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Abstract

Big data and the rapid development of artificial intelligence (AI) provide unprecedented
opportunities to enhance our understanding of the global carbon cycle and other biogeochemical
processes. However, retrieving mechanistic knowledge from big data remains a challenge. Here,
we develop a Biogeochemistry-Informed Neural Network (BINN) that seamlessly integrates a
vectorized process-based soil carbon cycle model (i.e., Community Land Model version 5,
CLMS5) into a neural network (NN) structure to examine mechanisms governing soil organic
carbon (SOC) storage from big data. BINN demonstrates high accuracy in retrieving
biogeochemical parameter values from synthetic data in a parameter recovery experiment. We
use BINN to predict six major processes regulating the soil carbon cycle (or components in
process-based models) from 25,925 observed SOC profiles across the conterminous US and
compared them with the same processes previously retrieved by a Bayesian inference-based
PROcess-guided deep learning and DAta-driven modeling (PRODA) approach !2. The high
agreement between the spatial patterns of the retrieved processes using the two approaches with
an average correlation coefficient of 0.81 confirms BINN’s ability in retrieving mechanistic
knowledge from big data. Additionally, the integration of neural networks and process-based
models in BINN improves computational efficiency by more than 50 times over PRODA. We
conclude that BINN is a transformative tool that harnesses the power of both Al and process-
based modeling, facilitating new scientific discoveries while improving interpretability and

accuracy of Earth system models.



1 Introduction

Artificial intelligence (AI) has revolutionized our ability to leverage big data to uncover
relationships in complex systems such as the Earth system >. Methods such as machine learning
and deep learning have shown power in discovering key patterns from data in biogeochemistry,
such as representing soil organic carbon concentrations *°, predicting aboveground carbon
accumulation rates in naturally regenerating forests ®, and estimating soil respiration ’. However,
most Al-based approaches primarily learn black-box statistical correlations from the data rather
than causality, making it challenging to translate the learned relationships and patterns into
mechanisms and controls on processes. This lack of mechanistic insight is an inherent weakness
of Al-based models .

To address this challenge, various hybrid approaches have emerged, aiming to integrate
scientific knowledge and reasoning with standard machine learning methods. This powerful
combination leverages the strengths of data-driven techniques along with scientific theories and
reasoning to enhance the mechanistic understanding of the Earth system through big data °. By
introducing physical or knowledge-based constraints and reasoning, such as mass or energy
conservation 12, thermodynamic rules, interpretable latent spaces, and entropy-based reasoning

constraints >4, Bragg’s law for X-ray diffraction '°, empirical functional relationships '*!7,

or
partial differential equations '8, into standard ML approaches such as a neural networks, Al-
based predictions can be further constrained by scientific knowledge in addition to being driven
by observational data. More importantly, unlike the uninterpretable weights and biases in a
conventional neural network, the latent physical parameters embedded in the knowledge-based

constraints explicitly represent physical and biological processes, providing mechanistic

interpretability to the neural network’s predictions. However, previous efforts mostly used



limited constraints in a system (e.g., a few empirical relationships in photosynthesis ') or
simplified models that comprise latent variables and conservation principles '2. It remains
challenging to integrate dozens of partial or ordinary differential equations with numerous free
parameters into a neural network to study the dynamics of a complex system, such as soil
organic carbon (SOC) dynamics.

A recently-developed approach, PROcess-guided deep learning and DAta driven
modeling (PRODA), leverages a deep learning model to learn the site-by-site optimized
biogeochemical parameters by Bayesian inference-based data assimilation, to improve our
understanding of the global soil carbon cycle %22, This approach successfully harnesses the
strengths of both process-based modeling and deep learning methods to improve SOC
simulations with spatially varying biogeochemical parameters. However, the Bayesian inference-
based, site-level data assimilation embedded in the PRODA approach requires vast
computational resources, making the method time- and energy- inefficient and difficult to apply
broadly.

In this study, we integrate a matrix form of a process-based model that describes SOC
dynamics into a neural network, thus developing a Biogeochemistry-Informed Neural Network
(BINN). BINN is a novel framework that combines data-driven machine learning with process-
based modeling to enable interpretability of biogeochemical dynamics, such as SOC dynamics in
this study (Figure 1). Herein, we first introduce the structure of BINN (Figure 1a), followed by a
demonstration of BINN’s ability to recover biogeochemical parameters with high accuracy
through a parameter recovery experiment (Figure 2) and estimation of model components from
real-world SOC observations (Figure 1b). Our predicted biogeochemical parameters accurately

simulate real SOC observations, and are similar to those produced by PRODA, while being much



faster to estimate computationally. By combining data-driven learning with reasoning about
existing geoscientific knowledge, BINN can accurately and quickly infer underlying physical

processes from only SOC observations.

2 Biogeochemistry-Informed Neural Network (BINN)

BINN incorporates a process-based model into a neural network to infer SOC concentrations and
underlying processes from observational data (Figure 1a). First, a neural network learns the
relationships between environmental covariates and biogeochemical parameters, which quantify
the strength of important processes in the soil carbon cycle. We pass these parameters to a

process-based model to simulate SOC storage, and compare with field observations.

2.1 Neural Network

We employ a fully-connected neural network to learn the relationship between environmental
covariates (Table S1) and biogeochemical parameters over space. The neural network uses
embedding layers to encode categorical covariates, and a spatial positional encoder to compute a
vector embedding for each location. We combine these embeddings with the numeric covariates
into a vector e, and pass this through a 4-layer neural network fyy (Equation 1) with learnable
weights/biases w, which outputs a vector z with 21 values (one for each parameter in the

process-based model):

z = fun(e;w) (1)



Because we have prior knowledge about the plausible range of values for each biogeochemical
parameter, z is further processed by element-wise sigmoid functions ¢ (Equation 2) into

predicted parameters p. This ensures each parameter p; stays within these prior ranges:

1
(_ﬂ) * (ei,max - Hi,min) + Qi,min (2)
Y

pi = 0(¥, ¥, Oimax> Oimin) = rexp
where z; is the i-th output of the neural network, 6; ;.4 and 8; ,;, are plausible limits for each
biogeochemical parameter i, taken from previous literature 2, and y is a learnable parameter that
controls how fast the predictions converge to 8; ;i O 0; ;may. Thus, the final output of the neural
network is p, a vector of 21 biogeochemical parameters for each location, where each parameter
p; is constrained to be in its prior range (60; min, 0; max)- We used a grid search to select

hyperparameters; additional details about hyperparameters and model architecture can be found

in Appendix 1.

2.2 Process-based Model

In this study, we used the soil carbon module of the Community Land Model version 5 (hereafter
referred to as CLMYS) to represent our knowledge of SOC dynamics (Figure S1). The CLMS5
model has been continuously developed and refined over the past decade for simulating SOC
dynamics %2; it mathematically represents our knowledge of SOC dynamics with 140 partial
differential equations. We chose CLMS to enable direct comparison with PRODA, which uses

the same model.

CLMS simulates SOC dynamics across 20 soil layers to 8 m. Each layer contains 7
carbon pools, including one coarse woody debris pool, three litter pools corresponding to

metabolic, cellulose, and lignin materials, and three SOC pools classified by different turnover



times into fast, slow, and passive pools. This structure results in a total of 140 carbon pools (7

pools x 20 layers).

A key innovation of our approach is that we incorporate into our neural network

framework a differentiable CLM5 model, whose structure can be represented in a matrix form

23,24 as:

ax(t) 3)
T B()I(t) — AE()KX(t) — V()X ()
where I(t) is the total carbon input from vegetation at time ¢, B(t) (140x1) is the allocation of

carbon input to different pools: A (140x140) is the carbon transfer matrix, quantifying horizontal
carbon movement between pools in the same layer; K (140x140) is the intrinsic decomposition
rate of each carbon pool, which is the same for each pool across 20 layers; &(t) (140x140)
captures how the environment modifies the intrinsic decomposition rate in the K matrix by
temperature (1), water (¢w), oxygen (o), and depth (¢p) scalars, V(t) (140%140) defines how
SOC enters and leaves each layer; and X (t) is carbon pool size. The term B(t)I(t) represents the
vegetation carbon input, A& (t)KX(t) describes the SOC movements among the 7 pools within
each layer, and V(t)X(t) indicates vertical SOC movements along the soil profile. The t in
parentheses means that the corresponding process changes with time.

In this study, we assumed steady-state SOC dynamics for computational efficiency
(Appendix 2), which is justified by previous research showing that recent disequilibrium effects
from climate change and human activities are relatively minor compared to the SOC storage that

has developed over thousands of years %%,

Equation (3) contains 21 biogeochemical parameters (Table S2) that quantify the strength
and reflect properties of different processes (e.g., transformation and stabilization of SOC,

temperature sensitivity of soil respiration, and substrate quality) in the soil carbon cycle. Because
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those processes are highly variable depending on different climate conditions or soil properties,
the values quantifying their strength or properties (i.e., the parameter values) should differ with
changing environments 2°. Thus, in this study, the neural network embedded in BINN (Section
2.1) predicts these biogeochemical parameter values from environmental covariates. The
predicted values of the 21 biogeochemical parameters and the environmental forcings (Table S3)

are used in Equation (3) to estimate steady-state SOC storage at sites across the continental US.

2.3 Loss Function

Because we are interested in accurately simulating SOC, our primary loss quantifies the
discrepancy between simulated and observed SOC values. Specifically, we use a smooth L1 loss
function, which transitions from quadratic behavior near zero to linear behavior beyond a

specified threshold f.

Smooth L1 Loss (ypmﬁ,e, yprofile)

- 2 4)
0.5(Fprofite = Yprofite) s
= { — eﬁ = lf | Yprofile — Yprofile 1< ,8
| yprofile - yprofile | — 0.5 % ﬁ 0.W.

where Jp,0fie Tepresents the simulated SOC profile at all observation depths for a single site by
CLMS3, yprorite denotes the corresponding observed SOC profile at the same site, and £ is a
threshold hyperparameter that determines the transition point between quadratic and linear
behaviors of the loss function. The smooth L1 loss function's linear asymptotic behavior makes it
more robust to outliers compared to conventional loss functions 7.

We also add an additional hyperbolic cosine loss (cosh) term that acts as a regulator,

encouraging the neural network to predict biogeochemical parameters within reasonable bounds.



Specifically, it penalizes parameter values that deviate substantially from the center of the prior
distribution, thereby discouraging biogeochemically implausible extreme values. Eventually, the

total loss is a linear combination of the two losses (Equation 5):

batch size

Lpatch = Z {SmOOth L1 Loss(yprofile' yprofile)
profile=1 (5)

21
+w Zcosh [T(pj — 0.5)] }
where batch size is a hyperparameter desjc=r}bing the number of soil profiles processed in each
training iteration before performing one backpropagation, w is a weighting hyperparameter that
balances the two loss components, p; represents the predicted biogeochemical parameter from
the neural network, and 7 is a scaling factor that controls the strength of regularization by the
hyperbolic cosine function. From the hyperparameter grid search, we set beta to 1 and
biogeochemical-parameter-loss weight to 100.

While CLM5 simulates SOC dynamics at 20 specific depths, SOC data collected from the
field were not necessarily measured at the depth nodes set in CLM5 simulation. Thus, in
calculating the loss function value, for observations at depths equaling CLMS5 nodes, the
simulated values were directly from CLMS5 outputs. When observations occur at depths between
two CLMS5 nodes, we employed linear interpolation to estimate simulated SOC values at the
observation depths. In cases where observations extend beyond 8 meters (i.e., the deepest node in
CLMS5 simulations), we used the values at 8 meters as simulated SOC as SOC concentration in

deeper layers no longer changes much.

2.4 Backpropagation to Optimize Neural Network Parameters



During training, BINN computes the loss function based on the current predicted SOC and
parameters; the loss quantifies how poorly its current predictions match the SOC observations
and prior knowledge. Through backpropagation, the loss signals propagate backwards through
the entire BINN structural chain: first through the CLMS5 matrix equations that generate modeled
SOC, then through the biogeochemical parameters, and finally to the neural network that predicts
these biogeochemical parameters. At each step, PyTorch uses the chain rule to automatically
compute the gradient of the loss function with respect to each learnable NN component (e.g. w in
Equation 1 and y in Equation 2). These gradients indicate how each component can be adjusted
to increase or decrease the loss. The NN components are adjusted slightly in the direction that
decreases the loss, and then the above process is repeated. The differentiability of the process-
based model (CLMS in this case) enables this continuous gradient flow and thus allows the

neural network to learn parameter values that produce better SOC predictions.

3 Recovering Biogeochemical Parameters from Synthetic Data

We evaluated BINN's capability to recover the biogeochemical parameters of CLMS5 from
synthetic SOC data using a 10-fold cross-validation experiment (Appendix 5) 2%. Unlike real-
world observations that contain measurement uncertainties and potentially unresolved processes,
synthetic SOC data across multiple depths was generated by running CLMS5 with prescribed
spatially-varying parameter values (obtained from previous work'), providing a controlled
environment where true parameter values are known (Figure 2). This synthetic dataset allows us
to quantitatively assess BINN's parameter recovery accuracy by comparing predicted parameters
with the known values used in data generation.

To decide which biogeochemical parameters to modify in this experiment, we conduct a

sensitivity analysis of CLMS5 to identify the biogeochemical parameters that have the greatest
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influence on simulated SOC values (Appendix 4). We selected the four most sensitive
parameters from this sensitivity test: the parameter "w-scaling" represents the influence of soil
water on modifying SOC decomposition; the parameter "tau4s3" represents the decomposability
of the passive SOC pool; the parameter "fs1s3" indicates the efficiency of carbon transforming
from active SOC to passive SOC; and the parameter "efolding" quantifies the impacts of soil
depth in SOC decomposition. While equifinality, by which different combinations of
biogeochemical parameter values can lead to similar simulations, remains a challenge even with
this reduced parameter set, focusing on these highly sensitive parameters allows us to evaluate
BINN's parameter recovery capabilities with greater confidence. This approach minimizes
confounding effects from less influential parameters while targeting the parameters that most
strongly influence SOC dynamics in CLMS.

To test the recovery efficiency of the biogeochemical parameters with BINN, we
modified the final layers of the neural network by reducing the number of neurons from 21 to 4
to predict these 4 biogeochemical parameters. Combining the 4 biogeochemical parameters
predicted by BINN and the remaining 17 biogeochemical parameters from the prescribed
parameter values, BINN was able to simulate SOC values and update itself through
backpropagation. After training BINN with the synthetic SOC dataset, we compared the 4
parameters predicted by BINN with the prescribed parameter values in the testing dataset to
evaluate the accuracy of BINN in retrieving the prescribed biogeochemical parameters.

When BINN predicted the top 4 most sensitive biogeochemical parameters, the recovered
parameter values exhibited strong consistency with the prescribed biogeochemical parameters
used during synthetic data generation, achieving an average correlation coefficient of 0.73 across

10 cross-validation iterations (Figure 4f). BINN achieved an average Nash—Sutcliffe modelling
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efficiency coefficient (NSE) of 0.67 (Supplementary 6) on the test dataset when comparing
simulated SOC with synthetic SOC (Figure 4f). In one of the cross-validation iterations with the
median NSE of simulated SOC, the parameter “efolding” recovered by BINN, representing the
depth scalar, had a correlation coefficient of 0.76 in comparison with the prescribed parameter
values (Figure 4a). The parameter "tau4s3," representing the baseline turnover time of passive
SOC pools, showed a correlation coefficient of 0.78 (Figure 4b). The "fs1s3" parameter,
indicating the transfer fraction from fast SOC pool to passive SOC pool, achieved a correlation
coefficient of 0.71 (Figure 4c). Lastly, "w-scaling," representing the scaling factor of soil water

scalar, had a correlation coefficient of 0.70 (Figure 4d).

4. BINN performance with real-world SOC Observations
We then evaluated the performance of BINN by comparing BINN’s SOC predictions with

observed SOC across the Conterminous United States (a total of 25,925 profiles) (Figure 1b).

4.1 Data Preparation
We processed SOC observations from the World Soil Information Service (WoSIS) following
Tao et al. 2. Each profile (site) may have SOC observations at multiple depths. Only profiles
with at least three observations were kept, yielding 25,925 profiles (169,104 SOC measurements)
across the conterminous US. We used 60 environmental covariates at each site from Tao et al. 2
as input to BINN (Table S1). To achieve better training effectiveness, we normalized all the
environmental covariates to the interval [0, 1] according to their maximum and minimum values.
We applied eight types of forcing data to drive the simulations of SOC using CLMS,
which are the mean annual net primary productivity (NPP), active soil layer depth from last year

and current year, soil layer number that reaches the bedrock, soil oxygen scalar for

12



decomposition, soil nitrogen scalar for decomposition, soil temperature, and soil water potential.
These forcings are from 20 years of monthly CLMS5 simulations at the steady state using a
preindustrial forcing (that is, [1850CIm50Bgc) at 0.5° resolution.

The 10-fold cross-validation divided the whole dataset randomly into 10 folds, and we
took one-fold (i.e., 10%) data as the testing dataset in each iteration. The remaining data were

further split into training (8/9) and validation (1/9) sets.

4.2 Real-world SOC Observations Analysis

After BINN optimization, we used its predicted biogeochemical parameters to calculate six
model components that indicate different properties in soil carbon cycle over the US continent:
carbon transfer efficiency, baseline decomposition, environmental modifier, carbon input
allocation, vertical transport rate, and plant carbon inputs. The BINN-retrieved components were
compared with the results generated from PRODA (Figure 5). We assessed the spatial patterns of
six model components that emerged from both approaches. The plant carbon input component
was identical between BINN and PRODA, due to the use of the same NPP forcing data (Figure
5p, 54, 5r). Spatial distributions of the other five components were similar between BINN and
PRODA with an average correlation of 0.81.

The carbon transfer efficiency predicted by BINN, which quantifies the weighted average
ratio of decomposed carbon being transferred from one carbon pool to another relative to the
total carbon decomposition, exhibited more spatial variation than PRODA's prediction. While
both methods indicated higher carbon transfer efficiency in the northwestern region and lower
efficiency in the middle west (Figure 5a, 5b), BINN predicted higher values in the northeastern

and southeastern parts of the Conterminous United States compared to PRODA, resulting in a
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relatively high average value. Even so, the correlation coefficient between the two approaches
still reaches 0.86 (Figure 5c).

Both BINN and PRODA predicted the baseline decomposition, which describes the
substrate decomposability of each soil pool, with similar spatial patterns across the
Conterminous United States, showing higher values in the northwestern and eastern areas
(Figure 5d, 5e). The average baseline decomposition values from BINN were relatively higher
than those by PRODA (Figure 5f).

The environmental modifier predicted by BINN achieved a correlation coefficient of 0.82
with PRODA's results (Figure 51). Their spatial patterns were nearly identical across the
Conterminous United States, with lower values in the northwestern part and gradually increasing
to the highest values in the southeastern part (Figure 5g, Sh).

The carbon input allocation predicted by both methods also displayed similar spatial
patterns across the Conterminous United States with a correlation coefficient of 0.74 (Figure 51).
Both the methods predicted low carbon input allocation rates in the eastern and western US but
high rates in the mid US (Figure 5j, 5k), though BINN predicted higher rates of carbon input
allocation in the mid US than the PRODA's predictions.

BINN and PRODA predicted the vertical transport rate with nearly identical spatial
distributions across the Conterminous United States (Figure Sm, 5n), with a high correlation
coefficient of 0.91 (Figure 50).

BINN demonstrated better accuracy than PRODA in predicting SOC across the
Conterminous US as well (Figure 6) '. Fewer geographical biases were observed when
comparing BINN's SOC predictions with observed SOC from the testing dataset (Figure 6a). The

predicted and observed SOC values were highly correlated, with a NSE value of 0.66 (Figure
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6b). The training and validation NSE values recorded throughout model training at each epoch

showed the validation NSE reaching as high as 0.63 (Figure S3).

5. Computational Efficiency

We compared BINN’s computational efficiency with PRODA using 2,000 soil profiles on a
personal computer with two BINN versions: one using the original matrix equation of CLMS5 and
the other using the vectorized matrix equation by removing for-loops (Appendix 2). Both BINN
implementations were trained for 300 epochs to ensure that BINN has finished learning from the
soil profiles.

PRODA is a two-step approach that combines Bayesian-inference approaches with neural
networks. Its computational bottleneck lies in its first step: site-level Markov Chain Monte Carlo
(MCMC) optimization of CLMS5 parameters. To quantify this, we measured MCMC runtime for
10 profiles (20,000 test iterations and 50,000 formal iterations per site) and extrapolated to 2,000
profiles. PRODA's second step, which uses a neural network to learn relationships between
environmental covariates and MCMC-optimized parameters, required 6,000 epochs of training.

On a single CPU, BINN with for-loops required 52.5 hours (Figure 8), whereas the
vectorized version took 10.5 hours (5% faster). In contrast, MCMC alone took 574.69 hours,
leading to 577.69 hours for PRODA. Thus, BINN is 57 times faster than PRODA and can be
further accelerated via PyTorch’s Distributed Data Parallel (DDP), enabling parallel training
across multiple CPUs. While both approaches achieve parameter interpretability (Section 4.2),
BINN does so more efficiently by directly integrating the process-based model into the neural
network architecture, eliminating the need for computationally intensive site-by-site MCMC

optimization.
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6. Determination of SOC over the conterminous US

To further demonstrate how BINN helps understand processes governing SOC dynamics, we
conducted a traceability analysis »°. The traceability analysis separates BINN-predicted SOC
storage from section 4.2 into carbon influx and ecosystem residence time, with the latter being
calculated by dividing carbon storage by carbon influx. The ecosystem residence time is jointly
determined by baseline residence time and the environmental modifier. The decomposition at
each grid was then averaged across different biomes and visualized in a scatter plot for
comparison among the biomes. Biome types were assigned to each grid based on the dominant
ecological region within the grid, utilizing the Level 1 Ecological Regions of North America
map provided by the US Environmental Protection Agency .

The traceability analysis revealed that ecosystems with similar average carbon storage,
which is illustrated by the close proximity of the dots to the contour line, can result from distinct
underlying processes in different biomes (Figure 7a). For instance, North American Deserts and
Mediterranean California exhibited similar carbon storage, despite contrasting underlying
mechanisms, with North American Deserts having longer ecosystem carbon residence times
coupled with smaller carbon inputs than Mediterranean California. Additionally, Mediterranean
California and Northwestern Forested Mountains showed similar SOC residence time (Figure

7b), which is attributed to similar baseline carbon residence times and environmental scalars.

7. Discussion

This paper introduces BINN, a novel approach for retrieving model parameters from big data and
predicting their spatial distributions over the globe, accelerating computational efficiency, and

facilitating process understanding.
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7.1. BINN’s ability to retrieve and predict biogeochemical parameters

In this study, BINN's ability of retrieving biogeochemical parameters was first validated through
a parameter recovery experiment, which used synthetic SOC data generated by CLMS5 with
prescribed parameter values across the Conterminous US. To minimize the effects of
equifinality, we performed a sensitivity analysis to select the four most sensitive biogeochemical
parameters to be retrieved and predicted by BINN. These highly sensitive parameters are often
well-constrained in the Bayesian-inference approach. Therefore, we expected BINN to perform
similarly to the Bayesian approach in retrieving these parameters. The retrieval results showed
that BINN could accurately recover the prescribed values using only environmental data and
synthetic SOC data at each site without the Bayesian method.

High correlations between BINN-retrieved and prescribed biogeochemical parameter
values in a controlled parameter recovery experiment demonstrate BINN’s ability to recover
causal relationships between covariates and SOC dynamics. Faithful retrieval of biogeochemical
parameters from data substantially reduces uncertainty in SOC model predictions 263!,

We further tested BINN with real-world SOC observations across the Conterminous US
and quantified the six model components of CLMS5. BINN-predicted model components, which
are calculated from estimated parameters, showed good agreement with those generated by
PRODA. Since Bayesian optimization as used in PRODA is widely accepted in earth system
modeling for parameter estimation through data assimilation, the agreement between BINN and
PRODA predictions suggests that BINN can effectively capture spatial variations in critical
model components while maintaining physical interpretability. This enables BINN to evaluate
the relative importance of different processes controlling SOC storage, similar to PRODA, while

offering computational advantages through its integrated neural network architecture.
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7.2. BINN’s Computational Efficiency

BINN shows significant improvement in computational efficiency compared to PRODA while
performing similar functionality in terms of retrieving parameters and predicting spatial
distributions of SOC storage and their components from big data. Compared to PRODA, BINN
reduces computational time by more than 50-fold in a test with 2,000 profiles. PRODA requires
running a Bayesian optimization algorithm for each site independently; it does not use gradients
to optimize parameter values but only perturbs parameters randomly and checks if the accuracy
improved. By contrast, BINN reimplements the CLMS5 process-based model in a differentiable
way using PyTorch, and leverages this differentiability to rapidly find parameters (for all sites
simultaneously) that accurately simulate SOC observations (Table S4). Additionally, we used
vectorized functions to replace for-loops in the old CLMS5 model, which further enhances
computational efficiency. Finally, BINN can utilize PyTorch's Distributed Data Parallel (DDP)
to parallelize computations, saving real physical time and allowing researchers to iterate more
quickly on improving the model. High computational efficiency is also more environmentally-

friendly, saving energy when dealing with large datasets.

7.3. BINN’s facilitation of mechanistic understanding

BINN’s aim is to integrate machine learning and process-based modeling to assist in identifying
controls over biogeochemical systems by leveraging the power of big data. A process-based
model is an abstraction of a real-world system and represents processes that govern the system,
yet such model-based predictions generally fit poorly with empirical observations 3!. This

discrepancy arises because complex systems, such as the terrestrial ecosystems, contain
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numerous mechanisms regulating carbon cycling; although some of these mechanisms are well-
understood, many remain unresolved. Process-based models may explicitly represent the well-
understood processes in its structure while using parameters to represent unresolved processes 2°.
Without taking advantage of the extensive information present in observations, model parameters
are usually not well constrained.

When these parameters are properly constrained by empirical data, they can more
accurately reflect the unresolved biogeochemical processes, enabling models to better simulate
ecosystem behavior. For example, Liu et al. *> demonstrated that optimized parameters
representing xylem water potential in an eco-hydraulic model aligned well with measured values
for dominant species across different sites. To effectively learn about unresolved processes
through parameter optimization, model simulations must closely match real-world observations.
BINN achieves this by optimizing the relationships between environmental covariates and model
parameters through its neural network component. This optimization process enables BINN-
trained CLMS5 to simulate soil carbon dynamics more accurately and efficiently than the original
CLMS, thereby allowing parameters to better represent unresolved processes.

While optimized parameters can represent unresolved biogeochemical processes in well-
performing models, deeper scientific analysis is needed to fully understand these processes and
their roles in ecosystems. As demonstrated by traceability analysis, process-based models after
parameters are constrained can be used to examine how various processes influence SOC storage
across space, revealing spatial patterns in mechanisms like carbon residence time as shown in the
study by Tao et al. 2. Furthermore, such a model can help evaluate how newly incorporated
mechanisms affect existing processes, as demonstrated by Xia et al. 2 in their study of nitrogen

processes' impact on carbon storage capacity.
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BINN's potential for advancing scientific understanding can be extended well beyond
SOC dynamics to various fields of research in biogeochemistry and ecology. Whenever current
scientific understanding of a biogeochemical system can be mathematically formulated in a
process-based model, BINN can help uncover mechanisms from big data. This framework is
particularly valuable for studying complex biogeochemical cycles, such as nutrient cycles, where
some processes are well-understood and explicitly represented in models, while others remain
unresolved. By combining process-based representations of known mechanisms with big data,
BINN could help identify previously unknown mechanisms governing biogeochemical cycling.

Furthermore, BINN's flexible architecture allows integration of diverse data sources. This
capability is particularly valuable for incorporating limited but important datasets, such as
isotope measurements, which can reveal spatial and temporal mechanisms in soil carbon
dynamics despite their scarcity. Even if these measurements are only available at a few sites,
BINN can still learn from them by incorporating them in the loss function where they are
available. By leveraging multiple data sources, BINN maximizes the potential to facilitate our

scientific understanding while maintaining biogeochemical consistency.
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Figure 1. Schematic diagram of BINN architecture and training process. (a) Detailed BINN

structure showing the integration of neural networks with CLMS5. The neural network component

processes spatial coordinates through a positional encoder and categorical environmental

covariates through an embedding layer. The network outputs are transformed via a sigmoid

activation to generate 21 biogeochemical parameters. These parameters, constrained by a soft

prior loss, are input to CLMS5 along with environmental forcings to simulate SOC dynamics. The
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model's performance is evaluated using a smooth L1 loss function. The entire framework is
differentiable, enabling end-to-end training through backpropagation (teal arrow).

(b) Overview of BINN training workflow. Environmental covariates at each site serve as input to
the neural network to predict biogeochemical parameters. These parameters, along with
environmental forcings, drive the process-based model (CLMSY) to simulate SOC. The difference
between modeled and observed SOC is used to compute the loss function, which guides neural
network parameter updates through backpropagation (teal arrow). This training process

continues until reaching the maximum number of epochs or achieving optimal validation

performance.
‘ Optimized 4
3 Most Sensitive
> BINN ‘ Biogeochemical
17 Less Sensitive \__Parameters
Biogeochemical Parameters A A

Assimilation

Prescribed
Biogeochemical
Parameters

Process-Based Model
(CLM5)

Synthetic SOC

Parameter Recovery Evaluation

Figure 2: Schematic of the parameter recovery experiment to evaluate BINN's ability to
retrieve the model processes regulating SOC. The parameter recovery experiment involves
three main steps. 1). Blue two-headed arrows: Synthesizing a SOC dataset using CLMS5 with
prescribed parameter values (21 parameters). 2). Single-headed arrows: Using the synthetic SOC
dataset to train BINN to predict the 4 most sensitive parameters. 3). Red double arrow: By

comparing the BINN-predicted parameters with the prescribed parameters used to generate the
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synthetic dataset, we can assess BINN's effectiveness in retrieving the processes regulating SOC

from observational data.

Sensitivity of CLM5 parameters for All Layers
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Figure 3: Sensitivity Indices for CLMS Biogeochemical Parameters Across All Soil Depths.
The bar plot illustrates the sensitivity of CLMS5 to each parameter across all soil layers.
Parameters are listed on the y-axis in descending order based on their sensitivity scores. The x-
axis represents the sensitivity scores, indicating how changes in each parameter influence the

model's performance.
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Figure 4: Evaluation of BINN's performance in retrieving the four most sensitive
parameters from the synthetic SOC dataset. Scatter plots comparing the parameter values (a)
"efolding", (b) "tauds3", (c) "fs1s3", and (d) "w-scaling" predicted by BINN (BINN) against the
prescribed parameter values. The color of each point in the scatter plots represents the number of
data points within each hexagonal bin. The correlation coefficient between the predicted and
prescribed parameter values is shown in the title of each plot. (€) Comparison of the simulated
and synthetic SOC values, with colors representing the density of points. (f) Mean performance
of BINN in retrieving the 4 parameters, as measured by the correlation coefficient and NSE
between the predicted and prescribed parameter values as well as NSE of the simulated SOC

values compared to the synthetic SOC data.
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Figure 5: Comparison of the spatial patterns of model components retrieved by BINN and
PRODA across the Conterminous United States. The model components include carbon
transfer efficiency (a, b, ¢), baseline decomposition (d, e, f), environmental modifier (g, h, 1),
carbon input allocation (j, k, 1), vertical transport rate (m, n, 0), and plant carbon inputs (p, q, r).
The left column (a, d, g, j, m, p) shows the model components retrieved by BINN, while the
middle column (b, e, h, k, n, q) displays the model components retrieved by PRODA. The scatter
plots in the right column (c, f, 1, 1, 0, r) compare the values of each model component retrieved

by BINN (y-axis) against those retrieved by PRODA (x-axis). The correlation coefficient

between the BINN and PRODA values for each model component is shown in the top left corner
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of the corresponding scatter plot. The plant carbon inputs (p, q, r) are identical for both methods

due to the use of the same input forcing data.
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Figure 6: Comparison of observed and simulated Soil Organic Carbon (SOC) Storage
Using BINN. (a) A spatial deviation mapping showcases the difference in simulated SOC
storage by BINN relative to real-world observations across the soil profile for each test location.
The test data comes from one cross-validation fold with median NSE values. The map

normalizes positive discrepancies (to 0~1) and negative discrepancies (to 0~-1) against the
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maximum positive deviation and the minimum negative deviation, respectively, to enhance the
visualization of model performance. (b) The scatter plot presents the SOC from data points
derived from the testing dataset between observed and simulated SOC storage at various soil
depths, with the correlation coefficient values shown in the title. (¢) The box plot shows the

mean performance of testing NSE in the 10-fold cross validation test.
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Figure 7: Traceability analysis on (a) how influx and ecosystem carbon residence time

determine SOC storage (contour lines) and (b) how environmental scalar (§) and baseline carbon
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residence time determines ecosystem carbon residence time (contour lines) in different biomes.

The color-coded points represent the average values in different biomes.
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Figure 8: Comparative Analysis of Computational Time Required for Integrating 2000 Soil
Profiles into Process-Based Models (CLMS5). The figure shows the computational time (in
hours) for PRODA (MCMC+NN), which uses a Bayesian-inference approach (MCMC)
combined with a neural network (NN), and for BINN with the matrix form of CLM5 before and
after vectorization. BINN with the vectorized matrix form of CLMS5 achieves the highest
computational efficiency, reducing the computational time by more than 50-fold compared to
PRODA (MCMC+NN) and by approximately 5-fold compared to BINN with the non-vectorized
matrix form of CLMS5. The computational time is based on running each method for 300 epochs

to ensure that the models have finished learning from the 2,000 soil profiles.
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Supplementary Information
Appendix 1: Neural Network Architecture Details

Here we provide more details on our neural network architecture. Our network architecture includes an
embedding layer, a spatial positional encoder, and a 4-layer fully connected network (Figure 1a).

Embedding categorical and spatial data. First, we convert categorical covariates in the
environmental dataset via embedding layers into numerical vectors. The spatial location of each site
(longitude and latitude) are passed through a spatial positional encoder ! to obtain a location embedding
vector, characterizing unobserved aspects of each location that are not captured in our covariates. We then
concatenate the categorical covariate embeddings, location embedding, and the remaining covariates, and
pass them through a 4-layer fully-connected neural network.

Fully-connected layers. Each layer of the neural network comprises prescribed numbers of
neurons that receive information either from the environmental covariates (for the first layer) or the

previous layer. It then computes a linear transformation of the inputs:

y = Zwixi +b (SI)

where x; is an input from either the environmental covariates or the previous layer's outputs, w; is a
learnable weight for x;, b is a learnable neuron-specific bias, and y is an output from a neuron after the
linear combination of its input. After the linear transformation, a nonlinear activation function is applied
to generate the eventual results at each neuron, such that the neural network can generate complex
nonlinear relationships between the input (i.e., environmental covariates) and the outputs (i.e., the
biogeochemical parameters in CLMS5). Meanwhile, the application of a linear transformation and
activation function also ensures that the nonlinear relationships explored by the neural network are
differentiable, such that we can calculate the gradient of the cost function with respect to the learnable
weights w; and biases b (Section 2.4). In our study, for the first three layers of the neural network, we
assigned each of them to have 128 neurons to process information from the previous layer and used

LeakyReLU as the activation function:
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LeakyReLU(y) = max(0,y) + negative_slope * min(0, y) (S2)

where max(0, y) is a function that returns the larger value of 0 or y, while min(0, y) returns the smaller
value of 0 or y. The negative_slope is a hyperparameter that determines how “leaky” the function is for
negative y. LeakyReLU was chosen over traditional ReLU because it allows gradients to flow through the

network even when the inputs to the activation are negative.

Final layer and parameter constraints. The final layer only has 21 output neurons, one
corresponding to each biogeochemical parameter in CLM5. We do not use a leaky ReLU after the final
linear transformation, as it would bias the distribution of the predicted parameters. Instead, we have prior
knowledge about the plausible range of values for each biogeochemical parameter. Thus, we pass the
final layer’s output z through a sigmoid (o) function to ensure that the parameter predictions fall within

these prior ranges (Equation 2 in the main body).

After the activation, the final outputs of the neural network will be 21 values falling in the range
between 0; ;i and 0; 145, €ach corresponding to the investigated biogeochemical parameters. 6; ,,,;, and
0 max are values taken from previous literature to indicate plausible limits for processes quantified by
each biogeochemical parameter i 2. Note that we introduced a y value in the activation function to control
how fast the results after activation can converge to 8; p,qx Or 8; pin. When the ¥ value is small, the
predicted parameters may quickly get stuck at ; ;;, and 0; ;.45 ; When this happens, the derivative of the
activation approaches zero and it will be difficult to further optimize the predictions via gradient-based
optimization (see Section 2.4) 3. Thus, we tuned ¥ to be a relatively large value to facilitate neural

network optimization.

Hyperparameters. We conducted an experiment to determine the best hyperparameters (i.e.,
epochs of training, batch size, CPU number, optimizer, learning rate, embedding size of the embedding
layer, whether to use batch normalization, the initialization of y, negative slope in the LeakyReLU and

the loss function hyperparameters) for BINN. By performing a grid search for these hyperparameters, we
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chose to train BINN for 300 epochs with a batch size of 32, using PyTorch Distributed Data Parallel
(DDP) to distribute training across 128 CPUs. The optimized BINN model was recorded each time the
validation loss improved over the previous best model. We used the AdamW optimizer with a learning
rate of 0.01. The embedding size is 64. The network also uses batch normalization after each ReLU
activation function to normalize the layers' outputs by re-centering and re-scaling, making training faster
and more stable 4. We initialized y to 59.5 but allowed it to be further optimized throughout the training
processes within the range from 10 to 109. Specifically, we used a sigmoid to constrain the range:

(S3)
=10+99  ———
14 1+ exp(—y"

where y'is a learnable parameter that is initialized to 0 (making the initial y = 59.5). We set
negative_slope to -0.3 in the LeakyReLU by default. Appendix 2: Steady-state SOC Simulations

The steady-state SOC storage X(t) can be obtained by letting dX(t)/dt on the left-hand side of equation

(3) equal 0. Solving for X(t) we obtained:
2(®) = (AEOK + V(D) ' BOI®) (S4)

The matrix representation of CLMS is implemented in PyTorch utilizing vectorized functions to
replace all the for-loops in the original code. Vectorized functions are designed to operate on entire arrays
of data simultaneously, rather than processing elements one by one. This enables more efficient
computation of SOC predictions in response to changes in parameters. For example, we constructed two
vectors for each carbon pool: (1) an environmental scalar vector containing temperature, moisture,
oxygen, and depth modifiers that affect decomposition rates, and (2) a decomposition vector containing
pool-specific baseline decomposition rates and carbon transfer coefficients. By constructing these vectors
for all pools simultaneously (2 vectors for each pool, 7 carbon pools each layer, and 20 layers in total in
CLMS), we can directly construct a matrix using the vectorized function. By implementing all
mathematical operations (such as addition, matrix multiplication, and matrix inverse) using PyTorch

functions, PyTorch can track the gradient of each operation. Using backpropagation, PyTorch can then
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automatically compute the gradient of the loss function with respect to the learnable weights/biases of the
neural network, differentiating through all the operations in the process-based model. Since the goal of
training BINN is to minimize a loss function that quantifies the difference between simulated and
observed SOC, a fully differentiable CLMS5 allows BINN to trace differences in loss function values back
to changes in biogeochemical parameters and eventually environmental covariates (via backpropagation),

enabling gradient-based optimization to let CLMS5 best simulate SOC observations.
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Appendix 3: Computational Software and Hardware

We implemented BINN in Python using PyTorch and executed the experiments on the NCAR Derecho
supercomputer. The experiments were conducted using one compute node with 128 CPU cores,
leveraging PyTorch's DDP for multi-CPU training. However, BINN was also tested on a multi-GPU
compute node on a cluster in Cornell University’s Center for Advanced Computing, confirming its

capability for training on GPU clusters when needed.
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Appendix 4: Sensitivity Analysis

The sensitivity analysis was conducted on SOC simulations at various soil-depth ranges, including 0-0.3
m, 0.3-1 m, >1 m, and the entire soil profile (0-8 m). SOC simulations at each layer by CLM5 were
aggregated based on the node depths falling into the above-mentioned depth ranges. Specifically, layers
1-6 were used to calculate SOC between 0-0.3 m, layers 7-9 for SOC between 0.3-1 m, and layers 10-20
for SOC greater than 1 m. Simulations from all 20 layers were summed up to calculate SOC across the
whole soil profile. The variance and sensitivity for each depth range were calculated based on SOC values
derived from the individual layers mentioned above.

For this analysis, we randomly selected 512 sites across the Conterminous US and employed the
first-order approximation method. We first determined the unconditional variance V(SOC) from the
model output when all the 21 biogeochemical parameters (P) in CLM5 were allowed to vary freely within
their initial ranges from Tao et al.. Specifically, we randomly sampled the biogeochemical parameter
values 1000 times in their initial ranges at each site, ran the model, and calculated the variance of the
simulations, which was considered the unconditional variance V(SOC).

Next, we estimated the conditional expectation of the variable SOC for each biogeochemical
parameter Pi (i = [0, 20]) at each site. We randomly selected a value (Pi*) for each biogeochemical
parameter Pi from a uniform distribution within its prior range, as specified by Tao et al. (2023). For the
remaining biogeochemical parameters (Pj: j # 1), we randomly selected 1000 values from uniform
distributions within their respective prior ranges. Using the sample of 1000 biogeochemical parameter
sets, we estimated the conditional expectation E(SOC | Pi = Pi*). We repeated this sampling process for
100 randomly selected values of Pi and used the results to estimate the variance V(E(SOC | Pi)). This
quantifies the variance in the output variable C as a result of modifying the biogeochemical parameter Pi.
We discarded the simulations when NaN values appeared due to randomly sampled biogeochemical
parameter sets. Finally, we repeated this procedure for each biogeochemical parameter Pi (i = [0, 20]),

and a sensitivity index Si was calculated for each biogeochemical parameter at each site as:

40



_V(E(SOCIP)) (S5)
LT v(so0)

The final sensitivity value for each biogeochemical parameter was obtained by averaging the sensitivity
values across all the randomly selected sites across all depths (Figure 3), and individual depth ranges

(Figure S2).
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Appendix 5: 10-Fold Cross-Validation

To conduct 10-fold cross-validations on the simulations, the entire dataset was randomly divided into ten
equal-sized subsets. In each iteration, nine subsets were used for training, while the remaining subset
served as the test set. This process was repeated ten times, with each subset serving as the test set once.
The performance metrics, including NSE and r, were calculated for each iteration. Final performance
evaluations were determined by averaging metrics across all iterations, and grid-level predictions were
averaged across the ten iterations. This cross-validation approach provides a robust assessment of BINN’s
generalizability by testing its performance on multiple independent datasets, reducing the impact of data
partitioning bias and thus enabling evaluation of model stability across different training-testing

combinations.
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Appendix 6: Summary Statistics
We calculated the Nash—Sutcliffe modelling efficiency coefficient (NSE) of simulated SOC (Equation 10)
to evaluate the effectiveness of SOC predictions by BINN following the equation:

Y (obs; — simu;)? (S6)
Y.(obs; — obs,)?

NSE =1-

where obs is the SOC observation, obs is the mean of the SOC observations, and simu is the simulated
SOC by CLMS5 embedded in BINN.

We used the Pearson correlation coefficient (r) between the predicted and prescribed
biogeochemical parameters (Equation 11) to evaluate the effectiveness of BINN in recovering each of the

4 biogeochemical parameters:

Xl(paragyy — Paragiyy) X (Parasrye — Pararrye)] (S7)

\/ Y(paragyy — PaT"aBINN)2 X X(parairye — DT Qe )?

where parag,;yy is the biogeochemical parameter predicted by BINN, para;,. is the biogeochemical
parameter previously prescribed at the same site, paragyy is the mean of this biogeochemical parameter

predicted by BINN, and para;,. is the mean of this prescribed biogeochemical parameter.
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Supplementary Tables and Figures

Supplementary Table 1: Environmental Covariate Data as BINN input

No. Variable Name Data Source Category Description
1 Lon Longitude
WoSIS -
Lat Latitude
3 Elevation NOAA Elevation
Soil layer depth that
4 Abs_Depth_to_Bedrock (Hengl et al. 2017) Geography reaches the bedrock
5 Occurrence_R_Horizon WoSIS Probability of gccurrence
- of R horizon

Soil layer number that

6 nbedrock CLMD5 simulation reaches the bedrock
K Climat
7 Koppen_Climate_2018 (Beck et al. 2018) oppe‘n. Ir.na €
Classification
8 BIO1 Annual Mean
Temperature
9 BIO2 Mean Diurnal Range
10 BIO3 Isothermality
11 BIO4 Temperature Seasonality
Max Temperature of
12 BIOS Warmest Month
Min Temperature of
13 BIOG Coldest Month
14 BIO7 Temperature Annual
Range
15 BIOS Mean Temperature of
Wettest Quarter
Climat
16 BIO9 (Fick and Hijmans imate Mean Temperature of
Driest Quarter
2017) M T ; ;
17 BI010 ean Temperature o
Warmest Quarter
Mean Temperature of
18 BIO11 Coldest Quarter
19 BIO12 Annual Precipitation
20 BIO13 Precipitation of Wettest
Month
21 BI014 Precipitation of Driest
Month
22 BIO15 Precipitation Seasonality
53 BIO16 Precipitation of Wettest
Quarter
24 BIO17 Precipitation of Driest
Quarter
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Precipitation of Warmest

25 BIO18
Quarter
26 BIO19 Precipitation of Coldest
Quarter
57 USDA Suborder USDA 2014 Suborder
- Classes
)8 WRB_Subgroup WRB 2006 Subgroup
Classes
29 Coarse_Fragments_v_0Ocm
30 Coarse_Fragments_v_30cm Coa\r/sei Fragtn".lents
31 Coarse_Fragments_v_100cm olmetric
32 Clay_Content_Ocm
33 Clay_Content_30cm Clay Content
34 Clay_Content_100cm
35 Silt_Content_Ocm
36 Silt_Content_30cm (Hengletal. 2017)  Soil Texture Silt Content
37 Silt_Content_100cm
38 Texture_USDA_Ocm
39 Texture_USDA_30cm Texture Classes
40 Texture_USDA_100cm
41 Sand_Content_0Ocm
42 Sand_Content_30cm Sand Content
43 Sand_Content_100cm
44 Bulk_Density_Ocm
45 Bulk_Density_30cm Bulk Density
46 Bulk_Density 100cm
47 SWC_v_Wilting_Point_0Ocm
48 SWC_v_Wilting_Point_30cm Soil Water Capacity
49 SWC_v_Wilting_Point_100cm
50 pH_Water_Ocm
51 pH_Water_30cm Soil Soil pH in H20
52 pH_Water_100cm (Hengl et al. 2017) Chemical
53 CEC_Ocm Properties
54 CEC_30cm Cation Exchange Capacity
55 CEC_100cm
56 Garde Acid Grade of a Sub-Soil Being
- Acid
ESA. Land Cover
57 ESA _Land_Cover CCI. Produc'f User ESA Land Cover
Guide Version 2.
Tech. Rep. (2017) .
Vegetation
58 cesm2_npp NPP
59 cesm2_npp_std CLMS5 simulation Standarde;F\)/latlon of
60 cesm2_vegc Vegetation Carbon Stock
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Supplementary Figure 1: Model structures of CLMS5 .

46




Supplementary Table 2: 21 biogeochemical parameters in CLM5

Matrix

Corresponding

No. Name Term Mechanism Description Unit Prior Range
Transfer fraction, from .
! fils1 metabolic litter to fast SOC unitless [0.1,08]
Transfer fraction, from .
2 fl2s1 cellulose litter to fast SOC unitless [0.2,08]
3 fi3s2 Transfer fraction, from oo 0.2, 0.8]
lignin litter to slow SOC
Transfer fraction, from fast .
4 fsls2 SOC to slow SOC unitless [0.0001, 0.4]
Microbial Transfer fraction, from fast .
5 fs1s3 A carbon use SOC to passive SOC unitless [0.0001, 0.1]
efficiency (CUE) Transfer fraction, from .
6 fs2s1 slow SOC to fast SOC unitless [0.1, 0.74]
Transfer fraction, from .
7 fs2s3 slow SOC to passive SOC unitless [0.0001, 0.1]
Transfer fraction, from
8 fs3s1 ! itl 0.0001, 0.9
>33 passive SOC to fast SOC unitless [ /03]
Transfer fraction, from
9 fcwdl2 coarse woody debris to unitless [0.5, 1]
cellulose litter
Turnover time of coarse
10 taudcwd woody debris year [1, 6]
Turnover time of metabolic [0.0001,
11 taudll litter year 0.11]
12 taudl2 K Substrate. . Turnover tlme of cellulose year 0.1,0.3]
decomposability litter
13 taudsl Turnover time of fast SOC year [0.0001, 0.5]
14 tauds2 Turnover time of slow SOC year [1, 10]
15 tauds3 Turnover time of passive vear 20, 400]
SOC
16 ql0 Temperature sensitivity unitless [1.2, 3]
17  efolding Environmental E-folding parameter to metre [0.1, 1]
& - calculate depth scalar
modifiers Scaling factor to soil wat
18 w_scaling caling factor to SO Water — hitless [0.0001, 5]
scalar
. . . [3x10°
19 bio . Vertical Bioturbation rate m2/yr 16x10°]
t t 3x107° 5x10°
20 cryo ranspor Cryoturbation rate m2/yr [3~ 9 X
21 beta I Carbon input Vertical distribution of unitless [0.5,0.9999]

carbon input
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Supplementary Table 3: 8 environmental forcings for CLM5

Variable Names

Description

Resolution

nbedrock

ALTMAX

ALTMAX_LASTYEAR

CELLSAND
NPP
SOILPSI
TSOl

O_SCALAR

FPI_vr

Soil layer number that
reaches the bedrock
Maximum active layer
depth of current year
Maximum active layer
depth of last year
Sand content
Net primary productivity
Soil water potential
Soil temperature
Oxygen scalar for
decomposition
Nitrogen scalar for
decomposition
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system reaches the steady state



Sensitivity of CLM5 parameters for 0-30cm

w-scaling
tau4s3
fs1s3
efolding
fi2s1
qlo
fs1s2
diffus
fs2s3
fi3s2
tau4s2
beta
filsl
fs2s1
fewdi2
taudsl
fs3s1
taul2
taull
taucwd
cryo

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sensitivity
(a)

Sensitivity of CLM5 parameters for 30-100cm

w-scaling
tau4s3
fs1s3
efolding
fi2s1
q10
fsls2
diffus
fs2s3
fi3s2
tau4s2
beta
filsl
fs2s1
fewdI2
taudsl
fs3s1
taul2
taull
taucwd
cryo

0.0 0.1 0.2 0.3 0.4 0.5 0.6

(b) Sensitivity

Sensitivity of CLM5 parameters for >100m

w-scaling
tau4s3
fs1s3
efolding
fias1
q10
fs1s2
diffus
fs2s3
fi3s2
tauds2
beta
filsl
fs2s1
fewdi2
taudsl
fs3s1
taul2
taull
taucwd
cryo

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Sensitivity
(c)

Supplementary Figure 2: Sensitivity indices for CLM5 biogeochemical parameters across: (a)
0-30cm, (b) 30-100 cm, (¢) >100 cm.
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Supplementary Figure 3: Training and validation modelling inefficiency history for one cross-validation
fold with median NSE values.
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Supplementary Table 4: Comparison between different data assimilation methods

Criteria

Optimization Speed

Optimization Target

Recognition of
Spatial/Temporal

Heterogeneity

Uncertainty

Assessment

Multisource Data

Key Refs

BINN

Fast

Parameters

Yes

No

Yes

This study

PRODA

Slow

Parameters

Yes

No

Yes

Feng Tao
2020

Frontiers

MCMC

Slow

Parameters

No

Yes

Yes

Oleksandra

Hararuk

2014

JGR

Kalman Filter

Fast

States

Yes

Yes

MATHEW

WILLIAMS

2005

GCB

Genetic

Algorithm

Slow

Parameters

No

No

Yes

Damian J.

Barrett

2002

AGU ESS
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