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Abstract

Humans recognize social interactions effortlessly, even when
presented with minimal visual information in unfamiliar dis-
plays. While force dynamics has been proposed as latent rep-
resentations for perceiving social interactions, most research
has approached this topic from a linguistic perspective based
on conceptual knowledge, leaving open the central question
of how latent force representations arise from visual inputs.
The present study developed a force model that represents so-
cial interactions through two types of compositional forces:
interactive forces, driven by interactions between agents; and
self-propelled forces, driven by intentions of individual agents.
Each force was formulated using a physics function to cap-
ture the dynamics of repulsive and attractive forces. We con-
ducted two human experiments to measure human similarity
judgments across a range of interaction animations and to eval-
uate recognition performance using generated animations in
which the forces applied to individual agents were systemat-
ically manipulated. We found that the force model provides
a parsimonious account for human judgments in both experi-
ments. These findings suggest that mid-level representations
based on compositional forces driven by different goals play
an important role in social perception. We conjecture that the
development of social perception may be grounded in percep-
tual mechanisms that support intuitive physics.

Keywords: Social Perception; Heider-Simmel; Force Repre-
sentation; Human Interaction

Introduction

Rarely do we notice our ability to tell apart different kinds of
social interactions, as it is so effortless. For example, we can
walk into a restaurant and quickly see that some people are
talking, some people are shaking hands, and some people are
bidding goodbye. In fact, human minds are so sensitive to so-
cial interactions that body postures are not even necessary for
differentiation: From animations of a few simple geometric
shapes moving on a screen, people can see a complex story
unfold involving multiple social interactions, such as seeing
one shape pushing the other shape (Barrett, Todd, Miller, &
Blythe, 2005; Heider & Simmel, 1944). This ability can be
observed in both adults and children (Abell, Happe, & Frith,
2000; Springer, Meier, & Berry, 1996) and across different
cultures (Barrett et al., 2005; Morris & Peng, 1994). Al-
though Heider-Simmel types of stimuli with moving shapes
lack body movements, facial expressions, and contextual in-
formation, they allow us to focus on the key factors that give
rise to the impressions of various social interactions.
Humans are sensitive to certain social interactions, such
as chasing and avoidance behavior. For instance, people

naturally avert their gaze when they are caught staring as a
way of social avoidance (Colombatto, Chen, & Scholl, 2020).
From an evolutionary perspective, remembered dreams com-
monly involve scenarios of chasing and evading threats, per-
haps serving as a rehearsal for real-life danger (Garfield,
2001; Revonsuo, 2000). These interactions can be described
in terms of attractive and repulsive forces between the en-
tities. While some research has explored latent representa-
tions of force, most remained primarily qualitative and fo-
cused on high-level concepts and semantics. For example,
Talmy (1988) and Wolff (2012) analyzed verbs related to so-
cial interactions by explicitly separating individual intentions,
the dynamics relative to the other entity, and the outcome of
an action. Warglien, Girdenfors, and Westera (2012) repre-
sented verbs using two force vectors in which one vector de-
scribes the agentive force, and the other vector describes the
result of the actions. While these studies offer valuable in-
sights into human perception of social interactions, they do
not address fundamental questions: Do force representations
emerge from visual input? If so, how? Here, we proposed
that although forces themselves are not direct inputs to our
sensory systems, latent force-like representations arise dur-
ing visual processing and play a distinct role in human social
perception beyond their associated low-level visual features.

There has been evidence that humans can see force in
simple interactions. The classic study by Michotte (1963)
demonstrated that humans perceive that one ball causes the
other ball to launch. Later studies used the same paradigm to
show that people perceive the strength of force based on the
speed at which they moved (White, 2007). In more compli-
cated interactions, Tang et al. (2021) showed that the human
perception of chasing under the constraint of a leash can be
captured by a joint inference model that includes a control
force for the agent’s intention and a constraint force that lim-
its the agent’s movements. These findings suggest that force
representations may play a crucial role in shaping our per-
ception of social interactions, though previous studies have
only examined a limited range of interaction types, such as
launching and chasing.

Another reason to study force representations in social in-
teractions is that humans have always been exposed to forces
in the physical world. Humans experience objects that move
and rest according to well-documented physical laws, and
show remarkable ability in physics-related perception and
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reasoning, as shown in many studies in intuitive physics
(Kubricht, Holyoak, & Lu, 2017). We might rely on these
regularities that we learned from observing the states and in-
teractions of physical objects when interpreting social inter-
actions.

Inspired by the idea that physical forces and intuitive
physics shape humans’ psychological representations of so-
cial interactions, the force formulation in physics has also
been adopted to explain human behaviors. For example, Shu,
Peng, Zhu, and Lu (2021) constructed a physical-social force
model using Lagrangian mechanics to classify social ver-
sus physical events. Similarly, Helbing and Molnar (1995)
adapted the Langevin equations from physics to model pedes-
trian dynamics through social forces, which are internal
drives that lead to actions. Their model incorporated goal-
directed acceleration, interpersonal repulsion to maintain dis-
tance, and attraction toward other pedestrians or objects, suc-
cessfully describing the real-world pedestrian motion. These
efforts illustrate how formal physical frameworks can con-
tribute not only metaphorically but computationally to our
understanding of social perception, bridging intuitive physics
with predictive models of behavior. In the present paper, we
developed a force-based model that uses the Lennard-Jones
potential to capture force change between attraction and re-
pulsion, that can account for approach and avoidance behav-
iors, allowing us to infer latent social dynamics from low-
level visual input.

In the current study, we examine the emergence of latent
representations of forces in human social perception. Specif-
ically, we 1) evaluated how much human social representa-
tion can be attributed to force representations abstracted from
visual inputs, 2) explored latent representation that can be
generalized to a variety of social interactions, and 3) framed
force as the causal explanation to design an intervention study
of altering recognition of social interactions. We adapted a
parametric function that was well tested in physics to pre-
dict the trajectories of two shapes. We conducted two human
experiments using few-seconds-long Heider-Simmel type of
animations that depicted various social interactions (such as
hug, approach, fight, and avoid). In the first study, we col-
lected human similarity judgments of 27 different social inter-
actions and compared the results with model-simulated simi-
larity matrices, that were derived from four models including
low-level visual features, a deep learning model, our force
model, and semantic labels. In the second study, we gen-
erated trajectories of agents using forces controlled by fitted
parameters and measured the impact of imposed forces on
human impression of social interactions for the generated an-
imations.

Study 1: Human Social Impression through
Similarity Judgments
We used animation stimuli in the Charade dataset developed

by Roemmele, Morgens, Gordon, and Morency (2016). The
Charade dataset includes a total of 1156 animations demon-

Which is the odd one out?

4V ad w»

Figure 1: Illustration of a static frame of each stimulus pre-
sented in one trial. Participants were asked to select the odd-
one-out among the three animations.

strating 31 social interactions. In each animation, there were
two black triangles moving on a white background. One tri-
angle was larger than the other one. The animations were
created from a charade game where human annotators were
asked to demonstrate action words (such as hug and fight)
by manually moving the two triangles. The trajectories and
facing directions of the two triangles were recorded as the
animations. The generated animations were further evaluated
by a different group of participants.

Methods

Participants Seventy-seven students in the Psychology de-
partment at UCLA participated in the online experiment. We
excluded one participant who did not complete all the trials,
five participants who self-reported not being serious through-
out the experiment, and one participant who self-reported not
staying in the full-screen mode throughout the experiment.
We analyzed data from the remaining 70 participants (Fe-
male: 57, Male: 13; Mean age = 20.49).

Stimuli We selected 88 good-quality animations in the
Charade dataset that described 27 social interactions with du-
rations varied from 2 — 6 seconds. We further selected one
animation that best described each social interaction. The
selected 27 animations were associated with social interac-
tions with labels, including hug, huddle, kiss, approach, flirt,
scratch, poke, creep, tickle, hit, talk, fight, escape, lead, herd,
accompany, throw, ignore, leave, avoid, bother, push, capture,
follow, pull, examine, and encircle. Two researchers indepen-
dently made their selections. When there was a disagreement,
we asked three additional raters to break the tie. Therefore,
we included a total of 27 animations to test in the experiment.

The experiment was programmed in HTML, JavaScript,
CSS, and PHP. On each trial, we displayed three animations
side by side in the center of the computer screen. Each anima-
tion was 300 pixels in width in its original ratio, and there was
a gap of 20 pixels between each two of them (Figure 1). After
watching all three animations one after another, participants
clicked on a button beneath the corresponding animation to
indicate their odd-one-out judgment.

Design We used the odd-one-out task to assess the similar-
ity between each pair of the 27 animations representing dif-
ferent social interactions. On each trial, we displayed three
animations with the prompt ”Which is the odd one out?”.
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When a participant selected one animation as the odd-one-
out, their response implied that they considered the two un-
selected animations to be more similar to each other than to
the selected animation. We then measured the similarity be-
tween the two animations by finding the proportion of trials
in which neither of the two animations was selected among
all trials that contained these two animations. Afterward, we
calculated the dissimilarity scores by calculating the similar-
ity score between two animations and subtracting this simi-
larity score from 1. The dissimilarity matrix was later tested
against distance matrices derived from different models.

To test each pair of animations against all remaining 25
animations, we created the full combination of 2,925 unique
trials and randomly assigned them to 65 different versions of
the experiment. Each participant received one version. The
order of the trials for each participant was randomized. The
position of the three animations was also randomized for each
trial. In total, each participant completed 45 trials.

Procedure Participants accessed the experiment from their
personal laptops. They first read the instructions about the
task and were shown an example animation of pushing. They
then familiarized themselves with the task through one exam-
ple trial. After an instruction quiz question that tested their
understanding of the task, they gave consent to start the ex-
periment. There was no time limit for their decisions. No
feedback was given, so they were not guided to make judg-
ments in a particular way. There was a progress bar at the
top of the screen. Participants could watch the animations in
any order and for as many times as they wanted. They could
only proceed to the next trial after they had watched all three
animations and selected one odd-one-out animation. After
completing all the trials, we administered some survey ques-
tions to ask if they were serious throughout the experiment,
had any comments about the study, or had encountered any
technical issues.

Models

Low-level Visual Features To explore what visual cues in
the animations contributed the most to the similarity ratings,
we computed visual features for each animation: average
speed, average acceleration magnitude, average velocity, av-
erage acceleration, duration, average relative distance, and
average speed difference. We calculated the average speed
across two entities to test the hypothesis that humans might
judge two animations as more similar to each other if enti-
ties move at similar speeds. We computed acceleration mag-
nitude to test the hypothesis that humans may perceive two
animations as more similar when the entities exhibit compa-
rable variations in speed. The low-level visual cues included
velocity and acceleration to take into account directions in
addition to speed and acceleration magnitude. Average rel-
ative distance and average speed difference account for the
difference between the two entities.

The specific calculations of speed and acceleration mag-
nitude were as follows: To compute the average speed, the

movement distance (displacement) of each triangle between
two consecutive frames was calculated and then averaged
over time across two triangles (unit: px/frame); average ac-
celeration magnitude was calculated as the change in speed
of each triangle in each frame and then averaged over time
across two triangles. For each animation, there was one value
for average speed and one value for average acceleration mag-
nitude. The specific calculations of velocity and acceleration
were as follows: to indicate the direction in velocity, we rep-
resented the average velocity of one triangle in a vector with
two elements — the average displacement in the horizontal
and vertical direction over time for each triangle. We then
concatenated the two vectors of the two triangles; for acceler-
ation, we also represented it in a vector form with the average
change in displacement in the horizontal and vertical direc-
tion over time for each triangle. We then concatenated the
two vectors of the two triangles. Therefore, for each anima-
tion, there was one vector of four values for velocity and one
vector of four values for acceleration. Duration was repre-
sented by one value. Average relative distance and average
speed difference were calculated by taking the differences in
location and speed between the two triangles, averaged over
time. Each was represented by a single value as well. To-
gether, we concatenated all the features and generated a vec-
tor of length 13 for each animation. We then calculated the
pairwise Euclidean distances to construct a distance matrix
as an estimate of the dissimilarity judgments from these basic
summary features.

Deep Learning Model Since the animations involved rich
visual information evolving over time, we employed a Long
Short-Term Memory model (LSTM) that is designed to pro-
cess sequential data such as trajectories for a supervised
learning categorization task (Hochreiter & Schmidhuber,
1997). Using the LSTM architecture, we input the coordi-
nates, orientations, and velocity vector of the two triangles
for each frame as a sequence of data, with a step size of 5
frames. We trained the model through triplet loss: to decide
among three animations, which one was most different from
the other two, i.e., the odd-one-out task, using the anima-
tion label from the Charade dataset. Specifically, we fed in
three animations as the input to the model, where two anima-
tions described the same animation label and the other one
described a different animation label. The task for the model
was to decide which animation depicted a different social in-
teraction. This process mimicked the similarity judgment in
the human experiment. We trained on 1129 animations from
the Charade dataset using two recurrent layers with 100 hid-
den dimensions each. We trained the model for 1000 epochs
with a learning rate of 0.00001. Note that none of the 27 ani-
mations used in the experiment was included in training. We
then used the trained model to derive an embedding vector of
length 64 for each of the 27 animations that we tested in the
behavioral experiment. We then estimated the dissimilarity
matrix by calculating the pairwise cosine distance between
the embeddings of animations.
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A-self-propelled

B-self-propelled

interactive

Figure 2: Force composition illustration. A, refers to agent
A’s location at time ¢. B, refers to agent B’s location at time 7.

Force Model Force has the computational advantage due
to its compositional nature. Two forces can be combined to-
gether to impact the movement of an entity. We hypothe-
sized that two types of compositional forces are crucial for
capturing social interactions: interactive forces (Fiuseractive)
driven by interactions between agents, and self-propelled
forces (Fyerf—propeliea) driven by individual intentions. For
each force, the specific parametric function was inspired by
particle movements in physics. Specifically, the intuition be-
hind particle movements is that when two particles are far
from each other, they have the tendency to attract each other
controlled by attractive force; when two particles are too
close, they have the tendency to repel each other controlled
by repulsive force. The latent forces determine the movement
of each entity. We used a standard function of the Lennard-
Jones potential to estimate such an attractive-repulsive force
as a function of distance r between two entities (Lennard-
Jones, 1925):

G2 o
F(r)= 48€(rﬁ - Bﬁ)

The force function is governed by three key parameters that
were latent variables G, €, and 3. To be specific, the variable ¢
controls the critical distance where the attractive force would
change to the repulsive force. The variable € and 3 capture
the changing rate of the forces as a function of the distance
between two entities. In our model, given r denoting the dis-
tance between two triangles that can be calculated in the ani-
mation, we estimated force parameters o, €, P for every time
window of 11 frames, with a step size of 5 frames. As il-
lustrated in Figure 2, to estimate the parameters for a time
window, we first predicted the locations of agent A at time
point 7, with 7 going from 3 to 11. Specifically, at each time
point, we characterized Fjyerqcrive Using the Lennard-Jones
function, with the distance between B, and A, as input. We
characterized Fj_geif— propetica based on the distance and the
unit vector between the inital position A; and observed A; at

Dissimilarity Matrix of Human Similarity Judgments
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Figure 3: Dissimilarity matrix of human judgments. The
darker red indicates a higher similarity (low dissimilarity) be-
tween the two corresponding animations.

frame ¢. For agent B, the same method was used to estimate
parameters for the self-propelled force. The force parame-
ters are estimated to minimize the predicted positions with
the observed positions. For example, we combined Fjeractive
and F4_se1f—propeliea through vector addition and predicted
the next location A,y using the estimated force controlled
by the parameters. We used coarse grid search for the set of
three parameters to find the initial values, and then followed
by using MATLAB fminsearch for a fine-tuned search to find
the local minimum. As a result, for each animation, every 11
frames are represented by 9 parameters. For the entire ani-
mation, we then compute the histogram of each force param-
eter. To derive the dissimilarity scores across animations, we
calculated the Euclidean distance of the histogram of force
parameters.

Semantic Label We obtained word embedding of labels
for each animation using fastText model (Bojanowski, Grave,
Joulin, & Mikolov, 2016) as a high-level semantic represen-
tation of the social interaction. Each social interaction’s label
was represented by a vector of length 300. We used pairwise
cosine distance to estimate the dissimilarity matrix.

Results

From the behavioral experiment, we calculated the dissimilar-
ity scores based on the odd-one-out task. These scores were
determined by the proportion of trials in which neither anima-
tion was chosen, considering all trials that included the given
pair. Figure 3 illustrates the human dissimilarity scores, re-
vealing distinct similarity structures across various types of
social interactions.
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Low-level Visual Features
1
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1.00
0.75
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0.25

Figure 4: Dissimilarity matrices predicted by models. The
display sequence of animations is the same as Figure 3. Top
left: Low-level Visual Features model; Top right: LSTM;
Bottom left: Force model; Bottom right: Semantic Label.

We then compared the human similarity judgments with
the modeling results (Figure 4) by computing the Pearson’s
correlation between human dissimilarity scores and model-
predicted distance scores. Figure 5 shows the result between
model predictions and the human similarity judgments: the
force model produced the highest correlation (r = .499) with
human judgments, outperforming the other three models. The
low-level visual features and the LSTM model generated
moderate correlations (r = .338 and r = .329, respectively).
Semantics has the least correlation (» = .143). The reliabil-
ity noise ceiling calculated through split-half of human data
was 0.811, which represents the highest correlation possible
with the given human similarity judgments for computational
models.

Using a semi-partial correlation test to control the effect
of visual features and LSTM on predicting human similar-
ity judgments, the force model provided unique contribution
in account for human judgments, as revealed by a significant
semi-partial correlation (sr = .361, p < 0.001). When con-
trolling the effect of only visual features on predicting human
similarity judgments, the force model also remained a signif-
icant semi-partial correlation (sr = .371, p < 0.001).

Study 2: Social Impression of Animations
Created Using Force Parameters

The previous experiment demonstrated that the force model
best accounts for human similarity judgments of social inter-
actions. If human perception of social interactions depended
on the intermediate level representations of forces, then ma-
nipulating the underlying force should change people’s im-
pressions of the animation. In study 2, we manipulated the

o
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o
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o o o
w ES [

and predicted dissimilarity
=}

Correlation of human dissimilarity

o
-

0.0
Visual Features LSTM Semantics

Force

Figure 5: Correlation between human dissimilarity judg-
ments and model-predicted dissimilarity of animations.

animations by maintaining the trajectory of one agent shape,
but generating trajectories of the other agent shape based on
the imposed forces from a different social interaction. We
then asked subjects to label the new animations and examined
if different forces would give rise to different social impres-
sions. Note that only parameters from the force model were
imposed to generate new trajectories.

Methods

Stimuli  We first ran the force model to prepare for the gen-
eration of new animations. For each of the 27 animations
used in study 1, we fitted the force model on its trajectories
for each social interaction and obtained corresponding force
parameters for interactive force, and self-propelled force of
individual agents. Specifically, for every 11 frames in the
trajectories, the compositional forces contained nine param-
eters, of which three described the interactive force, and the
rest described the self-propelled force of the agents. Using
the force parameters estimated from an animation, we com-
puted the forces based on distances and then added the force
to other animations to generate new trajectories of an agent.
When the original animation and the forces had different du-
rations, we trimmed whichever was the longer one. For exam-
ple, when we applied the “accompany” force to the “escape”
interaction, we maintained agent B’s trajectory in the origi-
nal “escaping” animation, and generated agent A’s trajectory
so that the self-propelled force and the interactive force were
governed by force parameters estimated from the “accompa-
nying” animation. Our question was whether the generated
animation would give rise to an impression of “accompany-
ing” more likely or less likely than “escaping” interaction.
We selected a subset of 10 social interactions to test hu-
man perception of them: huddle, escape, lead, herd, accom-
pany, ignore, bother, capture, follow, and pull. Animations
were chosen where agent B exhibited noticeable movement

1797



(i.e., Total distance and max speed were both greater than 10
pixels). These social interactions were selected because if
agent B barely moved in two interactions, applying the same
force would result in nearly identical generated trajectories
for agent A as in the original animation. For agent A, its
trajectory was calculated using the imposed force parameters
from a different social interaction. The generated animations
featured a large circle representing agent A and a small circle
representing agent B.

In total, we generated 90 animations. We also included
the 10 original animations with circles replacing the triangles.
The animations had durations within the range of 2.28 to 5.48
seconds.

Design The study contained 100 trials in total. On each
trial, participants watched one animation. After watching
it, they were given the 10 social interaction labels and were
asked to select only one label. The instruction was “Select the
label that best describes the animation. The big circle is the
agent who takes the action, and the small circle is the target
of the action.” There was no time limit and no feedback. Par-
ticipants were allowed to play the animation as many times as
they wanted before they made their judgments. The display
order of the labels was the same across all trials for each par-
ticipant but was randomized across participants. The order of
the 100 trials was randomized across participants.

For the analysis, we calculated the proportion of trials in
which participants selected the force label (the label that se-
lects the corresponding force parameters to generate trajec-
tories of agent A), and the proportion of trials where partici-
pants selected the original label (the label that determines the
trajectory of agent B). The trials that included the original an-
imations served as a control to measure the baseline response
proportion for the corresponding labels.

Participants One-hundred-twenty-five students in the Psy-
chology department at UCLA participated in the online ex-
periment. We excluded nine participants who did not com-
plete the end survey due to some technical difficulties, six
participants who self-reported not being serious throughout
the experiment, and two participants who self-reported not
staying in the full-screen mode throughout the experiment.
We analyzed data from the remaining 108 participants (Fe-
male: 90, Male: 16, Prefer non-disclosure: 2; Mean age =
20.14).

Results

For the baseline trials with original animations, participants
on average selected the original label in 32.13% of the trials,
notably above the random chance level of 10%. For the trials
with generated animations, participants on average selected
the original label in 10.14% of the trials, and they selected the
force label in 15.30% of the trials. Compared to the random
chance level of 10%, one-sample t-tests showed that partici-
pants selected the force label significantly more than chance
(#(107) = 13.15, p < 0.001). In contrast, there was no signifi-

Proportion of Trials
o o o
s o o
- o o

o
o
N}

o4
o
I}

Original

Figure 6: Proportion of responses in selecting labels to de-
scribe generated animations. The “original” label determined
the trajectory of agent B; the “force” label determined the
corresponding force parameters used for generating trajecto-
ries of agent A. The error bars indicated the 95% confidence
interval for each selected label.

cant difference between the selection of the original label and
the random chance level (#(107) = 0.43, p = 0.33). Addition-
ally, a paired-sample t-test showed that participants selected
the force label significantly more frequently than the original
label (¢(107) = —10.32, p < 0.001).

Discussion

The present study used both similarity judgments and a recog-
nition task to reveal the emergence of latent force representa-
tions in human perception of social interactions. Thus, forces
are not merely hypothetical proposal to connect perception
and cognition, but serve as essential mid-level representations
in human social perception.

Study 1 showed that human similarity judgments had the
highest correlation with the force model, outperforming low-
level visual features and LSTM. All three visual models
outperformed the semantic labels. In addition, the semi-
partial correlation analysis demonstrated that the force model
explained unique variation in human similarity judgments.
These findings suggest that people interpret social dynamics
through compositional forces driven by distinct goals. Study
2 showed that imposed forces can directly alter human per-
ception of social interactions, changing from one interaction
label to the other.

In conclusion, the current study highlight a promising di-
rection of considering force as a latent representation in ser-
vice of human social perception. The force model has po-
tential to be generalized to complex real-world social inter-
actions such as pedestrians’ movements (Farina, Fontanelli,
Garulli, Giannitrapani, & Prattichizzo, 2017). The study
sheds light on the development of social perception, which
may build upon perceptual processes underlying intuitive
physics.
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