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Summary

In settings where an AI agent sends interventions to nudge a human agent toward a goal, the

AI’s ability to quickly learn a high-quality policy depends on how well it models the human.

Despite behavioral evidence that humans hyperbolically discount future rewards, we continue

to model human agents as Markov Decision Processes (MDPs) with exponential discounting

because of its mathematical properties. In this work, we derive an exponential discount factor

that will never miss a necessary intervention–and minimizes unnecessary extra interventions–

even when the real human is hyperbolic. In addition, we demonstrate that when the dynamics

are unknown, using our exponential alternative outperforms correctly modeling the human,

even when the human’s true hyperbolic discount is known.

Contribution(s)

1. Using theory, we connect model misspecification of a hyperbolic human agent as an expo-

nential one to errors in the downstream AI intervention policy.

Context: Prior work in human-AI settings has not studied how misspecifications of the

human agent’s discount affect AI policies. Our analysis is in the context of absorbing state

MDPS (discrete state / action spaces with absorbing reward states) and on interventions of

the human agent’s discount factor. We make simplifying assumptions– about the stochastic-

ity of the transitions, intermediate rewards, and noise in the human policy– which we relax

in our empirical experiments. All humans in our experiments are simulated agents modeled

using a Markov Decision Process (MDP).

2. We prove that the exponential mean hazard rate, γmhr, guarantees no false negatives in the

AI policy. However, it does not minimize AI false positives.

Context: The AI policy is the optimal policy for an MDP in which the actions are inter-

ventions, delivered by an artificial agent, on a human agent’s MDP parameters. The mean

hazard rate (MHR) is an established method for approximating hyperbolic human agents

as exponential ones (Rambaud & Torrecillas, 2005; Sozou, 1998; 2009). Previously, there

were no formal guarantees on how the MHR affects error when used to model human agents

in a human-AI setting. The same context from contribution 1 (about absorbing-state MDPs,

theoretical assumptions), apply.

3. We derive a fixed exponential discount rate, γsafe, for approximating hyperbolic agents.

Context: Our theoretical justification relies on the same assumptions as contribution 1.

However, γsafe is as broad as γmhr and is applicable to settings beyond the ones considered

in this paper.

4. In empirical experiments (on small tabular MDPs), we demonstrate that (biased) exponen-

tial approximations using a fixed discount parameter outperform several different (unbiased)

methods of approximating the hyperbolic discount when the transitions are learned online.

Context: Prior work had not considered how the choice of discount model for the human

agent affects the AI policy. We found that the hyperbolic approximations are unexpectedly

sensitive to online learning. Our experiments are in small, tabular MDP settings.

5. Empirically, we characterize situations where a fixed exponential discount model with γsafe

is preferable to a fixed one with γmhr; we do the same for γsafe vs. updating γ online.

Context: None.
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Abstract

In settings where an AI agent nudges a human agent toward a goal, the quality of the

AI’s policy depends on how well it models the human. Despite behavioral evidence that

humans hyperbolically discount future rewards, the RL community continues to model

humans as Markov Decision Processes (MDPs) with exponential discounting. This is

because planning is difficult with non-exponential discounts. In this work, we investi-

gate whether the performance benefits of modeling humans as hyperbolic discounters

outweigh the computational costs. We focus on AI interventions that change the hu-

man’s discounting (i.e. decreases the human’s “nearsightedness” to help them toward

distant goals). We derive a fixed exponential discount factor that can approximate hy-

perbolic discounting, and prove that this approximation guarantees the AI will never

miss a necessary intervention. We also prove that our approximation causes fewer false

positives (unnecessary interventions) than the mean hazard rate, another well-known

method for approximating hyperbolic MDPs as exponential ones. Surprisingly, our ex-

periments demonstrate that exponential approximations outperform hyperbolic ones in

online learning, even when the ground-truth human MDP is hyperbolically discounted.

1 Introduction

In AI-assisted behavior change, an AI agent intervenes on human agents to influence them toward a

goal state. For example, in digital interventions, a mobile health application may encourage users to

do their daily physical therapy. Prior literature has found it useful to model a human agent’s policy

using a Markov Decision Process (as in Nofshin et al., 2024; Yu & Ho, 2022; Evans et al., 2016;

Mintz et al., 2023). In our paper, we consider AI interventions that change the human’s discount, or

the degree to which they prioritize a faraway goal (Scholten et al., 2019). For example, the app may

remind the user that adhering to physical therapy will enable them to return to a favorite sport. In

this setting, the AI must model the human MDP well enough to plan high-quality interventions.

The human MDP includes a choice of discount function, which models how humans trade off fu-

ture and immediate rewards. Behavioral science has overwhelmingly found that humans discount

hyperbolically , dhyp(t) = 1/1+kt, where k controls the level of discounting (e.g., Myerson & Green,

1995; Rachlin et al., 1991; Madden et al., 1999). Despite this, in reinforcement learning (RL), works

on human-AI interaction continue to model humans as exponential discounters, dexp(t) = γt, where

γ controls the level of discounting (e.g., Giwa & Lee, 2021; Nofshin et al., 2024; Aswani et al.,

2019; Mintz et al., 2023; Peysakhovich, 2019; Shah et al., 2019; Knox & Stone, 2012). This is

because planning with exponential discounting is mathematically convenient; it lets us leverage the
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majority of RL tools that depend on the Bellman Equation. On the other hand, planning with hyper-

bolic discounting is generally intractable and incurs significant computational costs to approximate.

For example, a hyperbolic MDP may be approximated as the average of exponential MDPs (Fedus

et al., 2019; Kurth-Nelson & Redish, 2009), but this requires re-solving for the optimal policy un-

der several different exponential discount rates, γ. Unfortunately, no works have explored whether

the policy improvements obtained by representing humans as hyperbolic discounters are worth the

increase in model complexity, both computational and mathematical.

In this work, we ask whether there are alternatives to using hyperbolic discounting; in particular,

can we cleverly select an exponential discount rate γ such that we still get a high-quality AI policy?

We theoretically derive an exponential discount rate, γsafe, which ensures the AI never misses a nec-

essary intervention when modeling hyperbolic humans in a class of discrete, goal-oriented MDPs.

Notably, while setting γsafe requires knowledge of the human’s hyperbolic discount rate k (which

there are surveys to estimate (Kirby et al., 1999; Reynolds & Schiffbauer, 2004)), it does not require

any information about the environment and can be used in practice when the transition dynamics

are unknown. Furthermore, it incurs fewer false positives– unnecessary interventions to the user–

compared to the well-known method of using an exponential discount model with mean hazard rate

to approximate hyperbolic discount models (Rambaud & Torrecillas, 2005; Sozou, 1998; 2009).

Interestingly, when the AI learns the environment dynamics, we found that an AI planning with an

exponential discount model always outperforms the hyperbolic one, even when the true human is

hyperbolic. Despite predicting more accurate human Q-values, hyperbolic discounting causes more

false negatives in the downstream AI policy. Furthermore, we found that learning γ online had worse

performance than fixing it to γsafe, especially in early episodes with less data. This work highlights

the importance of carefully selecting a human discount model in human-AI settings, as different

models impose trade-offs in AI planning. We demonstrate that defaulting to a hyperbolic discount

is unnecessary since a well-chosen exponential discount rate can outperform a hyperbolic one while

avoiding its computational and mathematical complexities.

2 Related Works

Evidence that humans are hyperbolic discounters. Behavioral science has shown that human

discounting is better modeled with a hyperbolic, rather than exponential function on a wide range of

tasks (e.g., Myerson & Green, 1995; Rachlin et al., 1991; Madden et al., 1999; Story et al., 2014).

This is because hyperbolic functions can capture people’s tendency to perform “preference reversal”

(Myerson & Green, 1995); people who originally prefer a smaller reward sooner “flip” to preferring

a larger reward later when asked the same question on a more distant timescale. Some work seeks

to reduce this present bias (e.g., Callaway et al., 2022; Lieder et al., 2019; Muslimani et al., 2023).

However, most of these studies formalize discounting in “one-off” decision settings and do not em-

bed these discount models within a sequential decision-making framework (e.g., MDPs). Thus, it

remains unclear whether, within the full MDP framework, modeling humans as hyperbolic discoun-

ters leads to better human-AI interactions. This question is underexplored due to the mathematically

challenging nature of using non-exponential discount functions in RL planning.

Reinforcement learning with hyperbolic discounting. Planning with non-exponential discount

functions is challenging because the Bellman equation no longer holds, and standard dynamic pro-

gramming solutions cease to apply (Fedus et al., 2019). Despite this, recent works attempt to op-

timize value functions under non-exponential discounts through approximation (Fedus et al., 2019;

Ali, 2023; Ali et al., 2024; Kurth-Nelson & Redish, 2009; Schultheis et al., 2022). For example,

Fedus et al. (2019) and Kurth-Nelson & Redish (2009) approximate a hyperbolic Q-function by

averaging over several exponential Q-functions. Recently, Schultheis et al. (2022) proposed an it-

erative, gradient-based solution to learn optimal values for continuous control. All these methods

require parameter tuning (either the number of samples or the gradient parameters) to approximate

the hyperbolic Q-function, yet no work has formally studied how these approximations impact the

quality of the downstream AI policy in human-AI settings.
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Approximating human agents as exponential discounters. RL literature largely models humans

as exponential discounters (e.g., Giwa & Lee, 2021; Nofshin et al., 2024; Aswani et al., 2019; Mintz

et al., 2023; Peysakhovich, 2019; Shah et al., 2019; Knox & Stone, 2012). This approach requires

specifying a discount rate, γ, a priori. Some works learn a fixed γ from a batch of data (Aswani et al.,

2019; Mintz et al., 2023), while others fix γ to one that simulates realistic behaviors (Peysakhovich,

2019). In contrast, we propose a fixed γ that depends only on the human’s hyperbolic discount rate

k, and no other data or domain knowledge. The economics literature defaults to the mean hazard

rate (MHR), (e.g., Rambaud & Torrecillas, 2005; Sozou, 1998; 2009). We challenge the MHR as

the default γ in our setting because it leads to AI policies that over-intervene. Instead of fixing γ
a-priori, other methods learn it online (e.g., Nofshin et al., 2024; Yu & Ho, 2022; Yu et al., 2024;

Zhou et al., 2018; Evans et al., 2016). However, these methods do not explore how misspecification

of the discount model (i.e. the assumption of exponential discounting) affects the AI policy.

3 Background

Hazards: Relating Hyperbolic and Exponential Discounting. A Markov Decision Process

(MDP) M = ⟨S,A, R, P, d⟩ is a tuple of states S , actions A, a reward function R : S × A → R,

and a transition function P : S × A × S → R. The discount function d(t) devalues future rewards

and can be interpreted as the probability of surviving to timestep t. Exponential discounting takes

the form dexp(t) = γt for γ ∈ [0, 1], and hyperbolic discounting takes the form dhyp(t) = 1/(1+kt)

for k ∈ [0,∞). Note: in exponential discounting, a smaller γ is more myopic, but in hyperbolic, a

larger k is more myopic. Exponential and hyperbolic discounting can be related through the hazard

rate, a concept from reliability engineering that describes how one’s probability of survival changes

over time: h(t) = − d
dt ln d(t), where a high hazard corresponds to a sharply decreasing probability

of survival. A constant hazard rate is equivalent to exponential discounting:

h(t) = λ → d(t) = exp(−λt) → d(t) = γt, where γ = exp(−λ).

On the other hand, Sozou (1998) proved that if hazard follows an exponential distribution, such that

p(λ) = (1/k) exp(−λ/k), then this is equivalent to hyperbolic discounting:

d(t) =

∫ ∞

λ=0

exp(−λt)p(λ)dλ =
1

1 + kt
. (1)

The hazard rate provides a natural way to approximate hyperbolic discounting with an exponential

one. By setting γ to the mean of the exponential distribution on the hazard (E [λ] = k), we recover

the well-known mean hazard rate (mhr): γmhr = exp(−k). Finally, Eq. (1) provides an estimate of

hyperbolic Q-values as an expectation over exponential ones:

Qhyp(s, a; k) = Eγ∼Beta(1/k,1)

[

Q∗
exp(s, a; γ)

]

, (2)

where Q∗
exp(s, a; γ) is the optimal value at state s and action a for an exponentially-discounted MDP.

Behavior Model RL: an AI Agent that Intervenes on a Human Agent’s MDP. To study settings

where an AI agent guides human agents to a goal state, we use the behavior model RL (BMRL)

framework from Nofshin et al. (2024), where AI actions change the human agent’s MDP parameters,

as shown in Fig. 1. Throughout, unless subscripted with “AI ,” entities belong to the human agent.

In BMRL, the AI agent is an MDP MAI = ⟨SAI ,AAI , RAI , PAI , γAI⟩. AI actions AAI are

interventions that cause temporary changes to the human agent’s MDP parameters; following an AI

intervention, the human MDP changes from M to M′, then reverts to M the next time-step. We

consider a binary action space: the AI either intervenes on the human’s discounting to make them

more farsighted (aAI = 1) or does nothing (aAI = 0). Explicitly, if the AI intervenes aAI = 1,

then the human’s MDP changes from M = ⟨S,A, R, P, k⟩ to M′ = ⟨S,A, R, P, k′⟩, where the

only difference is to make the the hyperbolic discount factor more farsighted, from k to k′ = k− δk.

Here, δk is the change to the discount factor.
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Distractor

Goal

Policy with intervention 
(less discounting of 

future rewards)

AI decides 
whether to 

intervene on 
discount

Policy without intervention 
(myopic discounting, 

prioritizes short term rewards)

Figure 1: BMRL: the AI nudges the

human toward a goal by altering their

MDP (e.g., increasing their discount).

Because the AI agent’s actions change the human’s MDP,

the human’s MDP (and discount model) is part of the AI

environment. Formally, the states SAI are the same as

the human states, but also include the human’s action

from the last timestep α, so that sAI = [s, α]. This

causes the transitions factorize into two distributions:

PAI(s′AI |sAI , aAI) = P (s′|s, α′)π(α′|s, aAI), where

π(α′|s, aAI) is the effect of the AI intervention on the

human’s action, and P (s′|s, α′) is the effect of the hu-

man action on the next state. Note that π depends on the

human MDP M′ that results from an AI intervention aAI .

4 Problem Setting and Formulation

Setting: Absorbing state MDPs. Our human agents act

in a discrete class of MDPs that represent the behavior

change setting. There are N absorbing states, and s(n) refers to the nth absorbing state. One

of the absorbing states, s(N), is the “goal” state (e.g. doing physical therapy). The remaining

s(1), . . . , s(N−1) absorbing states are “distractors” (e.g. watch TV instead). The reward at the goal

state r(N) = 1 is larger than all others r(1), . . . , r(N−1) ∈ (0, 1). Even though the goal reward is

largest, the human agent may still choose the distractor for its proximity. Finally, a per-timestep

reward rb < 0 represents the burden of behavior change (Baumeister & Vohs, 2007; Nofshin et al.,

2024), and incentivizes the human agent to settle for nearby absorbing states.

Absorbing state MDPs are general and encapsulate several environments from the literature, such

as those from Evans et al. (2016); Peysakhovich (2019); Ankile et al. (2023); Nofshin et al. (2024).

See Appendix D.3 for in-depth examples.

Problem formulation: Approximating Hyperbolic Human MDPs for High-Quality AI Inter-

ventions. Following behavioral science, our true human agents discount hyperbolically. The AI

agent intervenes on the human agent’s MDP to help them reach the goal. We focus on AI inter-

ventions that target the human’s discounting, so that when aAI = 1, γ increases to γ′ = γ + δγ
or k decreases to k′ = k − δk, depending on whether the AI assumes a hyperbolic or exponential

discount. Note: δk, δγ > 0 are changes to the discount factor, also called the intervention effect.

We aim to understand how misspecifications of the discount model impact optimal AI policies. Opti-

mal AI policies solve the AI MDP defined in section 3 where actions are interventions. Specifically,

we study differences in AI policies arising from approximating hyperbolic human agents as expo-

nential ones; cases where πAI
exp(s; γ) ̸= πAI

hyp(s; k), for some s ∈ SAI . Here, πAI
exp(·; γ) is an AI policy

that uses an exponential discount model of the human with parameter γ.

In our AI assisted behavior change setting, false negatives (missing necessary interventions) are

more harmful than false positives (delivering unnecessary interventions). Missing an intervention

means the human will not accomplish their behavioral goal, while excessive interventions ensure

goal achievement but annoy the user. Formally, false negatives are cases where the hyperbolic AI

policy intervenes but the exponential AI policy withholds:

FNs(γ, k) = I
{

πAI
hyp(s; k) = 1 and πAI

exp(s; γ) = 0
}

. (3)

Here, I {·} is the indicator function. Likewise, false positives are cases where the hyper-

bolic AI agent withholds intervention but the exponential AI agent intervenes: FPs(γ, k) =

I

{

πAI
hyp(s; k) = 0 and πAI

exp(s; γ) = 1
}

.

We have two goals:

1. Identify an exponential approximation of the hyperbolic human that guarantees no false negatives

and minimizes false positives in AI policy. In section 5, we identify γs that solve the following
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optimization problem:

min
γ

∑

s∈S

FPs(γ, k), s.t.
∑

s∈S

FNs(γ, k) = 0. (4)

2. Identify the best approximation (exponential or otherwise) of the human’s discounting function

when learning the AI policy online. In most real-life settings, the transition dynamics of the be-

havior change setting are unknown. In section 6, we perform empirical experiments that compare

approximate discount models when transitions are learned online.

5 Theoretical Analysis

We identify solutions to the optimization problem in Eq. (4), which ensures the AI will not miss

necesssary interventions while minimizing uncessesary ones. First, we characterize which γs guar-

antee no false negatives in the AI intervention policy. Then, we prove that the larger the γ, the fewer

the false positives. We use this fact to propose two solutions for γ that require different levels of

knowledge. One is a state-specific γ, which relies on knowledge of the environment transitions and

human’s hyperbolic discount rate k. The other solution still requires k but does not assume knowl-

edge of the environment transitions. 1 For brevity, our analysis focuses on the choice between the

goal state and only a single distractor state. When multiple distractors exist, only the highest-valued

distractor is relevant, so this reduces to the same pairwise comparison.

5.1 Guaranteeing No False Negatives

We characterize exponential discount rates that guarantee no false negatives. Intuitively, to prevent

false negatives, we want our exponential approximation to be “conservative,” meaning it under-

estimates the human’s preference for the goal state. This way, we never miss an intervention by

incorrectly assuming that the human agent’s policy will reach the goal without intervention. Defini-

tion 1 formally defines a “conservative” exponential approximation; whenever the hyperbolic agent

values a distractor state over the goal state, the exponential agent must also prefer the distractor.

Definition 1 (Conservative exponential approximation). Let π(n) refer to a policy whose actions

lead to absorbing state s(n) and V (n) refer to the value of following this policy. Suppose the human

agent is hyperbolic with discount rate k. An exponential approximation of the agent is conserva-

tive if, for all states s ∈ S where the hyperbolic agents prefers the distractor state V
(n)

hyp (s; k) ≥

V
(N)

hyp (s; k), the exponential agent also prefers the distractor state V
(n)

exp (s; γ) ≥ V
(N)

exp (s; γ).

In order for a conservative exponential approximation to guarantee no false negatives, the AI must

also assume that the intervention effect, δγ , is sufficiently large. Under a conservative γ, the AI

always recognizes when the human prefers the distractor and thus never misses opportunities to

intervene. However, it may still withhold intervention if the effect is too weak to alter the outcome.

The simplest way to ensure δγ is sufficiently large is to assume maximal effectiveness; δγ = 1− γ.

In Theorem 2, we prove that an exponential approximation using a conservative γ and δγ = 1 − γ
implies no false negatives in the AI intervention policy.

Theorem 2 (Conservative means no false negatives). Let the true human agent discount hyper-

bolically with parameter k and that AI interventions reduce this parameter by δk. If the AI agent

plans using an exponential approximation with conservative γ (under Definition 1) and maximal

intervention effect δγ = 1− γ, then there are no false negatives:
∑

s∈S

FNs(γ, k) = 0.

Proof. In Appendix A.1, we present a proof by contradiction.

1In psychology, there are known ways to estimate a human’s k, such as the Monetary Choice Questionnaire survey Kirby

et al. (1999)
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Solving for a conservative exponential discount rate γ. We now characterize what γ’s are con-

servative (and by extension of Theorem 2, what γ’s guarantee no false negatives). To facilitate our

theoretical characterization, we make three assumptions: the transitions of the MDP are determin-

istic, there is no burden (intermediate rewards), and human policies are deterministic. Under these

assumptions, we derive closed-form solutions to value functions in absorbing state MDPs. Later, in

Section 6, we demonstrate that our results hold empirically when the assumptions are relaxed.

Let ℓ(n) refer to the length of the path from state s to absorbing state s(n) under deterministic policy

π(n). Then the value functions for hyperbolic and exponential discounting are:

V
(n)

hyp (s; k) =
1

1 + k(ℓ(n) − 1)
r(n) V (n)

exp (s; γ) = γℓ(n)−1r(n). (5)

In Theorem 3, we leverage these closed-form solutions to derive conditions under which γ guaran-

tees a conservative approximation.

Theorem 3 (Characterizing conservative γ). Suppose the true human agent discounts hyperbolically

with parameter k. Suppose the distractor state s(n) has reward r(n). Let ℓ(n) refer to the length of

the deterministic path from state s ∈ S to s(n). Let ∆ = ℓ(N) − ℓ(n) ≥ 1 refer to the difference

in distance between the goal and distractor state. If the exponential agent uses a discount rate of γ
satisfying the following, then the exponential agent is a conservative approximation:

γ ≤

(

1 + kℓ(n) − k

1 + kℓ(n) + k∆− k

)

1
∆

, (6)

Proof. Algebraic derivation in Appendix A.2.

5.2 Minimizing False Positives

Ruling out false negatives alone does not ensure good AI policies. We must also minimize false

positives, which occur when the AI intervenes even though the human agent would have reached the

goal state without intervention. This scenario involves three conditions (details in Appendix C.3):

C1 The true hyperbolic agent with discount k prefers the goal.

C2 The exponential approximation with discount γ prefers the distractor.

C3 The exponential approximation under intervention with discount γ + δγ prefers the goal.

Using the above, we can formalize which parameters will cause a false positive. C2 implies

V
(n)

exp (s; γ) ≥ V
(N)

exp (s; γ). C3 implies that V
(n)

exp (s; γ + δγ) < V
(N)

exp (s; γ + δγ). C1 can be

ignored because the exponential approximation does not affect it. Together, C2 and C3 imply:

(γ + δγ)
ℓ(n)−ℓ(N)

≤ r(N)
/r(n) ≤ γℓ(n)−ℓ(N)

. Our choice of γ affects how often this condition is met.

We define the “broadness” of the condition as a function of γ, which we call the false positive range:

FPrange(γ) = γℓ(n)−ℓ(N)

− (γ + δγ)
ℓ(n)−ℓ(N)

. (7)

A larger FPrange means more false positives, since more reward pairs (r(n
∗), r(N)) will satisfy the

condition. In Theorem 4, we show that FPrange decreases with γ, so larger γ reduce false positives.

Theorem 4. Let ℓ(n) and ℓ(N) refer to the length to distractor and goal state from state s. Consider

two exponential approximations, which use discount rates γ1 and γ2. Both approximations assume

the same intervention effect, δγ . If γ1 > γ2, then FPrange(γ1) < FPrange(γ2).

Proof. In Appendix A.4, we take the derivative of FPrange.

5.3 Solutions

In Section 5.1, we proved γ must be small enough to avoid false negatives, and in Section 5.2 we

proved that larger γ result in fewer false positives. This implies a natural solution to our optimization
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problem in Eq. (4); we set γ to be the largest value in Eq. (6), so that γs =
(

1+kℓ(n)−k
1+kℓ(n)+k∆−k

)
1
∆

. How-

ever, setting γs relies on distances to the goal and distractor, which are derived from the transition

dynamics. However, we may not have access to the transition dynamics for real-world applications.

Figure 2: Comparison of the state-specific γs, the

mean hazard rate γmhr, and our proposed γsafe as a

function of k. MHR is always smaller than ours.

An exponential approximation, γsafe, that

only requires k. Instead requiring access to

transitions, we lower bound γs by assuming the

“worse-case” values of ∆ = 1 and ℓ(n) = 1.

This reduces to an exponential discount rate of

γsafe =
1

1 + k
. (8)

Since γsafe ≤ γs, it is conservative and guaran-

tees no false negatives (see Appendix A.3).

The mean hazard rate yields more false pos-

itives. Our theory allows us to analyze an ex-

ponential approximation with γmhr = exp(−k).
Since γmhr < γsafe (see Appendix C.2), it avoids false negatives but incurs more false positives.

6 Empirical Analysis

When learning online, our decision to approximate hyperbolic humans as exponential reduces vari-

ance but increases bias, which means that the AI can guide users to their goals faster at the long-term

cost of sending more interventions. Our experiments test whether this trade-off is worthwhile, es-

pecially compared to the low bias, high variance alternative of using a hyperbolic approximation,

which will take longer to help users reach their goals. Furthermore, our experiments relax assump-

tions of the theory to test its generalizability: the transitions are unknown, the efficacy of the AI

intervention varies for each human, there is burden, and humans are not deterministic. Results with

stochastic transitions are in Appendix D.4.1 (omitted because main results remain unchanged).

Experimental setup. The experiments are in randomly sampled absorbing state MDPs with 8− 20
states and 2 actions. The deterministic transitions are sampled from a categorical distribution. We

filter for valid transitions where every absorbing state is reachable from any state. No generality

is lost by considering a binary action space; adding more actions would only increase transition

complexity, which we already vary by adjusting the state space size. The range of 8−20 states allows

us to observe results across a class of small tabular MDPs. There is one distractor state with reward

r(n) ∼ Unif(0.1, 0.5), a goal state with reward r(N) = 1 and burden rb ∼ Unif(-0.5, -0.01). Human

agents are hyperbolic with discount k ∼ Unif(0.1, 5). Interventions decrease this by δ ∼ (0.09, k).
Following precedent (e.g., Reddy et al., 2018; Laidlaw & Dragan, 2022), our human agents are

“Boltzmann rational,” actors who follow stochastic softmax policies with a small temperature τ =
0.02, which ensures they can reach the goal under the oracle AI policy (if the human is too random,

even good AI policies will not help). The AI agent receives a reward of 1 when the human agent

enters the goal, −1 at a distractor, and −0.1 for intervening (further details on the AI MDP in

appendix D.1). Episodes start in states where the optimal AI policy intervenes; otherwise, outcomes

wouldn’t depend on the policy. This setup highlights differences between methods.

Baselines for modeling the human agent. Table 1 describes our baselines. All methods except the

oracle estimate the transitions, by normalizing the observed counts of transitions (MLE). AI actions

are selected according to an ϵ-greedy policy with ϵ = 0.1; interventions are random 10% of the time

and maximize the optimal value function under the estimated transitions for the remaining (certainty-

equivalence RL). The hyperbolic baseline in our main experiments use Monte-Carlo estimation with

500 samples to approximate the expectation in Eq. (2), but we also compare alternate approximation

methods in our experiments. We include the fixed-γbig baseline to demonstrate what happens when
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Table 1: Experimental baselines, which differ in their model of the human’s discount

Baseline Transitions Discount model Intervention

oracle True T True hyperbolic k True δk
hyp-mcmc (Fedus et al., 2019) Learned Hyperbolic approx. Eq. (2) True δk

fixed-γsafe Learned Exponential, fixed to 1/1+k Max

fixed-γmhr Learned Exponential, fixed to exp(−k) Max

fixed-γbig Learned Exponential, fixed to γsafe + 0.2 Max

learning-γ (Nofshin et al., 2024) Learned Exponential, γ is learned δγ learned
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Figure 3: Hyperbolic approximation (green) predicts the human value well, but leads to more

false negatives and worse AI policies. Error bars are 95% CI over 5000 trials (1000 random MDPs,

5 runs each). First row is error in human value prediction, second row is error in AI policy.

an exponential model with a discount factor larger than ours is used (the value of γ is clipped at

0.99). Always-intervene is a naive strategy that intervenes every timestep.

6.1 Results

Approximation error in the hyperbolic method means AI policies fail to intervene when

needed. Surprisingly, in Fig. 3a, the exponential methods outperform the hyperbolic approximation,

even though the true human is hyperbolic. The poor performance of the hyperbolic approximation

is due to the variance of learning the transitions; with true transitions, its performance matches the

oracle. What causes the hyperbolic approximation to have low rewards when learning the transi-

tions? In Fig. 3b and Fig. 3c, the hyperbolic approximation better predicts human value functions,

which means it is generally better at anticipating user intentions. But, in Fig. 3d, we see the few user

misunderstandings it does make lead to more false negatives in the AI policy (i.e. assumes the user

prefers the goal state when they do not).

Our γsafe strikes the right balance of minimizing false negatives and avoiding false positives in

the AI policy. Our theory indicates that γsafe and γmhr will prevent false negatives in the AI policy

when the transitions are known, meaning an AI policy that uses γsafe or γmhr will intervene enough

to get the user to the goal state. Fig. 3d and Fig. 3e shows that our theory generalizes to when the

transitions are learned; fixed-γsafe and fixed-γmhr learn AI policies with the fewest false negatives–

meaning they help user reach the goal more consistently– but fixed-γsafe has fewer false positives–

meaning it is less likely to annoy the user. Naturally, one might wonder how fixed-γsafe and fixed-

γmhr compare to the strategy of always intervening, which has a false negative rate of 0. Though

not shown in Fig. 3e for visualization reasons, the always-intervene baseline has a false-positive



Discounting for Reinforcement Learning Interventions

0 1 2 3 4 5

k

0.00

0.05

0.10

R
ew

ar
d
d
iff
.

0.0

0.1

0.2

γ
s
a
fe
−
γ
m
h
r

(a) Rewards γsafe vs. γmhr

1 2 3 4 5

k

1.6

1.8

2.0

2.2

#
in
te
rv
en
ti
on

s

(b) Interventions γsafe vs. γmhr

fix-γmhr

fix-γsafe

Figure 4: Gap between fixed-γsafe and fixed-γmhr is bigger for larger k (humans are more my-

opic). Fig. 4a shows reward difference, averaged over all episodes, increases with k. Dotted line is

γsafe − γmhr. Fig. 4b shows fixed-γmhr intervenes more than fixed-γsafe .

rate of 0.8, much higher than even that of fixed-γmhr at 0.075. As a result of over-intervening, the

always-intervene baseline overburdens the human and has low overall reward in Fig. 3a.

Finally, fixed-γbig demonstrates that fixed-γsafe is not too big. The fixed-γbig baseline incurs more

false negatives than fixed-γsafe and lower overall reward in Fig. 3 (this difference is more apparent

when humans are optimal in Appendix D.4.2). Thus, we see that γsafe is “just right”; it is conservative

enough to intervene on the human when the goal is at stake, but big enough to avoid over-intervening.

The fixed-γmhr baseline over-intervenes more severely on human agents that are more myopic.

Our theory indicates that γmhr is always smaller than γsafe for humans with the same k, meaning

fixed-γmhr will intervene more on a given user. This is why fixed-γsafe outperforms fixed-γmhr in

Fig. 3a. This performance gap increases for larger k (see Fig. 4a), as the difference in γs– and

therefore the difference in false-positives– also increases between the two methods (see Fig. 4b).

For small enough k in Fig. 4a, fixed-γmhr outperforms fixed-γsafe . However, this describes a setting

in which the human is already far-sighted, which is less relevant in practice, since far-sighted users

are unlikely to need help prioritizing faraway goals.

Fixing γ is better than learning it when the inductive bias aligns with the true environment.

When a small γ accurately models the human’s behavior, fixed-γsafe outperforms learning-γ by

avoiding the cost of learning. For example, a small discount such as γsafe is plausible when the goal

is close, because the human agent must be more myopic to prefer the distractor reward. Fig. 5b

confirms that the likelihood of the γsafe is higher when the goal is close, and correspondingly, the

advantage of fixed-γsafe is more pronounced in Fig. 5a. The fact that fixed-γsafe does worse as the

goal grows more distant (and γsafe no longer models the MDP well) suggests that a good strategy

may be to use γsafe as a prior, and then learn a more likely γ as more data becomes available.

When the transitions are unknown, regardless of approximation method, the hyperbolic model

has worse performance and worse computational efficiency than exponential. Modeling hyper-

bolic agents requires approximating the expectation over exponential Q-values from Eq. (2). Thus

far, our experiments have demonstrated that an MCMC approximation with 500 samples is insuf-

ficient for good performance. Fig. 6 further illustrates that fixed-γsafe outperforms a hyperbolic

approximation regardless of the method used. Because we did not observe substantial differences

among different estimation methods in this ablation, in our other experiments we only considered

MCMC estimation. Fig. 6b demonstrates that increasing the number of samples does not help,

because the hyperbolic methods are still sensitive to the quality of estimated transitions. Overall,

hyp-mcmc consumes several orders of magnitude more computation (Fig. 6c) while still failing to

meet the performance of fixed-γsafe managed with no prior engineering effort.

7 Discussion and Future Work

Estimating k. In this work, we investigated the impact of approximating hyperbolic humans as

exponential discounters on AI intervention policy. We proposed an exponential discount rate, γsafe,

whose initialization does not depend on knowledge of an absorbing-state MDP’s transitions, but
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Figure 5: Gap between fixed-γsafe and learning-γ is bigger when goal is close; γsafe provides

appropriate inductive bias. Fig. 5a shows reward differences, averaged over first 40 episodes,

decreases when goal is farther. Fig. 5b shows smaller γ’s, e.g. γsafe (red) and γmhr (blue), are more

likely when goal is close. Fig. 5c shows that γ from learning-γ is bigger than γsafe when goal is far.
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Figure 6: Hyperbolic approximations, regardless of method and sample size, perform worse

than fixed-γsafe and are orders of magnitude more computationally expensive. In Fig. 6, no

approximation method (defined in Appendix D.2) matches the performance of fixed-γsafe . In Fig. 6b,

increasing the number of samples has diminishing returns when learning transitions (dashed line is

given true transitions). Fig. 6b shows the runtime cost of increasing samples per timestep.

does require knowledge of the human’s hyperbolic discount rate, k. In practice, k can be estimated

using known surveys (Kirby et al., 1999), and an interesting future direction to study the extent to

which surveys can provide accurate measures for k for AI agent planning. Furthermore, we note

that needing an estimate for k is not a unique limitation of our method – estimating k is necessary

even when using a fully hyperbolic model or the mean hazard rate.

Generalization to other human-AI interaction paradigms. In our AI intervention setting, we

found that exponential methods outperformed the hyperbolic approximators, even when human

agents were truly hyperbolic. This raises questions about whether careful selection of the expo-

nential discount γ can match– or even surpass– the performance of hyperbolic approximation in

other human-AI interaction settings. For example, in inverse reinforcement learning, the goal is

to infer the human’s other MDP parameters, such as the reward. Recent work has started to ex-

plore inverse learning under non-exponential discounts (Yao et al., 2024), but it is worth considering

whether there is an exponential discount rate that would suffice.

Beyond absorbing state MDPs. Our results are on absorbing state MDPs, where there is one

absorbing goal state and multiple distractor states. Although this class of MDPs covers several

worlds considered in recent literature, they do not encompass all the behavior settings we might

want to study. It would be interesting to see how our proposed γ = 1/1+k, which we derived

specifically for absorbing state MDPs, generalizes to worlds outside of this class, such as ones with

more complex intermediate rewards than burden.

Preference reversal. While we considered hyperbolic discount in our MDPs, we did not include

preference reversal in our formalization. To do so, we would have to incorporate replanning, since

preference reversal occurs because the agent has a time dependent policy; the policy in one timestep
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(i.e., looking far into the future) is different from the policy in the other (i.e., considering the “now”).

For example, Yu & Ho (2022) implement replanning by changing the definition of value functions;

they account for value at a current and future timestep. Modeling pre-commitment would allow

us to consider more AI interventions, such as pre-commitment, where humans are encouraged to

“pre-commit” to a goal-preferring policy (e.g., Yi et al. (2019)). It is unclear whether it is possible

to plan pre-commitment interventions when the AI uses an exponential human model.

Conclusion. In this paper, we addressed a mismatch in how human decisions are modeled in be-

havioral science (as hyperbolic discounters) and RL (as exponential discounters). We examined the

extent to which humans’ hyperbolic discounting is approximated by a carefully chosen exponential

discount model. In our intervention setting, we found that hyperbolic approximations of the hu-

man agent led to worse AI policies than an exponential one using out theoretically-justified discount

rate, γsafe. We also showed that γsafe is as general as the well-known γmhr, but with fewer false

positives, which decreases unnecessary interventions. Our work highlights that defaulting to a hy-

perbolic model is not the best strategy, particularly given its additional computational costs, and we

encourage AI researchers who work with human agents to evaluate the trade-offs between different

exponential models (including γsafe) and a hyperbolic one in their specific applications.

Acknowledgments. This material is based upon work supported by the National Science Foun-

dation under Grant No. IIS-2107391 and the NIH/NIBIB and OD P41EB028242. Any opinions,

findings, and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation. This paper describes

work performed at Harvard University and is not associated with Amazon.

A Appendix

A.1 Proof for Theorem 2: conservative γ means no false negatives

We proceed by contradiction. Let γ be a conservative exponential approximation. By definition

of the conservative exponential approximation, we have that V
(n)

hyp (s; k) ≥ V
(N)

hyp (s; k) under no

intervention, implies V
(n)

exp (s; γ) ≥ V
(N)

exp (s; γ)– i.e. when the ground-truth hyperbolic agent prefers

the distractor state, so does the exponential approximation.

Suppose that the exponential approximation by γ results in a false negative at s (in Eq. (3)). By the

definition, we must have that: πAI
hyp(s) = 1 and πAI

exp(s) = 0. It follows from the assumption that γ

is conservative that πAI
hyp(s) = 1 =⇒ V

(n)
hyp (s; k) ≥ V

(N)
hyp (s; k) =⇒ V

(n)
exp (s; γ) ≥ V

(N)
exp (s; γ).

There are two cases that πAI
exp(s) = 0 could be true:

1. Suppose πAI
exp(s) = 0 because V

(n)
exp (s; γ + δγ) ≥ V

(N)
exp (s; γ + δγ). But, by assumption we have

γ + δγ = 1. This means that V
(n)

exp (s; γ + δγ) ≥ V
(N)

exp (s; γ + δγ) =⇒ r(n) ≥ r(N), noting

that by assumption we have that γ + δγ = 1, so therefore in fact V
(n)

exp (s; γ + δγ) = r(n) and

V
(N)

exp (s; γ + δγ) = r(N). However, by our problem formulation in Section 4, we must have

r(n) < r(N). So, this case does not hold.

2. Suppose πAI
exp(s) = 0 because V

(n)
exp (s; γ) < V

(N)
exp (s; γ). Recall that we had V

(n)
exp (s; γ) ≥

V
(N)

exp (s; γ). Thus, we have a contradiction, and this case does not hold.

Both cases cannot hold, thus it must be that πAI
exp(s) = 1.

A.2 Proof for Theorem 3: characterizing conservative γ

By construction, the ground truth hyperbolic agent prefers the distractor state, i.e. V
(n)

hyp (s) ≥

V
(N)

hyp (s). Using the definition of hyperbolic value functions in Eq. (5), we solve the inequality
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for a constraint on the reward at the distractor state, r(n):

V
(n)

hyp (s) ≥ V
(N)

hyp (s) =⇒
r(n)

1 + kℓ(N) − k
≥

r(N)

1 + kℓ(n) − k
=⇒ r(n)

≥ r(N)

(
1 + kℓ(n)

− k

1 + kℓ(N) − k

)

. (9)

Similarly, we solve for the constraint on the distractor state reward in exponential value functions:

V (n)
exp (s) ≥ V (N)

exp (s) =⇒ γℓ(n)
−1r(n)

≥ γℓ(N)
−1r(N) =⇒ r(n)

≥ γℓ(N)
−ℓ(n)

r(N). (10)

We want a γ such that a hyperbolic agent’s preference of the distractor state (Eq. (9)) implies that
the exponential agent will prefer the same (Eq. (10)):

r(n)
≥ r(N)

(
1 + kℓ(n)

− k

1 + kℓ(N) − k

)

=⇒ r(n)
≥ r(N)γℓ(N)

−ℓ(n)

.

It suffices to show that r(N)
(

1+kℓ(n)−k
1+kℓ(N)−k

)

≥ r(N)γℓ(N)−ℓ(n)

. Solving this inequality for γ:

r(N)

(
1 + kℓ(n)

− k

1 + kℓ(N) − k

)

≥ r(N)γℓ(N)
−ℓ(n)

(11)

=⇒ γℓ(N)
−ℓ(n)

≤

(
1 + kℓ(n)

− k

1 + kℓ(N) − k

)

∆ = ℓ(N)
− ℓ(n)

(12)

=⇒ γ ≤

(
1 + kℓ(n)

− k

1 + kℓ(n) + k∆− k

) 1
∆

. (13)

A.3 Proof that γsafe ≤ γs

We show that γsafe ≤ γs, meaning that γsafe is conservative (i.e. guarantees no false negatives). First,

note that γs is increasing with respect to ℓ(n). The derivative of γs with respect to ℓ(n) is:

k

∆
︸︷︷︸

(a)

(
1 + k(∆ + ℓ(n)

− 1)

1 + k(ℓ(n) − 1)

)(1− 1
∆ )

︸ ︷︷ ︸

(b)

(
∆k

(1 + k(∆ + ℓ(n) − 1))2

)

︸ ︷︷ ︸

(c)

(14)

Part (a) > 0 because k ≥ 0 and ∆ > 0. Part (b) > 0 because ℓ(n) ≥ 1 and all the other terms are

positive. Part (c) > 0 for the same reason. So, we know the function is increasing with respect to

ℓ(n). Since γs is increasing with respect to ℓ(n), we can lower bound it by substituting the lowest

possible value of ℓ(n) = 1. Note that if ℓ(n) = 0, then the agent would be in an absorbing state.

The value of γs is then: γs ≥
(

1
1+k∆

)
1
∆

. Again, the derivative shows that this increases with ∆:

∂

∂∆

(
1

1 + k∆

) 1
∆

= −
1

∆2
︸︷︷︸

(a)

(
1

1 + k∆

) 1
∆

+1

︸ ︷︷ ︸

(b)

(k∆+ (1 + k∆) log(1/1+k∆))
︸ ︷︷ ︸

(c)

.

Since k ≥ 0 and ∆ > 0, term (b) is positive and term (a) negative. So, we show that term (c) ≤ 0:

k∆+ (1 + k∆) log(1/1+k∆) ≤ k∆+ (1 + k∆)

(
1

1 + k∆
− 1

)

= 0 (15)

So, γs increases with ∆. Again, we can fill in the smallest possible ∆ = 1, so that γs ≥
1

1+k . Thus,

γs =

(
1 + kℓ(n)

− k

1 + kℓ(n) + k∆− k

) 1
∆

≥

(
1

1 + k∆

) 1
∆

≥
1

1 + k
= γsafe. (16)
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A.4 Proof for Theorem 4: FPrange is a decreasing function of γ

We want to show that FPrange is decreasing over γ ∈ [0, 1]. Consider the derivative:

FP ′

range(γ) = (ℓ(n)
− ℓ(N))γℓ(n)

−ℓ(N)
−1

− (ℓ(n)
− ℓ(N))(γ + δγ)

ℓ(n)
−ℓ(N)

−1
(17)

= (ℓ(n)
− ℓ(N))

︸ ︷︷ ︸
(a)

(
1

γℓ(N)
−ℓ(n)+1

−
1

(γ + δγ)ℓ
(N)

−ℓ(n)+1

)

︸ ︷︷ ︸
(b)

. (18)

Part (a) is negative because ℓ(N) > ℓ(n) by definition. Part (b) is positive because the left side

denominator is smaller than right one (δγ > 0 by definition). So, the derivative FP ′
range(γ) < 0, i.e.

the size of the false-positive range decreases as γ increases.

References

Raja Farrukh Ali. Non-exponential reward discounting in reinforcement learning. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 37, pp. 16111–16112, 2023.

Raja Farrukh Ali, John Woods, Esmaeil Seraj, Kevin Duong, Vahid Behzadan, and William Hsu.

Hyperbolic discounting in multi-agent reinforcement learning. In Finding the Frame: An RLC

Workshop for Examining Conceptual Frameworks, 2024.

Lars Lien Ankile, Brian Ham, Kevin Mao, Eura Shin, Siddharth Swaroop, Finale Doshi-Velez, and

Weiwei Pan. Discovering user types: Characterization of user traits by task-specific behaviors in

reinforcement learning. In First Workshop on Theory of Mind in Communicating Agents, 2023.

URL https://openreview.net/forum?id=XO3WwkIDzk.

Anil Aswani, Philip Kaminsky, Yonatan Mintz, Elena Flowers, and Yoshimi Fukuoka. Behavioral

modeling in weight loss interventions. European journal of operational research, 272(3):1058–

1072, 2019.

Roy F Baumeister and Kathleen D Vohs. Self-regulation, ego depletion, and motivation. Social and

personality psychology compass, 1(1):115–128, 2007.

Frederick Callaway, Yash Raj Jain, Bas van Opheusden, Priyam Das, Gabriela Iwama, Sayan Gul,

Paul M. Krueger, Frederic Becker, Thomas L. Griffiths, and Falk Lieder. Leveraging artificial

intelligence to improve people’s planning strategies. Proceedings of the National Academy of

Sciences, 119(12):e2117432119, 2022. DOI: 10.1073/pnas.2117432119. URL https://www.

pnas.org/doi/abs/10.1073/pnas.2117432119.

Owain Evans, Andreas Stuhlmüller, and Noah Goodman. Learning the preferences of ignorant,

inconsistent agents. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,

2016.

William Fedus, Carles Gelada, Yoshua Bengio, Marc G Bellemare, and Hugo Larochelle. Hyper-

bolic discounting and learning over multiple horizons. arXiv preprint arXiv:1902.06865, 2019.

Babatunde H Giwa and Chi-Guhn Lee. Estimation of discount factor in a model-based inverse

reinforcement learning framework. In Bridging the Gap Between AI Planning and Reinforcement

Learning Workshop at ICAPS, 2021.

KN Kirby, NM Petry, and WK Bickel. Heroin addicts have higher discount rates for delayed re-

wards than non-drug-using controls. Journal of Experimental Psychology: General, 128(1):78–

87, March 1999. DOI: 10.1037//0096-3445.128.1.78.

W Bradley Knox and Peter Stone. Reinforcement learning from human reward: Discounting in

episodic tasks. In 2012 IEEE RO-MAN: The 21st IEEE international symposium on robot and

human interactive communication, pp. 878–885. IEEE, 2012.



Reinforcement Learning Journal 2025

Zeb Kurth-Nelson and A David Redish. Temporal-difference reinforcement learning with distributed

representations. PLoS One, 4(10):e7362, 2009.

Zeb Kurth-Nelson and A. David Redish. A reinforcement learning model of precommitment in

decision making. Frontiers in Behavioral Neuroscience, 4, December 2010. ISSN 1662-5153.

DOI: 10.3389/fnbeh.2010.00184. URL https://www.frontiersin.org/articles/

10.3389/fnbeh.2010.00184.

Cassidy Laidlaw and Anca Dragan. The boltzmann policy distribution: Accounting for systematic

suboptimality in human models. arXiv preprint arXiv:2204.10759, 2022.

Falk Lieder, Frederick Callaway, Yash Raj Jain, Paul M Krueger, Priyam Das, and Sayan Gul. A

cognitive tutor for helping people overcome present bias. 2019.

Gregory J Madden, Warren K Bickel, and Eric A Jacobs. Discounting of delayed rewards in opioid-

dependent outpatients: exponential or hyperbolic discounting functions? Experimental and clin-

ical psychopharmacology, 7(3):284, 1999.

Yonatan Mintz, Anil Aswani, Philip Kaminsky, Elena Flowers, and Yoshimi Fukuoka. Behavioral

analytics for myopic agents. European Journal of Operational Research, 310(2):793–811, 2023.

Calarina Muslimani, Saba Gul, Matthew E. Taylor, Carrie Demmans Epp, and Christabel Wayl-

lace. Tutor: Helping people learn to avoid present bias during decision making. In Ning Wang,

Genaro Rebolledo-Mendez, Noboru Matsuda, Olga C. Santos, and Vania Dimitrova (eds.), Arti-

ficial Intelligence in Education, pp. 733–738, Cham, 2023. Springer Nature Switzerland. ISBN

978-3-031-36272-9.

Joel Myerson and Leonard Green. Discounting of delayed rewards: Models of individual choice.

Journal of the experimental analysis of behavior, 64(3):263–276, 1995.

Eura Nofshin, Siddharth Swaroop, Weiwei Pan, Susan Murphy, and Finale Doshi-Velez. Reinforce-

ment learning interventions on boundedly rational human agents in frictionful tasks. In Proceed-

ings of the 23rd International Conference on Autonomous Agents and Multiagent Systems, AA-

MAS ’24, pp. 1482–1491, Richland, SC, 2024. International Foundation for Autonomous Agents

and Multiagent Systems. ISBN 9798400704864.

Alexander Peysakhovich. Reinforcement learning and inverse reinforcement learning with system 1

and system 2. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pp.

409–415, 2019.

Howard Rachlin, Andres Raineri, and David Cross. Subjective probability and delay. Journal of the

experimental analysis of behavior, 55(2):233–244, 1991.

Salvador Cruz Rambaud and María José Muñoz Torrecillas. Some considerations on the social

discount rate. Environmental Science & Policy, 8(4):343–355, 2005.

Sid Reddy, Anca Dragan, and Sergey Levine. Where do you think you’re going?: Inferring beliefs

about dynamics from behavior. Advances in Neural Information Processing Systems, 31, 2018.

Brady Reynolds and Ryan Schiffbauer. Measuring state changes in human delay discounting: an

experiential discounting task. Behavioural processes, 67(3):343–356, 2004.

Hanneke Scholten, Anouk Scheres, Erik De Water, Uta Graf, Isabela Granic, and Maartje Luijten.

Behavioral trainings and manipulations to reduce delay discounting: A systematic review. Psy-

chonomic bulletin & review, 26:1803–1849, 2019.

Matthias Schultheis, Constantin A Rothkopf, and Heinz Koeppl. Reinforcement learning with non-

exponential discounting. Advances in neural information processing systems, 35:3649–3662,

2022.



Discounting for Reinforcement Learning Interventions

Rohin Shah, Noah Gundotra, Pieter Abbeel, and Anca Dragan. On the feasibility of learning, rather

than assuming, human biases for reward inference. In International conference on machine learn-

ing, pp. 5670–5679. PMLR, 2019.

Peter D Sozou. On hyperbolic discounting and uncertain hazard rates. Proceedings of the Royal

Society of London. Series B: Biological Sciences, 265(1409):2015–2020, 1998.

Peter D Sozou. Individual and social discounting in a viscous population. Proceedings of the Royal

Society B: Biological Sciences, 276(1669):2955–2962, 2009.

Giles W Story, Ivo Vlaev, Ben Seymour, Ara Darzi, and Raymond J Dolan. Does temporal dis-

counting explain unhealthy behavior? a systematic review and reinforcement learning perspec-

tive. Frontiers in behavioral neuroscience, 8:76, 2014.

Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive com-

putation and machine learning series. The MIT Press, Cambridge, Massachusetts, second edition

edition, 2018. ISBN 978-0-262-03924-6.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U. Balis, Gianluca De Cola, Tristan Deleu,

Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, Rodrigo Perez-Vicente, An-

drea Pierré, Sander Schulhoff, Jun Jet Tai, Hannah Tan, and Omar G. Younis. Gymnasium:

A standard interface for reinforcement learning environments. (arXiv:2407.17032), November

2024. DOI: 10.48550/arXiv.2407.17032. URL http://arxiv.org/abs/2407.17032.

arXiv:2407.17032 [cs].

Jiayu Yao, Weiwei Pan, Finale Doshi-Velez, and Barbara E Engelhardt. Inverse reinforcement learn-

ing with multiple planning horizons. Reinforcement Learning Journal, 3:1138–1167, 2024.

Richard Yi, Heath Milhorn, Anahi Collado, Kate N. Tormohlen, and Jessica Bettis. Uncommit-

ted commitment: Behavioral strategy to prevent preference reversals. Perspectives on Behavior

Science, 43(1):105–114, Oct 2019. DOI: 10.1007/s40614-019-00229-8.

Guanghui Yu and Chien-Ju Ho. Environment design for biased decision makers. In IJCAI, pp.

592–598, 2022.

Guanghui Yu, Robert Kasumba, Chien-Ju Ho, and William Yeoh. On the utility of accounting for

human beliefs about ai behavior in human-ai collaboration. arXiv preprint arXiv:2406.06051,

2024.

Mo Zhou, Yonatan Mintz, Yoshimi Fukuoka, Ken Goldberg, Elena Flowers, Philip Kaminsky, Ale-

jandro Castillejo, and Anil Aswani. Personalizing mobile fitness apps using reinforcement learn-

ing. In CEUR workshop proceedings, volume 2068. NIH Public Access, 2018.



Reinforcement Learning Journal 2025

Supplementary Materials
The following content was not necessarily subject to peer review.

B Background details

B.1 Linking hyperbolic and exponential Q-values

Here, we elaborate on the result from Fedus et al. (2019) that hyperbolic Q-values can be approxi-

mated as an expectation over exponential Q-values:

Qhyp(s, a; k) = Eγ∼Beta(1/k,1)

[

Q∗
exp(s, a; γ)

]

. (19)

Starting with Eq. (1), we apply a change of variables γ = exp(−λ) which relates the survival

probability γ with the hazard λ.

dhyp(t; k) (20)

=

∫ ∞

λ=0

1

k
exp(−λ(t+ 1/k))dλ From Eq. (1) (21)

=

∫ 0

γ=1

1

k
×−γ−1γt+1/kdγ (22)

=

∫ 1

γ=0

γt ×
1

k
γ

1/k−1dγ (23)

= Eγ∼p(γ)

[

γt
]

p =
1

k
γ

1/k−1 (24)

= Eγ∼p(γ) [dexp(t; γ)]. (25)

(26)

Note that the step from Eq. (21) to Eq. (22) follow from the change of variables, where dλ =
−γ−1dγ and the respective bounds become e0 = 1 and e−∞ = 0.

Finally, the distribution over γ follows a Beta distribution. To see this, we relate p(γ) to a uniform

distribution by considering the CDF:

Fγ(x) =

∫ x

0

p(γ)dγ

=
1

k

∫

γ
1
k
−1dγ

=
1

k

(

kγ
1
k

)

∣

∣

∣

∣

x

γ=0

= x
1
k .

This implies that γ = Uk, where U ∼ Unif(0, 1). Equivalently, γ follows a beta distribution

Beta(1/k, 1).
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Since Q-values are discounted sums of rewards, the above relationship holds for Q-values due to the

linearity of expectations:

Qhyp(s, a; k)

=

∞
∑

t=0

dhyp(t; k)Rt

=

∞
∑

t=0

Eγ [dexp(t; γ)Rt]

= Eγ

[

∞
∑

t=0

dexp(t; γ)Rt

]

= Eγ [Qexp(s, a; γ)].

B.2 Behavior Model RL (BMRL)

Human optimal 
value

Human discount 
model

Human (world) 
transitions

Human policy AI transitions AI policies

Figure 7: Overview of how the human’s discount function affects the downstream AI policy in

BMRL in Nofshin et al. (2024). The human agent’s discount model and transitions affect the human

agent’s optimal value function, which in turns affects the human’s optimal policy. The human’s

policy is completely encapsulated in the AI transitions, which in turn, affects the AI policy. Note

that the human transitions appear twice; first to affect the optimal value, and then to affect the AI

transitions.

B.3 Worlds Represented by Our Sampled Absorbing State MDPs

Cliff walking world The cliff walking world is a 2-D gridworld introduced in Sutton & Barto

(2018) and appears throughout the literature, including by implementation in the popular Gymna-

sium library introduced by Towers et al. (2024). There is a start state, a goal state, and a set of “cliff”

states that run along the bottom of the world. If the agent enters a cliff state, they transition back to

the start state.

The goal state is well represented as an absorbing state. If the cliff is implemented as an absorbing

state, then it corresponds to a distractor state, and the entire cliff world is an absorbing state MDP.

If the cliff is implemented as a non-absorbing state (i.e., the agent gets sent back to the starting state

if they enter a cliff state), then this is still an absorbing state MDP without any distractor states.

Chain world Nofshin et al. (2024) introduced the chain world, which captures a notion of a (hu-

man) user’s progress toward some task. There is a disengagement state where once the user disen-

gages, the user receives reward of 0 in perpetuity. There is also a goal state, and there are interme-

diary progress states. The goal state corresponds to the goal state in absorbing state MDPs. The

disengagement states correspond to distractor states in absorbing state MDPs. Hence chain worlds

are absorbing states.

Vegetarian cafe vs. donut chain world. Evans et al. (2016) introduces a world where agents face

a tradeoff from going to nearby donut chain stores versus a further vegetarian cafe that is better for
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their health. There is also a second path with a noodle shop. Both the donut chain stores and the

noodle shop represent distractor absorbing states, while the further vegetarian cafe represents a goal

absorbing state. Hence, this can be represented as an absorbing state MDP.

Path world Fedus et al. (2019) introduces a world of paths of varying lengths, where the agent

faces a decision between the paths. We can represent the lengths of the paths as intermediate states,

and the states at the end of each path are indeed absorbing states. These absorbing states vary in

reward, and the largest is the goal absorbing state; the others are distractors. Hence, this world is

well represented by our sampled absorbing state MDPs.

Precommitment and addiction Kurth-Nelson & Redish (2010) links hyperbolic discounting to

notions of precommitment — which occurs when an agent takes a path that goes toward a single

reward and excludes the possibility of the type of preference reversal seen in hyperbolic discounting

— and addiction science and other manifestations of impulsivity in behavioral science.

The example given by Kurth-Nelson & Redish (2010) where an agent is able to commit to a larger

world (their “Figure 1”) is indeed well represented by an absorbing state MDP of the type we sample.

There are two large rewards — which can be represented as goal absorbing states — and one small

reward — which can be represented as a distractor absorbing state.

This is a particularly salient example because of the links to real-world applications in modeling

behavior including in the study of addiction.

C Theoretical Analysis

C.1 Form of Value Functions for Absorbing State MDPs

Let L be the time to any absorbing state under policy π. Let R be the reward at that absorbing state.

Both of these variables are random because of the randomness in the transitions P . In absorbing

state MDPs, value functions will have the form:

V π(s) (27)

= Eπ,P

[

∞
∑

t=1

d(t− 1)Rt

]

Definition of value function

= EL,R

[

d(L− 1)R+ rb

L
∑

t=1

d(t− 2)

]

MDP structure

= EL,R

[

d(L− 1)R+ rb

L−2
∑

t=0

d(t)

]

Shitfing sum

= EL

[

ER

[

d(L− 1)R+ rb

L−2
∑

t=0

d(t)

]]

Repeated expectations

= EL

[

d(L− 1)ER [R] + rb

L−2
∑

t=0

d(t)

]

. (28)

If we assume the transitions are deterministic, then L and R are no longer random. Let ℓ(n) be the

length of the path from state s to absorbing state s(n) with reward r(n). Furthermore, if we assume

no burden (rb = 0), then only the absorbing state reward remains. The value of a policy π(n) that

goes to absorbings state s(n) is:

V
(n)
d (s) = d(ℓ(n) − 1)r(n). (29)
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C.2 Proof that γmhr < γsafe

γmhr < γsafe (30)

=⇒ exp(−k) <
1

1 + k
(31)

=⇒ −k < ln

(

1

1 + k

)

(32)

=⇒ k ≥ ln

(

1

1 + k

)

(33)

=⇒ k ≥
1

1 + k
− 1, (Note that ln(x) ≤ x− 1) (34)

=⇒ (k + 1)2 ≥ 1 (35)

=⇒ k2 + 2k + 1 ≥ 1 (36)

=⇒ k2 + 2k ≥ 0. (37)

The last line is always true, since k > 0.

C.3 Expanded details on false positive range

In AI interventions, false positives are when the AI intervenes despite the fact that the human agent

would have reached the desired goal state without needing intervention. A scenario with a false

positive requires three conditions to hold.

1. The (true) hyperbolic agent is already going to the big reward:

V
(N)

hyp (s; k) ≥ V
(n)

hyp (s; k) for all n ∈ {1, . . . , N}

2. The exponential agent goes to the small reward:

V (n)
exp (s; γ) ≥ V (N)

exp (s; γ) for any n ∈ {1, . . . , N}

3. The exponential agent under intervention goes to the big reward.

V (N)
exp (s; γ + δγ) ≥ V (n)

exp (s; γ + δγ) for all n ∈ {1, . . . , N},

where δγ > 0 refers to the increase in the exponential agent’s discount factor.

Formalizing condition (1). Let i be the best option absorbing state (that is not the goal state),

defined as:

i = argmaxi=1,...,N−1V
(i)

hyp (s).

If the agent prefers the goal state, it means that the goal state is better than this alternate best-option:

V
(N)

hyp (s) ≥ V
(n)

hyp (s) for all n ∈ {1, . . . , N} (38)

=⇒ V
(N)

hyp (s) ≥ V
(i)

hyp (s) (39)

=⇒
1

1 + kℓ(N) − k
r(N) ≥

1

1 + kℓ(i) − k
r(i) (40)

=⇒ (1 + kℓ(i) − k)r(N) ≥ (1 + kℓ(N) − k)r(i) (41)

=⇒ r(N) ≥
1 + kℓ(N) − k

1 + kℓ(i) − k
r(i). (42)



Reinforcement Learning Journal 2025

Formalizing condition (2). Let j be the best option absorbing state (that is not the goal state) under

exponential discounting, defined as

j = argmaxj=1,...,N−1V
(j)

exp (s).

If the agent prefers the distractor state, it means the best-option absorbing state is better than the

goal state:

V (n)
exp (s) ≥ V (N)

exp (s) for any n ∈ {1, . . . , N} (43)

=⇒ V (j)
exp (s) ≥ V (N)

exp (s) (44)

=⇒ γℓ(j)−1r(j) ≥ γℓ(N)−1r(N) (45)

=⇒ r(N) ≤ γℓ(j)−ℓ(N)

r(j) (46)

Formalizing condition (3). The condition becomes:

V (N)
exp (s; γ + δγ) ≥ V (n)

exp (s; γ + δγ) for all n ∈ {1, . . . , N} (47)

=⇒ V (N)
exp (s; γ + δγ) ≥ V (j)

exp (s; γ + δγ) (48)

=⇒ (γ + δ)ℓ(N)r(N) ≥ (γ + δ)ℓ(j)r(j) (49)

=⇒ r(N) ≥ (γ + δ)ℓ
(j)−ℓ(N)

r(j). (50)

Defining the false-positive range for γ. Since our choice of γ does not affect whether or not the

hyperbolic agent prefers the goal state, we can ignore condition (1).

So, our AI will send a false positive if:

(γ + δ)ℓ
(j)−ℓ(N)

r(j) ≤ r(N) ≤ γℓ(j)−ℓ(N)

r(j) (51)

=⇒ (γ + δ)ℓ
(j)−ℓ(N)

≤ r(N)
/r(j) ≤ γℓ(j)−ℓ(N)

(52)

This defines the range of values for γ under which a false positive might occur. We want to show

that larger γ results in a smaller chance of false positives. This means that we want this range to be

smaller the larger the γ.

D Empirical Experiment Details

D.1 Definition of the AI MDP

• AI states. The AI state sAI = [s, α] is derived from the human agent’s MDP. It includes the

human’s current state s and the human’s action at the last timestep, α. At the beginning of an

episode (when there is no concept of previous timestep for the human’s action), α is initialized to

0.

• AI actions. The AI actions are binary; the AI either intervenes on the human agent’s discount

aAI = 1 or does not intervene aAI = 0.

• AI rewards. The AI receives a small negative reward for intervening (aAI = 1), a large negative

when the human agent enters a distractor state (s = s(1), . . . , s(N−1)), and a large positive reward

when the human agent enters the goal state (s(N)).

RAI(sAI , aAI) =











−0.2 if aAI = 1

−1 if s = s(1), . . . , s(N−1)

1 if s = s(N)

(53)
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Figure 8: Examples of state diagrams for randomly sampled absorbing state MDPs.

• AI transitions. The AI transitions are determined by the gridworld in which the human agent op-

erates, since they factorize into two distributions: PAI(s′AI |sAI , aAI) = P (s′|s, α′)π(α′|s, aAI),
where π(α′|s, aAI) is the effect of the AI intervention on the human’s action, and P (s′|s, α′) is

the effect of the human action on the next state.

For gridworlds with stohastic transitions, we first sample a deterministic gridworld. We then

add stochasticity of level ϵ. The original transition has probability 1 − ϵ. The probability of

transitioning to the remaining N connections from state s is then ϵ/N .

• AI discount. We use an exponential discount function with γ = 0.99.

D.2 List of estimators

We are using the following integral estimation methods, which we refer to above as:

• mcmc: Monte Carlo estimation sampling from a target distribution and averaging.

• quad: Gaussian quadrature that approximates via selection of nodes and weights.

• riemann: A simple Riemann sum.

• strat: Stratified sampling done by sampling uniformly among the strata (divisions of the sampled

support).

• importance: Importance sampling drawing from a proposal distribution and shifting to a target

distribution.

D.3 Examples of randomly sampled absorbing state MDPs

Fig. 8 shows examples of state diagrams for randomly sampled absorbing state MDPs.

D.4 Experimental results in expanded settings

D.4.1 Stochastic transitions

In Fig. 9, noise η ∈ [0, 1] represents the stochasticity of environment transitions. Formally, there is

a 1 − η change of transitioning to state s′ after taking action a in state s, and there is a η chance of

transitioning to a random state that is not s′. The larger η, the more stochastic.

D.4.2 Optimal (deterministic) human policies

In Fig. 10, we show the impact of running a simulation in which the human agent follows an optimal,

deterministic policy vs. a softmax policy. As expected, the softmax policy leads to noisier results.
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Figure 9: Cumulative reward of AI policy in sampled absorbing state MDPs with varying levels of

environment stochasticity. The stochasticity does not affect the main trends; the exponential methods

still outperform hyperbolic, and all policies outperform the naive always-intervene baseline.
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Figure 10: Cumulative reward of AI policy in sampled absorbing state MDPs with different action

selection policies for the human agent. Most main trends remain the same, but the hyperbolic

baseline with the true transitions does worse when the human is optimal (green, dotted line), due to

small errors in the Q-values translating to errors in ranking actions.


