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Abstract
Training large language models (LLMs) from scratch can yield models with unique
functionalities and strengths, but it is costly and often leads to redundant capabili-
ties. A more cost-effective alternative is to fuse existing pre-trained LLMs with
different architectures into a more powerful model. However, a key challenge
in existing model fusion is their dependence on manually predefined vocabulary
alignment, which may not generalize well across diverse contexts, leading to per-
formance degradation in several evaluation. To solve this, we draw inspiration
from distribution learning and propose the probabilistic token alignment method
as a general and soft mapping for alignment, named as PTA-LLM. Our approach
innovatively reformulates token alignment into a classic mathematical problem:
optimal transport, seamlessly leveraging distribution-aware learning to facilitate
more coherent model fusion. Apart from its inherent generality, PTA-LLM exhibits
interpretability from a distributional perspective, offering insights into the essence
of the token alignment. Empirical results demonstrate that probabilistic token
alignment enhances the target model’s performance across multiple capabilities.
Our code is avaliable at runjia.tech/neurips_pta-llm.

1 Introduction

Text1Text1Text1 Text2Text2Text2 Text3Text3Text3

System Output

W1

Merged Weight

System Output System Output

Train using 
fused matric

(d) Knowledge Fusion Performance

ToxiGen TyDi QA

MultiPL-E

W2 W3

(a) Model Emsemble (b) Weight Merging (c) Knowledge Fusion

Figure 1: PTA-LLM (ours) vs. concurrent arts (i.e., model ensemble [1] and weight merging [2])
under model fusion paradigm (i.e., knowledge from the “cat” and “rabbit” source models is fused into
the “llama” target model). Our knowledge fusion method yields general performance gains across
multiple capabilities in (d), where all scores (see Table 2) are normalized for better visualization.

The rise of large language models (LLMs) such as Llama-2 [3], OpenLLaMA [4], and MPT [5],
driven by scaling laws [6], has yielded significant advancement across a broad range of tasks (see
Fig. 1 (d). The narrow dashed line area indicates its respective fields of advantage). Nevertheless,
the reliance on scaling laws brings substantial computational demands [7], posing a noticeable
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impediment to the development of more robust baselines. A question thus naturally emerges: ① How
can we construct stronger baselines without resorting to the naive application of scaling laws?

Pioneering research has begun to address this question through the concept of model fusion [8, 2, 9,
10], focusing on model ensemble (see Fig. 1 (a)) and weight merging (see Fig. 1 (b)). Recently, a
prominent technique called knowledge fusion [11] aggregates the probabilistic distributions generated
by individual LLMs and transfers this fused representation to a target model via distillation (see Fig. 1
(c)), enabling it to be more inference-efficient. After further employing token alignment [12], the
misalignment issues arising from the use of different tokenizers across models are mitigated, allowing
knowledge fusion to be architecture-agnostic. The exemplary advantages offered by knowledge
fusion reframe question ① into ②: How can we further optimize LLMs through knowledge fusion?

Although knowledge fusion shows a promise avenue, two significant token alignment challenges still
remain unresolved. ❶ The manually designed mapping strategy is overly simplistic, failing to capture
the intricate patterns within the data. Tokens appearing in varying contexts often align with different
objectives, and the bias introduced by this “rigid” alignment reduces the model’s capacity to fully
learn from the data, ultimately diminishing performance. ❷ The alignment of top-k predicted token
sets from the source and target LLMs is performed independently, without taking into account their
associated probabilities or overall distribution. This isolated strategy may achieve local optimality at
each step alignment, but not a whole coherent fused metric. Thus, the core question ② becomes more
specific: ③ How can we effectively fuse LLMs with an adaptive and coherent matrix?

To this end, we introduce Probabilistic Token Alignment for Large Language Model Fusion (PTA-
LLM). During the matrix fusion, we first employ dynamic algorithm to determine an optimal token
pairing between the generated sequence from the source and target model. After obtaining the
token pairings, a logit-level alignment will be conducted to resolve the token ID misalignment.
Specifically, for the top-k predicted token sets from both source and target models, we hypothesize
and further prove (see empirical results in Table 2 and 3) that the probabilistic distributions generated
by distinct LLMs are coherent and reflective of their respective inherent knowledge. Therefore,
PTA-LLM leverages the global generative distributions of each model’s logits during token alignment,
externalizing their collective knowledge and facilitating more precise mapping. To achieve this,
our approach is grounded in Optimal Transport (OT), which optimally transforms one probability
distribution into another while minimizing a predefined cost. By harnessing OT, we align or “transport”
logit distributions between models, offering an effective solution. In contrast to hard mapping
strategies, which align each token independently of its context, our proposed PTA-LLM employs a
soft probabilistic alignment (detailed in §3.2). This approach better captures the intricacies of various
linguistic context and thus establishes a stronger performance baseline, addressing the challenge ❶.
Additionally, by incorporating distribution-aware learning, this method facilitates more consistent
model representations (through the visualization results in §4.4), leading to marked improvements in
generalization across a wide range of tasks (see Table §2), answering challenge ❷.

PTA-LLM enjoys a few attractive qualities. I. Generality. The global probabilistic distribution
transport enhances the coherence of the representations, thereby improving the model’s ability to
generalize across a wide range of tasks and supporting the transfer of underlying representations
for effective evaluation (see Table 2). II. Stability. The reframing through an optimal transport
perspective introduces a soft probabilistic alignment, offering a flexible and adaptive solution to
diverse contexts and performing stablly even in difficult tasks (see Table 3). III. Interpretability.
The effectiveness of our approach is supported by theoretical insights from distribution learning and
further validated through visualization results. It investigates the underlying mechanisms of token
alignment, a critical operation in knowledge fusion that has been largely overlooked in prior research.
This distinguishes PTA-LLM from most existing knowledge fusion models, which fail to elucidate
precisely how token alignment works (see §4.4).

2 Related Work
Model Fusion has garnered significant attention as a means to enhance the general performance of
LLMs. The fusion techniques can be categorized into three primary categories: model ensembling,
weight merging, and knowledge fusion.

Model ensembling combines the predictions of independently trained models to improve overall
performance. Common approaches include weighted averaging [13], majority voting [14], and
pairwise ranking [15]. However, a common challenge of model ensembling is that it requires
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maintaining multiple models during inference, leading to high memory consumption and latency.
Weight merging combines the parameters of multiple models to synthesize a new, unified model. This
method is especially effective when the models share identical architectures [2, 9]. Weight merging is
enhanced by linear mathematical operations on adapter parameters for improved model performance
and generalization [16, 17, 18]. However, weight merging overly relies on architectural uniformity
across models and requires manual tuning, limiting its applicability to diverse architectures (i.e.,
low generalizability). In contrast, knowledge fusion offers a flexible and efficient model integration,
particularly when the underlying architectures differ (i.e., a common case in LLMs). It usually distills
knowledge from multiple teacher models into a single student model. Based on its advantage, we
follow this technique in our study. More discussions are presented in §S1.

Token Alignment was first introduced as a solution to address the misalignment problem between
tokenizers with different size of vocabulary, specifically when aligning their respective distributions.
The concept was initially formalized by [12], who employs a search algorithm to minimize the align-
ment cost between token sequences. Following research [11, 19] further explored flexible mappings
for prominent performance via MinED strategy, statistical mapping, etc. However, existing methods
remain limited by their reliance on surface-level token correspondences (i.e., based solely on the
strings it comprises), which leverage minimum edit distance to align the logit. Our approach, besides
using edit distance as one metric, advances token alignment by incorporating the corresponding logit
values into the individual cost within the transport framework. Optimization is right now performed
at both the “surface-level” and “logit-level” (see Eq. 4).

3 PTA-LLM
In this section, we present PTA-LLM, a novel probabilistic token alignment method for achieving
general and coherent fusion of large language models (LLMs), as illustrated in Fig.2. Specifically,
we outline our comprehensive knowledge fusion framework and tuning strategy in §3.1. Following
this, we elaborate on the design of our probabilistic token alignment approach in §3.2, where the
probabilistic distribution matrices from source LLMs are aligned into a fused representation via a
dynamic pipeline, which involves two primary stages: dynamic token pairing and probabilistic token
alignment. Last but not least, in §S2, we provide a detailed description of the implementation and the
algorithm utilized in our approach. More implementation details will be provided in §S5.

Table 1: The key notations used in PTA-LLM. See all notations in §S4

Notation Representation
C A training corpus consisting of a collection of text sequences t
Ps The probabilistic distribution matrix for the source model, consisting of L tokens (denoted as A ∈ RVs )
Pt The probabilistic distribution matrix for the target model, consisting of N tokens (denoted as B ∈ RVt )
Pf The fused probabilistic distribution matrices for model fusion, consisting of N tokens (denoted as B̂ ∈ RVt )
Qt Target model’s predictions during the fine tuning
T̂ The final n×m optimal transport plan matrix of non-negative entries Gnm

3.1 Problem Statement & Overall Objective

Let t represent an input text sequence sampled from a corpus C. A probabilistic distribution matrix
P ∈ RK×V is obtained by evaluating the output token distirbutions of a large language model (LLM)
from the input t, where K corresponds to the output sequence length, and V denotes the size of
the vocabulary. The i-th row of this matrix represents the predicted probability distribution over
the vocabulary for the i-th token in the sequence. In the context of combining two LLMs (source
and target), we consider the probabilistic distribution matrices Ps ∈ RL×V s for the source model
and Pt ∈ RN×Vt for the target model, where L and N denote the sequence lengths, and Vs and Vt

represent the vocabulary sizes of the source and target models, respectively. When these models
employ different tokenization schemes, misalignment between the tokens of the source and target
models arises, thereby complicating the integration of their probabilistic outputs. Addressing this
issue is essential for effectively combining the outputs of both models. The traditional approach
seeks to ensure consistency between the target model’s predictions, denoted as Qt, and the fused
representation Pf , which encapsulates the knowledge from the source model. The knowledge fusion
loss is formulated as LFusion = −Et∼C [D(Qt,Pf )], where D(·, ·) is a discrepancy function (such as
cross-entropy or KL divergence) measuring the difference between the predicted and fused probability
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Figure 2: Probabilistic token alignment under the knowledge fusion paradigm. (a) The overall
knowledge fusion pipeline (see §3.1), and (b) two-stage probabilistic token alignment (see §3.2),
including dynamic token pairing and probabilistic alignment using optimal transport reformulation.

distributions. The fused output Pf is a probabilistic distribution matrix that represents the combined
strengths of both the source and target models, formally defined as Pf = MatrixAlignment(Ps,Pt).

In this work, we propose PTA-LLM, a framework designed to resolve discrepancies between the
tokenization schemes of the source and target models. The principal objective is to minimize the
divergence between the target model’s probabilistic predictions Qt and the corresponding one-hot
encoded label matrix Ot ∈ 0, 1N×V , where each row of Ot indicates the correct token as a one-
hot vector. Specifically, we define a causal language modeling (CLM) loss, which measures this
divergence, as LCLM = −Et∼C [D(Qt,Ot)], between the predicted probabilities and the true labels.
Consequently, the overall training objective of our proposed method is to optimize a weighted
combination of the CLM loss and the fusion loss, formalized as L = λLCLM + (1− λ)LFusion, where
λ ∈ [0, 1] is a hyperparameter controlling the trade-off between the causal language modeling loss
and the fusion objective. This ensures that the target model can effectively learn from both its own
predictions and the knowledge transferred from the source model.

3.2 Probabilistic Token Alignment

Dynamic Token Pairing The task of aligning two distinct probabilistic distribution matrices, Ps

and Pt poses a significant computational challenge due to the inherent differences in both sequence
length and vocabulary size. The core problem involves finding a suitable alignment between tokens
from the source model’s distribution Ps and those from the target model’s distribution Pt. More
precisely, for each token Aj (j ∈ [1, L]) from Ps, we aim to pair it with a corresponding token Bk

(k ∈ [1, N ]) from Pt as shown in Fig.2 (b1).

Given that there are L×N potential pairings between these tokens, employing brute-force attempts
to explore all possible combinations would be computationally prohibitive, especially as the sequence
lengths and vocabulary sizes grow. To address this, we introduce dynamic token pairing, which
provides an efficient way to systematically explore the space of possible pairings and compute an
optimal alignment. This approach allows for the minimization of computational complexity while
ensuring the best mapping between the source and target tokens.

Formally, given two sequences of tokens [A1:L,B1:N ], our objective is to find an alignment that
minimizes the overall cost associated with transforming one sequence into the other. Thus, we define
the recursion function as:

f(k, j) = min{f(k − 1, j) + c(Bk,Aj),

f(k, j − 1) + c(Bk,Aj),

f(k − 1, j − 1) + c(Bk,Aj)}, k ∈ [1, N ], j ∈ [1, L]

(1)

where f(k, j) represents the total cost of aligning the subsequences B1:k and A1:j , while c(Bk,Aj)
denotes the predefined cost or distance metric between tokens. In contrast to traditional alignment
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methods [20, 21], which typically enforce a one-to-one correspondence between elements in the
two sequences, our approach introduces generality by relaxing this constraint. Specifically, our
formulation allows the dynamic possibility assignment that one token in the source domain may align
with multiple tokens in the target domain, and vice versa, depending on the characteristics of the
tokenization schemes and the specific demands of the alignment task.

By adopting this dynamic token paring strategy, our method is able to handle discrepancies between
the tokenization schemes of the source and target models, ensuring that the probabilistic distributions
Ps and Pt can be meaningfully aligned, even in cases where their underlying token structures differ
significantly. This enhanced flexibility is particularly useful in scenarios where the vocabulary sizes
and token sequences vary substantially. Utimately, we provide a more robust solution to the alignment
problem in the context of knowledge fusion between models.

Probabilistic Token Alignment After determining the optimal token pairings, the next fundamental
step involves accurately performing logit-level alignment to address the token ID (i.e., we transform
the text into corresponding token IDs using a tokenizer.) misalignment that arises due to the use of
different tokenization schemes. As shown in Fig. 2 (b2) , even when Aj and Bk are decoded into the
same text by their respective tokenizers, their token ID may differ (i.e., 51 vs. 79). Specifically, for
each token pair Aj ∈ RVs and Bk ∈ RVt , the objective of token alignment is to match the logits from
the source token with the logits from the target token in order to achieve consistent representations
between the models. The resulting fused token distribution, denoted as B̂k, can be defined as:

B̂k = TokenAlignment (Aj ,Bk) , (2)
where TokenAlignment is a function that fuses the logits from the source and target models for each
token pairing. This fusion process aims to produce a unified token distribution by combining the
outputs from both the source and target language models. In addition, Equation 2 highlights that the
token fusion for each pairing can be reformulated from the perspective of distribution learning, where
the goal is to minimize discrepancies between the two token distributions. Formally, we have:

T̂ = argminL (Aj ,Bk) , (3)

where the loss function L represents the information loss incurred during the alignment process.
The goal is to minimize this loss, ensuring that the information from the source logits is effectively
transferred to the target logits without significant degradation.

This optimization problem is conceptually analogous to the classical problem of optimal transport.
Our objective is to find a “transport plan” T̂ that minimizes the total cost of transferring probability
mass from one distribution, µ, to another distribution, ν. Hence, in the context of token alignment,
we can reinterpret the task as an Optimal Transport (OT) problem, where the aim is to determine a
global transport plan that transfers the logits of the source tokens Aj to the logits of the target tokens
Bk at minimal cost. This process, under our setting, is formulated as:

T̂ = argmin
T ≥0

{
n∑

x=1

m∑
y=1

cxy Gxy

∣∣∣∣ m∑
y=1

Gxy = Aj [x]∀x,
n∑

x=1

Gxy = Bk[y]∀y

}
, n = m = 10,

(4)
where T̂ is an n×m matrix of non-negative entries Gxy , representing the amount of logit probability
transported from the x-th indice in the source token Aj to the y-th indice in the target token Bk.
The cost matrix C captures the alignment cost between source token Aj and target token Bk, where
we define cxy as the minimum edit distance (after decoding the indice into text) between the x-th
indice in the source token Aj and the y-th indice in the target token Bk (i.e., the L in Equation 3).
The constraints

∑m
y=1 Gxy = Aj [x] and

∑n
x=1 Gxy = Bk[y] ensure “logit probability” conservation

between the source and target token distributions. See more details in §S5.

Once the “transport plan” T̂ is determined, the next step is to align the logits by selecting the target
token logits with the highest probability for each source token logit, which can be reformulated as:

B̂k =

{
(r,Gxy)

∣∣∣∣ r ∈ Rx

}
. (5)

Here each pair consists of the index r and the corresponding transport probability Gxy from the
optimal transport plan T̂ . The set Rx represents the indices corresponding to the largest values in
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the x-th row of T̂ , which indicate the most probable target token logits for alignment with the x-th
source token logit. As shown in Fig. 2 (b2), the final fused logits for each indice in B̂k are determined
by the maximum transported logits. Notably, if multiple source token indices contribute the highest
transported logits to the same target indice, their contributions are accumulated (i.e., G55 + G65). We
demonstrate that our probabilistic token alignment can generate an more adaptive (see empirical
results in Table 2) and coherent (see the visualization of token in §4.4) fused matrix.

3.3 Implementation Detail

In this section, we present the implementation details of optimal transport and the fusion strategy for
fusing different LLMs in our PTA-LLM method.

Optimal Transport As stated in Equation 4 and 5, the token alignment tasks are transformed into
OT problem. Consequently, how to efficiently compute the global transport plan becomes crucial. To
address this, we employ the Sinkhorn algorithm [22] to solve the optimal transport problem following
common practice [23]. The implementation of Sinkhorn algorithm is shown in Algorithm 1.

Algorithm 1 Sinkhorn Algorithm for Optimal Transport

Require: Cost matrix C, source token distribution Aj , target token distribution Bk, temperature λ
1: Initialize T = exp (−λC)
2: repeat
3: scale the rows of T such that the row sums match Aj

4: scale the columns of T such that the column sums match Bk

5: until convergence
6: return T̂ .

Fusion Strategy To effectively merge the collective knowledge of source LLMs while retaining
their individual strengths, it’s crucial to assess the quality of each LLM and assign different levels of
importance to their respective distribution matrices. To do this, when processing text t, we employ
cross-entropy loss between the distribution matrices and the gold labels as a measure of the LLMs’
prediction quality [24]. A lower cross-entropy score for a source LLM indicates a more accurate
understanding of the text, and its prediction should thus be given greater weight. Following this
principle, we select the distribution matrix with the lowest cross-entropy score as the source LLM
distribution matrix. More fusion strategy ablative studies results are shown in Table 4b

4 Experiments
4.1 Experimental Setup

Training details We fine-tune the Llama-2 7B model using a batch size of 256 and a maximum
sequence length of 2,048 tokens with a combination weight (i.e., the λ in §3.1 ) of 0.8 on MiniPile [25]
following [11]. More details are presented in §S2.
Evaluation We evaluate PTA-LLM on six benchmarks (see details in §S3) that span various core
capabilities of LLMs, including reasoning, coding, commonsense, safty and multilingual ability.
Baselines We evaluate the performance of PTA-LLM with three sets of baselines: (1) Source LLMs,
including Llama-2 7B [3], OpenLLaMA 7B [4], and MPT 7B[5]; (2) Llama-2 CLM, a Llama-2 7B
model that further fine tuned on MiniPile using the traditional causal language modeling objective;
and (3) FUSELLM [11], a Llama-2 7B model trained on MiniPile with an emphasis on integrating
the capabilities of multiple source models under the knowledge fusion paradigm.
Reproducibility PTA-LLM is implemented in Pytorch [26] using the Huggingface Transformers
library [27], accelerated by FlashAttention [28]. Our full implementation will be publicly released.

4.2 Main Results

Table 2 presents the overall performance of PTA-LLM compared to three sets of baseline models (i.e.,
source LLMs, Llama-2 CLM and FUSELLM). The results indicate that the original LLMs exhibit
varying performance across the six benchmarks, with Llama-2 generally achieving the best results,
while MPT demonstrates the weakest overall performance. Following continual training on MiniPile,
Llama-2 CLM shows a modest average improvement of 1.20% over the original Llama-2 model.
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Table 2: Overall results of PTA-LLM and baselines in six various benchmarks, including 78 tasks in
total. The percentages indicate the rate of improvement/decrease compared to FUSELLM. We further
report “Number of Tasks” in [·]. Notably, higher average values indicate better performance in each
benchmark. Per-task results and more experiment details are available in Appendix §S8.

Benchmark [# of Tasks] OpenLLaMA MPT Llama-2 Llama-2 CLM FUSELLM PTA-LLM
Grade School Math [1] 7.81 9.17 14.18 14.33 14.56 14.71 (+1.03%)
Big-Bench Hard [27] 33.87 33.38 39.70 40.44 41.01 41.08 (+0.17%)
MultiPL-E [10] 18.11 17.26 14.63 14.83 15.56 15.88 (+2.06%)
MMLU [17] 42.11 27.84 46.94 47.65 48.77 49.38 (+1.25%)
ToxiGen [14] 18.94 18.42 18.56 18.33 18.19 18.89 (+3.85%)
TyDi QA [9] 27.32 22.11 31.42 31.80 32.99 34.07 (+3.27%)
Avg. 6 Benchmarks [78] 24.69 21.36 27.57 27.90 28.51 29.00 (+1.72%)

Compared to FUSELLM, PTA-LLM demonstrates an average relative performance gain of 1.72%
across 78 tasks. Notably, in the challenging benchmark of ME, which consists of multiple popular
programming languages, our approach achieves a significant performance gain of +2.06% compared
with Llama-2. Notable improvements are also observed in core areas such as safety and multil-
ing. While a slight performance degradation is observed in the continual training for the ToxiGen
benchmark under FUSELLM, PTA-LLM achieves a 3.85% relative improvement, highlighting the
generality of probabilistic token alignment across diverse contexts. We also find that PTA-LLM
experiences a minor performance improvement (i.e., +0.17%) on the BBH benchmark compared
to FUSELLM. This decline can be attributed to poor performance of source models. Two of the
three source models (i.e., OpenLLaMA and MPT) underperform on these tasks, and thus their more
coherent token alignment may inadvertently hinder continual training effectiveness in a reasonable
jitter. In conclusion, PTA-LLM improves the model’s ability to generalize across a wide range of
tasks and supports the transfer of underlying representations for effective evaluation.

4.3 Study of Stability

Table 3: Case study of PTA-LLM in the performance degradation tasks for continue training and
FUSELLM. The percentages indicate the rate of improvement/decrease compared to Llama-2. We
also denotes its corresponding benchmark in [·]. Case studies for BBH are provided in §S9.

Task [Benchmark] Llama-2 Llama-2 CLM FUSELLM PTA-LLM
Causal Judgement [BBH] 50.80 46.52 (-8.43%) 46.52 (-8.43%) 50.80 (+0.00%)
Geometric Shapes [BBH] 34.40 19.20 (-44.17%) 22.80 (-33.72%) 26.80 (-22.09%)
Tracking Shuffled Objects (7 objects) [BBH] 11.20 9.60 (-14.29%) 10.40 (-7.14%) 14.00 (+25.00%)
Chemistry [MMLU] 35.97 34.11 (-5.17%) 34.98 (-2.75%) 36.96 (+2.75%)
Jewish [ToxiGen] 27.00 21.60 (-20.00%) 23.80 (-11.85%) 25.20 (-6.67%)
Arabic [TyDi QA] 8.47 5.45 (-35.66%) 5.65 (-33.29%) 7.49 (-11.57%)
Swahili [TyDi QA] 43.69 38.97 (-10.80%) 39.78 (-8.95%) 41.68 (-4.60%)
Avg. 7 Tasks 30.22 25.06 (-17.07%) 26.28 (-13.04%) 28.99 (-4.07%)

We observe that in certain tasks (6 out of 43 tasks), FUSELLM under the knowledge fusion paradigm
exhibits performance degradation, which significantly diminishes its overall efficacy. This suggests
instability when exposed to perturbations, such as more challenging or unseen tasks. Consequently, a
thorough analysis of these tasks is necessary to provide valuable insights for future research.

Our hypothesis is that the hard mapping token alignment strategy employed by FUSELLM is
suboptimal in these contexts, necessitating manual specification of alignment strategies tailored
to each task for improved outcomes. In contrast, our method reframes the problem through the
perspective of optimal transport, introducing a soft probabilistic alignment that offers greater flexibility
and adaptability across diverse tasks. This approach not only mitigates performance degradation
(i.e., achieve an overall 8.97% performance mitigation over FUSELLM) but also results in significant
improvements, particularly in benchmarks such as BBH (i.e., 14.00 vs. 11.20) and MMLU (i.e.,
36.96 vs. 35.97). For instance, our method achieves a 25.00% improvement over Llama-2 in the
tracking shuffled objects task. These promising results underscore the stability of probabilistic token
alignment in enhancing model performance across varied contexts.
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Figure 3: Study of Interpretability. (a) The abstract understanding of token alignment in FUSELLM
and PTA-LLM and their respective evaluation metrics. (b) 2D visualization results of target tokens
and fused tokens, where their locations represent semantic information and the sizes indicate their
corresponding logit magnitudes. The ⋆ on the coordinates denotes the logit-weighted center of each
token. Additional visualization results are presented in §S6.

4.4 Study of Interpretability

Although the emergence of knowledge fusion as a model fusion paradigm has gained huge attention,
the underlying rationale remains unclear. In this section, we tend to provide distribution insights into
token alignment’s mechanisms and offer guidance for its optimal utilization. As shown in Fig. 3,
we delve into a specific context to have an in-depth analysis of token alignment. Given we have
previously aligned tokens like “the private,” we need to align the token pair from the source model
and target model to form the next fused token. For tokens from the target model (i.e., Llama-2),
we can visualize their top-10 logits and corresponding indices in a 2D space (see Fig. 3 (a), left
coordinate, showing only 3 logits in a high-level representation). This is done by first using the target
model’s tokenizer to extract token features, followed by dimensionality reduction using Isomap [29]
and PCA [30] (the variance ratio is reported as 95.60% on average in the table in Fig. 3 (a)). Their
relative position can reflect the underlying meaning of this indice, and the relative size indicates the
magnitude of their corresponding logit. For FUSELLM, traditional hard mapping does not consider
their logit and maps each indice to another with a pre-defined strategy, acting like a “moving” (i.e.,
change the location without modifying the size) in high-level understanding. In contrast, our method
leverages the complete distribution, “transporting” (i.e., distribute the size into current location) the
optimal logit into existing indices. Quantitatively, we further compute the average compactness of
each token (i.e., the logit-weighted Euclidean distance from each point to its center) and the similarity
of each token center to the target one (i.e., the Euclidean distance from each center point to the target
one) in 100 random samples, as shown in the table in Fig. 3 (a). It empirically demonstrates that
our method generates a more coherent fused token, as evidenced by a more compact representation
(i.e., lower inner distance: 239.44 vs. 257.83) and a more consistent representation (i.e., lower center
distance: 22.25 vs. 136.95).

As shown in the down part of Fig. 3, we can visually compare the distribution of PTA-LLM fused
token with the target token and FUSELLM fused token. Specifically, a more consistent marginal
feature distribution between PTA-LLM and target token can be observed from Fig. 3 (b) and Fig. 3 (d),
where FUSELLM exhibits significantly greater distortion in the overall token representation. The
more compact and coherent overall token distribution after employing probabilistic token alignment
is aligned with the quantitative results. More implementation details will be elaborated in §S6.
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Table 4: A set of ablative studies on three different core capablities evaluation benchmarks (i.e., BBH,
MMLU, ME). (a) The probabilistic token alignment parameters include two key hyperparameters:
convergence threshold and transport window size. (b) The fusion training parameters consist of the
combination weight, which controls the relative emphasis during continued training, while the fusion
function determines the source distribution matrix at each training step. See more results in §S10

Choice BBH ME MMLU
Optimal Transport Convergence Threshold

1e-4 40.54 15.88 48.99
1e-5 41.08 (+1.33%) 15.82 (-0.38%) 49.38 (+0.80%)

Token Alignment Window Size
10 41.08 15.88 48.99
5 40.68 (-0.97%) 15.61 (-1.70%) 49.38 (+0.78%)

(a) Probabilistic Token Alignment Parameters.

Choice BBH ME MMLU
Combination Weight

0.9 40.39 15.72 48.93
0.8 41.08 (+1.71%) 15.88 (+1.04%) 49.38 (+0.92%)

Fusion Function
AvgCE 40.52 15.69 48.89
MinCE 41.08 (+1.38%) 15.88 (+1.23%) 49.38 (+1.00%)

(b) Fusion Trainning Parameters

4.5 Diagnostic Experiment

Table 5: Results of PTA-LLM by incorporating
varying numbers (from 1 to 2) of models.

Model BBH MMLU ME
OpenLLaMA 33.87 42.11 18.11
MPT 33.38 27.84 17.26
Llama-2 39.70 46.94 14.63
Llama-2 CLM 40.44 (+1.86%) 47.65 (+1.51%) 14.83 (+1.37%)
Llama-2 + OpenLLaMA 40.54 (+2.11%) 49.26 (+4.95%) 15.83 (+8.17%)
Llama-2 + MPT 40.65 (+2.39%) 48.19 (+2.67%) 15.78 (+7.88%)
PTA-LLM 41.08 (+3.48%) 49.38(+5.20%) 15.88 (+8.54%)

Number of source LLMs. In Table 5, we
present the results of fusing varying numbers
of LLMs. In general, the performance of PTA-
LLM improves as the number of integrated mod-
els increases from 1 to 3. However, we also
find that the benefits of incorporating additional
models vary across different benchmarks (i.e., a
prominent improvement is observed in the ME).
It is also important to highlight that the fusion of
lower-performing source models results in diminished performance gains (i.e., MPT, which performs
the worst in the MMLU benchmark, contributes the least improvement when we combine one model).
Optimal Transport Convergence Threshold. As discussed in §S2, a key hyperparameter in
optimal transport is the threshold, which regulates the convergence of the Sinkhorn algorithm [22].
A lower value of threshold results in more iterations of transport, enforcing a stricter distribution
constraint. As illustrated in Table 4a (up), the lower optimal temperature preference indicates that a
stricter constraint may form a more coherent fusion and thus bring a greater performance gain.
Token Alignment Window Size. During the probabilistic token alignment, the default transport
window size is the same of the logit length (i.e., Top-10). Here, we explore the impact of window
size on the transport of fused logit in Table 4a (down). In general, larger transport range enable a
more comprehensive understanding of the context and thus lead to a performance improvement.
Combination Weight. As discussed in §3.1, the combination weight determines the relative
emphasis placed on the fused matrix versus the label matrix during continued training. We can
observe a higher performance in Table 4b (up) when the weight is smaller within a reasonable range
(see detailed analysis in §S10), since a lower value indicates more emphasis in our fused matrix.
Fusion Functions. In §S2, we employ a distribution matrix with minimum cross entropy (MinCE) to
define the source distribution matrix during training. Additionally, we implement a weighted average
of distribution matrices based on cross entropy (AvgCE). A comparison of these two approaches is
provided in Table 4b (down). The results show that PTA-LLM using MinCE consistently outperforms
AvgCE across all benchmarks, which is consistent with [11].

5 Conclusion

We present Probabilistic Token Alignment for Large Language Model Fusion (PTA-LLM), a
distribution-wise token alignment approach that leverages the optimal transport framework through
reformulation. It has merits in: i) demonstrating generality across benchmarks through a coherent
representation fusion; ii) offering a flexible and adaptive solution to various contexts, especially stable
in addressing challenging tasks; and iii) thoroughly investigating the essence of token alignment to
elucidate the coherent token we fused. As a whole, we conclude that the outcomes elucidated in this
paper impart essential understandings and necessitate further exploration within this realm.
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SUMMARY OF THE APPENDIX

This appendix contains additional experimental results and discussions of our NeurIPS 2025 submis-
sion: Probabilistic Token Alignment for Large Language Model Fusion, organized as follows:

• §S1 covers more details on Related Work.
• §S2 includes Implementation Details of our PTA-LLM.
• §S3 introduces the Datasets we applied during our experiments.
• §S4 lists out all the Notations used in PTA-LLM for clarity.
• §S5 presents more details of implementing Probabilistic Token Alignment.
• §S6 presents more results of Visualization of Probabilistic Token Alignment.
• §S7 presents more Pilot Study on heterogeneour fusion, training burden and training time.
• §S10 provides more hyper parameter settings for Ablative Studies.
• §S8 provides Per-task Results on Different Benchmarks, where the overall results have been

provided in the main paper.
• §S9 conducts several Case Studies on the model prediction output in specific tasks.
• §S10 provides more hyper parameter settings for Ablative Studies.
• §S11 adds more discussions of Limitations, and points out potential directions of our Future

work.

S1 Related Work

Model Fusion has garnered significant attention as a means to enhance the general performance of
LLMs. The fusion techniques can be classified into three primary categories: model ensembling,
weight merging, and knowledge fusion. Model ensembling combines the predictions of independently
trained models to improve overall performance. Common approaches include weighted averag-
ing [31], majority voting [1], and pairwise ranking [15]. Although model ensembling often leads
to significant improvements in predictive accuracy and model robustness, it requires maintaining
multiple models during inference, leading to higher memory consumption and increased latency.
This makes it less efficient for resource-constrained environments. Weight merging combines the
parameters of multiple models to synthesize a new, unified model. This method is especially effective
when the models share identical architectures, as their parameters can be merged seamlessly [2, 9].
Weight merging is enhanced by linear mathematical operations on adapter parameters, which has
proven useful for improving model performance and generalization [16, 17, 18]. Despite these
advantages, weight merging suffers from significant limitations: It relies on architectural uniformity
across models and requires manual tuning, which constrains its applicability across diverse model
architectures (i.e., low generalizability).

In contrast, knowledge fusion offers a more flexible and efficient means of integrating models,
particularly when the underlying architectures differ (i.e., a common case in LLMs). It distills
knowledge from multiple teacher models into a single student model, transferring the knowledge in a
more compact and efficient form. One of the key innovations is the minimum edit distance (MinED)
token alignment strategy, first introduced by [11], which facilitates effective knowledge transfer by
aligning tokens across models. This approach was further refined by [19], who proposed a mapping
statistics-based strategy designed to enhance conversational model performance. Compared to model
ensembling and weight merging, knowledge fusion presents a more scalable and architecture-agnostic
solution, making it highly suitable for integrating multiple LLMs while minimizing the performance
degradation typically associated with stepwise optimization.

Token Alignment was first introduced as a solution to address the misalignment problem between
tokenizers with different size of vocabulary, specifically when aligning their respective distributions.
The concept was initially formalized by [12], who employs a search algorithm to minimize the
alignment cost between token sequences. This method relies on the assumption that an optimal
one-to-one mapping between tokens can be found, enabling the direct alignment of their respective
distributions. However, in cases where such a precise mapping is not feasible, the solution defaults
to a one-hot vector representation, which may oversimplify the complexities inherent in real-world
token distributions. Building upon this work, [11] introduced a more flexible approach by replacing
the exact match requirement with MinED strategy for more robust token alignment, especially in
cases where slight variations between tokens could still preserve semantic equivalence. Later, [19]
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refined further in cross-lingual applications, incorporating statistical mapping frequencies between
source and target tokens to better account for the probabilistic nature of token co-occurrence, leadning
to a prominent chat performance.

However, existing methods remain limited by their reliance on surface-level token correspondences
(i.e., based solely on the strings it comprises), which leverage minimum edit distance to align the
logit. However, besides using edit distance as one metric, our method advances this by incorporating
the corresponding logit values into the individual cost within the transport framework. Optimization
is performed at both the “surface-level” and “logit-level”.

S2 Implementation Details

In this section, we present the relevant training details for fusing different LLMs in our PTA-LLM.

Training Time Training is conducted on 8 NVIDIA A100-80GB GPUs (approximately 26 hours
for a single epoch) and 8 NVIDIA H100-80GB GPUs (approximately 17 hours for a single epoch),
while conducting evaluation on 4 NVIDIA A100-40GB GPUs (time varies depending on the amount
of benchmark data used).

More specifically, the entire runtime analysis can be divided into Stage 1 and Stage 2.

Stage 1 (Training-free). For LLaMA-CLM, no token alignment is required, so the runtime for this
stage is zero. For FuseLLM, Stage 1 takes approximately 3 GPU hours (on NVIDIA A100-80GB)
and 4 CPU hours (on AMD EPYC 7763 processor). Compared to FuseLLM, PTA-LLM introduces an
additional optimal transport computation, which results in approximately a 13.75% increase in CPU
alignment time on the MiniPile dataset. It would be valuable to explore more efficient alternatives,
such as the Greenkhorn algorithm, to reduce the complexity of the optimal transport step.

Stage 2 (Training stage). We report the runtime for PTA-LLM (i.e., end-to-end training) under
various settings (e.g., different GPUs and dataset sizes) in §S7. Since Stage 2 only involves standard
end-to-end training, the corresponding runtime for FuseLLM and LLaMA-CLM are comparable
under the same condition

Training Results While our average absolute gain is 1.1% compared to the CLM, the relative gain
of 3.94% is nontrivial. In addition, our significance test results indicate that the improvements are
statistically significant with p-value < 0.005. To assess the stability of our results, we conducted
three independent runs using identical hyperparameter settings for each benchmark. The standard
deviations of the evaluation scores were 0.05 for MMLU, 0.04 for BBH, and 0.05 for MultiPL-E.
Our findings indicate that the performance remains stable once the hyperparameters and training
devices are fixed. Other benchmarks show similar trends on standard deviation. We have included
these results in the revised paper.

Training Dataset MiniPile is a compact yet diverse training dataset consisting of up to 1 million
samples, carefully curated from the Pile to preserve the original corpus’s richness across various
domains while maintaining a manageable size for efficient experimentation.

Base Model Tokenizers Both LLaMA-2, developed by Meta AI, and OpenLLaMA, an open-source
reproduction of LLaMA, utilize tokenizers with a vocabulary size of 32,000 tokens. These two models
share a substantial overlap, with 20,079 tokens in common, calculated as the intersection of their
vocabularies. In contrast, MPT, developed by MosaicML, employs a significantly larger tokenizer
vocabulary comprising 50,277 tokens, among which only 8,993 tokens overlap with LLaMA-2 and
9,761 with OpenLLaMA. These distinctions in vocabulary size and token overlap reflect the varying
tokenization strategies adopted by different model developers and underscore the implications for
compatibility and performance across different language models.

Training Pipeline of PTA-LLM The training procedure consists of two stages: Probabilistic Token
Alignment (Offline Phase) and Supervised Training with an Alignment Objective.

Stage 1: Probabilistic Token Alignment (Offline Phase). In this stage, we compute a fused alignment
matrix between all pairs of source and target models using probabilistic token alignment. The process
comprises the following steps:
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1. Preprocessing: Segment the MiniPile dataset by splitting long texts into shorter segments
for manageable processing.

2. Model Inference: Perform inference on the segmented texts using both source and target
models to extract per-step logits and token indices.

3. Optimal Transport Alignment: Apply optimal transport to align the per-step logits and token
indices, thereby constructing a fused alignment matrix across source-target model pairs.

Stage 2: Supervised Training with Alignment Objective. In the second stage, we train the target
model using a joint objective that combines the fused alignment matrix obtained from Stage 1 and
the one-hot label matrix derived from the MiniPile dataset. This joint supervision encourages the
model to learn both from the aligned token distributions of the source models and the ground-truth
labels, facilitating effective knowledge transfer while preserving task-specific accuracy.

Fusion Pipeline of PTA-LLM PTA-LLM requires only a single target model and supports any
number of source models (at least one), regardless of their architecture or tokenizer. A key charac-
teristic of this framework is that the target model undergoes end-to-end training, where its training
objective is defined by a combination of the causal language modeling loss (LCLM) and the fusion
loss (Lfusion). In essence, while the final fused model retains the architecture of the target model, its
parameters are enriched by integrating knowledge from the source models through the fusion process.

To illustrate the fusion process, we use our experimental setup as an example and extend it to a
scenario involving an arbitrary number of source models. For fair comparison, we designate LLaMA-
2 as the target model, with MPT and OpenLLaMA-2 serving as source models. Note that different
target model choices may result in varying base performance, as discussed in prior works such as
FUSELLM and FUSECHAT.

Prior to fusion, we perform a forward pass through LLaMA-2, OpenLLaMA-2, and MPT to obtain
their probabilistic distribution matrices, denoted as Pt, Ps1 , and Ps2 , respectively. If additional source
models (e.g., DeepSeek or Qwen) are included, we similarly forward them to obtain their respective
probabilistic matrices Psn for the n-th source model.

The fusion process proceeds in a recursive manner as follows:

• Fusion Stage 1: Align Pt and Ps1 (OpenLLaMA-2) using the method described in Sec-
tion 3.2, resulting in a fused matrix Pt,s1 .

• Fusion Stage 2: Align Pt,s1 and Ps2 (MPT), resulting in the updated matrix Pt,s1,s2 .

• Fusion Stage 3: Align Pt,s1,s2 with Ps3 (third source model), producing Pt,s1,s2,s3 .

• Fusion Stage n: Continue recursively, aligning Pt,s1,...,sn−1
with Psn to obtain the final

fused matrix Pt,s1,...,sn .

As demonstrated, our fusion strategy avoids the need for pairwise alignment between every tar-
get–source model pair, leading to linear complexity with respect to the number of source models.
This efficient and scalable design makes the framework suitable for incorporating large collections of
heterogeneous models.

S3 Details of Dataset

• The Grade School Math [32], proposed by OpenAI, comprises a wide variety of conceptually
simple grade school-level word problems and serves as a benchmark to assess the shortcomings of
language models in handling multi-step mathematical reasoning. We evaluate it using the accuracy
(8 shot) under the lm-evaluation-harness framework [33].
• Big-Bench Hard (BBH) [34] is a benchmark to evaluate the general reasoning ability of LLMs,
containing 23 multiple-choice tasks and 4 free-form generation tasks from the Big-Bench [35]. We
evaluate it using the EM accuracy based on few-shot chain-of-thought (CoT) prompts under the
open-instruct framework following [11].
• MultiPL-E (ME) [36] is a multilingual programming benchmark to assess the commonsense ability
of LLMs, consisting of 18 different programming languages with 17 parallel datasets translated
from the Python benchmark [37]. We evaluate it using pass@1 [37] based on 20 generated samples
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for each question in 10 popular programming languages under the bigcode-evaluation-hardness
framework [38, 11].
• Measuring Massive Multitask Language Understanding (MMLU) [39] is a massive multitask
test consisting of multiple-choice questions from various branches of knowledge to assess the
commonsense ability of LLMs, including 17 sub categories (i.e., US history, computer science and
law) that people must study to learn. We evaluate it using the classification accuracy under the
open-instruct framework.
• ToxiGen [40] is a large-scale machine-generated dataset for adversarial and implicit hate speech
detection used to evaluate the safty ability of LLMs, which contains implicitly toxic and benign
sentences mentioning 14 minority groups. We evaluate it using the non-toxicity rate (i.e., 1 - reported
toxicity rate) under the open-instruct framework.
• TyDi QA [41] is a benchmark for information-seeking question answering in typologically diverse
languages to asses the multilingual ability of LLMs. It covers 9 different languages including korean,
arabic, indonesian, etc. We evaluate it using the EM accuracy under the open-instruct framework.

S4 Notations

Table S1: The main notations used in PTA-LLM.

Notation Representation
C A training corpus consisting of a collection of text sequences t
t Text sequences with a maximum length of 2048 tokens

Ps The probabilistic distribution matrices for the source model, consisting of L tokens A
Vs The vocabulary sizes of the source model tokenizer
L The sequence length in Ps

A Tokens in Ps have logits over a vocabulary of size Vs

Pt The probabilistic distribution matrices for the target model, consisting of N tokens B
Vt The vocabulary sizes of the source model tokenizer
N The sequence length in Pt

B Tokens in Pt have logits over a vocabulary of size Vt

Pf The fused probabilistic distribution matrices for model fusion, consisting of N tokens B̂
B̂ Fused tokens in Pf have logits over a vocabulary of size Vt

L The overall training objective of PTA-LLM
LCLM The training objective of casual language modeling
LFusion The training objective of kownledge fusion
LFusion The training objective of kownledge fusion
λ A hyperparameter controlling the trade-off between the LCLM and the LFusion

Qt Target model’s predictions during the training
Ot One-hot label matrix in t

T The initial n×m optimal transport plan matrix
T̂ The final n×m optimal transport plan matrix of non-negative entries Gnm

Gnm The amount of logit probability transported from the n-th source indice to the m-th target indice.
C An n×m transport cost matrix of non-negative entries cxy
cxy The alignment cost between source indice and target indice
Rx The indices corresponding to the largest values in the x-th row of T̂
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S5 Details of Probabilistic Token Alignment

Our training procedures are implemented based on the publicly available code from [11], with
modifications made specifically to the token alignment module. For better understanding, the
following is a concise pseudo code of §3.2. Specifically, we perform optimal transport on logits after
applying the softmax function to reduce the impact of extreme values (e.g., extreme large, small, or
negative values) that could otherwise distort the transport cost. Importantly, conducting transport
in logit space differs fundamentally from transporting mass in probability space due to the distinct
normalization terms associated with the source and target spaces. We plan to investigate it further in
the future. Our full implementation shall be publicly released upon paper acceptance.

Algorithm 2 Probabilistic Token Alignment

Require: Tokenizer, input IDs, per step logits, per step indices from both source and target Model.
1: Convert input IDs to token sequence.
2: Use Dynamic Programming in 1 to obtain token pairing between two token sequences.
3: for each token pairing do
4: if it is a one-to-one token pairing then
5: use the sinkhorn algorithim in S2 under the optimal transport framework, considering per

step logits and indices from source and target token
6: else
7: use the one-hot logits
8: end if
9: end for

10: return Aligned matrix

S6 Visualization of Token Alignment
In this section, we present more details and results of visualization of token alignment to support our
findings in §4.4. All samples are the token alignment of target model (i.e., Llama) and source model
(i.e., MPT).

In Fig.S1, we can first observe a significant center shift in FUSELLM while our method maintain its
overall distribution, showing consistency with our paper.

In Fig.S2 and Fig.S3, we present more visualization inspection results for FUSELLM and PTA-LLM
using Isomap [29] and PCA [30]. Overall, we present additional visual evidence to support the notion
that the probabilistic token alignment generate a more compact and coherent representation.
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Figure S1: Sample A. 2D visualization results of target tokens and fused tokens.
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(a) Target Model: Llama (b) FuseLLM (c) PTA-LLM
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Figure S2: Sample B. 2D visualization results of target tokens and fused tokens.
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Figure S3: Sample C. 2D visualization results of target tokens and fused tokens.

S7 Pilot Study

S7.1 Heterogeneous Fusion

We also acknowledge related work [19], which explores the fusion of Mixtral, InternLM2, and Open-
Chat, demonstrating consistent performance improvements under the knowledge fusion paradigm.
Motivated by these findings, we conduct a preliminary experiment on MiniPile to extend our frame-
work for fusing additional LLMs. Our experimental setup would further benefit from incorporating
models with greater architectural diversity. As shown in the Tab. S2 and S3, both “PTA-LLM +
Qwen2.5” and “PTA-LLM + Mistral” outperform Qwen2.5 and Mistral, respectively, highlighting
the effectiveness of our approach.

Table S2: The baseline models used in this pilot study include more heterogeneous models such as
Mixtral [42] and Qwen [43].

Benchmark OpenLLaMA MPT Llama-2 Mistral Qwen2.5

Baseline Performance
MMLU 42.11 27.84 46.94 59.15 71.80

Hellaswag 74.52 76.35 75.99 80.39 78.89
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Table S3: The fusion results using the baseline model in Tab. S2 under multiple choice task.

Benchmark FuseLLM PTA-LLM PTA-LLM PTA-LLM
(ours) + Mistral + Qwen2.5

Fusion Performance
MMLU 48.77 49.38 60.34 72.66

Hellaswag 78.23 79.74 81.52 80.13

For generative tasks, we have already reported results on MultiPL-E in the original paper. To further
compare our approach with the Mistral and Qwen models, we conducted additional experiments
on HumanEval, using “MiniPile+Github” for training. The results presented below in Tab. S4,
together with our original findings on MultiPL-E, further validate the effectiveness of our method for
generative tasks.

Table S4: The fusion results using the baseline model in Tab. S2 under generative task.

Benchmark Mistral Qwen2.5 PTA-LLM PTA-LLM
+ Mistral + Qwen2.5

Fusion Performance
HumanEval 30.50 57.90 32.64 59.71

S7.2 Training Burden on Knowledge Fusion

To further validate the effectiveness of konwledge fusion, we conducted an additional experiment
comparing two distinct settings. Setting A: Train on a subset of MiniPile (100K examples, randomly
sampled as 10% of the original dataset) using the same configuration as in the paper. The total
training cost, including obtaining probability distributions from all teacher models ( 3.2 GPU hours)
and end-to-end training ( 20 GPU hours), amounts to 23.2 GPU hours. Setting B: Allocate the same
computational budget to train on a larger dataset. Specifically, we train Llama-2 CLM on a larger
MiniPile subset (116K examples, corresponding to 11.6% of the original dataset), ensuring the total
training cost remains 23.2 GPU hours, matching Setting A.

The results, summarized in the Tab. S5, align with our previous findings, reinforcing the advantages
of the knowledge fusion paradigm under equivalent resource constraints.

Table S5: The performance under the same computation cost.

Benchmark Setting A Setting B
(Our method) (CLM with more data)

MMLU 47.42 46.33

S7.3 Training Time

Since the end-to-end training time is primarily determined by the dataset size, we conducted an
additional study using subsets of MiniPile in Tab. S6, which consists of 1M training samples.
Specifically, we randomly sampled the original dataset to create training subsets. The results reveal
a linear relationship between dataset size and training time. All experiments were performed on
8 NVIDIA A100-80GB GPUs. Notably, we further evaluate the model under different settings.
PTA-LLM achieves MMLU scores of 49.38, 48.55, and 47.42 when trained on MiniPile datasets of
1M (100%), 500K (50%), and 100K (10%) samples, respectively. The results show that larger dataset
sizes yield modest performance improvements. Notably, even with only 10% of the data, PTA-LLM
attains a score of 47.42 on MMLU, which still surpasses the traditional CLM baseline of 47.65.

Table S6: The fusion results using the baseline model in Tab. S2 under generative task.
MiniPile MiniPile MiniPile MiniPile

1M (100%) 500K (50%) 100K (10%) 10K (1%)
Training Time 26.0h 12.9 h 2.4h 50.3h
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S8 Per-task Results on Different Benchmarks

For the training acceleration, we leverage Deepseepd [44] and FlashAttention [28]. More specifically,
we optimize our model using the AdamW optimizer, with hyperparameters set to β1 = 0.9 and
β2 = 0.95, applying gradient clipping at 1.0 and a weight decay of 0.05. The learning rate follows a
cosine schedule, peaking at 1× 10−5, with a warmup ratio of 0.008.

To provide comprehensive results from the paper, we report the average per-benchmark results on
The Grade School Math, Big-Bench Hard, MultiPL-E, Measuring Massive Multitask Language
Understandin, ToxiGen and TyDi QA respectively (see Table 2). We note that the results of all
methods in Table 2 have been rerun with the same configuration on our own machine (i.e., 8
NVIDIA H100-80GB GPUs) and may therefore exhibit slight variations compared to other reports.
Furthermore, we report per-task results (78 tasks) here in Table S7 for better clarification.

Our results are statistically significant with respect to all baselines on each benchmark (all p-value <
0.005). Furthermore, we rerun the same hyperparameter settings three times and computed standard
deviation error bars for BBH, MMLU and ME benchmark.

Table S7: PTA-LLM per-task results on six various benchmark.
Task PTA-LLM

Grade School Math
Grade School Math 14.71

Big-Bench Hard (BBH) std=0.04
Boolean Expressions 68.40
Causal Judgement 50.80
Date Understanding 58.80
Disambiguation QA 48.00
Dyck Languages 3.20
Formal Fallacies 46.00
Geometric Shapes 26.80
Hyperbaton 64.00
Logical Deduction (3 objects) 59.60
Logical Deduction (5 objects) 36.00
Logical Deduction (7 objects) 26.40
Movie Recommendation 69.20
Multistep Arithmetic Two 4.00
Navigate 60.00
Object Counting 56.40
Penguins in a Table 36.30
Reasoning about Colored Objects 52.40
Ruin Names 30.00
Salient Translation Error Detection 26.40
Snarks 47.19
Sports Understanding 91.60
Temporal Sequences 15.20
Tracking Shuffled Objects (3 objects) 30.40
Tracking Shuffled Objects (5 objects) 17.20
Tracking Shuffled Objects (7 objects) 14.00
Web of Lies 64.80
Word Sorting 6.00
Avg. 27 Tasks 41.08

MultiPL-E (ME) std=0.05
C++ 9.75
Go 64.51
Java 9.88
JavaScript 13.85
PHP 9.10
Python 13.87
R 5.75
Ruby 11.58
Rust 7.24
TypeScript 13.26
Avg. 10 Tasks 15.88

Task PTA-LLM
MMLU std=0.05

Math 31.30
Health 50.91
Physics 37.66
Business 62.93
Biology 53.96
Chemistry 36.96
Computer Science 45.39
Economics 42.59
Engineering 51.72
Philosophy 41.40
Other 57.94
History 59.57
Geography 53.03
Politics 58.33
Psychology 55.49
Culture 61.45
Law 38.80
Avg. 17 Tasks 49.38

ToxiGen
Black 12.60
Mexican 8.00
LGBTQ 24.00
Jewish 25.20
Women 37.20
Middle East 11.00
Muslim 12.60
Trans 22.40
Asian 36.40
Physical Disability 17.80
Latino 16.60
Native American 6.20
Chinese 23.20
Mental Disability 11.20
Avg. 14 Tasks 18.89

TyDi QA
Arabic 9.55
Bengali 21.24
English 55.23
Finnish 43.22
Indonesian 46.02
Korean 55.80
Russian 33.74
Swahili 41.68
Telugu 0.15
Avg. 9 Tasks 34.07
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S8.1 Additional Comparison Results

We provide additional comparison results for cases where FuseLLM performs well while PTA-LLM
performs poorly.

Table S8: Comparison of FuseLLM and PTA-LLM on BBH subtasks (EM accuracy).
Task LLaMA-2 FuseLLM PTA-LLM

Multistep Arithmetic Two 0.80 4.80 4.00
Temporal Sequences 12.80 16.40 15.20

As shown in the Table above, PTA-LLM exhibits slight performance degradation in two BBH
subtasks, both of which evaluate EM accuracy on various reasoning scenarios. PTA-LLM applies
OT to balance the probability mass in each row, producing a soft assignment matrix that yields more
compact and consistent token representations. This smoothing flattens peaks for high-confidence
tokens. In exact-match BBH tasks, spreading probability to distractor tokens can shift the argmax
and reduce accuracy. PTA-LLM is penalized for minor surface deviations, while FuseLLM’s hard
alignment preserves high-confidence tokens, yielding more frequent matches with the official answers.
This explains why PTA-LLM achieves the smallest accuracy improvement under BBH in Table 2.

S9 Case Studies

In Table S9, Table S10, and Table S11, we present case studies in difficult tasks (see the overall
peformance results in Table 3) to demonstrate the stability of PTA-LLM.

Table S9: Case studies on the Causal Judgement task.

BBH; Causal Judgement;
Question: How would a typical person answer each of the following questions about causation?:
A machine is set up in such a way that it will short circuit if both the black wire and the red wire touch the
battery at the same time. The machine will not short circuit if just one of these wires touches the battery. The
black wire is designated as the one that is supposed to touch the battery, while the red wire is supposed to
remain in some other part of the machine. One day, the black wire and the red wire both end up touching the
battery at the same time. There is a short circuit. Did the black wire cause the short circuit?
Options: Yes / No
Target: No
FUSELLM: Let’s think step by step.Here in this question, we are told that "The black wire is designated as
the one that is supposed to touch the battery, while the red wire is supposed to remain in some other part of
the machine." A typical person would therefore assume that the black wire was supposed to touch the battery
and that the red wire was supposed to remain in some other part of the machine. Because the black wire and
the red wire both ended up touching the battery at the same time, a typical person would therefore conclude
that the black wire caused the short circuit. So the answer is Yes.
PTA-LLM: Let’s think step by step.Here in this question, we are told that "The black wire is designated as
the one that is supposed to touch the battery, while the red wire is supposed to remain in some other part of
the machine." A typical person would assume that the black wire is supposed to touch the battery, while the
red wire is supposed to remain in some other part of the machine. A typical person would therefore conclude
that the black wire did not cause the short circuit. So the answer is No.
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Table S10: Case studies on the Tracking Shuffled Objects (7 objects) task.

BBH; Tracking Shuffled Objects (7 objects);
Question: Alice, Bob, Claire, Dave, Eve, Fred, and Gertrude are dancers at a square dance. At the start of a
song, they each have a partner: Alice is dancing with Lola, Bob is dancing with Rodrigo, Claire is dancing
with Jamie, Dave is dancing with Izzi, Eve is dancing with Sam, Fred is dancing with Karl, and Gertrude is
dancing with Helga. Throughout the song, the dancers often trade partners. First, Alice and Claire switch
partners. Then, Bob and Fred switch partners. Then, Claire and Dave switch partners. Then, Alice and Fred
switch partners. Then, Claire and Alice switch partners. Then, Bob and Eve switch partners. Finally, Eve
and Gertrude switch partners. At the end of the dance, Eve is dancing with
Options: (A) Lola (B) Rodrigo (C) Jamie (D) Izzi (E) Sam (F) Karl (G) Helga
Target: (G)
FUSELLM: Let’s think step by step. (0) At the start: Alice: Lola, Bob: Rodrigo, Claire: Jamie, Dave: Izzi,
Eve: Sam, Fred: Karl, Gertrude: Helga. (1) Alice and Claire switch partners: Alice: Rodrigo, Claire: Lola,
Dave: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (2) Bob and Fred switch partners: Alice: Rodrigo,
Claire: Lola, Dave: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (3) Claire and Dave switch partners: Alice:
Rodrigo, Claire: Lola, Bob: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (4) Alice and Fred switch partners:
Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude: Helga. (5) Claire and Alice switch
partners: Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude: Helga. (6) Bob and Eve
switch partners: Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude: Helga. (7) Eve
and Gertrude switch partners: Alice: Izzi, Claire: Lola, Bob: Rodrigo, Dave: Sam, Eve: Karl, Gertrude:
Helga. At the end of the dance, Eve is dancing with Karl. So the answer is (F).
PTA-LLM: Let’s think step by step. (0) At the start: Alice: Lola, Bob: Rodrigo, Claire: Jamie, Dave: Izzi,
Eve: Sam, Fred: Karl, Gertrude: Helga. (1) Alice and Claire switch partners: Alice: Jamie, Claire: Lola,
Dave: Izzi, Eve: Sam, Fred: Karl, Gertrude: Helga. (2) Bob and Fred switch partners: Alice: Izzi, Claire:
Lola, Bob: Rodrigo, Dave: Jamie, Eve: Sam, Fred: Karl, Gertrude: Helga. (3) Claire and Dave switch
partners: Alice: Izzi, Claire: Rodrigo, Bob: Jamie, Dave: Lola, Eve: Sam, Fred: Karl, Gertrude: Helga. (4)
Alice and Fred switch partners: Alice: Sam, Claire: Rodrigo, Bob: Izzi, Dave: Lola, Eve: Jamie, Fred: Karl,
Gertrude: Helga. (5) Claire and Alice switch partners: Alice: Sam, Claire: Izzi, Bob: Rodrigo, Dave: Lola,
Eve: Jamie, Fred: Karl, Gertrude: Helga. (6) Bob and Eve switch partners: Alice: Sam, Claire: Izzi, Bob:
Rodrigo, Dave: Lola, Eve: Jamie, Fred: Karl, Gertrude: Helga. (7) Eve and Gertrude switch partners: Alice:
Sam, Claire: Izzi, Bob: Rodrigo, Dave: Lola, Eve: Jamie, Fred: Karl, Gertrude: Helga. At the end of the
dance, Eve is dancing with Helga. So the answer is (G).

As shown in Table S9, PTA-LLM’s response is correct because it accurately identifies the key element
of causation in the scenario. The question specifies that the black wire is expected to touch the
battery as part of the machine’s normal setup, while the red wire is not supposed to do so. When
the short circuit occurs, the black wire’s action is consistent with its intended role and does not
deviate from normal functioning. On the other hand, the red wire’s unexpected contact with the
battery introduces the condition necessary for the short circuit. PTA-LLM correctly reasons that
the red wire’s abnormal behavior is the true cause of the short circuit, aligning with how a typical
person would perceive causation. In contrast, FuseLLM overlooks the normalcy of the black wire’s
role and incorrectly attributes causation to it, simply because both wires were involved. This makes
PTA-LLM’s reasoning more logical and consistent with the principles of causation.

As shown in Table S10, tracking shuffled objects task with seven objects is a particularly challenging
scenario requiring accurate tracking of the corresponding dancers among seven individuals as they
switch partners many times.In this context, FuseLLM fails to track the objective during the fourth
partner switch, whereas PTA-LLM successfully tracks the corresponding dancers throughout. This
superior performance is likely attributable to PTA-LLM’s probabilistic token alignment mechanism,
which effectively transforms logits into the correct objective rather than merely replicating the original
logits in the FuseLLM approach.

As shown in Table S11, PTA-LLM correctly identifies the SVG path as forming a hexagon, recog-
nizing 7 commands: one “M” to start and six “L” commands creating a closed six-sided polygon.
FuseLLM miscounts the commands, identifying only 5, and incorrectly concludes the shape is a
pentagon. PTA-LLM’s accurate command count and shape identification make its reasoning correct.
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Table S11: Case studies on the Geometric Shape task.

BBH; Geometric Shape;
Question: This SVG path element <path d="M 60.00,77.00 L 75.00,55.00 L 6.00,60.00 L 22.00,78.00 L
3.00,96.00 L 93.00,90.00 L 60.00,77.00"/> draws a
Options: (A) circle (B) heptagon (C) hexagon (D) kite (E) line (F) octagon (G) pentagon (H) rectangle (I)
sector (J) triangle"
Target: (C)
FUSELLM: Let’s think step by step. This SVG path element contains "M" and "L" commands. M takes
two parameters (x,y) and moves the current point to the coordinates (x,y). L takes two parameters (x,y) and
draws a line from the previous coordinate to the new coordinate (x,y). This path can be decomposed into 6
separate commands. (1) M 60.00,77.00: Move the current point to 60.00,77.00. (2) L 75.00,55.00: Create a
line from 60.00,77.00 to 75.00,55.00. (3) L 6.00,60.00: Create a line from 75.00,55.00 to 6.00,60.00. (4) L
22.00,78.00: Create a line from 6.00,60.00 to 22.00,78.00. (5) L 3.00,96.00: Create a line from 22.00,78.00
to 3.00,96.00. (6) L 93.00,90.00: Create a line from 3.00,96.00 to 93.00,90.00. This SVG path starts at point
60.00,77.00, creates five consecutive and touching lines, and then returns back its starting point, thereby
creating a five-sided shape. It does not have any curves or arches. "pentagon" is the only five-sided polygon
on the list. So the answer is (G).
PTA-LLM: Let’s think step by step. This SVG path element contains "M" and "L" commands. M takes
two parameters (x,y) and moves the current point to the coordinates (x,y). L takes two parameters (x,y) and
draws a line from the previous coordinate to the new coordinate (x,y). This path can be decomposed into 7
separate commands. (1) M 60.00,77.00: Move the current point to 60.00,77.00. (2) L 75.00,55.00: Create a
line from 60.00,77.00 to 75.00,55.00. (3) L 6.00,60.00: Create a line from 75.00,55.00 to 6.00,60.00. (4) L
22.00,78.00: Create a line from 6.00,60.00 to 22.00,78.00. (5) L 3.00,96.00: Create a line from 22.00,78.00
to 3.00,96.00. (6) L 93.00,90.00: Create a line from 3.00,96.00 to 93.00,90.00. (7) L 60.00,77.00: Create a
line from 93.00,90.00 to 60.00,77.00. This SVG path starts at point 60.00,77.00, creates six consecutive and
touching lines, and then returns back its starting point, thereby creating a six-sided shape. It does not have
any curves or arches. "hexagon" is the only six-sided object on the list. So the answer is (C).

S10 Ablative Studies

Table S12: Ablative studies of optimal transport convergence threshold
Choice BBH ME MMLU

Optimal Transport Convergence Threshold
1e-3 39.44 15.10 48.23
1e-4 40.54 15.88 48.99
5e-5 40.91 15.85 49.32
1e-5 41.08 15.82 49.38
1e-6 41.04 15.78 49.35
1e-7 41.05 15.80 49.33

As shown in Table S12, the findings on the optimal transport convergence threshold align with our
motivation. Specifically, a lower threshold preference suggests that stricter constraints may generate
a more coherent fusion, leading to greater performance gains. We also observe that performance
stabilizes when the threshold drops below 1e-5, suggesting that the transported cost is fully optimized
and remains unchanged.

Table S13: Ablative studies of token alignment window size
Choice BBH ME MMLU

Token Alignment Window Size
10 41.08 15.88 48.99
7 40.99 15.73 49.00
5 40.68 15.61 49.38
3 39.64 15.08 47.11

The motivation for using an alignment window is that, without constraints on m and n, the transport
space between the logits of Model A and Model B would be the product of their vocabulary sizes
(e.g., MPT has 50,277 tokens while LLaMA has 32,000). This is computationally inefficient, as it
requires storing over 30k logits per token instead of just the top 10, and unnecessary because the logit
distribution follows a long-tail pattern where the top-k logits capture most of the probability mass.
Our analysis of token alignment window sizes, ranging from 10 to 3, shows that a small window is
sufficient for effective knowledge fusion. As shown in Table S13, larger windows generally improve
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BBH and ME performance, with size 10 performing best on both. MMLU peaks at size 5, while very
small windows (e.g., 3) reduce performance across tasks. Overall, window sizes between 5–10 offer
consistently strong results.

Table S14: Ablative studies of combination weight
Choice BBH ME MMLU

Combination Weight
0.90 40.39 15.72 48.93
0.85 41.00 15.91 49.09
0.80 41.08 15.88 49.38
0.75 39.78 15.65 47.29
0.70 38.11 14.27 46.08
0.60 37.20 14.09 45.96

As shown in Table S14, it further reveals that the observed “higher performance when the weight
is smaller” pertains specifically to the comparison between 0.8 and 0.9. However, if the weight is
reduced further, the model overemphasizes the fused matrix and pays less attention to the original
CLM modeling. Consequently, we selected 0.8 for all experiments, as it consistently achieves the
best performance.

S11 Future Work and Discussions

Limitation. A limitation of our approach is that the Sinkhorn-Knopp algorithm runs in Õ(n2/ϵ3)
time, which reduces the token alignment efficiency. Despite the observation that in practice only 3
Sinkhorn loops per training iteration are often sufficient for model representation, which amounts to
∼13.75% aligning delay on MiniPile compared with FUSELLM. It would be interesting to investigate
further lower complexity (i.e., greenkhorn [45]) algorithim to compute the optimal transport.

Future Work. Despite PTA-LLM systemic generality (see §4.2) and robustness (see §4.3), it also
comes with new challenges and unveils some intriguing questions. For instance, the overall pipeline
is divided into two stages: alignment and fusion training. This naturally raises an important question
from a paradigm perspective: Can we design an end-to-end fusion pipeline that dynamically controls
token alignment, thereby enabling more comprehensive capability learning? Introducing a new loss
design (i.e., universal logit distillation loss [46]) within the fusion training to deal with the mis-
alignment problem in different tokenizers might enhance pipeline efficiency and facilitate additional
performance improvements. Another essential future direction deserving of further investigation is its
further effectiveness exploration in other NLP fields since aligning sequences generated by different
tokenizers is a generic problem of contemporary NLP. In §4.4, we demonstrate through visualization
studies that probabilistic token alignment yield a more conherent fused representation. Consequently,
the applicability of this integration to other alignment methods requires further investigation.

In this paper, we do not fully explore the potential of knowledge fusion, as comprehensive experiments
on heterogeneous models remain outside the scope of our study. However, related work [19]
has investigated the fusion of models such as Mixtral [47], InternLM2 [48], and OpenChat [49],
demonstrating consistent performance improvements within the knowledge fusion paradigm. We plan
to explore it further in the future. Inspired by [50, 51], PTA-LLM could also incorporate learnable
soft prompts, enabling task-specific adaptation without retraining the entire alignment matrix.

Besides the directions mentioned earlier, we identify several additional promising avenues for
exploration. First, an end-to-end fusion pipeline could streamline the process and reduce the reliance
on CPU resources by eliminating the need for a two-stage approach (alignment followed by training).
This could be facilitated by leveraging innovative loss functions to enable dynamic adjustments.
Second, the exploration of N-1 and 1-N mapping strategies offers enhanced flexibility. While
this paper focuses on 1-1 mapping due to constraints imposed by traditional optimal transport
frameworks, future work could explore beyond these limitations. Lastly, multilingual alignment,
such as aligning Chinese and English tokens, holds the potential to broaden applicability, as current
research predominantly focuses on English token alignment.

Discussion. Two potential factors may explain why the knowledge fusion objective outperforms the
traditional CLM approach: First, the CLM objective employs one-hot vectors as the golden labels,
which fails to capture the nuanced information each token might convey. This approach provides the
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same penalty for completely incorrect predictions as for predictions that select an incorrect token but
retain semantically relevant context. In other words, the CLM objective does not reward predictions
that are “almost correct,” which limits its capacity to encourage fine-grained improvements. Second,
the fusion objective incorporates representations from diverse source models through distillation,
enabling it to capitalize on the complementary strengths of each model. It provides more fine-grained
context information for alignment.

Regarding the performance, our performance improvements are constrained by the suboptimal
performance of certain source LLMs relative to the target LLM on specific tasks, which inevitably
impacts the quality of the fusion results. We also observe that the performance improvement could
be significantly enhanced by increasing the size of the continued training datasets. Notably, the
original MiniPile [25] comprises only 8% coding-related data. By incorporating the GitHub datasets
from the Pile [52] in our priliminary experiments, it is possible to achieve greater performance gains,
particularly in coding-related downstream tasks.

Regarding the motivations behind the Equation 5. To achieve a coherent fused metric as described in
our introduction, we aim to keep the logit distribution more compact and consistent with the target
distribution. Due to the constraints in optimal transport, we discretely select the maximum value in
each sub-transport, which helps maintain both compactness and consistency. We are also interested
in whether broader transport (e.g., choosing top-k instead of top-1) could further improve fusion, and
we plan to investigate this in future work.

Regarding the use of edit distance. Our motivation for using minimum edit distance as the evalua-
tion metric comes from the scale of our 1M-sample training corpus, where even a small increase
in complexity could create a significant computational burden for token alignment. A semantic
similarity-based token-level metric could embed more comprehensive and reasonable information for
transportation. We are very interested in this direction and plan to investigate it further, exploring
more efficient semantic similarity approaches that are well-suited to our setting.

Potential Risks. Consider the tuning process of LLM, which has potential risks for energy usage.
Finetuning requires significant computational power, leading to high energy use and increased
environmental impact.

Asset License and Consent. The OpenLLaMA [4], bigcode-evaluation-harness [38] and MPT
[5] are licensed under Apache-2.0; Llama-2 7b [3] is licensed under Llama 2 Community License
Agreement; lm-evaluation-harness [33] is licensed under MIT;

Artifact Consistent With Intended Use. Our work ensures that the use of existing artifacts aligns
with their intended purpose when specified. For the artifacts we create, it remains compatible with
the original access conditions. In particular, we ensure that derivatives of data accessed for research
purposes are confined to research contexts.

Social Impact. This work introduces PTA-LLM, which demonstrates significant performance
improvements over state-of-the-art baselines, as shown in Table 2. Our approach enhances model
accuracy and is particularly beneficial for efficient training scenarios, such as on resource-constrained
devices and rapid adaptation with limited computational overhead.
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