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Abstract

Many of the world’s languages have insufficient
data to train high-performing general neural
machine translation (NMT) models, let alone
domain-specific models, and often the only
available parallel data are small amounts of
religious texts. Hence, domain adaptation (DA)
is a crucial issue faced by contemporary NMT
and has, so far, been underexplored for low-
resource languages. In this paper, we evaluate
a set of methods from both low-resource NMT
and DA in a realistic setting, in which we aim
to translate between a high-resource and a low-
resource language with access to only: a) paral-
lel Bible data, b) a bilingual dictionary, and c¢) a
monolingual target-domain corpus in the high-
resource language. Our results show that the
effectiveness of the tested methods varies, with
the simplest one, DALI, being most effective.
We follow up with a small human evaluation
of DALI, which shows that there is still a need
for more careful investigation of how to accom-
plish DA for low-resource NMT.

1 Introduction

Neural machine translation (NMT) models have
limited ability to deal with languages that lack
large-scale monolingual and parallel corpora
(Wang et al., 2021). Moreover, NMT systems
face challenges when translating text from novel
domains characterized by unique style or vocabu-
lary (Koehn and Knowles, 2017; Saunders, 2022).
Often, these issues co-occur, a scenario that has
been neglected by researchers so far. Most of
the world’s 7000+ languages are considered low-
resource (Joshi et al., 2020), and existing data for
them are in limited domains; the languages that
could most benefit from domain adaptation (DA)
are the ones left behind.

In this paper, we explore a realistic setting in
which we aim to translate between a high-resource
and a low-resource language and are restricted to
the following commonly available resources: a)
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Figure 1: In our work, which looks at the (previously ne-
glected) intersection of low-Resource NMT and domain
adaptation in NMT, we consider only these commonly
accessible resources.

Bible translations, i.e., a small parallel corpus in
the source domain; b) monolingual target-domain
texts in the high-resource language; and c) a bilin-
gual dictionary for the two languages. To keep
the setting generalizable, we assume neither ac-
cess to a model pretrained on text in the low-
resource language nor access to data in a related
high-resource language, as for many truly low-
resource languages, those are impossible to find.

We experiment with a set of four DA and low-
resource NMT methods and aim to translate from
English to a target language, simulating a low-
resource setting. We use mBART (Liu et al., 2020)
which has been fine-tuned on parallel Bible texts
as our base model, and our goal is to adapt it to
the target domains of government documents and
medicine. The methods we investigate use the bilin-
gual dictionaries in various ways.

Our experiments showcase the varying effective-
ness of existing methods: the weakest approach
results in models that perform worse than the base
model, while the best approach — which, surpris-
ingly, is also the simplest — results in a ChrF score
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more than twice as high as the base model’s. How-
ever, as the best model only reaches a ChrF score
of 42.47 and a BLEU score of 13.47 (on average),
we also perform a small human evaluation, which
confirms that there is still a need for the develop-
ment of better DA methods for low-resource NMT.
Our code is available on GitHub.'

2 Related Work

Domain Adaptation in NMT  As domains are
defined by the characteristics of data (Saunders,
2022), many effective DA approaches focus on the
data and, thus, can be applied to various underly-
ing architectures. Some works focus on acquiring
monolingual in-domain data, which is easier to
find than in-domain parallel data. Back-translation
uses monolingual target-domain data in the tar-
get language and produces artificial source sen-
tences using a target-to-source NMT model (Pon-
celas et al., 2019; Jin et al., 2020). Chinea-Rios
et al. (2017) use monolingual source-side corpora
and a source-to-target NMT model for forward-
translation, where it is common to employ self-
learning. With access to a small parallel corpus,
extra training data can be created by introducing
noise (Vaibhav et al., 2019). Synthetic parallel data
can be acquired from an external source or gener-
ated using a predefined or induced lexicon. Hu et al.
(2019) use a lexicon to back-translate target-side
sentences. Peng et al. (2020) use a dictionary, in-
jecting dictionary terms into out-of-domain texts to
synthesize in-domain training data. Bergmanis and
Pinnis (2021) augment the training data by annotat-
ing randomly selected source language words with
their target language lemmas to integrate terms.
Zhang et al. (2022) introduce lexical constraints
into iterative back-translation.

Other approaches add parameters to the model,
e.g., domain tags (Kobus et al., 2017; Stergiadis
et al., 2021). Such a manipulation of the embed-
dings could extend to more terms in the vocab-
ulary, beyond the tags (Pham et al., 2019; Sato
et al., 2020; Man et al., 2023). With adapter-
based methods, a domain-specific module is trained
(Bapna and Firat, 2019). Chen et al. (2021) use a
pointer-generator to copy suggestions from the in-
put, which come from a domain-specific dictionary.

Low-Resource NMT Methods for low-resource
MT show some overlap with DA methods. One

"https://github.com/alimrsn79/da_lIr_nmt

popular approach is data augmentation, which can
be in the form of word or phrase replacement with
the help of a bilingual lexicon (Nag et al., 2020).
Back-translation, forward-translation, and data se-
lection methods can also be applied (Sennrich et al.,
2016; Fadaee and Monz, 2018; Dou et al., 2020).
Transfer learning is a useful technique in low-
resource NMT (Maimaiti et al., 2019; Kocmi and
Bojar, 2020; Cooper Stickland et al., 2021). Liu
et al. (2021) continue to pretrain mBART (Liu et al.,
2020) on unseen languages, utilizing a bilingual
dictionary. Although we do not inspect large lan-
guage models (LLMs) in our experiments, some
recent works explore the potential of LLMs for
low-resource NMT. Robinson et al. (2023) observe
that ChatGPT’s MT capabilities across the 204 lan-
guages of the FLORES-200 dataset (Costa-jussa
et al., 2022) consistently lag behind traditional
NMT models. Ghazvininejad et al. (2023) use dic-
tionaries to suggest words to use in the output trans-
lation. Zhang et al. (2024) adopt different strate-
gies for dictionary term lookup and the retrieval of
examples for in-context learning. Siddhant et al.
(2022); Ranathunga et al. (2023) note that, in the
case of many low-resource languages, the problem
is more severe since the only available parallel data
are religious texts.

3 Data

Parallel Source-Domain Data In all experi-
ments, the only parallel data we use for training
come from the JHU Bible Corpus (McCarthy et al.,
2020).

Target-Domain Data We explore adapting to
two different domains, one at a time: government
documents and medicine. The domain-specific data
mostly come from past WMT translation tasks (Bar-
rault et al., 2020; Akhbardeh et al., 2021; Kocmi
et al., 2022, 2023). As we assume only mono-
lingual in-domain training data (cf. Section 4),
training and pretraining use only source-side sen-
tences from these parallel data sets. Data availabil-
ity varies across language/domain pairs, and we
cap data set sizes to maintain comparability across
languages. For training we use no more than 200K
sentence pairs. If our setting requires pretraining,
we use the same source-side sentences used for
training. For testing, we use 1500 sentence pairs.
More details about the data used for each domain
and language pair can be found in Appendix A.1.
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Dictionaries The methods we investigate here
call for source—target language dictionaries. To
build dictionaries, for each language pair we extract
the 5000 most frequent lemmas and their inflections
from the monolingual training data and use the
Google Translate API® to translate those words.>

We augment this dictionary with word pairs ex-
tracted from our small parallel corpora, using stan-
dard statistical approaches for lexicon induction.
Specifically, we employ Fast Align (Dyer et al.,
2013) on the Bible verses.The expansion of the dic-
tionary with statistical methods follows previous
work (Hu et al., 2019; Zhang et al., 2024).

Further information about the dictionaries is
available in Appendix A.2.

Languages Because it is difficult to source
domain-specific evaluation data in truly low-
resource languages, we simulate a low-resource set-
ting, selecting languages not seen during mBART’s
pretraining. For the government domain, we ex-
periment on Croatian, Icelandic, Maltese, Polish,
and Ukrainian. For the medical domain, we use
Croatian, Icelandic, Maltese, and Polish. In all
cases, English is our high-resource language.

4 Experimental Setup

Our goal is to translate from English into our low-
resource languages, one at a time. In this section,
we describe the different approaches we investigate.
All of them use mBART as the backbone model
and are implemented using fairseq.*

mBART Baseline Our baseline is the pretrained
mBART model, which has been trained on 25 lan-
guages and is said to generalize well to unseen
languages (Liu et al., 2020).

DALI We adapt the method from Hu et al. (2019),
who extract a lexicon by mapping word embed-
dings from the source to the target language. They
then use this lexicon to back-translate from the
target monolingual data, by word-for-word replace-
ment. The resulting texts are the pseudo-parallel
data that are used for training. We produce pseudo-
parallel data using the same method, but use the dic-
tionary described in Section 3. As we have access
to monolingual texts in the source language, we do
forward-translation instead of back-translation.

Zhttps://cloud.google.com/translate/

3We expect performance might increase if we had domain-
specific bilingual dictionaries for each language pair.

4h’ctps ://github.com/facebookresearch/fairseq

LeCA Chen et al. (2021) append suggestions to
the input to be used in the output. Their model
uses a pointer-generator module to potentially copy
from the input. Since the model updates just the
probability of the next token by also considering
copying from the input tokens, it is not a hard
constraint. We match their DICTIONARY CON-
STRAINT setting, where suggestions are made by
looking up source-side terms in a given dictionary.
We implement this on top of the base mBART
model. Note that LeCA was not originally pro-
posed for low-resource scenarios, and they do not
use a pretrained model, instead training the base
Transformer model from scratch.

CPT Liu et al. (2021) continue pretraining
mBART on mixed-language text, modifying the
pretraining scheme of the model. They corrupt the
text by replacing some terms with their translation
in the new language, and the model is trained to re-
construct the original text. In our setting, we must
use source-side monolingual text only, matching
their CPT w/ MLT (SRC) method. Note that in our
experiments we translate from the high-resource
language to the low-resource.

Combined We experiment with merging the
above methods: first, we pretrain the model (CPT)
and then train it with pseudo-parallel data (DALI)
while using pointer-generators (LeCA).

Metrics We evaluate all methods on the test data
decribed in Section 3, using BLEU (Papineni et al.,
2002) and ChrF (Popovi¢, 2015) as implemented
by sacreBLEU (Post, 2018). We consider ChrF our
main metric, as it focuses on characters and is more
informative when translating into morphologically
rich languages.

5 Results and Discussion

The results for all languages and domains appear in
Table 1. On average, DALI performs best in the ma-
jority of the experiments. It is also the simplest of
the methods to implement, as it is model-agnostic
and only the training data is manipulated.

LeCA does not help in most cases, support-
ing Bafna et al. (2024), who observe that pointer-
generators are not consistently helpful for low-
resource NMT. LeCA was not initially devised for
low-resource settings, and also the dictionary here
includes just one translation per term, with no guar-
antee of matching the intended target side mean-
ing. Since mBART was not pretrained on these
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Croatian Icelandic Maltese Polish Ukrainian Average

Metric | Gov. | Med. | Gov. | Med. | Gov. | Med. | Gov. | Med. Gov. Gov. | Med.

mBART BLEU 0.69 1.7 0.76 1.46 1.57 1.68 0.34 0.33 0.9 0.85 1.29
ChrF 17.34 | 18.62 | 1897 | 17.72 | 21.61 | 19.42 | 19.11 | 17.37 17.83 18.97 | 18.28
DALI BLEU 4.1 12.74 5.76 13.89 7.92 16.68 4.21 10.57 6.8 5.76 13.47
ChrF 38.87 | 43.32 | 36.02 | 41.07 | 49.55 | 48.77 | 36.33 | 36.73 37.51 39.66 | 42.47
LeCA BLEU 0.65 1.68 0.98 0.24 1.41 1.5 0.35 0.41 0.79 0.84 0.96
ChrF 17.48 | 18.23 | 19.24 | 15.97 20.6 18.56 17.6 17.11 18.74 18.73 | 17.47

CPT BLEU 2.62 8.02 3.66 5.26 2.18 5.38 1.57 5.73 4.38 2.88 6.1
ChrF 20.46 | 25.19 | 20.67 | 20.56 | 20.42 | 21.86 | 19.19 | 21.03 12.35 18.62 | 22.16
Combined BLEU 3.87 12.21 5.63 134 7.14 16.75 3.82 10.67 6.69 543 13.26
ChrF 3993 | 42.11 | 36.33 | 40.56 | 48.17 | 48.88 | 35.72 | 36.11 36.46 39.32 | 41.92

Table 1: Performance on the all the test sets for the target domains government (Gov.) and medical (Med.)
documents. Best BLEU score per column is underlined, while the best ChrF score is indicated in bold.

languages, its embeddings of words in the low-
resource language might not as directly correspond
to their source-side, high-resource counterparts; we
hypothesize this may be another reason LeCA per-
forms poorly for resource-constrained scenarios.

CPT is helpful in most of the experiments when
compared to plain mBART, but not compared to
DALI. After pretraining, the model is fine-tuned
only on Bible data. In the pretraining, we recon-
struct the source side, so the model only learns to
output in the target language from the Bible verses.
Pretraining helps the model get more familiar with
the domain and establish connections between the
embeddings of target words and their respective
translations in the high-resource language.’

Combining the methods together shows some
improvements over other individual methods, but
generally fails to reach DALI’s performance. Note
that the same dataset was used to both pretrain the
model (the CPT part) and to then make pseudo-
parallel data (the DALI part). Since LeCA is not
helpful when added to the basic mBART, we also
test performance of Combined without LeCA, on
the medical domain. The results (Table 8) indi-
cate that — when using the same dataset for both
— adding pretraining on top of DALI can be detri-
mental, but removing LeCA increases performance
on all languages for the medical domain.

LeCA only uses the dictionary in the final stage,
and CPT uses the monolingual data during pre-
training, before being fine-tuned on the bible data.
DALI and Combined are the only methods that
have access to source-side target-domain monolin-
gual data during the final stage of training, which

5According to Liu et al. (2021), the performance boost is
expected to increase if we have monolingual texts in the target
language instead and can use them during pretraining.

could partially explain their superior performance.
That a simple method like DALI — that mostly
keeps the word order of the sentence language —
should be the best performing method hints at the
extensive room for growth in future work.

Figure 2 shows averaged sentence-level BLEU
and ChrF scores plotted against their respective ref-
erence token lengths for DALI models. For length
[, we average the scores of the models for different
languages if the reference translation is of length
[. We can see that generally the scores seem to get
higher with longer sentences, especially for ChrF.

Example We see some interesting trends in the
outputs. Table 2 showcases an example with the
outputs of different methods for one sentence from
the Maltese-medical test set, the language—domain
pair with the most significant performance boost.
Warning: these outputs could include distressing
language against women that may harm some read-
ers. Both mBART and LeCA translate in a religious
tone. The same is true for CPT, which also tends
to copy words from the input — as it was a part of
the reconstruction procedure during pretraining. It
is important to emphasize that Maltese is a mor-
phologically rich language, and the inflections are
mostly discarded in the outputs of DALI and Com-
bined;, for example the words are more likely to be
disjoint in their outputs than they are in the target
(the first “il ohra” vs “l-ohra” in the target), or they
can be in different forms (“huwa” vs “hija”). Note
that ointment was translated to infusion by DALL
Given the sensitivity of the domain, a translation
like this can potentially be harmful.

Maltese at times has a different word order than
that of English ( “il-medicina tal-ghajnejn” is trans-
lated as “ghajn medic¢ina”, which matches the order
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Figure 2: The trend of averaged sentence-level BLEU (left) and ChrF (right) scores against the token length of the
reference translation for DALI models. The scores are averaged across all the model outputs of the same length —

including averaging across languages, where relevant.

Source: if the other eye medicine is an eye ointment it should be used last

mBART: | jekk il-mara l-iefor hi ¢ajn ohra , hi | LeCA: inkella jekk il-mara l-iehor hi zejt ,
candha tingatalha l-ahhar fl-ahhar tkun magmula l-ahhar

BT: if the other woman is someone else, | BT: otherwise if the other woman is a
she should be punished in the end virgin, she will be the worst

DAL jekk il ohra ghajn medi¢ina huwa | CPT: jekk 1-oArajn ta * lI-iehor hi ¢ajnejja
an ghajn infuzjoni dan ghandu tkun ointment , it should be used l-ahhar
uzati l-ahhar

BT: If the other eye medicine is an eye | BT: Even though the other one is a ¢ajne-
infusion, this should be used last jja ointment, it should be used last

Combined: | jekk il ohra ghajn medicina huwa | Target: jekk il-medicina tal-ghajnejn 1-ohra
an ghajn ointment dan ghandu tkun hija ingwent tal-ghajnejn , dan
uzati l-ahhar ghandu jintuza l-ahhar

BT: If the other eye medicine is an eye | BT: Although the other eye medicine is
ointment, this should be used last an eye ointment, this should be used

last

Table 2: Warning: this table contains harmful language about women that may distress some readers. An
example of different model outputs for a Maltese sentence in the medical domain. For better comparison, the
back-translations (BT) of the outputs to English are also included, done via Google Translate.

of its English counterpart “eye medicine”), and it
is also more flexible. DALI and Combined pro-
duce word orders that closely follow the source
language.

Human Evaluation Conducting a small-scale
human evaluation of the Polish government trans-
lations of 25 source sentences, we find that, while
DALI improves the communication of the over-
all semantics of the sentences, there is certainly
room for improvement, especially when it comes
to fluency and generating grammatical output. Ad-
ditional model outputs and details of the human
evaluation can be found in Appendix C.

6 Conclusion

This paper introduces a realistic setting that has
been previously overlooked: DA for NMT into a
low-resource from a high-resource language, with
available resources restricted to limited parallel
text, a dictionary, and monolingual texts in the
high-resource language. The simplest approach
— DALI - yields the best results, more than dou-
bling baseline performance. A small-scale human
evaluation indicates ample room for improvement,
and we advocate for increased focus on this setting.
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Limitations

It is important that these experiments be conducted
for truly low-resource languages. The scope of
this work was limited due to the availability of
datasets in different domains for such resource-
constrained languages; which was the main reason
we resorted to experimenting on simulated low-
resource languages. Limitations of finding domain-
specific corpora for low-resource languages also
extend to finding domain-specific dictionaries, and
our dictionaries prepared with Google Translate
only mimic target-domain dictionaries. In addition,
we based our experiments on mBART only, and
we leave the study of other multilingual pretrained
models and LLMs (or even smaller, non-pretrained
models like the base Transformer) in this setting
for future work.

Ethics Statement

As our research shows that these methods do not
sufficiently enhance performance for the models
to be deemed useful, there are some caveats to
be mindful of. Specifically, these methods should
not be used for real-world MT in critical contexts
involving low-resource languages; e.g. providing
medical advice based on the translations produced
by the model.

All the data used in the study is publicly available
(see Appendix A.1).
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A Data
A.1 Datasets

Here are the details for the data used in training,
testing and potential pretraining and pseudo data
generation. All the datasets are lower-cased.

A.1.1 Parallel Data

The parallel data come from the New Testament
verses from the Johns Hopkins University Bible
Corpus (McCarthy et al., 2020). For all experi-
ments, 8% of the verses are extracted to be used as
validation data. The number of verses per language
is in the range 7k-8k. The test dataset is of another
domain, and it is discussed in A.1.2. The sizes
of the train and validation datasets for different
languages are shown in Table 3.

Language | Train | Validation
Croatian 7290 634
Icelandic 7167 624
Maltese 7122 620
Polish 7293 635
Ukrainian | 6799 592

Table 3: Number of parallel Bible verses used in training
and validation across different languages.

A.1.2 Pseudo-Parallel Data

We use the Tilde MODEL corpus (Rozis and
Skadins, 2017) for the majority of our experiments,
as it is listed as an available resource for many of
WMT tasks during the last few years (Barrault
et al., 2020; Akhbardeh et al., 2021; Kocmi et al.,
2022, 2023). In all experiments, we retain 1500
sentence pairs for testing. This is the only portion
for which we keep the target side, as we only
manipulate the source side from the rest of them.
In case there are more than 200K available pairs,
we use seed = 42 to randomly choose 200K pairs
from the dataset.

Government Domain

Croatian: We use EESC from the Tilde
MODEL, that comprises document texts from the
“European Economic and Social Committee” docu-
ment portal. The full 200K sentence pairs are used
for training and pretraining.

Icelandic: We use the concatenation of the fol-
lowing three datasets: “Government Offices in

Iceland - Reports™, “Government Offices in Ice-
land — Legislation and regulations”, and “Bilingual
English-Icelandic parallel corpus from the official
Nordic cooperation website” from the European
Language Resource Coordination.® This makes for
a dataset of size 87233 that is used for both training
and pretraining.

Maltese: As was the case with Croatian, we
use the English-Maltese subsection of EESC, and
we choose 200K sentence pairs from all available
pairs.

Polish: We utilize RAPID from the Tilde
MODEL, composed of the press releases of “Press
Release Database of European Commission” re-
leased between 1975 and the end of 2016. 200K
sentence pairs are extracted.

Ukrainian: We use “EU acts in Ukrainian” from
the European Language Resource Coordination,
resulting in 116,568 sentence pairs.

Medical Domain

For the four languages investigated (Croatian,
Icelandic, Maltese, Polish), we use EMA from the
Tilde MODEL. It is compiled from texts available
via the European Medicines Agency document por-
tal. All of these languages had more than 200K
sentence pairs, from which 200K were extracted.

A.2 Dictionaries

The method with which the dictionaries are com-
posed is described in 3. Since many of the lemmas
might have several inflected forms that appear in
the text, the dictionary sizes are larger than 5000,
usually varying between 8k-10k. Here are the ex-
act size of the dictionaries. In Table 4, the column
‘Bible’ denotes the number of terms extracted from
the Bible and added to the in-domain terms that
were drawn out from the monolingual source-side
corpus. Note that if the term already exists in the
in-domain dictionary, we do not replace it with the
one from the Bible. The columns ‘Government’
and ‘Medical’ indicate the final size of the dictio-
nary of their respective domains, including the new
terms from the Bible.

B Training

The details of training are as follows. Each setting
was trained once, and the experiments were done
on NVIDIA A100 GPUs.

®https://language-data-space.ec.europa.eu/related-
initiatives/elrc_en
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Bible | Government | Medical
Croatian 182 9948 8142
Icelandic 359 10004 8383
Maltese 319 10004 8309
Polish 417 10192 8337
Ukrainian | 283 9437 -

Table 4: Sizes of different dictionaries used for different languages and domains.

Note that some of the experiments rely on others;
for example, Combined has three stages of updating
the model: 1) continual pretraining on the domain-
specific texts, 2) training the model from step 1 on
the Bible dataset (CPT), 3) training the model from
step 2 on the pseudo parallel data + Bible (which
is the DALI part). Some notable libraries we use
include:

* fairseq v0.12.2 (which we modified to run our
methods)

e torch v1.13.1
* sentencepiece v0.1.99
¢ transformers v4.30.2.

B.1 Training Hyperparameters

We implemented LeCA and CPT on fairseq for
mBART, and had to change parts of the main library
for compatibility. Since mBART needs a language
id, we added new tokens for these new languages.
We initialized their embeddings randomly (follow-
ing the method for parameter initialization in Liu
et al. (2020)). The fairseq hyperparameters used
in pretraining and training are listed in Table 5.

B.2 Batches for experiments with DALI

In experiments containing DALI - DALI, Com-
bined (and CPT + DALI which is done for medi-
cal domain experiments, as presented in Table 8) -
batches are constructed in a particular way.

In each batch, we have the same number of in-
stances from out-of-domain parallel data and in-
domain pseudo-parallel data. Training batches do
not contain overlapping in-domain pseudo-parallel
data, but we do use the same out-of-domain paral-
lel data in every batch, because we are limited to
Bible verses for parallel data.

C Additional Outputs and Evaluation

Table 6 shows the model outputs for an example
sentence from the Polish test set in the government

domain. We can see the same patterns of religious
phrasing in mBART, LeCA and CPT. Some words
have different translations than those used in the
target translation; e.g. the model translates bank-
ing as “bankowos$¢” while “bankowej” is used in
the reference. Polish is also a morphologically
rich language and it sometimes does not match
English’s word order. Here, for example, bank-
ing union should be translated as “unii bankowej”
while in DALI and and Combined the phrase is
translated as “bankowo$¢ unia”, in the same order
as in the English sentence.

Human evaluation We conduct a small-scale hu-
man evaluation on a set of 25 randomly-selected
sentences from the test set of Polish government
data. A Polish native speaker annotator scored
the translations for both communication of the in-
tended meaning and the correctness of the overall
grammatical structure, using a scale from O to 5.
Only the translations of the original mBART (base-
line) and DALI are compared. The average scores
for meaning for baseline and DALI were 0.12 and
0.2, respectively. For the grammar, both models
were given an average score close to 0. (Perhaps
not surprising for a language with the morphologi-
cal richness of Polish.) Of course, more in-depth
study of the results is needed to draw any strong
conclusions about usability.

Output statistics The average number of words,
number of tokens, and number of characters
of the outputs of different methods against the
reference translations are presented in Table 7.
For number of words, an output is split by
white-spaces. For tokens, the mBART tokenizer
is used. We average the results across lan-
guages. We report the averages because relative
length patterns tend to be consistent across lan-
guages. The full table containing language spe-
cific statistic is available on the GitHub repository:
https://github.com/alimrsn79/da_lr_nmt.
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Hyperparameter Pretraining Training
arch mbart_large
Ir-scheduler polynomial_decay
Ir 3e-5
optimizer adam
adam-eps 1e-06
adam-betas (0.9, 0.98)
dropout 0.3
attention-dropout 0.1

bpe sentencepiece
max-tokens 1024
save-interval 5

criterion label_smoothed_cross_entropy
no-epoch-checkpoints True
layernorm-embedding True
encoder-normalize-before True
decoder-normalize-before True
share-decoder-input-output-embed True
encoder-learned-pos True
required-batch-size-multiple 1

label-smoothing 0.2

update-freq 2

seed 42

warmup-updates 2000 1000

min-epoch 20 75

min-epoch 60 150

patience 10 50
total-num-update (number of steps in one epoch) * max-spoch
task denoising translation_from_pretrained_bart
mask 0.35 -
tokens-per-sample 384 -
poisson-lambda 3.5 -

mask-length

span-poisson

replace-length

1

rotate

0

permute-sentences

0

Table 5: Pretraining and training hyperparameters

Source: in the banking union , those funds are pooled together gradually .

przetoz zgromadzi one czlonki w
lichwiarze .

w banking union wespdt to zgro-

madzito , i nader to zgromadzito .

mBART: przetoz zgromadzi si¢ wszystkie , | LeCA:
ktore sa w todzi .

DALI: w the bankowos$¢ unia , te fundusze | CPT:
czy poszczepiony razem stopniowo .

Combined: w the bankowos¢ unia , te fundusze | Target:
czy pooled razem stopniowo .

fundusze te beda gromadzone stop-

niowo w ramach unii bankowe;j .

Table 6: An example of different model outputs for a Polish sentence in the government domain.
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Average

Domain | Words | Tokens | Characters
Reference Gov. 23.51 44.65 154.55
Med. 19.65 39.43 120.42
Gov. 25.12 49.25 132.7
mBART  Ned. | 2001 | 4427 | 110.94
Gov. 26.83 43.99 155.28
DALI Med. 20.3 37.38 115.7
Gov. 24.82 49.15 133.92
LeCA Med. | 2204 | 4602 | 117.94
CPT Gov. 26.44 47.85 139.7
Med. 20.5 38.23 109.46
Combined Gov. 26.93 43.97 155.95
Med. 20.31 37.41 116.09

Table 7: The average number of words, tokens, and characters of the outputs of different methods against the
reference translation. The results are averaged over all the experiments.

Metric | Croatian | Icelandic | Maltese | Polish | Average
DALI BLEU | 12.74 13.89 16.68 | 10.57 | 1347
ChrF 43.32 41.07 48.77 | 36.73 | 42.27
Combined BLEU | 12.21 13.4 16.75 | 10.67 13.26
ChrF 42.11 40.56 48.88 | 36.11 | 41.92
BLEU | 12.59 13.28 17.03 | 10.88 13.45
CPT+DALL “cpp | 426 | 3867 | 490 | 3636 | 41.68

Table 8: Comparing CPT + DALI with DALI and Combined on the medical domain.

Icelandic
Metric | Gov. Med.
BLEU | 5.76 13.89

DALL ik 13602 41.07
. BLEU | 563 134
Combined -~ £ | 3633 40.56
BLEU | 3446 55.98

Full

ChrF | 59.1 74.05

Table 9: Comparing the model trained on the full parallel dataset with DALI and Combined that only had access to
the source side, for Icelandic. The full models were trained with the same hyperparameters as the training column
in Table 5, but the training was done on the full in-domain parallel text instead of the Bible and pseudo-parallel
sentences.
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