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ABSTRACT

We propose a new approach to promote safety in classification tasks with es-
tablished concepts. Our approach — called a conceptual safeguard — acts as a
verification layer for models that predict a target outcome by first predicting the
presence of intermediate concepts. Given this architecture, a safeguard ensures that
a model meets a minimal level of accuracy by abstaining from uncertain predictions.
In contrast to a standard selective classifier, a safeguard provides an avenue to im-
prove coverage by allowing a human to confirm the presence of uncertain concepts
on instances on which it abstains. We develop methods to build safeguards that
maximize coverage without compromising safety, namely techniques to propagate
the uncertainty in concept predictions and to flag salient concepts for human review.
We benchmark our approach on a collection of real-world and synthetic datasets,
showing that it can improve performance and coverage in deep learning tasks.

1 INTRODUCTION

One of the most promising applications of machine learning is to automate routine tasks that a human
can perform. We can now train deep learning models to perform such tasks across applications — be it
to identify a bird in an image [1], detect toxicity in text [2], or diagnose pneumonia in a chest x-ray [3].
Even as these models may outperform human experts [4, 5, 6], their performance falls short of the
levels we need to reap the benefits of full automation. A bird identification model that is 80% accurate
may not work reliably enough to be used in the field by conservationists. A pneumonia detection
model with 95% accuracy may still not be sufficient to eliminate the need for human oversight in a
hospital setting.

One strategy to reap some of the benefits of automation in such tasks is through abstention. Given any
model that is insufficiently accurate, we can measure the uncertainty in its predictions and improve its
accuracy by abstaining from predictions that are too uncertain. In this way, we can improve accuracy
by sacrificing coverage — i.e., the proportion of instances where a model assigns a prediction. One of
the common barriers to abstention in general applications is how to handle instances where a model
abstains. In applications where we wish to automate a routine task, we would pass these to the human
expert who would have made the decision in the first place. Thus, abstention represents a way to reap
benefits from partial automation.

In this paper, we present a modeling paradigm to ensure safety in such applications that we call a
conceptual safeguard (see Fig. 1). A conceptual safeguard is an abstention mechanism for models that
predict an outcome by first predicting a set of concepts. Given such a model, a conceptual safeguard
operates as a verification layer — estimating the uncertainty in each prediction and abstaining when
it exceeds a threshold needed to ensure a minimal level of accuracy. Unlike a traditional selective
classifier, a conceptual safeguard provides a way to improve coverage — by allowing experts to
confirm the presence of certain concepts on instances on which we abstain.

Although conceptual safeguards are designed to be a simple component that can be implemented off
the shelf, designing methods to learn them is challenging. On the one hand, concepts introduce a
degree of uncertainty that we must account for at test time. In the best case, we may have to abstain
too much to achieve a desired level of accuracy. In the worst case, we may fail to hit the mark. On the
other hand, we must build systems that are designed for confirmation — i.e., where we can reasonably
expect that confirming concepts will improve coverage and where we can rank the concepts in a way
that improves coverage. Our work seeks to address these challenges so that we can reap the benefits
of these models.
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Figure 1: Conceptual safeguard to detect melanoma from an image of a skin lesion. We consider a model
that estimates the probabilities of m concepts: Dotted, Pigmented ... Irregularvasc. Given these probabilities,
a conceptual safeguard will decide whether to output a prediction § € {Melanoma, NoMelanoma} or to abstain
gy =_L. The safeguard improves accuracy by abstaining on images that would receive a low confidence prediction,
and measures confidence in a way that accounts for the uncertainty in concept predictions through uncertainty
propagation. On the left, we show an image where a safeguard abstains because its confidence fails to meet the
threshold to ensure high accuracy Pr(Melanoma) = 62% < 90%. On the right, we show a human expert can
resolve the abstention by confirming the presence of concepts Dotted and Irregvasc in the image.

Contributions Our main contributions include:

1. We introduce a general-purpose approach for safe automation in classification tasks with concept
annotation. Our approach can be applied using off-the-shelf supervised learning techniques.

2. We develop a technique to account for concept uncertainty in concept bottleneck models. Our
technique can use native estimates from the components of a concept bottleneck to return reliable
estimates of label uncertainty, improving the accuracy-coverage trade-off in selective classification.

3. We propose a confirmation policy that can improve coverage. Our policy flags concepts in instances
on which a model abstains, prioritizing high-value concepts that could resolve abstention. This
strategy can be readily customized to conform to a budget and applied offline.

4. We benchmark conceptual safeguards on classification datasets with concept labels. Our results
show that safeguards can improve accuracy and coverage through uncertainty propagation and
concept confirmation.

RELATED WORK

Selective Classification Our work is related to a large body of work on machine learning with a
reject option [see e.g., 7, for a recent survey], and more specifically methods for selective classification
[8,9, 10, 11]. Our goal is to learn a selective classifier that assigns as many predictions as possible
while adhering to a minimal level of accuracy [i.e., the bounded abstention model of 11]. We build
conceptual safeguards for this task through a post-hoc approach [see e.g., 12] — in which we are
given a model, and build a verification layer that estimates the confidence of each prediction and
abstains on predictions where a model is insufficiently confident. The key challenge in our approach
is that we require reliable estimates of uncertainty to abstain effectively [13, 14], which we address
by propagating the uncertainty in concept predictions to the uncertainty in the final outcome.

Deep Learning with Concepts Our work is related to a stream of work on deep learning with
concept annotations. A large body of work uses these annotations to promote interpretability — either
by explaining the predictions of DNN in terms of concepts that a human can understand [15, 16],
or by building concept bottleneck models — i.e., a model that predicts an outcome of interest by
predicting concepts —i.e., [17]. One of the key motivations for concept bottleneck models is the
potential for humans to intervene at test time [17] — e.g., to improve performance by correcting a
concept prediction that was incorrectly detected. Recent work shows that many architectures that
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perform well cannot readily support interventions [see e.g., 18, 19].! Likewise, interventions may
not be practical in applications where we wish to automate a routine task. In such cases, we need
a mechanism to flag predictions for human review to prevent human experts from having to check
each prediction. Our work highlights several avenues to avoid these limitations. In particular, we
work with an independent architecture that is amenable to interventions, consider a restricted class of
interventions, and present an approach that does not require constant human supervision.

One overarching challenge in building concept bottleneck models is the need for concept annotations.
In effect, very few datasets include concept annotations and those that do are often incomplete (e.g.,
an example may be missing some or all concept labels). In practice, the lack of concept labels can
limit the applicability and the performance of concept bottleneck models — and has motivated work a
recent stream of work on machine-driven concept annotation [see e.g., 20] and drawing on alternate
sources of information [21, 22]. Our work outlines an alternative approach to overcome this barrier
to adoption: rather than building a new model that is sufficiently accurate, use it as much as possible
by allowing it to abstain from prediction.

2 FRAMEWORK

We consider a classification task to predict a label from a complex feature space. We start with a
dataset of n i.i.d. training examples {(x;, ¢;, y;) }7_;, where example 4 consists of:

* a vector of features x; € X C R4 — e.g., X; pixels in image ¢;
* avector of k concepts ¢; € C = {0,1}"™ —e.g., ¢; , = 1 if x-ray ¢ contains a bone spur;
o alabel y; € Y = {0,1} —e.g., y; = 1 if patient ¢ has arthritis.

Objective We use the dataset to build a selective classification model & : X — Y U {L}. Given a
feature vector x;, we denote the output of the model as §; := h(x;) where §; =L denotes that the
model abstains from prediction for x;.

In the context of an automation task, we would like our model to assign as many predictions as
possible while adhering to a target accuracy to ensure safety at test time. In this setup, abstention
reflects a viable path to meet this constraint — by allowing the model to abstain on instances where
it would otherwise assign an incorrect prediction. Given an target accuracy o € (0, 1), we express
these requirements as an optimization problem:

max Coverage(h)
s.t. Accuracy(h) > a,

where:

» Coverage(h) := Pr (g #.1) is the coverage of the model h — i.e., proportion of instances where h
outputs a prediction.

» Accuracy(h) :=Pr(y =g | § #L) is the selective accuracy of the model h —i.e., the accuracy
of h over instances on which it outputs a prediction

System Components We consider a selective classifier with the components shown in Fig. 1. Given
the dataset, we will first train the basic components of an independent concept bottleneck model:

* A concept detector g : X — [0,1]™. Given features x;, the concept detector returns as output
a vector of m probabilities q; = [¢; 1, ..,4im] € [0,1]™ where each ¢; , := Pr(c; 1, = 1| ;)
captures the probability that concept k is present in instance i.

* A front-end model f : C — ), which takes as input a vector of hard concepts c; and returns as
output the outcome probability 7, := f(c;).

"For example, if we build a sequential architecture — wherein we train a front-end model to predict the label
from predicted concepts — then interventions may reduce accuracy as the front-end may rely on an incorrect
concept prediction to output accurate label predictions.
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Figure 2: We evaluate the performance of classification models that can abstain using an accuracy-coverage
curve [11]. Given a model that outputs a probability prediction for each point, a conceptual safeguard flags
points on which a model abstains based on a confidence threshold 7 € [0, 0.5] — where setting 7 = 0 leads to
100% coverage and setting 7 = 0.5 leads to 0% coverage.

In what follows, we treat these models as fixed components that are given and assume that they
satisfy two requirements: (i) independent training, meaning that we train the concept detector and
the front-end model using the datasets {(x;, ¢;)}?_; and {(c;, y;)} -, respectively; (ii) calibration,
i.e., that the concept detector and front-end model and return calibrated probability estimates of
their respective outcomes. As we will discuss shortly, independent training will be essential for
confirmation while calibration will be essential for abstention.

In practice, these are mild requirements that we can satisfy using off-the-shelf methods for supervised
learning. Given a dataset, for example, we can fit the concept detectors using a standard deep
learning algorithm, and fit the front-end model using logistic regression. In settings where the
dataset is missing concept labels for certain examples, we can train a separate detector for each
concept to maximize the amount of data for each concept detector. In settings where we have an
embedding model [21] or an existing end-to-end deep learning model, we can dramatically reduce
the computation by training the concept detectors via fine-tuning. In all cases, we can calibrate each
model by applying a post-hoc calibration technique, e.g., Platt scaling [23].

Conceptual Safeguards Conceptual safeguards operate as a confidence-based selective classifier
— abstaining on points where they cannot assign sufficiently confident prediction. We control this
behavior through an internal component called the selection gate ¢, : [0,1] — Y U{L}, which is
parameterized with a confidence threshold T € [0, 1]. Given a threshold 7, the gate takes as input a
soft label 7, € [0, 1] and returns:

0 if g, el[0,7)
Ui=p-(y;) =L if gy elrl—7]
1 if g;e(l—r11]

As shown in Fig. 2, we can set 7 to choose an operating point for the model on the accuracy-coverage
curve — e.g., to meet a desired target accuracy rate at by sacrificing coverage. In settings where our
front-end model returns calibrated probability predictions, we can use them to set the threshold 7.

Definition 1. A probabilistic prediction 7 € [0, 1] for a binary label y € {0, 1} is calibrated if
Pr(y=1|gy=t)=tforall values t € [0,1].

Proposition 1. Suppose that y is a calibrated probability prediction for y. Then any selective
classifier o, () that abstains when Y has confidence below 1 — T achieves accuracy at least 1 — 7.

Proposition 1 is a standard result ensuring high accuracy for selective classifiers that output calibrated
probabilistic prediction (see Appendix A for a proof). In cases where the front-end model is not
calibrated, the result will hold only given the degree of calibration. Thus, the reliability of this
approach hinges on the reliability of our confidence estimates. An alternative approach for such cases
is to treat the output of the front-end model f as a confidence score and tune 7 using a calibration
dataset [see, e.g., the SGR algorithm of 12].

Confirmation We let users confirm the presence of concepts on instances where a model abstains.
In a pneumonia detection task, for example, we can ask a radiologist to confirm the presence of
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concept k in x-ray i. We refer to this procedure as confirmation rather than intervention to distinguish
it from other ways where a human expert would alter the output from a concept detector.?

We consider tasks where each concept is human-verifiable — i.e., that it can be detected correctly by
the human experts that we would query to confirm [c.f., concepts where a human may be uncertain as
in 24]. In such tasks, confirming a concept will replace its probability g; j to its ground-truth value
cir € {0,1}. We cast confirmation as a policy function ¢g : [0,1]™ — [0, 1]™ where S C [m)]
denotes a subset of concepts to confirm. The function takes as input a vector of raw concept predictions

and returns a vector of partially confirmed concept predictions: p; = [pi 1, - -, Pi,m] € [0, 1]"™ where:
)Gk ifke S
Pik =V qin ifk ¢S

3 METHODOLOGY

In this section, we describe how to build the internal components of a conceptual safeguard. We first
discuss how to output reliable predicted probabilities given uncertain inputs at test time. We then
introduce a technique to flag promising examples that can be confirmed to improve coverage.

3.1 UNCERTAINTY PROPAGATION

It is important that the concept detectors are probabilistic, so that we can prioritize confirming
concepts that have high uncertainty. However, this creates an issue where the concept detectors output
probabilities, but the front-end model requires hard concepts as inputs.

Here, we describe a simple strategy wherein we use uncertainty propagation to allow the front-end
model to accept probabilities rather than hard concepts as input. We make two assumptions about the
underlying data distribution to motivate our approach.

Assumption 1. The label y and features x are conditionally independent given the concepts c.

Assumption 2. The concepts {c1, ..., cm } are conditionally independent given the features x.

We can use these assumptions to write the conditional label distribution p(y | ) in terms of quantities
that we can readily obtain from a concept detector and front-end model:

plylz)= > plylez)plc|x) )
cef{0,1}m
= Z p(y | c)p(c]|x) (Assumption 1)
ce{0,1}™
= Z p(y|c) H plex | x) (Assumption 2)
m N—_—— ——
ce{0,1} output from f(c) kelm] output from gy, (x)

We use this decomposition to propagate uncertainty from the inputs of the front-end model to its output.
Specifically, we compute the expected prediction of the front-end model on all possible realizations
of hard concepts and weigh each realization in terms of the probabilities from concept detectors. In
practice, we replace each quantity in Eq. (1) with an estimate computed by the concept detectors
and front-end model. Given predicted probabilities from concept detectors p; = (p; 1, .- -, Dik), We
compute the estimate of p(y | x) as:

fo) = > fle I ps0—pix) #))

ce{0,1}m™ ke[m]
f) = Y, pyle [ plele) 3)
~ cel{0,1}m ke[m]

output using output using hard output from concept

uncertain concepts concepts detectors

X , interventi “ i in whi u icti
ZFor example, intervention may refer to “correction” in which a human replaces a hard concept prediction
with its correct value.
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Algorithm 1 Greedy Concept Selection

Input: {i € [n] | ¢-(f(q;)) =L} instances on which a model abstained

Input: ~q,...,7,, > 0, cost to confirm each concept
Input: B > 0, confirmation budget
1: Sl, ceey Sn — {} concepts to confirm for each instance
2: repeat
’i*, k* < arg Il’laXLk Gain(qi, ]{/‘) s.t. k g Sz select best remaining concept

3: Six — Six U{k*}
5: until B < 0or S; = [m] forall i € [n]
Output: S1,...,.5,, concepts to confirm for each abstained instance

Here, we abuse notation slightly and use f(p,) to denote the front-end model applied to uncertain
concepts, and f(c) to denote the front-end model applied to hard concepts. This requires 2™ calls
to the front-end model, which is negligible in practice as most front-end models are trained with a
limited number of concepts. In settings where m is large, or computation is prohibitive, we can use a
sample of concept vectors to construct a Monte Carlo estimate.

3.2 CONFIRMATION

Selective classification guarantees higher accuracy at the cost of potentially lower coverage. In what
follows, we describe a strategy that can mitigate the loss in confirmation by human confirmation —
i.e., manually spotting concepts among instances on which we abstain. In principle, confirmation will
always lead to an improvement in coverage. In practice, human confirmation is labor intensive — and
may require expertise — so we want to develop techniques that can account by flagging promising
examples that are responsive to confirmation costs.

In Algorithm 1, we present a routine to flag concepts for a human expert to review among instances
on which a model abstains. The routine iterates over a batch of n points on which the model has
abstained and identifies salient concepts that can be confirmed by a human expert to avoid abstention.

Algorithm 1 computes the gain associated with confirming each concept on each instance and then
returns the concepts with the maximum gain while adhering to a user-specified confirmation budget
B > 0. We associate the cost of confirming each concept k£ with a cost v, > 0, which can be set to
control the time or expertise that is associated with each confirmation. The routine selects concepts
for review based on the expectation of the gain in certainty. We measure the gain in certainty in terms
of the variance of the prediction after confirmation:

Gain(% k) = VarpkNBern(qk) [f(iﬁ{k}(Q))}

4
= qr(1 — ) (f(algr < 1)) — f(algr < 0])) @

Gain(q, k) = qx(1 — qr) f(algr + 1]) — f(algx < 0]) (5)
———

gain from outcome if concept outcome if concept

confirming concept present absent

The gain measure in (4) captures the sensitivity of predictions from the front-end model by confirming
concept k. In particular, we seek to identify concepts that — if confirmed — would induce a large
change in the output of the front-end and thus resolve abstentions. Given that we do not know the
underlying value of concept k prior to confirmation, we treat g as a random variable that will be set
to q[gx + 1] with probability g and q[gqx < 0] with probability 1 — ¢. Here, q[qx < 1] refer to
the vector q, except with g, replaced with 1.

4 EXPERIMENTS

We present experiments where we benchmark conceptual safeguards on a collection of real-world
classification datasets. Our goal is to evaluate their accuracy and coverage trade-offs, and to study the
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effect of uncertainty propagation and confirmation through ablation studies. We include details on
our setup and results in Appendix B, and provide code to reproduce our results on GitHub.

4.1 SETUP
We consider six classification datasets with concept annotations:

* The melanoma and skincancer datasets are image classification tasks to diagnose melanoma
and skin cancer derived from the Derm7pt dataset [25].

* The warbler and flycatcher datasets are image classification tasks derived from the CalTech-
UCSD Birds dataset [26] to identify different species of birds.

* The noisyconcepts25 and noisyconcepts75 datasets are synthetic classification tasks de-
signed to control the noise in concepts (see Appendix B.1).

We process each dataset to binarize categorical concepts (e.g., WingColor to WingColorRed). We
split each dataset into a training sample (80%, used to build a selective classification model) and a
test sample (20%, used to evaluate coverage and selective accuracy in deployment).

Models We train a selective classification model using one of the following methods:

* X—=Y MLP: A multilayer perceptron trained on top of the penultimate layer of the embedding
model. This baseline represents an end-to-end deep learning model that directly predicts the output
without concepts.

* Baseline: An independent concept bottleneck model built from concept detectors g1, . . ., g, and a
front-end model f trained to predict the true concepts.

* CS: Conceptual safeguard built from the same concept detectors and front-end as the baseline. This
model propagates the uncertainty from the concept detectors g1, . . . , g, to the front-end model f
as described in Section 3.

We build Baseline and CS models using the same front-end model f and concept detectors g1, . . . , G-
We train the front-end model f using logistic regression, and the concept detectors using embeddings
from a pre-trained model [i.e., InceptionV3, 27] (for all datasets other than noisyconcepts).

Evaluation We report the performance of each model through an accuracy-coverage curve as in
Fig. 2, which plots its coverage and selective accuracy on the test sample across thresholds. We
evaluate the impact of confirmation in concept based models — i.e., Baseline and CS — in terms of the
following policies:

* ImpactConf, which flags concepts to review using Algorithm 1;

* RandomConf, which flags a random subset of concepts to review.

We control the number of examples to confirm by setting a confirmation budget, and plot accuracy-
coverage curves for confirmation budgets of 0/10/20/50% to show how performance changes under
no/low/medium/high human levels of human intervention, respectively.

4.2 RESULTS

We present the accuracy coverage curves for all methods and all datasets in Table 1. Given these
curves, we can evaluate the gains to uncertainty propagation by comparing Baseline to CS, and the
gains from confirmation by comparing Baseline + RandomConf to CS + ImpactConf).

Overall, our results that our methods outperform their respective baselines in terms of coverage
and selective accuracy. In general, we find that the gains vary across datasets and confirmation
budgets. Given a desired target accuracy, for example, we achieve higher coverage on warbler and
flycatcher rather than melanoma and skincancer. Such differences arise due to differences in
the quality of concept annotations and their relevance for the prediction task at hand.
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Table 1: Accuracy coverage curves for all methods on all datasets. We include additional results in Appendix B
for multiclass tasks. Note that Baseline (black) and Baseline + RandomConf (green) produce identical results
without confirmation. Likewise, CS + RandomConf (blue) and CS + ImpactConf (purple) are also equivalent
under the same condition.

On Uncertainty Propagation Our results highlight how uncertainty propagation can lead to
improvements in a safeguard. On the one hand, we find that uncertainty propagation improves the
accuracy coverage trade-off. On the skincancer dataset, for example, we see a major improvement
in the accuracy coverage curves between a model that propagates uncertainty (CS + RandomConf,
blue) and a model and a comparable model that does not (Baseline + RandomConf, green).

On the other hand, accounting for uncertainty can improve these trade-offs by producing a more
effective confirmation policy. Our results highlight these effects by showing gains of uncertainty
may change under a confirmation budget. On the flycatcher dataset, for example, accounting
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Dataset Prediction Thresholds ~ X->Y MLP  Baseline CS Baseline + RandomConf  CS + ImpactConf
warbler 7=0.05 86.0% 17.3% 74.0% 30.0% 90.00%
n =15,994 7=0.1 100.00% 74.0% 87.3% 89.3% 100.00%
m =112 7=0.15 100.00% 100.00%  100.00% 100.00% 100.00%
Wah et al. [26] 7=02 100.00% 100.00%  100.00% 100.00% 100.00%
flycatcher 7= 0.05 0.0% 26.9% 0.0% 46.2% 84.62%
n =15,994 7=0.1 82.7% 44.2% 36.5% 46.2% 100.00%
m =112 7=0.15 92.3% 44.2% 36.5% 65.4% 100.00%
Wah et al. [26] 7=02 100.00% 57.7% 51.9% 100.00% 100.00%
melanoma 7=0.05 0.0% 0.0% 4.3% 8.6% 52.86%
n = 616 T=0.1 0.0% 0.0% 14.3% 8.6% 72.86%
m =17 T=0.15 0.0% 0.0% 14.3% 41.4% 100.00%
Kawahara et al. [25] 7=02 0.0% 18.6% 34.3% 41.4% 100.00%
skincancer 7 =0.05 0.0% 0.0% 0.0% 6.10% 0.0%
n = 616 7=0.1 0.0% 0.0% 36.6% 15.9% 39.02%
m =17 7=0.15 32.9% 11.0% 36.6% 28.0% 85.37%
Kawahara et al. [25] T=0.2 86.59% 11.0% 36.6% 36.6% 85.4%
noisyconcepts25 7=0.05 0.0% 0.0% 0.0% 0.0% 0.0%
n = 100,000 7=0.1 32.3% 32.3% 32.3% 33.9% 44.66%
m=3 7=0.15 44.1% 43.6% 43.6% 45.8% 69.16%
T=0.2 80.4% 80.4% 80.4% 86.8% 93.31%
noisyconcepts75 7=0.05 0.0% 0.0% 0.0% 0.0% 0.0%
n = 100,000 7=0.1 0.0% 0.0% 0.0% 0.0% 11.17%
m=3 7=0.15 0.0% 0.0% 0.0% 0.0% 11.17%
7=02 0.0% 0.0% 0.0% 0.0% 11.17%

Table 2: Coverage at specific thresholds 7 for a confirmation budget of 20%. We present results for other
datasets and confirmation budgets in Appendix B.2.

for uncertainty leads to little difference when we do not confirm examples (i.e., a 0% confirmation
budget). In a regime where we allow for confirmation — setting a 20% confirmation budget — we find
that accounting for uncertainty can increase coverage, from 46.2% to 63.5%, when the threshold is
set at 7 = 0.05 (see Section 4.1).

On Confirmation Our results show that confirming concepts improves performance across all
datasets. On flycatcher, we find that confirming a random subset of instances 20% improves
coverage from 26.9% to 46.2% for a threshold of 7 = 0.05 (Baseline — Baseline + RandomConf). In
a conceptual safeguard, coverage starts from 63.5% due to uncertainty propagation (CS + RandConf),
and improves to 84.6% as a result of our targetted confirmation policy (CS + ImpactConf). The gains
of confirmation depend on the underlying task and dataset. For example, the gains may be smaller
when the concept detectors perform well enough without confirmation to achieve high accuracy (e.g.,
for the warbler and noisyconcepts25 datasets).

Our results highlight the value of targetted confirmation policy —i.e., as a technique that can lead to
meaningful gains in coverage without compromising safety or requiring real-time human supervision.
In practice, these gains only part of the benefits of our approach — as practitioners may be able to
specify costs in a way that limits the experts required for confirmation. For example, non-expert
users may be able to confirm concepts such as WingColorRed, while confirming the final species
prediction to RedFacedCormorant may require greater expertise.

5 CONCLUDING REMARKS

Conceptual safeguards reflect a general-purpose approach to promote safety through selective clas-
sification. In applications where we wish to automate routine tasks that humans could perform,
safegaurds allow us to reap some of the benefits of automation through abstention in a way that can
promote interpretability and improve coverage. Although our work has primarily focused on binary
classification tasks, our machinery can be applied to build conceptual safeguards for multiclass tasks
(see Appendix B.3), and extended to other supervised prediction problems.

Our approach has a number of overarching limitations that affect concept bottlenecks and selective
classifiers. As with all models trained with concept annotations, we expect to incur some loss in
performance relative to an end-to-end model when concepts are unlikely to capture all relevant
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information about the label from its input. In practice, this gap may be large — and we may reap the
benefits of automation using a traditional selective classifier. As with other selective classification
methods, we expect that abstention may exacerbate disparities in coverage or performance across
subpopulations [see e.g., 28]. In our setting, it may be difficult to pin down the source of these
disparities — as they may arise from concept annotations, model concepts, or interaction effects.
Nevertheless, we may be able to mitigate these effects through a suitable confirmation policy.

10
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A OMITTED PROOFS

Proposition 1. Suppose that 7 is a calibrated probability prediction for y. Then any selective classifier ¢+ (7)
that abstains when Y has confidence below 1 — T achieves accuracy at least 1 — .

Proof. We show that on examples for which the selective classifier does not abstain, accuracy is at least 1 — 7.
First, we use the Law of Total Probability to separate the cases where ¥ is confident that y = 0 versus y = 1.

Pr(y = ¢-(H) | - (@) #L1)
=Pr@>1-7]e (@ #L)Pr(y=1|5>1-71)
+Pr@<7|e,(y) ZL)Pr(y=0]y<7)

Next, we use the definition of calibration, which states that Pr (y = 1 |y = ¢) = t for all ¢ € [0, 1], to write

>Pr(y>1—7|p:m) #L) A -7)+Pry<7|e-(y) #L) (1 —7)
=(1-7)

B SUPPORTING MATERIAL FOR EXPERIMENTS

B.1 DATASETS

melanoma & skincancer These datasets are derived from the Derm7pt repository [25], which
is de-identified and publicly available without patient information. We preprocess the dataset
by splitting the original seven categorical image annotations (pigment_network, streaks,
pigmentation, regression_structures, dots_and_globules, blue_whitish_veil,
vascular_structures) into seventeen binary concepts. We consider two tasks: predicting melanoma
and predicting skincancer (melanoma or basal cell carcinoma). We split the validation indices in the original
dataset into a validation set and a hold-out test set for evaluation. We then balance the resulting classes by
downsampling the majority class. To train the concept models, we augment the original training images with
random color enhancements and random flipping to obtain 10x total training images.

warbler, flycatcher, cubspecies & cubtypes These datasets are derived from the CUB 2011
dataset [26]. We follow the same preprocessing described in [17]. warbler classifies birds of type warbler
and flycatcher classifies birds of type flycatcher. cubspecies and cubtypes are multiclass datasets
for predicting bird species and bird types, respectively. To train the concept models, we augment the original
training images with random color enhancements and random flipping to obtain 10x total training images.

noisyconcepts The noisyconcepts datasets are synthetic datasets that we primarily use to evaluate
performance changes with respect to the quality of concept detectors. We sample the examples in these datasets
(i, i, ys) from the following distribution:

Z1,...,25 = Bernouilli(0.7)
&1, &2, &3 = Bernouilli(pe)
¢1 = parity(z1, z2,24) ® &
co = parity(x1, T2, x3) D &2 (6)
cs = parity(x1, T2, x5) D &3
p = logistic(1.0¢1 + 2.0¢s + 3.0c5 — 2.0)
y ~ Bernoulli(p)

The distribution in (6) includes an explicit noise parameter ps € [0, 1] that we can set to control the noise in
concepts. When pe = 0, the values of c1, c2, c3 operate as parity functions, which can only be learned through
a sufficiently complex model. When ps > 0, we inject noise into the concept labels by randomly flipping
the values of c1, c2, c3 with probability pe. Thus, the noise parameter sets an upper bound on the accuracy of
concept labels — and larger values of p¢ lead to less accurate concept detectors. In contrast to the real-world
datasets, we train the concept detectors for the noisyconcepts datasets directly (i.e., without an embedding
layer) by fitting multi-layer perceptron with a single hidden layer.

13
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B.2 ADDITIONAL EXPERIMENTAL RESULTS

Dataset Prediction Thresholds ~ X->Y MLP  Baseline CcS Baseline + RandomConf ~ CS + ImpactConf
warbler 7=0.05 86.00% 17.3% 74.0% 26.0% 85.3%
n = 5,994 7=0.1 100.00% 74.0% 87.3% 86.7% 100.00%
m =112 7=0.15 100.00% 100.00%  100.00% 97.3% 100.00%
Wah et al. [26] 7=02 100.00% 100.00%  100.00% 100.00% 100.00%
flycatcher 7=10.05 0.0% 26.9% 0.0% 38.5% 100.00%
n=>5,994 T=01 82.7% 44.2% 36.5% 38.5% 100.00%
m =112 T=0.15 92.3% 44.2% 36.5% 38.5% 100.00%
Wah et al. [26] 7=02 100.00% 57.7% 51.9% 96.2% 100.00%
melanoma 7 =0.05 0.0% 0.0% 4.3% 4.3% 38.57%
n =616 7=0.1 0.0% 0.0% 14.3% 4.3% 38.57%
m =17 7=0.15 0.0% 0.0% 14.3% 21.4% 100.00%
Kawabhara et al. [25] 7=0.2 0.0% 18.6% 34.3% 21.4% 100.00%
skincancer 7=0.05 0.0% 0.0% 0.0% 3.66% 0.0%
n =616 7=0.1 0.0% 0.0% 36.6% 13.4% 37.80%
m =17 7=0.15 32.9% 11.0% 36.6% 13.4% 37.80%
Kawahara et al. [25] 7=02 86.6% 11.0% 36.6% 30.5% 93.90%
noisyconcepts25 7=10.05 0.0% 0.0% 0.0% 0.0% 0.0%
n = 100,000 7=0.1 32.3% 32.3% 32.3% 33.2% 39.77%
m=3 7=0.15 44.1% 43.6% 43.6% 44.8% 65.35%
7=02 80.4% 80.4% 80.4% 84.00% 82.7%
noisyconcepts75 7=0.05 0.0% 0.0% 0.0% 0.0% 0.0%
n = 100, 000 7=0.1 0.0% 0.0% 0.0% 0.0% 0.0%
m=3 7=0.15 0.0% 0.0% 0.0% 0.0% 2.38%
T=02 0.0% 0.0% 0.0% 0.0% 2.38%
Table 3: Coverage across abstention thresholds 7 with confirmation budget 10%
Dataset Prediction Thresholds ~ X->Y MLP  Baseline CS Baseline + RandomConf  CS + ImpactConf
warbler 7=0.05 86.0% 17.3% 74.0% 84.7% 86.67%
n=>5,994 7=0.1 100.00% 74.0% 87.3% 93.3% 92.7%
m =112 7=0.15 100.00% 100.00%  100.00% 100.00% 100.00%
Wah et al. [26] T=02 100.00% 100.00%  100.00% 100.00% 100.00%
flycatcher 7=10.05 0.0% 26.9% 0.0% 67.3% 100.00%
n=>5,994 7=0.1 82.7% 44.2% 36.5% 76.9% 100.00%
m =112 T=0.15 92.3% 44.2% 36.5% 90.4% 100.00%
Wah et al. [26] 7=02 100.00% 57.7% 51.9% 100.00% 100.00%
melanoma 7 =0.05 0.0% 0.0% 4.3% 18.6% 70.00%
n =616 7=0.1 0.0% 0.0% 14.3% 30.0% 82.86%
m =17 7=0.15 0.0% 0.0% 14.3% 51.4% 88.57%
Kawabhara et al. [25] 7=0.2 0.0% 18.6% 34.3% 75.7% 100.00%
skincancer 7=0.05 0.0% 0.0% 0.0% 0.0% 0.0%
n =616 7=0.1 0.0% 0.0% 36.6% 28.0% 51.22%
m =17 7=0.15 32.9% 11.0% 36.6% 56.1% 100.00%
Kawahara et al. [25] 7=02 86.6% 11.0% 36.6% 84.1% 100.00%
noisyconcepts25 7 =0.05 0.0% 0.0% 0.0% 0.0% 19.75%
n = 100, 000 7=0.1 32.3% 32.3% 32.3% 36.0% 38.69%
m=3 7=0.15 44.1% 43.6% 43.6% 65.6% 78.19%
7=02 80.4% 80.4% 80.4% 91.6% 100.00%
noisyconcepts75 7=0.05 0.0% 0.0% 0.0% 0.0% 0.0%
n = 100, 000 7=0.1 0.0% 0.0% 0.0% 0.0% 29.55%
m=3 7=0.15 0.0% 0.0% 0.0% 0.0% 29.55%
T=02 0.0% 0.0% 0.0% 0.0% 68.25%

Table 4: Coverage across abstention thresholds 7 with confirmation budget 50%
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B.3 MULTICLASS CLASSIFICATION TASKS

In this Appendix, we briefly describe how to build conceptual safeguards for multiclass classification tasks and
present experimental results for this setting.

In practice, the main requirement for adapting uncertainty propagation to cover multiple labels. In practice,
this requires replacing the concept prediction vector with a matrix that encodes Pr(y|c) for all y € ) and
c € {0,1}™. For the selective classifier ¢, we estimate uncertainty based on the likelihood of the most
probable class and threshold prediction accordingly.

Confirmation Budget
0% 10% 20% 50%
100% 1oy 100% =@ 100% == 100% -
- AN
. — e N\ N AN SN
g 90% \ 90% \ 90% \ S 90% \
cubtypes £ 80% 80% 80% 80%
n=>5,994 ] X->Y MLP \\ \\ v\ \\
m =112 G 70%1 @ Baseline 70% 70% ~— 70%
mez z s | l | /N X\
60% Baseline + RandomConf § 60% 60% 60%
@ CS+ ImpactConf l/ l/
50% 50% 50% 50%
0%  25% 50% 75% 100% 0%  25% 50% 75% 100% 0%  25% 50% 75% 100% 0%  25% 50% 75% 100%
Coverage Coverage Coverage Coverage

Table S: Coverage vs. accuracy for all methods on multiclass classification tasks.
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