, the highest order harmonic we could obtain is of order 2L. Hence the number of output
irreps is also O(L).

F.3. Matrix tensor product

In the case of FTP, we encode single copies of irreps into a tensor product rep (L/2)⊗ (L/2). Hence there are O(L) inputs.
We then perform matrix multiplication which results into a (L/2)⊗ (L/2) tensor product rep. But this decomposes into
0⊕ . . .⊕ L giving O(L) output irreps.

G. CGTP Sparse Algorithm
While leveraging sparsity of the Clebsch-Gordan coefficients will improve asymptotic runtime, in practice we would like an
implementation which is GPU friendly. Here we present an algorithm which uses the sparsity to create a constant number of
generalized convolution operations.
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Algorithm 1 CGTP sparse

Require: Irrep 1 x(ℓ1), Irrep 2 y(ℓ2), Clebsch-Gordan coefficients Cℓ3,m3

ℓ1,m1,ℓ2,m2

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Aℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,m1+m3

Cℓ3,m3

ℓ1,m1,ℓ2,m1+m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Bℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,m1−m3

Cℓ3,m3

ℓ1,m1,ℓ2,m1−m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Cℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,−m1+m3

Cℓ3,m3

ℓ1,m1,ℓ2,−m1+m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do:
for m1 = −ℓ1, . . . , ℓ1 do:

Dℓ3,m3

ℓ1,m1,ℓ2
← Cℓ3,m3

ℓ1,m1,ℓ2,−m1−m3

Cℓ3,m3

ℓ1,m1,ℓ2,−m1−m3
← 0

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 +Aℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
m1+m3

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 +Bℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
m1−m3

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 + Cℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
−m1+m3

for m3 = −ℓ3, . . . , ℓ3 do
for m1 = −ℓ1, . . . , ℓ1 do

z
(ℓ3)
m3 ← z

(ℓ3)
m3 +Dℓ3,m3

ℓ1,m1,ℓ2
x
(ℓ1)
m1 y

(ℓ2)
−m1−m3

return z(ℓ3)

H. Simulating the Fully-Connected Clebsch-Gordan Tensor Product with Gaunt Tensor Products
One way to increase the expressivity of GTP is to first reweight the inputs x,y. That is, we first create

x′(ℓ) = aℓx
(ℓ) (38)

y′(ℓ) = bℓy
(ℓ). (39)

where aℓ and bℓ are learnable weights. We then perform GTP after this reweighting and extract some output irrep(s) ℓ3.
That is we get

(x′ ⊗GTP y′)(ℓ3). (40)

The analogous operation is fully connected CGTP. There may be multiple pairs of irreps which give a ℓ3 output. We can
always weight and sum these to get ∑

ℓ,ℓ′

wℓ,ℓ′(x
(ℓ) ⊗CG y(ℓ′))(ℓ3) (41)
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where wℓ,ℓ′ are learnable weights.

However, even if we only care about symmetric tensor products, the weighted GTP operation is strictly less expressive than
fully connected CGTP.

More concretely, suppose we have nontrivial ℓ = 2 and ℓ = 4 data in our inputs. From CGTP and the selection rules we see
that

(x(2) ⊗CG y(2))(2) (x(2) ⊗CG y(4))(2) (42)

(x(4) ⊗CG y(2))(2) (x(4) ⊗CG y(4))(2) (43)

are all nonzero. In particular, it is possible to create a ℓ = 2 output of

(x(2) ⊗CG y(2))(2) + (x(4) ⊗CG y(4))(2)

with a fully connected CGTP. However, GTP instead gives a single ℓ = 2 output of form

c22,2(x
′(2) ⊗CG y′(2))(2) + c22,4(x

′(2) ⊗CG y′(4))(2) + c24,2(x
′(4) ⊗CG y′(2))(2) + c24,4(x

′(4) ⊗CG y′(4))(2) (44)

where the c’s are nonzero coefficients. Note that in order to have nonzero (x(2) ⊗CG y(2))(2) and (x(4) ⊗CG y(4))(2)

contributions, a2, b2, a4, b4 must all be nonzero. However, that means we must have nonzero (x(2) ⊗CG y(4))(2) and
(x(4) ⊗CG y(2))(2) contributions. Therefore weighted GTP is not expressive enough to output (x(2) ⊗CG y(2))(2) +
(x(4) ⊗CG y(4))(2), as it will necessarily mix additional terms.

I. Details of Message-Passing Network

Algorithm 2 LEARNABLETENSORPRODUCT

Require: Tensor Product ⊗, Number of Channels C (for Gaunt tensor product).
procedure LEARNABLETP(x1,x2)

if ⊗ = ⊗CG then
return LINEAR(x1 ⊗CG x2)

if ⊗ = ⊗GTP then
for i = 1, 2, . . . , C do

x
(i)
1 ← LINEAR

(i)
1 (x1)

x
(i)
2 ← LINEAR

(i)
2 (x2)

x
(i)
o ← LINEAR(i)

o (x
(i)
1 ⊗GTP x

(i)
2 )

return CONCATENATE({x(i)
o | i ∈ {1, 2, . . . , C}})

return LearnableTP

In Algorithm 2, we create learnable (ie, parametrized) variants of the purely functional tensor products. For the Clebsch-
Gordan tensor product ⊗CG, we simply add a linear layer to its output. For the Gaunt tensor product ⊗GTP, we create
multiple channels, perform the tensor product channel-wise and then concatenate all irreps. This allows the output to have
irreps of multiplicity > 1, even with the Gaunt tensor product. We set the number of channels C as 4 in all experiments with
the Gaunt tensor product.

In Algorithm 3, we use these learnable tensor products in a simple message-passing network, very similar to NequIP
(Batzner et al., 2022).

J. Tetris Experiment Details
The pieces are normalized such that the side length of each cube is 1. When represented as a graph, the center of each cube
is a node. We instantiate the network with dmax = 1.1 so that the centers are connected only to its immediately adjacent
centers. The network finally outputs x = 7× 0e+ 1× 0o irreps. (As a reminder, 0e are scalars and 0o are pseudoscalars).
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Algorithm 3 Operation of our Message Passing Neural Network

Require: Graph G, Message Passing Iterations T , Cutoff dmax, Spherical Harmonic Degree ℓ, Tensor Product ⊗
Compute neighbor lists for each node in G:

(u, v) ∈ E ⇐⇒ ∥ru − rv∥ ≤ dmax

Create LEARNABLETENSORPRODUCT from ⊗.
for v ∈ V do:

h
(0)
v ← [1]

for t = 1, 2, . . . , T do:
for v ∈ V do:

h
(t)
v ← 1

|N (v)|
∑

u∈N (v) MLP(∥ru − rv∥)× LEARNABLETENSORPRODUCT(h
(t−1)
u , Yℓ(ru − rv))

h
(t)
v ← GATE(h

(t)
v )

h
(t)
v ← CONCATENATE([h

(t−1)
v , h

(t)
v ])

h
(t)
v ← LINEAR(h

(t)
v )

return {h(T )
v }v∈V

The logits and predicted probabilities are then computed by:

l0 = x(0o) × x(0e)0 (45)

l1 = −x(0o) × x(0e)0 (46)

li = x(0e)i for i ≥ 2 (47)
pi = softmax(li) (48)

It is clear that defining the logits in this manner preserves the rotational and reflection symmetries. The predictions are
clearly invariant under rotations (as they are ℓ = 0 irreps), and under reflections: x(0o) → −x(0o) but x(0e)i → x(0e)i .

We set the number of message-passing steps T to be 3, to allow the interactions 1o⊗ 1o→ 1e and then 1e⊗ 1o→ 0o, so
the pseudoscalar can be created. The degree of spherical harmonics is kept as ℓ = 4. The irreps of the hidden layers are
restricted to some cutoff L, which is varied from 1 to 4 to vary the expressivity of the network. We train the model with the
Adam optimizer with learning rate 0.01 to minimize the standard cross-entropy loss to one-hot encoded labels for the 8
pieces.

K. Proof of Theorem 3.2
Proof. It is known (Gaunt, 1929) that:

Y m1

ℓ1
· Y m2

ℓ2
∝
∑
j,ℓ

Cℓ,0
ℓ1,0,ℓ2,0

Cj,m
j1,m1,j2,m2

Y m
ℓ .

Hence, we see that

(x(ℓ1) ⊗GTP y(ℓ2))(ℓ) ∝ Cℓ,0
ℓ1,0,ℓ2,0

Cj,m
j1,m1,j2,m2

(x(ℓ1) ⊗CG y(ℓ2))(ℓ).

For selection rule 1, this is inherited from the selection rules of CGTP. For selection rule 2, this follows from the selection
rules for the Cℓ,0

ℓ1,0,ℓ2,0
term which is nonzero only when ℓ1 + ℓ2 + ℓ is even.

L. Details of Benchmarking Setup
L.1. GPU

Wall-Clock Time: Total wall-clock time is reported as the sum of gpu time duration.sum metric for all the kernels
executed for that function call. We confirmed that this closely matches the jax wall-clock time with some profiling overhead
due to kernel replays.
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FLOPs: We obtain the list of all FLOPS generating instructions that are executed within each kernel run on the GPU. We
then count all instructions and multiply them by their specific weighing factors (the number of FLOPs in each instruction).
The weighing factor for a multiplication or addition is 1 and the weight for a multiply-and-add (FMA) is 2. For Tensor Core
instructions on an Ampere GPU, the peak performance is 1024 FMA/cycle/SM and since 1 FMA = 2 FLOPS, we get 2048
(TensorCoreWeight, 2023). We check the consistency of this weighing factor by running a matrix-multiplication benchmark.
Further details can be found in Empirical Roofline Toolkit (Yang et al., 2020).

Average Throughput (FLOPs/s): We first calculate the Tensor Cores and CUDA Cores Throughput for every kernel by
dividing the FLOPs for that kernel by the time taken to execute that kernel measured using gpu time duration.sum.
We report the average throughput for a range of kernels launched for a given tensor product function call.

Average DRAM Bandwidth (GB/s): For every kernel, we take the sum of dram bytes read.sum and
dram bytes write.sum and divide it by the kernel execution time. We report the average bandwidth for a range of
kernels launched for a given tensor product function call

GPU: We gathered the GPU plots on an NVIDIA RTX A5500 with default JAX precision (F32), running the CUDA driver
version 550.90.07 and CUDA toolkit version 12.5. We used Nsight Compute 2024.2.0.0 build 34181891 and JAX version
0.4.30. JAX automatically switches to TF32 wherever appropriate.

Precision Metrics Weight Factor

sm sass thread inst executed op dadd pred on.sum 1
FP64 sm sass thread inst executed op dmul pred on.sum 1

sm sass thread inst executed op dfma pred on.sum 2

sm sass thread inst executed op fadd pred on.sum 1
FP32 sm sass thread inst executed op fmul pred on.sum 1

sm sass thread inst executed op ffma pred on.sum 2

sm sass thread inst executed op hadd pred on.sum 1
FP16 sm sass thread inst executed op hmul pred on.sum 1

sm sass thread inst executed op hfma pred on.sum 2

Tensor Core sm inst executed pipe tensor.sum 2048

Table 5. FLOPS weights for various Nsight Compute metrics.

L.2. CPU

Wall-Clock Time: The elapsed time after compiling using jax.jit. To enable accurate measurements, we calculate the
mean wall-clock time for 100 rounds after performing 10 warmup rounds.

FLOPs: We use Linux’s perf profiler to directly count the number of FLOPs through fp ret sse avx ops.all
metric (specific to AMD).

We had to skip throughput and bandwidth because we could not colleft hardware-counters for them using perf

CPU: The CPU plots were gathered on an AMD EPYC 7313 16-core 3.7 GHz processor with default JAX precision.

M. Additional Benchmarks
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Figure 7. Analysis of SISO, SIMO and MIMO (Table 4 for input settings) performance for different tensor products on AMD EPYC 7313
: Total walltime (top row), Total normalized walltime (second row), Total GFLOPs (third row) and Total normalized GFLOPs (bottom
row). Note that MTP only supports MIMO. We had to skip values due to profiling errors.
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Figure 8. Analysis of SISO, SIMO and MIMO (Table 4 for input settings) performance for different tensor products on RTX A5500 :
Total forward walltime (top row), Total forward normalized walltime (second row), Total GFLOPs (third row), Total forward normalized
GFLOPs (fourth row) and Average forward throughput (bottom row). Note that MTP only supports MIMO. We had to skip values due to
profiling errors.
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Figure 9. Analysis of SISO, SIMO and MIMO (Table 4 for input settings) performance for different tensor products on A100 GPU,
showing Total forward walltime (top row), Total normalized forward walltime (second row), Total forward GFLOPs (third row) and Total
forward normalized GFLOPs (fourth row) and Average forward throughput (bottom row). Note that MTP only supports MIMO. We had
to skip values due to profiling errors.
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Figure 10. Analysis of SISO, SIMO and MIMO (Table 4 for input settings) performance for different tensor products on RTX A5500 :
Total backward walltime (top row), Total backward normalized walltime (bottom row). Note that MTP only supports MIMO
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