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Summary

In settings where an Al agent sends interventions to nudge a human agent toward a goal, the
AT’s ability to quickly learn a high-quality policy depends on how well it models the human.
Despite behavioral evidence that humans hyperbolically discount future rewards, we continue
to model human agents as Markov Decision Processes (MDPs) with exponential discounting
because of its mathematical properties. In this work, we derive an exponential discount factor
that will never miss a necessary intervention—and minimizes unnecessary extra interventions—
even when the real human is hyperbolic. In addition, we demonstrate that when the dynamics
are unknown, using our exponential alternative outperforms correctly modeling the human,
even when the human’s true hyperbolic discount is known.

Contribution(s)

1. Using theory, we connect model misspecification of a hyperbolic human agent as an expo-
nential one to errors in the downstream Al intervention policy.
Context: Prior work in human-Al settings has not studied how misspecifications of the
human agent’s discount affect Al policies. Our analysis is in the context of absorbing state
MDPS (discrete state / action spaces with absorbing reward states) and on interventions of
the human agent’s discount factor. We make simplifying assumptions— about the stochastic-
ity of the transitions, intermediate rewards, and noise in the human policy— which we relax
in our empirical experiments. All humans in our experiments are simulated agents modeled
using a Markov Decision Process (MDP).

2. We prove that the exponential mean hazard rate, vy, guarantees no false negatives in the
Al policy. However, it does not minimize Al false positives.
Context: The Al policy is the optimal policy for an MDP in which the actions are inter-
ventions, delivered by an artificial agent, on a human agent’s MDP parameters. The mean
hazard rate (MHR) is an established method for approximating hyperbolic human agents
as exponential ones (Rambaud & Torrecillas, 2005; Sozou, 1998; 2009). Previously, there
were no formal guarantees on how the MHR affects error when used to model human agents
in a human-Al setting. The same context from contribution 1 (about absorbing-state MDPs,
theoretical assumptions), apply.

3. We derive a fixed exponential discount rate, vs,f, for approximating hyperbolic agents.
Context: Our theoretical justification relies on the same assumptions as contribution 1.
However, 7safe 1S as broad as vyne and is applicable to settings beyond the ones considered
in this paper.

4. In empirical experiments (on small tabular MDPs), we demonstrate that (biased) exponen-
tial approximations using a fixed discount parameter outperform several different (unbiased)
methods of approximating the hyperbolic discount when the transitions are learned online.
Context: Prior work had not considered how the choice of discount model for the human
agent affects the Al policy. We found that the hyperbolic approximations are unexpectedly
sensitive to online learning. Our experiments are in small, tabular MDP settings.

5. Empirically, we characterize situations where a fixed exponential discount model with safe
is preferable to a fixed one with ~n; we do the same for s, Vs. updating y online.
Context: None.
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Abstract

In settings where an Al agent nudges a human agent toward a goal, the quality of the
AT’s policy depends on how well it models the human. Despite behavioral evidence that
humans hyperbolically discount future rewards, the RL community continues to model
humans as Markov Decision Processes (MDPs) with exponential discounting. This is
because planning is difficult with non-exponential discounts. In this work, we investi-
gate whether the performance benefits of modeling humans as hyperbolic discounters
outweigh the computational costs. We focus on Al interventions that change the hu-
man’s discounting (i.e. decreases the human’s “nearsightedness” to help them toward
distant goals). We derive a fixed exponential discount factor that can approximate hy-
perbolic discounting, and prove that this approximation guarantees the Al will never
miss a necessary intervention. We also prove that our approximation causes fewer false
positives (unnecessary interventions) than the mean hazard rate, another well-known
method for approximating hyperbolic MDPs as exponential ones. Surprisingly, our ex-
periments demonstrate that exponential approximations outperform hyperbolic ones in
online learning, even when the ground-truth human MDP is hyperbolically discounted.

1 Introduction

In Al-assisted behavior change, an Al agent intervenes on human agents to influence them toward a
goal state. For example, in digital interventions, a mobile health application may encourage users to
do their daily physical therapy. Prior literature has found it useful to model a human agent’s policy
using a Markov Decision Process (as in Nofshin et al., 2024; Yu & Ho, 2022; Evans et al., 2016;
Mintz et al., 2023). In our paper, we consider Al interventions that change the human’s discount, or
the degree to which they prioritize a faraway goal (Scholten et al., 2019). For example, the app may
remind the user that adhering to physical therapy will enable them to return to a favorite sport. In
this setting, the Al must model the human MDP well enough to plan high-quality interventions.

The human MDP includes a choice of discount function, which models how humans trade off fu-
ture and immediate rewards. Behavioral science has overwhelmingly found that humans discount
hyperbolically , dhyp(t) = 1/1+kt, where k controls the level of discounting (e.g., Myerson & Green,
1995; Rachlin et al., 1991; Madden et al., 1999). Despite this, in reinforcement learning (RL), works
on human-Al interaction continue to model humans as exponential discounters, dexp(t) = ~¢, where
~ controls the level of discounting (e.g., Giwa & Lee, 2021; Nofshin et al., 2024; Aswani et al.,
2019; Mintz et al., 2023; Peysakhovich, 2019; Shah et al., 2019; Knox & Stone, 2012). This is
because planning with exponential discounting is mathematically convenient; it lets us leverage the
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majority of RL tools that depend on the Bellman Equation. On the other hand, planning with hyper-
bolic discounting is generally intractable and incurs significant computational costs to approximate.
For example, a hyperbolic MDP may be approximated as the average of exponential MDPs (Fedus
et al., 2019; Kurth-Nelson & Redish, 2009), but this requires re-solving for the optimal policy un-
der several different exponential discount rates, . Unfortunately, no works have explored whether
the policy improvements obtained by representing humans as hyperbolic discounters are worth the
increase in model complexity, both computational and mathematical.

In this work, we ask whether there are alternatives to using hyperbolic discounting; in particular,
can we cleverly select an exponential discount rate y such that we still get a high-quality Al policy?
We theoretically derive an exponential discount rate, sz, which ensures the Al never misses a nec-
essary intervention when modeling hyperbolic humans in a class of discrete, goal-oriented MDPs.
Notably, while setting vsa5e requires knowledge of the human’s hyperbolic discount rate k& (which
there are surveys to estimate (Kirby et al., 1999; Reynolds & Schiffbauer, 2004)), it does not require
any information about the environment and can be used in practice when the transition dynamics
are unknown. Furthermore, it incurs fewer false positives— unnecessary interventions to the user—
compared to the well-known method of using an exponential discount model with mean hazard rate
to approximate hyperbolic discount models (Rambaud & Torrecillas, 2005; Sozou, 1998; 2009).

Interestingly, when the Al learns the environment dynamics, we found that an Al planning with an
exponential discount model always outperforms the hyperbolic one, even when the true human is
hyperbolic. Despite predicting more accurate human Q-values, hyperbolic discounting causes more
false negatives in the downstream Al policy. Furthermore, we found that learning v online had worse
performance than fixing it to 7y, especially in early episodes with less data. This work highlights
the importance of carefully selecting a human discount model in human-Al settings, as different
models impose trade-offs in Al planning. We demonstrate that defaulting to a hyperbolic discount
is unnecessary since a well-chosen exponential discount rate can outperform a hyperbolic one while
avoiding its computational and mathematical complexities.

2 Related Works

Evidence that humans are hyperbolic discounters. Behavioral science has shown that human
discounting is better modeled with a hyperbolic, rather than exponential function on a wide range of
tasks (e.g., Myerson & Green, 1995; Rachlin et al., 1991; Madden et al., 1999; Story et al., 2014).
This is because hyperbolic functions can capture people’s tendency to perform “preference reversal”
(Myerson & Green, 1995); people who originally prefer a smaller reward sooner “flip” to preferring
a larger reward later when asked the same question on a more distant timescale. Some work seeks
to reduce this present bias (e.g., Callaway et al., 2022; Lieder et al., 2019; Muslimani et al., 2023).
However, most of these studies formalize discounting in “one-off” decision settings and do not em-
bed these discount models within a sequential decision-making framework (e.g., MDPs). Thus, it
remains unclear whether, within the full MDP framework, modeling humans as hyperbolic discoun-
ters leads to better human-Al interactions. This question is underexplored due to the mathematically
challenging nature of using non-exponential discount functions in RL planning.

Reinforcement learning with hyperbolic discounting. Planning with non-exponential discount
functions is challenging because the Bellman equation no longer holds, and standard dynamic pro-
gramming solutions cease to apply (Fedus et al., 2019). Despite this, recent works attempt to op-
timize value functions under non-exponential discounts through approximation (Fedus et al., 2019;
Ali, 2023; Ali et al., 2024; Kurth-Nelson & Redish, 2009; Schultheis et al., 2022). For example,
Fedus et al. (2019) and Kurth-Nelson & Redish (2009) approximate a hyperbolic Q-function by
averaging over several exponential Q-functions. Recently, Schultheis et al. (2022) proposed an it-
erative, gradient-based solution to learn optimal values for continuous control. All these methods
require parameter tuning (either the number of samples or the gradient parameters) to approximate
the hyperbolic Q-function, yet no work has formally studied how these approximations impact the
quality of the downstream Al policy in human-AlI settings.
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Approximating human agents as exponential discounters. RL literature largely models humans
as exponential discounters (e.g., Giwa & Lee, 2021; Nofshin et al., 2024; Aswani et al., 2019; Mintz
et al., 2023; Peysakhovich, 2019; Shah et al., 2019; Knox & Stone, 2012). This approach requires
specifying a discount rate, -y, a priori. Some works learn a fixed  from a batch of data (Aswani et al.,
2019; Mintz et al., 2023), while others fix 7 to one that simulates realistic behaviors (Peysakhovich,
2019). In contrast, we propose a fixed ~ that depends only on the human’s hyperbolic discount rate
k, and no other data or domain knowledge. The economics literature defaults to the mean hazard
rate (MHR), (e.g., Rambaud & Torrecillas, 2005; Sozou, 1998; 2009). We challenge the MHR as
the default v in our setting because it leads to Al policies that over-intervene. Instead of fixing v
a-priori, other methods learn it online (e.g., Nofshin et al., 2024; Yu & Ho, 2022; Yu et al., 2024;
Zhou et al., 2018; Evans et al., 2016). However, these methods do not explore how misspecification
of the discount model (i.e. the assumption of exponential discounting) affects the Al policy.

3 Background

Hazards: Relating Hyperbolic and Exponential Discounting. A Markov Decision Process
(MDP) M = (S, A, R, P,d) is a tuple of states S, actions .4, a reward function R : S x A — R,
and a transition function P : § x A x S — R. The discount function d(t) devalues future rewards
and can be interpreted as the probability of surviving to timestep ¢. Exponential discounting takes
the form dex,(t) = ~* for v € [0,1], and hyperbolic discounting takes the form dyyp(t) = 1/(1+k¢)
for k € [0,00). Note: in exponential discounting, a smaller y is more myopic, but in hyperbolic, a
larger k is more myopic. Exponential and hyperbolic discounting can be related through the hazard
rate, a concept from reliability engineering that describes how one’s probability of survival changes
over time: h(t) = —%ln d(t), where a high hazard corresponds to a sharply decreasing probability
of survival. A constant hazard rate is equivalent to exponential discounting:

h(t) = A — d(t) = exp(=At) — d(t) = 7", where v = exp(—\).

On the other hand, Sozou (1998) proved that if hazard follows an exponential distribution, such that
p(A) = (1/k) exp(—>/k), then this is equivalent to hyperbolic discounting:

& 1
d(t) = A (M = 0

The hazard rate provides a natural way to approximate hyperbolic discounting with an exponential
one. By setting +y to the mean of the exponential distribution on the hazard (E [A\] = k), we recover
the well-known mean hazard rate (mhr): v, = exp(—£k). Finally, Eq. (1) provides an estimate of
hyperbolic Q-values as an expectation over exponential ones:

thp(s7 a; k;) = E"/NBeta(l/k,l) [QZXP(Sa a; 7)] ) (2)
where @y, (s, a; ) is the optimal value at state s and action a for an exponentially-discounted MDP.

Behavior Model RL: an AI Agent that Intervenes on a Human Agent’s MDP. To study settings
where an Al agent guides human agents to a goal state, we use the behavior model RL (BMRL)
framework from Nofshin et al. (2024), where Al actions change the human agent’s MDP parameters,
as shown in Fig. 1. Throughout, unless subscripted with “AI,” entities belong to the human agent.
In BMRL, the AI agent is an MDP M4 = (SAL AAT RAL pAL (A - AT actions A“! are
interventions that cause temporary changes to the human agent’s MDP parameters; following an Al
intervention, the human MDP changes from M to M/, then reverts to M the next time-step. We
consider a binary action space: the Al either intervenes on the human’s discounting to make them
more farsighted (a*/ = 1) or does nothing (a*! = 0). Explicitly, if the Al intervenes a! = 1,
then the human’s MDP changes from M = (S, A, R, P, k) to M’ = (S, A, R, P, k'), where the
only difference is to make the the hyperbolic discount factor more farsighted, from k to &’ = k — ;..
Here, J;, is the change to the discount factor.
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@ Because the Al agent’s actions change the human’s MDP,
B the human’s MDP (and discount model) is part of the Al
________ m — environment. Formally, the states S4! are the same as
| Aldecides = = Py R the human states, but also include the human’s action
1 whether to ! Policy without intervention . Al :
! mzierv‘eneon i (myopic discounting, I fr()m the las[ tlmestep o, SO that s = [S,OL]. ThlS
:— iscount | prioritizes short term rewards) o . . . . .
————————— causes the transitions factorize into two distributions:
Pol]icy »:l‘ith imcrvcmit(m PAI(SIAI |5AI7 a,AI) = f’(s/|37 o/)7r(o/|s7 aAI), where
(less discounting of . . .
futare rewards) Gl | 7(a’|s,a!) is the effect of the Al intervention on the
[

human’s action, and P(s'|s,a’) is the effect of the hu-
Figure 1: BMRL: the Al nudges the man action on the next state. Note that m depends on the
human toward a goal by altering their human MDP M’ that results from an Al intervention a7 .
MDP (e.g., increasing their discount).

4 Problem Setting and Formulation

Setting: Absorbing state MDPs. Our human agents act

in a discrete class of MDPs that represent the behavior
change setting. There are N absorbing states, and s(™) refers to the nth absorbing state. One
of the absorbing states, s"V), is the “goal” state (e.g. doing physical therapy). The remaining
s sV=1) absorbing states are “distractors” (e.g. watch TV instead). The reward at the goal
state (M) = 1 is larger than all others »(1), ... r(N=1) ¢ (0,1). Even though the goal reward is
largest, the human agent may still choose the distractor for its proximity. Finally, a per-timestep
reward r;, < O represents the burden of behavior change (Baumeister & Vohs, 2007; Nofshin et al.,
2024), and incentivizes the human agent to settle for nearby absorbing states.

Absorbing state MDPs are general and encapsulate several environments from the literature, such
as those from Evans et al. (2016); Peysakhovich (2019); Ankile et al. (2023); Nofshin et al. (2024).
See Appendix D.3 for in-depth examples.

Problem formulation: Approximating Hyperbolic Human MDPs for High-Quality AI Inter-
ventions. Following behavioral science, our true human agents discount hyperbolically. The Al
agent intervenes on the human agent’s MDP to help them reach the goal. We focus on Al inter-
ventions that target the human’s discounting, so that when as; = 1, 7y increases to v = v + 4,
or k decreases to k' = k — 0y, depending on whether the Al assumes a hyperbolic or exponential
discount. Note: dj, 6, > 0 are changes to the discount factor, also called the intervention effect.

We aim to understand how misspecifications of the discount model impact optimal Al policies. Opti-
mal Al policies solve the AI MDP defined in section 3 where actions are interventions. Specifically,
we study differences in Al policies arising from approximating hyperbolic human agents as expo-
nential ones; cases where ﬂexp(s v) # 71{3,{)(5 k), for some s € S41. Here, Wéjl(é( ) is an Al policy
that uses an exponential discount model of the human with parameter .

In our AI assisted behavior change setting, false negatives (missing necessary interventions) are
more harmful than false positives (delivering unnecessary interventions). Missing an intervention
means the human will not accomplish their behavioral goal, while excessive interventions ensure
goal achievement but annoy the user. Formally, false negatives are cases where the hyperbolic Al
policy intervenes but the exponential Al policy withholds:

FNy(v, k) =T {mjyr(s;k) = Land 75l (s;7) = 0} . 3)

Here, I{-} is the indicator function. Likewise, false positives are cases where the hyper-
bolic AI agent withholds intervention but the exponential Al agent intervenes: FPs(v,k) =

I {ﬂ'hyp(s k) = 0 and Wexp(s v) = 1} .
We have two goals:

1. Identify an exponential approximation of the hyperbolic human that guarantees no false negatives
and minimizes false positives in Al policy. In section 5, we identify s that solve the following
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optimization problem:

min E FP(v,k), st E FNy(v,k)=0. (€))
v
seS seS

2. Identify the best approximation (exponential or otherwise) of the human’s discounting function
when learning the Al policy online. In most real-life settings, the transition dynamics of the be-
havior change setting are unknown. In section 6, we perform empirical experiments that compare
approximate discount models when transitions are learned online.

5 Theoretical Analysis

We identify solutions to the optimization problem in Eq. (4), which ensures the Al will not miss
necesssary interventions while minimizing uncessesary ones. First, we characterize which s guar-
antee no false negatives in the Al intervention policy. Then, we prove that the larger the -, the fewer
the false positives. We use this fact to propose two solutions for ~y that require different levels of
knowledge. One is a state-specific 7y, which relies on knowledge of the environment transitions and
human’s hyperbolic discount rate k. The other solution still requires & but does not assume knowl-
edge of the environment transitions. ! For brevity, our analysis focuses on the choice between the
goal state and only a single distractor state. When multiple distractors exist, only the highest-valued
distractor is relevant, so this reduces to the same pairwise comparison.

5.1 Guaranteeing No False Negatives

We characterize exponential discount rates that guarantee no false negatives. Intuitively, to prevent
false negatives, we want our exponential approximation to be “conservative,” meaning it under-
estimates the human’s preference for the goal state. This way, we never miss an intervention by
incorrectly assuming that the human agent’s policy will reach the goal without intervention. Defini-
tion 1 formally defines a “conservative” exponential approximation; whenever the hyperbolic agent
values a distractor state over the goal state, the exponential agent must also prefer the distractor.

Definition 1 (Conservative exponential approximation). Let 7(™) refer to a policy whose actions
lead to absorbing state 5™ and V(") refer to the value of following this policy. Suppose the human
agent is hyperbolic with discount rate k. An exponential approximation of the agent is conserva-
tive if, for all states s € S where the hyperbolic agents prefers the distractor state Vh(yz)(s; k) >
Vh(y]:) (s; k), the exponential agent also prefers the distractor state VJ[Q (s;7) > %&g) (s;7).

In order for a conservative exponential approximation to guarantee no false negatives, the Al must
also assume that the intervention effect, 6., is sufficiently large. Under a conservative vy, the Al
always recognizes when the human prefers the distractor and thus never misses opportunities to
intervene. However, it may still withhold intervention if the effect is too weak to alter the outcome.
The simplest way to ensure d is sufficiently large is to assume maximal effectiveness; , = 1 — .
In Theorem 2, we prove that an exponential approximation using a conservative y and 0, = 1 — 1y
implies no false negatives in the Al intervention policy.

Theorem 2 (Conservative means no false negatives). Let the true human agent discount hyper-
bolically with parameter k and that Al interventions reduce this parameter by 6. If the Al agent
plans using an exponential approximation with conservative v (under Definition 1) and maximal
intervention effect 6, = 1 — vy, then there are no false negatives: Z FNy(v,k)=0.

seES

Proof. In Appendix A.1, we present a proof by contradiction.

!In psychology, there are known ways to estimate a human’s k, such as the Monetary Choice Questionnaire survey Kirby
et al. (1999)
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Solving for a conservative exponential discount rate yv. We now characterize what ~’s are con-
servative (and by extension of Theorem 2, what +’s guarantee no false negatives). To facilitate our
theoretical characterization, we make three assumptions: the transitions of the MDP are determin-
istic, there is no burden (intermediate rewards), and human policies are deterministic. Under these
assumptions, we derive closed-form solutions to value functions in absorbing state MDPs. Later, in
Section 6, we demonstrate that our results hold empirically when the assumptions are relaxed.

Let ¢(™) refer to the length of the path from state s to absorbing state s("*) under deterministic policy
7(™) . Then the value functions for hyperbolic and exponential discounting are:

1 n n (n) _ n
r™ Vi (s7) =47 1. ©)

(M) (e 1) —
v (S;k’) = 1+ k(f(”) — 1) exp

hyp

In Theorem 3, we leverage these closed-form solutions to derive conditions under which ~ guaran-
tees a conservative approximation.

Theorem 3 (Characterizing conservative ). Suppose the true human agent discounts hyperbolically
with parameter k. Suppose the distractor state s has reward r™. Let (") refer to the length of
the deterministic path from state s € S to s™. Let A = ((N) — (") > 1 refer to the difference
in distance between the goal and distractor state. If the exponential agent uses a discount rate of y
satisfying the following, then the exponential agent is a conservative approximation:

L4 ke —p N\
< 6
7—<1+ke<n>+m—k> ’ ©

Proof. Algebraic derivation in Appendix A.2.

5.2 Minimizing False Positives

Ruling out false negatives alone does not ensure good Al policies. We must also minimize false
positives, which occur when the Al intervenes even though the human agent would have reached the
goal state without intervention. This scenario involves three conditions (details in Appendix C.3):

C1 The true hyperbolic agent with discount k prefers the goal.
C2 The exponential approximation with discount - prefers the distractor.

C3 The exponential approximation under intervention with discount -y + 4., prefers the goal.

Using the above, we can formalize which parameters will cause a false positive. C2 implies

Vil (si7) > Vih(s;y). C3 implies that Vi (s;y + 6y) < Vi (557 + d). CI can be

ignored because the exponential approximation does not affect it. Together, C2 and C3 imply:
(7 + 6,) ¢ = < 7@ 0 < A= Our choice of 7y affects how often this condition is met.
We define the “broadness” of the condition as a function of v, which we call the false positive range:
(n) _p(N) (n) _p(N)

FPage(y) =7"" 7" = (y+8)"" . (7)
A larger F'Pnee means more false positives, since more reward pairs (r("*), M)y will satisfy the
condition. In Theorem 4, we show that F' Pyy,e. decreases with -, so larger  reduce false positives.
Theorem 4. Let (™) and (!N) refer to the length to distractor and goal state from state s. Consider
two exponential approximations, which use discount rates 1 and ~ys. Both approximations assume
the same intervention effect, 0. If y1 > 72, then F Prapge(71) < F Prange(72)-

Proof. In Appendix A.4, we take the derivative of I Papge.

5.3 Solutions

In Section 5.1, we proved v must be small enough to avoid false negatives, and in Section 5.2 we
proved that larger ~y result in fewer false positives. This implies a natural solution to our optimization
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1+k€ +kA—k
ever, setting v, relies on distances to the goal and distractor, which are derived from the transition
dynamics. However, we may not have access to the transition dynamics for real-world applications.

problem in Eq. (4); we set 7y to be the largest value in Eq. (6), so that v, = (M) . How-

An exponential approximation, g, that

Coiipadao of Tied only requires k. Instead requiring access to

L0 transitions, we lower bound ~, by assuming the
— -
; “worse-case” values of A = 1 and /() = 1.
0.5 — Yeafe = T3 . . .
" '*"k This reduces to an exponential discount rate of
— Ymhr = €
0.0, T T T
0 2 4 G 1
k Vsafe = 3

1+k

Figure 2: Comparison of the state-specific ,, the
mean hazard rate Ymp,, and our proposed Ysafe as a
function of k. MHR is always smaller than ours.

Since Yare < s, it is conservative and guaran-
tees no false negatives (see Appendix A.3).

The mean hazard rate yields more false pos-

itives. Our theory allows us to analyze an ex-

ponential approximation with Yy = exp(—k).
Since Ymhr < Ysafe (S€€ Appendix C.2), it avoids false negatives but incurs more false positives.

6 Empirical Analysis

When learning online, our decision to approximate hyperbolic humans as exponential reduces vari-
ance but increases bias, which means that the Al can guide users to their goals faster at the long-term
cost of sending more interventions. Our experiments test whether this trade-off is worthwhile, es-
pecially compared to the low bias, high variance alternative of using a hyperbolic approximation,
which will take longer to help users reach their goals. Furthermore, our experiments relax assump-
tions of the theory to test its generalizability: the transitions are unknown, the efficacy of the Al
intervention varies for each human, there is burden, and humans are not deterministic. Results with
stochastic transitions are in Appendix D.4.1 (omitted because main results remain unchanged).

Experimental setup. The experiments are in randomly sampled absorbing state MDPs with 8 — 20
states and 2 actions. The deterministic transitions are sampled from a categorical distribution. We
filter for valid transitions where every absorbing state is reachable from any state. No generality
is lost by considering a binary action space; adding more actions would only increase transition
complexity, which we already vary by adjusting the state space size. The range of 8 —20 states allows
us to observe results across a class of small tabular MDPs. There is one distractor state with reward
(") ~ Unif(0.1,0.5), a goal state with reward 7("¥) = 1 and burden r, ~ Unif(-0.5, -0.01). Human
agents are hyperbolic with discount & ~ Unif(0.1,5). Interventions decrease this by ¢ ~ (0.09, k).
Following precedent (e.g., Reddy et al., 2018; Laidlaw & Dragan, 2022), our human agents are
“Boltzmann rational,” actors who follow stochastic softmax policies with a small temperature 7 =
0.02, which ensures they can reach the goal under the oracle Al policy (if the human is too random,
even good Al policies will not help). The Al agent receives a reward of 1 when the human agent
enters the goal, —1 at a distractor, and —0.1 for intervening (further details on the AT MDP in
appendix D.1). Episodes start in states where the optimal Al policy intervenes; otherwise, outcomes
wouldn’t depend on the policy. This setup highlights differences between methods.

Baselines for modeling the human agent. Table 1 describes our baselines. All methods except the
oracle estimate the transitions, by normalizing the observed counts of transitions (MLE). Al actions
are selected according to an e-greedy policy with e = 0.1; interventions are random 10% of the time
and maximize the optimal value function under the estimated transitions for the remaining (certainty-
equivalence RL). The hyperbolic baseline in our main experiments use Monte-Carlo estimation with
500 samples to approximate the expectation in Eq. (2), but we also compare alternate approximation
methods in our experiments. We include the fixed-;; baseline to demonstrate what happens when
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Table 1: Experimental baselines, which differ in their model of the human’s discount

Baseline Transitions Discount model Intervention
oracle True T True hyperbolic k& True dx
hyp-mcmc (Fedus et al., 2019) Learned Hyperbolic approx. Eq. (2) True dx
fixed-"ysafe Learned Exponential, fixed to 1/1+% Max
fixed-~Ymhr Learned Exponential, fixed to exp(—k) Max
fixed-ypig Learned Exponential, fixed to vsate + 0.2 Max
learning-~y (Nofshin et al., 2024) Learned Exponential, + is learned 0~ learned
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(b) Human Q, no intervention (¢) Human @, intervention
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Figure 3: Hyperbolic approximation (green) predicts the human value well, but leads to more
false negatives and worse Al policies. Error bars are 95% CI over 5000 trials (1000 random MDPs,
5 runs each). First row is error in human value prediction, second row is error in Al policy.

an exponential model with a discount factor larger than ours is used (the value of v is clipped at
0.99). Always-intervene is a naive strategy that intervenes every timestep.

6.1 Results

Approximation error in the hyperbolic method means AI policies fail to intervene when
needed. Surprisingly, in Fig. 3a, the exponential methods outperform the hyperbolic approximation,
even though the true human is hyperbolic. The poor performance of the hyperbolic approximation
is due to the variance of learning the transitions; with true transitions, its performance matches the
oracle. What causes the hyperbolic approximation to have low rewards when learning the transi-
tions? In Fig. 3b and Fig. 3c, the hyperbolic approximation better predicts human value functions,
which means it is generally better at anticipating user intentions. But, in Fig. 3d, we see the few user
misunderstandings it does make lead to more false negatives in the Al policy (i.e. assumes the user
prefers the goal state when they do not).

Our g, strikes the right balance of minimizing false negatives and avoiding false positives in
the AI policy. Our theory indicates that ysae and vmp, Will prevent false negatives in the Al policy
when the transitions are known, meaning an Al policy that uses Ysafe OF Ymnr Will intervene enough
to get the user to the goal state. Fig. 3d and Fig. 3e shows that our theory generalizes to when the
transitions are learned; fixed-vs,g and fixed-yyn, learn Al policies with the fewest false negatives—
meaning they help user reach the goal more consistently— but fixed-vs,s has fewer false positives—
meaning it is less likely to annoy the user. Naturally, one might wonder how fixed-vsare and fixed-
Ymhr cOmpare to the strategy of always intervening, which has a false negative rate of 0. Though
not shown in Fig. 3e for visualization reasons, the always-intervene baseline has a false-positive
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(b) Interventions Ysafe VS. Ymhr
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Figure 4: Gap between fixed-vs,s and fixed-v,, is bigger for larger & (humans are more my-
opic). Fig. 4a shows reward difference, averaged over all episodes, increases with k. Dotted line is
Ysafe — Ymhr- Fig. 4b shows fixed-ymn: intervenes more than fixed-vsafe -

rate of 0.8, much higher than even that of fixed-ymp, at 0.075. As a result of over-intervening, the
always-intervene baseline overburdens the human and has low overall reward in Fig. 3a.

Finally, fixed-7pie demonstrates that fixed-7s.fe is not too big. The fixed-7ie baseline incurs more
false negatives than fixed-vs,r and lower overall reward in Fig. 3 (this difference is more apparent
when humans are optimal in Appendix D.4.2). Thus, we see that Y. 1s “just right”; it is conservative
enough to intervene on the human when the goal is at stake, but big enough to avoid over-intervening.

The fixed-~,,, baseline over-intervenes more severely on human agents that are more myopic.
Our theory indicates that vy, is always smaller than 7y, for humans with the same k, meaning
fixed-ympe Will intervene more on a given user. This is why fixed-vg,g outperforms fixed-ymy, in
Fig. 3a. This performance gap increases for larger k (see Fig. 4a), as the difference in ys— and
therefore the difference in false-positives— also increases between the two methods (see Fig. 4b).
For small enough k in Fig. 4a, fixed-ymp, outperforms fixed-vs,q . However, this describes a setting
in which the human is already far-sighted, which is less relevant in practice, since far-sighted users
are unlikely to need help prioritizing faraway goals.

Fixing ~ is better than learning it when the inductive bias aligns with the true environment.
When a small v accurately models the human’s behavior, fixed-vg,g outperforms learning-y by
avoiding the cost of learning. For example, a small discount such as st is plausible when the goal
is close, because the human agent must be more myopic to prefer the distractor reward. Fig. 5b
confirms that the likelihood of the ~,¢ is higher when the goal is close, and correspondingly, the
advantage of fixed-vsafe 1S more pronounced in Fig. Sa. The fact that fixed-vsare does worse as the
goal grows more distant (and s no longer models the MDP well) suggests that a good strategy
may be to use Ysafe as a prior, and then learn a more likely v as more data becomes available.

When the transitions are unknown, regardless of approximation method, the hyperbolic model
has worse performance and worse computational efficiency than exponential. Modeling hyper-
bolic agents requires approximating the expectation over exponential Q-values from Eq. (2). Thus
far, our experiments have demonstrated that an MCMC approximation with 500 samples is insuf-
ficient for good performance. Fig. 6 further illustrates that fixed-vysfe outperforms a hyperbolic
approximation regardless of the method used. Because we did not observe substantial differences
among different estimation methods in this ablation, in our other experiments we only considered
MCMC estimation. Fig. 6b demonstrates that increasing the number of samples does not help,
because the hyperbolic methods are still sensitive to the quality of estimated transitions. Overall,
hyp-mcmc consumes several orders of magnitude more computation (Fig. 6¢) while still failing to
meet the performance of fixed-vs,¢e managed with no prior engineering effort.

7 Discussion and Future Work

Estimating k. In this work, we investigated the impact of approximating hyperbolic humans as
exponential discounters on Al intervention policy. We proposed an exponential discount rate, Ysafe,
whose initialization does not depend on knowledge of an absorbing-state MDP’s transitions, but
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Figure 6: Hyperbolic approximations, regardless of method and sample size, perform worse
than fixed-v,re and are orders of magnitude more computationally expensive. In Fig. 6, no
approximation method (defined in Appendix D.2) matches the performance of fixed-vsare . In Fig. 6b,
increasing the number of samples has diminishing returns when learning transitions (dashed line is
given true transitions). Fig. 6b shows the runtime cost of increasing samples per timestep.

does require knowledge of the human’s hyperbolic discount rate, k. In practice, k£ can be estimated
using known surveys (Kirby et al., 1999), and an interesting future direction to study the extent to
which surveys can provide accurate measures for k£ for Al agent planning. Furthermore, we note
that needing an estimate for & is not a unique limitation of our method — estimating & is necessary
even when using a fully hyperbolic model or the mean hazard rate.

Generalization to other human-Al interaction paradigms. In our Al intervention setting, we
found that exponential methods outperformed the hyperbolic approximators, even when human
agents were truly hyperbolic. This raises questions about whether careful selection of the expo-
nential discount « can match— or even surpass— the performance of hyperbolic approximation in
other human-AI interaction settings. For example, in inverse reinforcement learning, the goal is
to infer the human’s other MDP parameters, such as the reward. Recent work has started to ex-
plore inverse learning under non-exponential discounts (Yao et al., 2024), but it is worth considering
whether there is an exponential discount rate that would suffice.

Beyond absorbing state MDPs. Our results are on absorbing state MDPs, where there is one
absorbing goal state and multiple distractor states. Although this class of MDPs covers several
worlds considered in recent literature, they do not encompass all the behavior settings we might
want to study. It would be interesting to see how our proposed v = 1/i4+k, which we derived
specifically for absorbing state MDPs, generalizes to worlds outside of this class, such as ones with
more complex intermediate rewards than burden.

Preference reversal. While we considered hyperbolic discount in our MDPs, we did not include
preference reversal in our formalization. To do so, we would have to incorporate replanning, since
preference reversal occurs because the agent has a time dependent policy; the policy in one timestep
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(i.e., looking far into the future) is different from the policy in the other (i.e., considering the “now”).
For example, Yu & Ho (2022) implement replanning by changing the definition of value functions;
they account for value at a current and future timestep. Modeling pre-commitment would allow
us to consider more Al interventions, such as pre-commitment, where humans are encouraged to
“pre-commit” to a goal-preferring policy (e.g., Yi et al. (2019)). It is unclear whether it is possible
to plan pre-commitment interventions when the Al uses an exponential human model.

Conclusion. In this paper, we addressed a mismatch in how human decisions are modeled in be-
havioral science (as hyperbolic discounters) and RL (as exponential discounters). We examined the
extent to which humans’ hyperbolic discounting is approximated by a carefully chosen exponential
discount model. In our intervention setting, we found that hyperbolic approximations of the hu-
man agent led to worse Al policies than an exponential one using out theoretically-justified discount
rate, vYsafe- We also showed that vs.p is as general as the well-known 7, but with fewer false
positives, which decreases unnecessary interventions. Our work highlights that defaulting to a hy-
perbolic model is not the best strategy, particularly given its additional computational costs, and we
encourage Al researchers who work with human agents to evaluate the trade-offs between different
exponential models (including g5 ) and a hyperbolic one in their specific applications.
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findings, and conclusions or recommendations expressed in this material are those of the author(s)
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work performed at Harvard University and is not associated with Amazon.

A Appendix

A.1 Proof for Theorem 2: conservative v means no false negatives

We proceed by contradiction. Let v be a conservative exponential approximation. By definition
of the conservative exponential approximation, we have that Vh(_;;)(s; k) > Vh(y]:)(s; k) under no

intervention, implies véx;” (s;7) > Veg(g) (s;y)-i.e. when the ground-truth hyperbolic agent prefers
the distractor state, so does the exponential approximation.

Suppose that the exponential approximation by ~ results in a false negative at s (in Eq. (3)). By the

definition, we must have that: 7}l(s) = 1 and w4/ (s) = 0. It follows from the assumption that ~y

is conservative that 7'('{3,{3(8) =1 = Vh(y?,)(&k) > %gg)(s;k) = V;S(ﬁ)(s;fy) > %&g)(s;fy).

There are two cases that ﬂé?({) (s) = 0 could be true:

1. Suppose 74l (s) = 0 because Veg(g)(s; v+dy) > V;E(J;’) (s;v + d5). But, by assumption we have

exp
v + 0, = 1. This means that V},&g)(s;v +0,) > Veg(g)(s;’y +0,) = (™ > (V) noting
that by assumption we have that v + 0, = 1, so therefore in fact Ve(;;) (s;7 +6,) = r(™ and

V;E(le)(s; v+0y) = #(N). However, by our problem formulation in Section 4, we must have

r(™ < (V) So, this case does not hold.
2. Suppose Wgé(s) = 0 because Ve%)(s;fy) < Vegg)(s;fy). Recall that we had Veg(g)(s;fy) >

Ve%}’) (s;). Thus, we have a contradiction, and this case does not hold.

Both cases cannot hold, thus it must be that ng‘qf (s)=1.

A.2 Proof for Theorem 3: characterizing conservative

By construction, the ground truth hyperbolic agent prefers the distractor state, i.e. Vh(yz)(s) >

Vh(y]:)(s) Using the definition of hyperbolic value functions in Eq. (5), we solve the inequality
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for a constraint on the reward at the distractor state, 7(™):

(n) ) O
RIOER AN 4 > ) 5 a0 (LERCE Z R
Vip 9 2 Vi () = o =g 21k =k " 27 \Txeo—g) ©

Similarly, we solve for the constraint on the distractor state reward in exponential value functions:

" (M _1 (n (N)_ n (N) _p(n)
Vil (s) > VA (s) == 277 1) > 40T TN () s (B (N (10)

We want a v such that a hyperbolic agent’s preference of the distractor state (Eq. (9)) implies that
the exponential agent will prefer the same (Eq. (10)):

(n)
(n) ) (1R — K (n) (N) _e(N) _p(n)
rear (1+k£(1\1>7k = rzry .

It suffices to show that r(N) (w) > ()™= golving this inequality for +:

1+ke(N) —k
ey (%) S () )= (11
= " < (7111,]3:;)) = ]Z> A=) g (12)
= s (1 +1k;(f>€(-:)k_Ak— k:) : ' (1

A.3 Proof that v < v,

We show that v, < 5, meaning that g, 1S conservative (i.e. guarantees no false negatives). First,

note that v, is increasing with respect to (). The derivative of ~, with respect to /(") is:

ko 1+ k(A4 —1)\ %) Ak
\A/( L+ k(e —1) ) ((1+k(A+Z(”>—1))2) (14)

(@) (b) (©)

Part (a) > 0 because k& > 0 and A > 0. Part (b) > 0 because /(™) > 1 and all the other terms are
positive. Part (¢) > 0 for the same reason. So, we know the function is increasing with respect to
¢ Since ~, is increasing with respect to £(), we can lower bound it by substituting the lowest
possible value of /(") = 1. Note that if /() = 0, then the agent would be in an absorbing state.

1
The value of ;s is then: 5 > ( ) - Again, the derivative shows that this increases with A:

_1
I+kA

d 1 \% 1 1\ A%
o5 (irm) =~ m (i) (AL 0 R ost/ns)),
<

c
A — (©)

Since k > 0 and A > 0, term (b) is positive and term (a) negative. So, we show that term (¢) < 0:

EA 4+ (14 kA)log(Y/1+ka) < KA + (14 EA) (1 +1k:A - 1) =0 (15)

So, 7, increases with A. Again, we can fill in the smallest possible A = 1, so that 5 > ﬁ Thus,

_ 1+ k0™ — k
VT T k™ kA — K

D=

S \EL L (16)
“\1+ka) “ 14k o
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A.4  Proof for Theorem 4: F' Prapge is a decreasing function of v

We want to show that F' Py, is decreasing over v € [0, 1]. Consider the derivative:

e(n) _p(N) _q o(n) _p(N) _q

FPonge(7) = (£ = )y — (@ =)y +6) a7

1 1
= (¢ AR (’YZ(N)J(,QH (v + 57)5(N)4(n>+1) . (18)
(a)

(b)

Part (a) is negative because /(M) > ¢(") by definition. Part (b) is positive because the left side
denominator is smaller than right one (6, > 0 by definition). So, the derivative FP{ange(v) <0, 1ie.
the size of the false-positive range decreases as vy increases.
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B Background details

B.1 Linking hyperbolic and exponential Q-values

Here, we elaborate on the result from Fedus et al. (2019) that hyperbolic Q-values can be approxi-
mated as an expectation over exponential Q-values:

thp(sv a; k) = IE’waeta(l/k,l) [Q:xp(sa a; '7)] . (19)

Starting with Eq. (1), we apply a change of variables v = exp(—A\) which relates the survival
probability v with the hazard .

dnyp (£; k) (20)
<1

= / z exp(—A(t + /k))dA From Eq. (1) (21)
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= Eyp(y) [dexp (£ 7)]- (25)
(26)

Note that the step from Eq. (21) to Eq. (22) follow from the change of variables, where d\ =
—~~1dry and the respective bounds become ¢’ = 1 and e=> = 0.

Finally, the distribution over + follows a Beta distribution. To see this, we relate p(+y) to a uniform
distribution by considering the CDF:

Il
Enl
/N
>
2
B
N——

This implies that v = U*, where U ~ Unif(0,1). Equivalently, v follows a beta distribution
Beta(1/k, 1).
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Since Q-values are discounted sums of rewards, the above relationship holds for Q-values due to the
linearity of expectations:

Qnyp(s, a; k)
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y 3
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B.2 Behavior Model RL (BMRL)

Human discount Human optimal Human policy Al transitions Al policies
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Figure 7: Overview of how the human’s discount function affects the downstream Al policy in
BMRL in Nofshin et al. (2024). The human agent’s discount model and transitions affect the human
agent’s optimal value function, which in turns affects the human’s optimal policy. The human’s
policy is completely encapsulated in the Al transitions, which in turn, affects the Al policy. Note
that the human transitions appear twice; first to affect the optimal value, and then to affect the Al
transitions.

B.3 Worlds Represented by Our Sampled Absorbing State MDPs

Cliff walking world The cliff walking world is a 2-D gridworld introduced in Sutton & Barto
(2018) and appears throughout the literature, including by implementation in the popular Gymna-
sium library introduced by Towers et al. (2024). There is a start state, a goal state, and a set of “cliff”
states that run along the bottom of the world. If the agent enters a cliff state, they transition back to
the start state.

The goal state is well represented as an absorbing state. If the cliff is implemented as an absorbing
state, then it corresponds to a distractor state, and the entire cliff world is an absorbing state MDP.
If the cliff is implemented as a non-absorbing state (i.e., the agent gets sent back to the starting state
if they enter a cliff state), then this is still an absorbing state MDP without any distractor states.

Chain world Nofshin et al. (2024) introduced the chain world, which captures a notion of a (hu-
man) user’s progress toward some task. There is a disengagement state where once the user disen-
gages, the user receives reward of 0 in perpetuity. There is also a goal state, and there are interme-
diary progress states. The goal state corresponds to the goal state in absorbing state MDPs. The
disengagement states correspond to distractor states in absorbing state MDPs. Hence chain worlds
are absorbing states.

Vegetarian cafe vs. donut chain world. Evans et al. (2016) introduces a world where agents face
a tradeoff from going to nearby donut chain stores versus a further vegetarian cafe that is better for
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their health. There is also a second path with a noodle shop. Both the donut chain stores and the
noodle shop represent distractor absorbing states, while the further vegetarian cafe represents a goal
absorbing state. Hence, this can be represented as an absorbing state MDP.

Path world Fedus et al. (2019) introduces a world of paths of varying lengths, where the agent
faces a decision between the paths. We can represent the lengths of the paths as intermediate states,
and the states at the end of each path are indeed absorbing states. These absorbing states vary in
reward, and the largest is the goal absorbing state; the others are distractors. Hence, this world is
well represented by our sampled absorbing state MDPs.

Precommitment and addiction Kurth-Nelson & Redish (2010) links hyperbolic discounting to
notions of precommitment — which occurs when an agent takes a path that goes toward a single
reward and excludes the possibility of the type of preference reversal seen in hyperbolic discounting
— and addiction science and other manifestations of impulsivity in behavioral science.

The example given by Kurth-Nelson & Redish (2010) where an agent is able to commit to a larger
world (their “Figure 1”) is indeed well represented by an absorbing state MDP of the type we sample.
There are two large rewards — which can be represented as goal absorbing states — and one small
reward — which can be represented as a distractor absorbing state.

This is a particularly salient example because of the links to real-world applications in modeling
behavior including in the study of addiction.

C Theoretical Analysis

C.1 Form of Value Functions for Absorbing State MDPs

Let L be the time to any absorbing state under policy 7. Let R be the reward at that absorbing state.
Both of these variables are random because of the randomness in the transitions P. In absorbing
state MDPs, value functions will have the form:

V7(s) (27)
=E.p Z d(t —1)R; Definition of value function
t=1
r L
=ELr |dL—-1)R+m Z d(t — 2)] MDP structure
L t=1
r L—2
=ELr [dL—-1)R+m Z d(t)] Shitfing sum
L t=0
L—2
=Ep lER [d(L — 1R+ Z d(t)H Repeated expectations
t=0
L—2
=E; ld(L —DEg[R]+71 Y d(t)] . (28)
t=0

If we assume the transitions are deterministic, then L and R are no longer random. Let (") be the
length of the path from state s to absorbing state s(™) with reward r(™). Furthermore, if we assume
no burden (r, = 0), then only the absorbing state reward remains. The value of a policy (™) that
goes to absorbings state s(") is:

Vi (s) = d(e™ = 1), (29)
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C.2 Proof that v,p < Veafe

Ymhr < Vsafe 30)
1
— In( ——
. k<n(1+k> (32)
— k>1In b (33)
= 1+k
> — — <x-—
= k> T 1, (Note that In(z) <z — 1) (34)
— (k+1)*>1 (35)
— k24+2k+1>1 (36)
— k2+2k>0. (37)

The last line is always true, since k£ > 0.

C.3 Expanded details on false positive range

In Al interventions, false positives are when the Al intervenes despite the fact that the human agent
would have reached the desired goal state without needing intervention. A scenario with a false
positive requires three conditions to hold.

1. The (true) hyperbolic agent is already going to the big reward:

N n
Vi (s:k) 2 Vi (s2k)foralln € {1,....V}

2. The exponential agent goes to the small reward:

n . N .
Vi (s:7) > V3 (s;7) foranyn € {1,..., N}

exp
3. The exponential agent under intervention goes to the big reward.

V(N)(s;'y—}—&y) > Veg(’;)(s;’y+57) foralln € {1,..., N},

exp

where 0., > 0 refers to the increase in the exponential agent’s discount factor.

Formalizing condition (1). Let ¢ be the best option absorbing state (that is not the goal state),
defined as:

7= argmaxi:h,,,NflVL(yig (S)

If the agent prefers the goal state, it means that the goal state is better than this alternate best-option:

N n
B (5) 2 V() foralin e {1,..., N} C9
— Y (s) 2 V0 >
1 1 ‘
R TN ) > - (i) 40
TR kT TR~k -
— (14D — k)™ > (14 k™) — ) @D

N
) 5 LR —k )

— T S T —k

(42)
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Formalizing condition (2). Let j be the best option absorbing state (that is not the goal state) under
exponential discounting, defined as

Jj= argmaxj:l,.,.,Nfl‘/eg({)) (s)-

If the agent prefers the distractor state, it means the best-option absorbing state is better than the
goal state:

V;EZ;)(S) > Veg)(s) foranyn € {1,...,N} (43)
= Vg () 2 Vi () (44)
= 'yg(j)_lr(j) > 'yK(N)_lr(N) (45)
) < ye(j)’z(mr(j) 46)

Formalizing condition (3). The condition becomes:

Vi (557 +0y) > Vi (s;y +6,) foralln e {1,...,N} (47)
= V&Y (57 +6,) > Vil (si7 + 6,) (48)
= (v+ 5)4(1\7)7«(1\7) > (v + 5)é(j)7-(j) (49)
= ) > (y 4 8)" 0, (50)

Defining the false-positive range for . Since our choice of v does not affect whether or not the
hyperbolic agent prefers the goal state, we can ignore condition (1).

So, our Al will send a false positive if:

(v + 5)5(j>,g<w>r(j) <rM < VE(N%(N)T(J') -

2 _p(N)

= (40T < Vo <y (52)

This defines the range of values for v under which a false positive might occur. We want to show
that larger - results in a smaller chance of false positives. This means that we want this range to be
smaller the larger the .

D Empirical Experiment Details

D.1 Definition of the AI MDP

* Al states. The Al state s = [s,a] is derived from the human agent’s MDP. It includes the
human’s current state s and the human’s action at the last timestep, «. At the beginning of an

episode (when there is no concept of previous timestep for the human’s action), « is initialized to
0.

» AI actions. The Al actions are binary; the Al either intervenes on the human agent’s discount
a*! = 1 or does not intervene a! = 0.

+ Al rewards. The Al receives a small negative reward for intervening (a*/ = 1), a large negative
when the human agent enters a distractor state (s = s(1), ..., sV=1) and a large positive reward
when the human agent enters the goal state (sV)).

—0.2 ifa? =1
RM(sM aMy =0 -1 ifs=sD,. . . s (53)
1 if s = s(V)
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Figure 8: Examples of state diagrams for randomly sampled absorbing state MDPs.

» Al transitions. The Al transitions are determined by the gridworld in which the human agent op-
erates, since they factorize into two distributions: P41 (5’41541 aA1) = P(s'|s, /)7 (|5, a),
where (|5, a1!) is the effect of the Al intervention on the human’s action, and P(s'|s, ) is
the effect of the human action on the next state.

For gridworlds with stohastic transitions, we first sample a deterministic gridworld. We then
add stochasticity of level e. The original transition has probability 1 — e. The probability of
transitioning to the remaining /N connections from state s is then ¢/n.

* Al discount. We use an exponential discount function with v = 0.99.

D.2 List of estimators

We are using the following integral estimation methods, which we refer to above as:
* memce: Monte Carlo estimation sampling from a target distribution and averaging.
» quad: Gaussian quadrature that approximates via selection of nodes and weights.
* riemann: A simple Riemann sum.

* strat: Stratified sampling done by sampling uniformly among the strata (divisions of the sampled
support).

* importance: Importance sampling drawing from a proposal distribution and shifting to a target
distribution.

D.3 Examples of randomly sampled absorbing state MDPs

Fig. 8 shows examples of state diagrams for randomly sampled absorbing state MDPs.

D.4 Experimental results in expanded settings

D.4.1 Stochastic transitions

In Fig. 9, noise 7 € [0, 1] represents the stochasticity of environment transitions. Formally, there is
a 1 — n change of transitioning to state s’ after taking action « in state s, and there is a 7 chance of
transitioning to a random state that is not s’. The larger 7, the more stochastic.

D.4.2 Optimal (deterministic) human policies

In Fig. 10, we show the impact of running a simulation in which the human agent follows an optimal,
deterministic policy vs. a softmax policy. As expected, the softmax policy leads to noisier results.
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Figure 9: Cumulative reward of Al policy in sampled absorbing state MDPs with varying levels of
environment stochasticity. The stochasticity does not affect the main trends; the exponential methods
still outperform hyperbolic, and all policies outperform the naive always-intervene baseline.
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Figure 10: Cumulative reward of Al policy in sampled absorbing state MDPs with different action
selection policies for the human agent. Most main trends remain the same, but the hyperbolic
baseline with the true transitions does worse when the human is optimal (green, dotted line), due to
small errors in the Q-values translating to errors in ranking actions.



